• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 Advanced Micro Devices, Inc.
3  *
4  * Author: Jacob Shin <jacob.shin@amd.com>
5  * Fixes: Borislav Petkov <bp@suse.de>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/earlycpio.h>
13 #include <linux/initrd.h>
14 
15 #include <asm/cpu.h>
16 #include <asm/setup.h>
17 #include <asm/microcode_amd.h>
18 
19 /*
20  * This points to the current valid container of microcode patches which we will
21  * save from the initrd before jettisoning its contents.
22  */
23 static u8 *container;
24 static size_t container_size;
25 
26 static u32 ucode_new_rev;
27 u8 amd_ucode_patch[PATCH_MAX_SIZE];
28 static u16 this_equiv_id;
29 
30 static struct cpio_data ucode_cpio;
31 
32 /*
33  * Microcode patch container file is prepended to the initrd in cpio format.
34  * See Documentation/x86/early-microcode.txt
35  */
36 static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";
37 
find_ucode_in_initrd(void)38 static struct cpio_data __init find_ucode_in_initrd(void)
39 {
40 	long offset = 0;
41 	char *path;
42 	void *start;
43 	size_t size;
44 
45 #ifdef CONFIG_X86_32
46 	struct boot_params *p;
47 
48 	/*
49 	 * On 32-bit, early load occurs before paging is turned on so we need
50 	 * to use physical addresses.
51 	 */
52 	p       = (struct boot_params *)__pa_nodebug(&boot_params);
53 	path    = (char *)__pa_nodebug(ucode_path);
54 	start   = (void *)p->hdr.ramdisk_image;
55 	size    = p->hdr.ramdisk_size;
56 #else
57 	path    = ucode_path;
58 	start   = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
59 	size    = boot_params.hdr.ramdisk_size;
60 #endif
61 
62 	return find_cpio_data(path, start, size, &offset);
63 }
64 
compute_container_size(u8 * data,u32 total_size)65 static size_t compute_container_size(u8 *data, u32 total_size)
66 {
67 	size_t size = 0;
68 	u32 *header = (u32 *)data;
69 
70 	if (header[0] != UCODE_MAGIC ||
71 	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
72 	    header[2] == 0)                            /* size */
73 		return size;
74 
75 	size = header[2] + CONTAINER_HDR_SZ;
76 	total_size -= size;
77 	data += size;
78 
79 	while (total_size) {
80 		u16 patch_size;
81 
82 		header = (u32 *)data;
83 
84 		if (header[0] != UCODE_UCODE_TYPE)
85 			break;
86 
87 		/*
88 		 * Sanity-check patch size.
89 		 */
90 		patch_size = header[1];
91 		if (patch_size > PATCH_MAX_SIZE)
92 			break;
93 
94 		size	   += patch_size + SECTION_HDR_SIZE;
95 		data	   += patch_size + SECTION_HDR_SIZE;
96 		total_size -= patch_size + SECTION_HDR_SIZE;
97 	}
98 
99 	return size;
100 }
101 
102 /*
103  * Early load occurs before we can vmalloc(). So we look for the microcode
104  * patch container file in initrd, traverse equivalent cpu table, look for a
105  * matching microcode patch, and update, all in initrd memory in place.
106  * When vmalloc() is available for use later -- on 64-bit during first AP load,
107  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
108  * load_microcode_amd() to save equivalent cpu table and microcode patches in
109  * kernel heap memory.
110  */
apply_ucode_in_initrd(void * ucode,size_t size,bool save_patch)111 static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
112 {
113 	struct equiv_cpu_entry *eq;
114 	size_t *cont_sz;
115 	u32 *header;
116 	u8  *data, **cont;
117 	u8 (*patch)[PATCH_MAX_SIZE];
118 	u16 eq_id = 0;
119 	int offset, left;
120 	u32 rev, eax, ebx, ecx, edx;
121 	u32 *new_rev;
122 
123 #ifdef CONFIG_X86_32
124 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
125 	cont_sz = (size_t *)__pa_nodebug(&container_size);
126 	cont	= (u8 **)__pa_nodebug(&container);
127 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
128 #else
129 	new_rev = &ucode_new_rev;
130 	cont_sz = &container_size;
131 	cont	= &container;
132 	patch	= &amd_ucode_patch;
133 #endif
134 
135 	data   = ucode;
136 	left   = size;
137 	header = (u32 *)data;
138 
139 	/* find equiv cpu table */
140 	if (header[0] != UCODE_MAGIC ||
141 	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
142 	    header[2] == 0)                            /* size */
143 		return;
144 
145 	eax = 0x00000001;
146 	ecx = 0;
147 	native_cpuid(&eax, &ebx, &ecx, &edx);
148 
149 	while (left > 0) {
150 		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
151 
152 		*cont = data;
153 
154 		/* Advance past the container header */
155 		offset = header[2] + CONTAINER_HDR_SZ;
156 		data  += offset;
157 		left  -= offset;
158 
159 		eq_id = find_equiv_id(eq, eax);
160 		if (eq_id) {
161 			this_equiv_id = eq_id;
162 			*cont_sz = compute_container_size(*cont, left + offset);
163 
164 			/*
165 			 * truncate how much we need to iterate over in the
166 			 * ucode update loop below
167 			 */
168 			left = *cont_sz - offset;
169 			break;
170 		}
171 
172 		/*
173 		 * support multiple container files appended together. if this
174 		 * one does not have a matching equivalent cpu entry, we fast
175 		 * forward to the next container file.
176 		 */
177 		while (left > 0) {
178 			header = (u32 *)data;
179 			if (header[0] == UCODE_MAGIC &&
180 			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
181 				break;
182 
183 			offset = header[1] + SECTION_HDR_SIZE;
184 			data  += offset;
185 			left  -= offset;
186 		}
187 
188 		/* mark where the next microcode container file starts */
189 		offset    = data - (u8 *)ucode;
190 		ucode     = data;
191 	}
192 
193 	if (!eq_id) {
194 		*cont = NULL;
195 		*cont_sz = 0;
196 		return;
197 	}
198 
199 	/* find ucode and update if needed */
200 
201 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax);
202 
203 	while (left > 0) {
204 		struct microcode_amd *mc;
205 
206 		header = (u32 *)data;
207 		if (header[0] != UCODE_UCODE_TYPE || /* type */
208 		    header[1] == 0)                  /* size */
209 			break;
210 
211 		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
212 
213 		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
214 
215 			if (!__apply_microcode_amd(mc)) {
216 				rev = mc->hdr.patch_id;
217 				*new_rev = rev;
218 
219 				if (save_patch)
220 					memcpy(patch, mc,
221 					       min_t(u32, header[1], PATCH_MAX_SIZE));
222 			}
223 		}
224 
225 		offset  = header[1] + SECTION_HDR_SIZE;
226 		data   += offset;
227 		left   -= offset;
228 	}
229 }
230 
load_ucode_amd_bsp(void)231 void __init load_ucode_amd_bsp(void)
232 {
233 	struct cpio_data cp;
234 	void **data;
235 	size_t *size;
236 
237 #ifdef CONFIG_X86_32
238 	data =  (void **)__pa_nodebug(&ucode_cpio.data);
239 	size = (size_t *)__pa_nodebug(&ucode_cpio.size);
240 #else
241 	data = &ucode_cpio.data;
242 	size = &ucode_cpio.size;
243 #endif
244 
245 	cp = find_ucode_in_initrd();
246 	if (!cp.data)
247 		return;
248 
249 	*data = cp.data;
250 	*size = cp.size;
251 
252 	apply_ucode_in_initrd(cp.data, cp.size, true);
253 }
254 
255 #ifdef CONFIG_X86_32
256 /*
257  * On 32-bit, since AP's early load occurs before paging is turned on, we
258  * cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
259  * cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
260  * save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
261  * which is used upon resume from suspend.
262  */
load_ucode_amd_ap(void)263 void load_ucode_amd_ap(void)
264 {
265 	struct microcode_amd *mc;
266 	size_t *usize;
267 	void **ucode;
268 
269 	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
270 	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
271 		__apply_microcode_amd(mc);
272 		return;
273 	}
274 
275 	ucode = (void *)__pa_nodebug(&container);
276 	usize = (size_t *)__pa_nodebug(&container_size);
277 
278 	if (!*ucode || !*usize)
279 		return;
280 
281 	apply_ucode_in_initrd(*ucode, *usize, false);
282 }
283 
collect_cpu_sig_on_bsp(void * arg)284 static void __init collect_cpu_sig_on_bsp(void *arg)
285 {
286 	unsigned int cpu = smp_processor_id();
287 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
288 
289 	uci->cpu_sig.sig = cpuid_eax(0x00000001);
290 }
291 
get_bsp_sig(void)292 static void __init get_bsp_sig(void)
293 {
294 	unsigned int bsp = boot_cpu_data.cpu_index;
295 	struct ucode_cpu_info *uci = ucode_cpu_info + bsp;
296 
297 	if (!uci->cpu_sig.sig)
298 		smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
299 }
300 #else
load_ucode_amd_ap(void)301 void load_ucode_amd_ap(void)
302 {
303 	unsigned int cpu = smp_processor_id();
304 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
305 	struct equiv_cpu_entry *eq;
306 	struct microcode_amd *mc;
307 	u32 rev, eax;
308 	u16 eq_id;
309 
310 	/* Exit if called on the BSP. */
311 	if (!cpu)
312 		return;
313 
314 	if (!container)
315 		return;
316 
317 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax);
318 
319 	uci->cpu_sig.rev = rev;
320 	uci->cpu_sig.sig = eax;
321 
322 	eax = cpuid_eax(0x00000001);
323 	eq  = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ);
324 
325 	eq_id = find_equiv_id(eq, eax);
326 	if (!eq_id)
327 		return;
328 
329 	if (eq_id == this_equiv_id) {
330 		mc = (struct microcode_amd *)amd_ucode_patch;
331 
332 		if (mc && rev < mc->hdr.patch_id) {
333 			if (!__apply_microcode_amd(mc))
334 				ucode_new_rev = mc->hdr.patch_id;
335 		}
336 
337 	} else {
338 		if (!ucode_cpio.data)
339 			return;
340 
341 		/*
342 		 * AP has a different equivalence ID than BSP, looks like
343 		 * mixed-steppings silicon so go through the ucode blob anew.
344 		 */
345 		apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
346 	}
347 }
348 #endif
349 
save_microcode_in_initrd_amd(void)350 int __init save_microcode_in_initrd_amd(void)
351 {
352 	unsigned long cont;
353 	int retval = 0;
354 	enum ucode_state ret;
355 	u8 *cont_va;
356 	u32 eax;
357 
358 	if (!container)
359 		return -EINVAL;
360 
361 #ifdef CONFIG_X86_32
362 	get_bsp_sig();
363 	cont	= (unsigned long)container;
364 	cont_va = __va(container);
365 #else
366 	/*
367 	 * We need the physical address of the container for both bitness since
368 	 * boot_params.hdr.ramdisk_image is a physical address.
369 	 */
370 	cont    = __pa(container);
371 	cont_va = container;
372 #endif
373 
374 	/*
375 	 * Take into account the fact that the ramdisk might get relocated and
376 	 * therefore we need to recompute the container's position in virtual
377 	 * memory space.
378 	 */
379 	if (relocated_ramdisk)
380 		container = (u8 *)(__va(relocated_ramdisk) +
381 			     (cont - boot_params.hdr.ramdisk_image));
382 	else
383 		container = cont_va;
384 
385 	if (ucode_new_rev)
386 		pr_info("microcode: updated early to new patch_level=0x%08x\n",
387 			ucode_new_rev);
388 
389 	eax   = cpuid_eax(0x00000001);
390 	eax   = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);
391 
392 	ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
393 	if (ret != UCODE_OK)
394 		retval = -EINVAL;
395 
396 	/*
397 	 * This will be freed any msec now, stash patches for the current
398 	 * family and switch to patch cache for cpu hotplug, etc later.
399 	 */
400 	container = NULL;
401 	container_size = 0;
402 
403 	return retval;
404 }
405 
reload_ucode_amd(void)406 void reload_ucode_amd(void)
407 {
408 	struct microcode_amd *mc;
409 	u32 rev, eax;
410 
411 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, eax);
412 
413 	mc = (struct microcode_amd *)amd_ucode_patch;
414 
415 	if (mc && rev < mc->hdr.patch_id) {
416 		if (!__apply_microcode_amd(mc)) {
417 			ucode_new_rev = mc->hdr.patch_id;
418 			pr_info("microcode: reload patch_level=0x%08x\n",
419 				ucode_new_rev);
420 		}
421 	}
422 }
423