• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 u64 __read_mostly hw_cache_event_ids
49 				[PERF_COUNT_HW_CACHE_MAX]
50 				[PERF_COUNT_HW_CACHE_OP_MAX]
51 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
52 u64 __read_mostly hw_cache_extra_regs
53 				[PERF_COUNT_HW_CACHE_MAX]
54 				[PERF_COUNT_HW_CACHE_OP_MAX]
55 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
56 
57 /*
58  * Propagate event elapsed time into the generic event.
59  * Can only be executed on the CPU where the event is active.
60  * Returns the delta events processed.
61  */
x86_perf_event_update(struct perf_event * event)62 u64 x86_perf_event_update(struct perf_event *event)
63 {
64 	struct hw_perf_event *hwc = &event->hw;
65 	int shift = 64 - x86_pmu.cntval_bits;
66 	u64 prev_raw_count, new_raw_count;
67 	int idx = hwc->idx;
68 	s64 delta;
69 
70 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
71 		return 0;
72 
73 	/*
74 	 * Careful: an NMI might modify the previous event value.
75 	 *
76 	 * Our tactic to handle this is to first atomically read and
77 	 * exchange a new raw count - then add that new-prev delta
78 	 * count to the generic event atomically:
79 	 */
80 again:
81 	prev_raw_count = local64_read(&hwc->prev_count);
82 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
83 
84 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
85 					new_raw_count) != prev_raw_count)
86 		goto again;
87 
88 	/*
89 	 * Now we have the new raw value and have updated the prev
90 	 * timestamp already. We can now calculate the elapsed delta
91 	 * (event-)time and add that to the generic event.
92 	 *
93 	 * Careful, not all hw sign-extends above the physical width
94 	 * of the count.
95 	 */
96 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
97 	delta >>= shift;
98 
99 	local64_add(delta, &event->count);
100 	local64_sub(delta, &hwc->period_left);
101 
102 	return new_raw_count;
103 }
104 
105 /*
106  * Find and validate any extra registers to set up.
107  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)108 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
109 {
110 	struct hw_perf_event_extra *reg;
111 	struct extra_reg *er;
112 
113 	reg = &event->hw.extra_reg;
114 
115 	if (!x86_pmu.extra_regs)
116 		return 0;
117 
118 	for (er = x86_pmu.extra_regs; er->msr; er++) {
119 		if (er->event != (config & er->config_mask))
120 			continue;
121 		if (event->attr.config1 & ~er->valid_mask)
122 			return -EINVAL;
123 		/* Check if the extra msrs can be safely accessed*/
124 		if (!er->extra_msr_access)
125 			return -ENXIO;
126 
127 		reg->idx = er->idx;
128 		reg->config = event->attr.config1;
129 		reg->reg = er->msr;
130 		break;
131 	}
132 	return 0;
133 }
134 
135 static atomic_t active_events;
136 static DEFINE_MUTEX(pmc_reserve_mutex);
137 
138 #ifdef CONFIG_X86_LOCAL_APIC
139 
reserve_pmc_hardware(void)140 static bool reserve_pmc_hardware(void)
141 {
142 	int i;
143 
144 	for (i = 0; i < x86_pmu.num_counters; i++) {
145 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
146 			goto perfctr_fail;
147 	}
148 
149 	for (i = 0; i < x86_pmu.num_counters; i++) {
150 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
151 			goto eventsel_fail;
152 	}
153 
154 	return true;
155 
156 eventsel_fail:
157 	for (i--; i >= 0; i--)
158 		release_evntsel_nmi(x86_pmu_config_addr(i));
159 
160 	i = x86_pmu.num_counters;
161 
162 perfctr_fail:
163 	for (i--; i >= 0; i--)
164 		release_perfctr_nmi(x86_pmu_event_addr(i));
165 
166 	return false;
167 }
168 
release_pmc_hardware(void)169 static void release_pmc_hardware(void)
170 {
171 	int i;
172 
173 	for (i = 0; i < x86_pmu.num_counters; i++) {
174 		release_perfctr_nmi(x86_pmu_event_addr(i));
175 		release_evntsel_nmi(x86_pmu_config_addr(i));
176 	}
177 }
178 
179 #else
180 
reserve_pmc_hardware(void)181 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)182 static void release_pmc_hardware(void) {}
183 
184 #endif
185 
check_hw_exists(void)186 static bool check_hw_exists(void)
187 {
188 	u64 val, val_fail, val_new= ~0;
189 	int i, reg, reg_fail, ret = 0;
190 	int bios_fail = 0;
191 
192 	/*
193 	 * Check to see if the BIOS enabled any of the counters, if so
194 	 * complain and bail.
195 	 */
196 	for (i = 0; i < x86_pmu.num_counters; i++) {
197 		reg = x86_pmu_config_addr(i);
198 		ret = rdmsrl_safe(reg, &val);
199 		if (ret)
200 			goto msr_fail;
201 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
202 			bios_fail = 1;
203 			val_fail = val;
204 			reg_fail = reg;
205 		}
206 	}
207 
208 	if (x86_pmu.num_counters_fixed) {
209 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210 		ret = rdmsrl_safe(reg, &val);
211 		if (ret)
212 			goto msr_fail;
213 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214 			if (val & (0x03 << i*4)) {
215 				bios_fail = 1;
216 				val_fail = val;
217 				reg_fail = reg;
218 			}
219 		}
220 	}
221 
222 	/*
223 	 * Read the current value, change it and read it back to see if it
224 	 * matches, this is needed to detect certain hardware emulators
225 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
226 	 */
227 	reg = x86_pmu_event_addr(0);
228 	if (rdmsrl_safe(reg, &val))
229 		goto msr_fail;
230 	val ^= 0xffffUL;
231 	ret = wrmsrl_safe(reg, val);
232 	ret |= rdmsrl_safe(reg, &val_new);
233 	if (ret || val != val_new)
234 		goto msr_fail;
235 
236 	/*
237 	 * We still allow the PMU driver to operate:
238 	 */
239 	if (bios_fail) {
240 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
241 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
242 	}
243 
244 	return true;
245 
246 msr_fail:
247 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
248 	printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
249 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
250 		reg, val_new);
251 
252 	return false;
253 }
254 
hw_perf_event_destroy(struct perf_event * event)255 static void hw_perf_event_destroy(struct perf_event *event)
256 {
257 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
258 		release_pmc_hardware();
259 		release_ds_buffers();
260 		mutex_unlock(&pmc_reserve_mutex);
261 	}
262 }
263 
x86_pmu_initialized(void)264 static inline int x86_pmu_initialized(void)
265 {
266 	return x86_pmu.handle_irq != NULL;
267 }
268 
269 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)270 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
271 {
272 	struct perf_event_attr *attr = &event->attr;
273 	unsigned int cache_type, cache_op, cache_result;
274 	u64 config, val;
275 
276 	config = attr->config;
277 
278 	cache_type = (config >>  0) & 0xff;
279 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
280 		return -EINVAL;
281 
282 	cache_op = (config >>  8) & 0xff;
283 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
284 		return -EINVAL;
285 
286 	cache_result = (config >> 16) & 0xff;
287 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
288 		return -EINVAL;
289 
290 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
291 
292 	if (val == 0)
293 		return -ENOENT;
294 
295 	if (val == -1)
296 		return -EINVAL;
297 
298 	hwc->config |= val;
299 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
300 	return x86_pmu_extra_regs(val, event);
301 }
302 
x86_setup_perfctr(struct perf_event * event)303 int x86_setup_perfctr(struct perf_event *event)
304 {
305 	struct perf_event_attr *attr = &event->attr;
306 	struct hw_perf_event *hwc = &event->hw;
307 	u64 config;
308 
309 	if (!is_sampling_event(event)) {
310 		hwc->sample_period = x86_pmu.max_period;
311 		hwc->last_period = hwc->sample_period;
312 		local64_set(&hwc->period_left, hwc->sample_period);
313 	}
314 
315 	if (attr->type == PERF_TYPE_RAW)
316 		return x86_pmu_extra_regs(event->attr.config, event);
317 
318 	if (attr->type == PERF_TYPE_HW_CACHE)
319 		return set_ext_hw_attr(hwc, event);
320 
321 	if (attr->config >= x86_pmu.max_events)
322 		return -EINVAL;
323 
324 	/*
325 	 * The generic map:
326 	 */
327 	config = x86_pmu.event_map(attr->config);
328 
329 	if (config == 0)
330 		return -ENOENT;
331 
332 	if (config == -1LL)
333 		return -EINVAL;
334 
335 	/*
336 	 * Branch tracing:
337 	 */
338 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
339 	    !attr->freq && hwc->sample_period == 1) {
340 		/* BTS is not supported by this architecture. */
341 		if (!x86_pmu.bts_active)
342 			return -EOPNOTSUPP;
343 
344 		/* BTS is currently only allowed for user-mode. */
345 		if (!attr->exclude_kernel)
346 			return -EOPNOTSUPP;
347 	}
348 
349 	hwc->config |= config;
350 
351 	return 0;
352 }
353 
354 /*
355  * check that branch_sample_type is compatible with
356  * settings needed for precise_ip > 1 which implies
357  * using the LBR to capture ALL taken branches at the
358  * priv levels of the measurement
359  */
precise_br_compat(struct perf_event * event)360 static inline int precise_br_compat(struct perf_event *event)
361 {
362 	u64 m = event->attr.branch_sample_type;
363 	u64 b = 0;
364 
365 	/* must capture all branches */
366 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
367 		return 0;
368 
369 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
370 
371 	if (!event->attr.exclude_user)
372 		b |= PERF_SAMPLE_BRANCH_USER;
373 
374 	if (!event->attr.exclude_kernel)
375 		b |= PERF_SAMPLE_BRANCH_KERNEL;
376 
377 	/*
378 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
379 	 */
380 
381 	return m == b;
382 }
383 
x86_pmu_hw_config(struct perf_event * event)384 int x86_pmu_hw_config(struct perf_event *event)
385 {
386 	if (event->attr.precise_ip) {
387 		int precise = 0;
388 
389 		/* Support for constant skid */
390 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
391 			precise++;
392 
393 			/* Support for IP fixup */
394 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
395 				precise++;
396 		}
397 
398 		if (event->attr.precise_ip > precise)
399 			return -EOPNOTSUPP;
400 		/*
401 		 * check that PEBS LBR correction does not conflict with
402 		 * whatever the user is asking with attr->branch_sample_type
403 		 */
404 		if (event->attr.precise_ip > 1 &&
405 		    x86_pmu.intel_cap.pebs_format < 2) {
406 			u64 *br_type = &event->attr.branch_sample_type;
407 
408 			if (has_branch_stack(event)) {
409 				if (!precise_br_compat(event))
410 					return -EOPNOTSUPP;
411 
412 				/* branch_sample_type is compatible */
413 
414 			} else {
415 				/*
416 				 * user did not specify  branch_sample_type
417 				 *
418 				 * For PEBS fixups, we capture all
419 				 * the branches at the priv level of the
420 				 * event.
421 				 */
422 				*br_type = PERF_SAMPLE_BRANCH_ANY;
423 
424 				if (!event->attr.exclude_user)
425 					*br_type |= PERF_SAMPLE_BRANCH_USER;
426 
427 				if (!event->attr.exclude_kernel)
428 					*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
429 			}
430 		}
431 	}
432 
433 	/*
434 	 * Generate PMC IRQs:
435 	 * (keep 'enabled' bit clear for now)
436 	 */
437 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438 
439 	/*
440 	 * Count user and OS events unless requested not to
441 	 */
442 	if (!event->attr.exclude_user)
443 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444 	if (!event->attr.exclude_kernel)
445 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446 
447 	if (event->attr.type == PERF_TYPE_RAW)
448 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449 
450 	return x86_setup_perfctr(event);
451 }
452 
453 /*
454  * Setup the hardware configuration for a given attr_type
455  */
__x86_pmu_event_init(struct perf_event * event)456 static int __x86_pmu_event_init(struct perf_event *event)
457 {
458 	int err;
459 
460 	if (!x86_pmu_initialized())
461 		return -ENODEV;
462 
463 	err = 0;
464 	if (!atomic_inc_not_zero(&active_events)) {
465 		mutex_lock(&pmc_reserve_mutex);
466 		if (atomic_read(&active_events) == 0) {
467 			if (!reserve_pmc_hardware())
468 				err = -EBUSY;
469 			else
470 				reserve_ds_buffers();
471 		}
472 		if (!err)
473 			atomic_inc(&active_events);
474 		mutex_unlock(&pmc_reserve_mutex);
475 	}
476 	if (err)
477 		return err;
478 
479 	event->destroy = hw_perf_event_destroy;
480 
481 	event->hw.idx = -1;
482 	event->hw.last_cpu = -1;
483 	event->hw.last_tag = ~0ULL;
484 
485 	/* mark unused */
486 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
487 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
488 
489 	return x86_pmu.hw_config(event);
490 }
491 
x86_pmu_disable_all(void)492 void x86_pmu_disable_all(void)
493 {
494 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
495 	int idx;
496 
497 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
498 		u64 val;
499 
500 		if (!test_bit(idx, cpuc->active_mask))
501 			continue;
502 		rdmsrl(x86_pmu_config_addr(idx), val);
503 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
504 			continue;
505 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
506 		wrmsrl(x86_pmu_config_addr(idx), val);
507 	}
508 }
509 
x86_pmu_disable(struct pmu * pmu)510 static void x86_pmu_disable(struct pmu *pmu)
511 {
512 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
513 
514 	if (!x86_pmu_initialized())
515 		return;
516 
517 	if (!cpuc->enabled)
518 		return;
519 
520 	cpuc->n_added = 0;
521 	cpuc->enabled = 0;
522 	barrier();
523 
524 	x86_pmu.disable_all();
525 }
526 
x86_pmu_enable_all(int added)527 void x86_pmu_enable_all(int added)
528 {
529 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
530 	int idx;
531 
532 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
533 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
534 
535 		if (!test_bit(idx, cpuc->active_mask))
536 			continue;
537 
538 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
539 	}
540 }
541 
542 static struct pmu pmu;
543 
is_x86_event(struct perf_event * event)544 static inline int is_x86_event(struct perf_event *event)
545 {
546 	return event->pmu == &pmu;
547 }
548 
549 /*
550  * Event scheduler state:
551  *
552  * Assign events iterating over all events and counters, beginning
553  * with events with least weights first. Keep the current iterator
554  * state in struct sched_state.
555  */
556 struct sched_state {
557 	int	weight;
558 	int	event;		/* event index */
559 	int	counter;	/* counter index */
560 	int	unassigned;	/* number of events to be assigned left */
561 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
562 };
563 
564 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
565 #define	SCHED_STATES_MAX	2
566 
567 struct perf_sched {
568 	int			max_weight;
569 	int			max_events;
570 	struct perf_event	**events;
571 	struct sched_state	state;
572 	int			saved_states;
573 	struct sched_state	saved[SCHED_STATES_MAX];
574 };
575 
576 /*
577  * Initialize interator that runs through all events and counters.
578  */
perf_sched_init(struct perf_sched * sched,struct perf_event ** events,int num,int wmin,int wmax)579 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
580 			    int num, int wmin, int wmax)
581 {
582 	int idx;
583 
584 	memset(sched, 0, sizeof(*sched));
585 	sched->max_events	= num;
586 	sched->max_weight	= wmax;
587 	sched->events		= events;
588 
589 	for (idx = 0; idx < num; idx++) {
590 		if (events[idx]->hw.constraint->weight == wmin)
591 			break;
592 	}
593 
594 	sched->state.event	= idx;		/* start with min weight */
595 	sched->state.weight	= wmin;
596 	sched->state.unassigned	= num;
597 }
598 
perf_sched_save_state(struct perf_sched * sched)599 static void perf_sched_save_state(struct perf_sched *sched)
600 {
601 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
602 		return;
603 
604 	sched->saved[sched->saved_states] = sched->state;
605 	sched->saved_states++;
606 }
607 
perf_sched_restore_state(struct perf_sched * sched)608 static bool perf_sched_restore_state(struct perf_sched *sched)
609 {
610 	if (!sched->saved_states)
611 		return false;
612 
613 	sched->saved_states--;
614 	sched->state = sched->saved[sched->saved_states];
615 
616 	/* continue with next counter: */
617 	clear_bit(sched->state.counter++, sched->state.used);
618 
619 	return true;
620 }
621 
622 /*
623  * Select a counter for the current event to schedule. Return true on
624  * success.
625  */
__perf_sched_find_counter(struct perf_sched * sched)626 static bool __perf_sched_find_counter(struct perf_sched *sched)
627 {
628 	struct event_constraint *c;
629 	int idx;
630 
631 	if (!sched->state.unassigned)
632 		return false;
633 
634 	if (sched->state.event >= sched->max_events)
635 		return false;
636 
637 	c = sched->events[sched->state.event]->hw.constraint;
638 	/* Prefer fixed purpose counters */
639 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
640 		idx = INTEL_PMC_IDX_FIXED;
641 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
642 			if (!__test_and_set_bit(idx, sched->state.used))
643 				goto done;
644 		}
645 	}
646 	/* Grab the first unused counter starting with idx */
647 	idx = sched->state.counter;
648 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
649 		if (!__test_and_set_bit(idx, sched->state.used))
650 			goto done;
651 	}
652 
653 	return false;
654 
655 done:
656 	sched->state.counter = idx;
657 
658 	if (c->overlap)
659 		perf_sched_save_state(sched);
660 
661 	return true;
662 }
663 
perf_sched_find_counter(struct perf_sched * sched)664 static bool perf_sched_find_counter(struct perf_sched *sched)
665 {
666 	while (!__perf_sched_find_counter(sched)) {
667 		if (!perf_sched_restore_state(sched))
668 			return false;
669 	}
670 
671 	return true;
672 }
673 
674 /*
675  * Go through all unassigned events and find the next one to schedule.
676  * Take events with the least weight first. Return true on success.
677  */
perf_sched_next_event(struct perf_sched * sched)678 static bool perf_sched_next_event(struct perf_sched *sched)
679 {
680 	struct event_constraint *c;
681 
682 	if (!sched->state.unassigned || !--sched->state.unassigned)
683 		return false;
684 
685 	do {
686 		/* next event */
687 		sched->state.event++;
688 		if (sched->state.event >= sched->max_events) {
689 			/* next weight */
690 			sched->state.event = 0;
691 			sched->state.weight++;
692 			if (sched->state.weight > sched->max_weight)
693 				return false;
694 		}
695 		c = sched->events[sched->state.event]->hw.constraint;
696 	} while (c->weight != sched->state.weight);
697 
698 	sched->state.counter = 0;	/* start with first counter */
699 
700 	return true;
701 }
702 
703 /*
704  * Assign a counter for each event.
705  */
perf_assign_events(struct perf_event ** events,int n,int wmin,int wmax,int * assign)706 int perf_assign_events(struct perf_event **events, int n,
707 			int wmin, int wmax, int *assign)
708 {
709 	struct perf_sched sched;
710 
711 	perf_sched_init(&sched, events, n, wmin, wmax);
712 
713 	do {
714 		if (!perf_sched_find_counter(&sched))
715 			break;	/* failed */
716 		if (assign)
717 			assign[sched.state.event] = sched.state.counter;
718 	} while (perf_sched_next_event(&sched));
719 
720 	return sched.state.unassigned;
721 }
722 EXPORT_SYMBOL_GPL(perf_assign_events);
723 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)724 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
725 {
726 	struct event_constraint *c;
727 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
728 	struct perf_event *e;
729 	int i, wmin, wmax, num = 0;
730 	struct hw_perf_event *hwc;
731 
732 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733 
734 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
735 		hwc = &cpuc->event_list[i]->hw;
736 		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
737 		hwc->constraint = c;
738 
739 		wmin = min(wmin, c->weight);
740 		wmax = max(wmax, c->weight);
741 	}
742 
743 	/*
744 	 * fastpath, try to reuse previous register
745 	 */
746 	for (i = 0; i < n; i++) {
747 		hwc = &cpuc->event_list[i]->hw;
748 		c = hwc->constraint;
749 
750 		/* never assigned */
751 		if (hwc->idx == -1)
752 			break;
753 
754 		/* constraint still honored */
755 		if (!test_bit(hwc->idx, c->idxmsk))
756 			break;
757 
758 		/* not already used */
759 		if (test_bit(hwc->idx, used_mask))
760 			break;
761 
762 		__set_bit(hwc->idx, used_mask);
763 		if (assign)
764 			assign[i] = hwc->idx;
765 	}
766 
767 	/* slow path */
768 	if (i != n)
769 		num = perf_assign_events(cpuc->event_list, n, wmin,
770 					 wmax, assign);
771 
772 	/*
773 	 * Mark the event as committed, so we do not put_constraint()
774 	 * in case new events are added and fail scheduling.
775 	 */
776 	if (!num && assign) {
777 		for (i = 0; i < n; i++) {
778 			e = cpuc->event_list[i];
779 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
780 		}
781 	}
782 	/*
783 	 * scheduling failed or is just a simulation,
784 	 * free resources if necessary
785 	 */
786 	if (!assign || num) {
787 		for (i = 0; i < n; i++) {
788 			e = cpuc->event_list[i];
789 			/*
790 			 * do not put_constraint() on comitted events,
791 			 * because they are good to go
792 			 */
793 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
794 				continue;
795 
796 			if (x86_pmu.put_event_constraints)
797 				x86_pmu.put_event_constraints(cpuc, e);
798 		}
799 	}
800 	return num ? -EINVAL : 0;
801 }
802 
803 /*
804  * dogrp: true if must collect siblings events (group)
805  * returns total number of events and error code
806  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)807 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
808 {
809 	struct perf_event *event;
810 	int n, max_count;
811 
812 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
813 
814 	/* current number of events already accepted */
815 	n = cpuc->n_events;
816 
817 	if (is_x86_event(leader)) {
818 		if (n >= max_count)
819 			return -EINVAL;
820 		cpuc->event_list[n] = leader;
821 		n++;
822 	}
823 	if (!dogrp)
824 		return n;
825 
826 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
827 		if (!is_x86_event(event) ||
828 		    event->state <= PERF_EVENT_STATE_OFF)
829 			continue;
830 
831 		if (n >= max_count)
832 			return -EINVAL;
833 
834 		cpuc->event_list[n] = event;
835 		n++;
836 	}
837 	return n;
838 }
839 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)840 static inline void x86_assign_hw_event(struct perf_event *event,
841 				struct cpu_hw_events *cpuc, int i)
842 {
843 	struct hw_perf_event *hwc = &event->hw;
844 
845 	hwc->idx = cpuc->assign[i];
846 	hwc->last_cpu = smp_processor_id();
847 	hwc->last_tag = ++cpuc->tags[i];
848 
849 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
850 		hwc->config_base = 0;
851 		hwc->event_base	= 0;
852 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
853 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
854 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
855 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
856 	} else {
857 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
858 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
859 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
860 	}
861 }
862 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)863 static inline int match_prev_assignment(struct hw_perf_event *hwc,
864 					struct cpu_hw_events *cpuc,
865 					int i)
866 {
867 	return hwc->idx == cpuc->assign[i] &&
868 		hwc->last_cpu == smp_processor_id() &&
869 		hwc->last_tag == cpuc->tags[i];
870 }
871 
872 static void x86_pmu_start(struct perf_event *event, int flags);
873 
x86_pmu_enable(struct pmu * pmu)874 static void x86_pmu_enable(struct pmu *pmu)
875 {
876 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
877 	struct perf_event *event;
878 	struct hw_perf_event *hwc;
879 	int i, added = cpuc->n_added;
880 
881 	if (!x86_pmu_initialized())
882 		return;
883 
884 	if (cpuc->enabled)
885 		return;
886 
887 	if (cpuc->n_added) {
888 		int n_running = cpuc->n_events - cpuc->n_added;
889 		/*
890 		 * apply assignment obtained either from
891 		 * hw_perf_group_sched_in() or x86_pmu_enable()
892 		 *
893 		 * step1: save events moving to new counters
894 		 */
895 		for (i = 0; i < n_running; i++) {
896 			event = cpuc->event_list[i];
897 			hwc = &event->hw;
898 
899 			/*
900 			 * we can avoid reprogramming counter if:
901 			 * - assigned same counter as last time
902 			 * - running on same CPU as last time
903 			 * - no other event has used the counter since
904 			 */
905 			if (hwc->idx == -1 ||
906 			    match_prev_assignment(hwc, cpuc, i))
907 				continue;
908 
909 			/*
910 			 * Ensure we don't accidentally enable a stopped
911 			 * counter simply because we rescheduled.
912 			 */
913 			if (hwc->state & PERF_HES_STOPPED)
914 				hwc->state |= PERF_HES_ARCH;
915 
916 			x86_pmu_stop(event, PERF_EF_UPDATE);
917 		}
918 
919 		/*
920 		 * step2: reprogram moved events into new counters
921 		 */
922 		for (i = 0; i < cpuc->n_events; i++) {
923 			event = cpuc->event_list[i];
924 			hwc = &event->hw;
925 
926 			if (!match_prev_assignment(hwc, cpuc, i))
927 				x86_assign_hw_event(event, cpuc, i);
928 			else if (i < n_running)
929 				continue;
930 
931 			if (hwc->state & PERF_HES_ARCH)
932 				continue;
933 
934 			x86_pmu_start(event, PERF_EF_RELOAD);
935 		}
936 		cpuc->n_added = 0;
937 		perf_events_lapic_init();
938 	}
939 
940 	cpuc->enabled = 1;
941 	barrier();
942 
943 	x86_pmu.enable_all(added);
944 }
945 
946 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
947 
948 /*
949  * Set the next IRQ period, based on the hwc->period_left value.
950  * To be called with the event disabled in hw:
951  */
x86_perf_event_set_period(struct perf_event * event)952 int x86_perf_event_set_period(struct perf_event *event)
953 {
954 	struct hw_perf_event *hwc = &event->hw;
955 	s64 left = local64_read(&hwc->period_left);
956 	s64 period = hwc->sample_period;
957 	int ret = 0, idx = hwc->idx;
958 
959 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
960 		return 0;
961 
962 	/*
963 	 * If we are way outside a reasonable range then just skip forward:
964 	 */
965 	if (unlikely(left <= -period)) {
966 		left = period;
967 		local64_set(&hwc->period_left, left);
968 		hwc->last_period = period;
969 		ret = 1;
970 	}
971 
972 	if (unlikely(left <= 0)) {
973 		left += period;
974 		local64_set(&hwc->period_left, left);
975 		hwc->last_period = period;
976 		ret = 1;
977 	}
978 	/*
979 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
980 	 */
981 	if (unlikely(left < 2))
982 		left = 2;
983 
984 	if (left > x86_pmu.max_period)
985 		left = x86_pmu.max_period;
986 
987 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
988 
989 	/*
990 	 * The hw event starts counting from this event offset,
991 	 * mark it to be able to extra future deltas:
992 	 */
993 	local64_set(&hwc->prev_count, (u64)-left);
994 
995 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
996 
997 	/*
998 	 * Due to erratum on certan cpu we need
999 	 * a second write to be sure the register
1000 	 * is updated properly
1001 	 */
1002 	if (x86_pmu.perfctr_second_write) {
1003 		wrmsrl(hwc->event_base,
1004 			(u64)(-left) & x86_pmu.cntval_mask);
1005 	}
1006 
1007 	perf_event_update_userpage(event);
1008 
1009 	return ret;
1010 }
1011 
x86_pmu_enable_event(struct perf_event * event)1012 void x86_pmu_enable_event(struct perf_event *event)
1013 {
1014 	if (__this_cpu_read(cpu_hw_events.enabled))
1015 		__x86_pmu_enable_event(&event->hw,
1016 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1017 }
1018 
1019 /*
1020  * Add a single event to the PMU.
1021  *
1022  * The event is added to the group of enabled events
1023  * but only if it can be scehduled with existing events.
1024  */
x86_pmu_add(struct perf_event * event,int flags)1025 static int x86_pmu_add(struct perf_event *event, int flags)
1026 {
1027 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1028 	struct hw_perf_event *hwc;
1029 	int assign[X86_PMC_IDX_MAX];
1030 	int n, n0, ret;
1031 
1032 	hwc = &event->hw;
1033 
1034 	perf_pmu_disable(event->pmu);
1035 	n0 = cpuc->n_events;
1036 	ret = n = collect_events(cpuc, event, false);
1037 	if (ret < 0)
1038 		goto out;
1039 
1040 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1041 	if (!(flags & PERF_EF_START))
1042 		hwc->state |= PERF_HES_ARCH;
1043 
1044 	/*
1045 	 * If group events scheduling transaction was started,
1046 	 * skip the schedulability test here, it will be performed
1047 	 * at commit time (->commit_txn) as a whole.
1048 	 */
1049 	if (cpuc->group_flag & PERF_EVENT_TXN)
1050 		goto done_collect;
1051 
1052 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1053 	if (ret)
1054 		goto out;
1055 	/*
1056 	 * copy new assignment, now we know it is possible
1057 	 * will be used by hw_perf_enable()
1058 	 */
1059 	memcpy(cpuc->assign, assign, n*sizeof(int));
1060 
1061 done_collect:
1062 	/*
1063 	 * Commit the collect_events() state. See x86_pmu_del() and
1064 	 * x86_pmu_*_txn().
1065 	 */
1066 	cpuc->n_events = n;
1067 	cpuc->n_added += n - n0;
1068 	cpuc->n_txn += n - n0;
1069 
1070 	ret = 0;
1071 out:
1072 	perf_pmu_enable(event->pmu);
1073 	return ret;
1074 }
1075 
x86_pmu_start(struct perf_event * event,int flags)1076 static void x86_pmu_start(struct perf_event *event, int flags)
1077 {
1078 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1079 	int idx = event->hw.idx;
1080 
1081 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1082 		return;
1083 
1084 	if (WARN_ON_ONCE(idx == -1))
1085 		return;
1086 
1087 	if (flags & PERF_EF_RELOAD) {
1088 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1089 		x86_perf_event_set_period(event);
1090 	}
1091 
1092 	event->hw.state = 0;
1093 
1094 	cpuc->events[idx] = event;
1095 	__set_bit(idx, cpuc->active_mask);
1096 	__set_bit(idx, cpuc->running);
1097 	x86_pmu.enable(event);
1098 	perf_event_update_userpage(event);
1099 }
1100 
perf_event_print_debug(void)1101 void perf_event_print_debug(void)
1102 {
1103 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1104 	u64 pebs;
1105 	struct cpu_hw_events *cpuc;
1106 	unsigned long flags;
1107 	int cpu, idx;
1108 
1109 	if (!x86_pmu.num_counters)
1110 		return;
1111 
1112 	local_irq_save(flags);
1113 
1114 	cpu = smp_processor_id();
1115 	cpuc = &per_cpu(cpu_hw_events, cpu);
1116 
1117 	if (x86_pmu.version >= 2) {
1118 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1119 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1120 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1121 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1122 		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1123 
1124 		pr_info("\n");
1125 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1126 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1127 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1128 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1129 		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1130 	}
1131 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1132 
1133 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1134 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1135 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1136 
1137 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1138 
1139 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1140 			cpu, idx, pmc_ctrl);
1141 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1142 			cpu, idx, pmc_count);
1143 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1144 			cpu, idx, prev_left);
1145 	}
1146 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1147 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1148 
1149 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1150 			cpu, idx, pmc_count);
1151 	}
1152 	local_irq_restore(flags);
1153 }
1154 
x86_pmu_stop(struct perf_event * event,int flags)1155 void x86_pmu_stop(struct perf_event *event, int flags)
1156 {
1157 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1158 	struct hw_perf_event *hwc = &event->hw;
1159 
1160 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1161 		x86_pmu.disable(event);
1162 		cpuc->events[hwc->idx] = NULL;
1163 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1164 		hwc->state |= PERF_HES_STOPPED;
1165 	}
1166 
1167 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1168 		/*
1169 		 * Drain the remaining delta count out of a event
1170 		 * that we are disabling:
1171 		 */
1172 		x86_perf_event_update(event);
1173 		hwc->state |= PERF_HES_UPTODATE;
1174 	}
1175 }
1176 
x86_pmu_del(struct perf_event * event,int flags)1177 static void x86_pmu_del(struct perf_event *event, int flags)
1178 {
1179 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1180 	int i;
1181 
1182 	/*
1183 	 * event is descheduled
1184 	 */
1185 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1186 
1187 	/*
1188 	 * If we're called during a txn, we don't need to do anything.
1189 	 * The events never got scheduled and ->cancel_txn will truncate
1190 	 * the event_list.
1191 	 *
1192 	 * XXX assumes any ->del() called during a TXN will only be on
1193 	 * an event added during that same TXN.
1194 	 */
1195 	if (cpuc->group_flag & PERF_EVENT_TXN)
1196 		return;
1197 
1198 	/*
1199 	 * Not a TXN, therefore cleanup properly.
1200 	 */
1201 	x86_pmu_stop(event, PERF_EF_UPDATE);
1202 
1203 	for (i = 0; i < cpuc->n_events; i++) {
1204 		if (event == cpuc->event_list[i])
1205 			break;
1206 	}
1207 
1208 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1209 		return;
1210 
1211 	/* If we have a newly added event; make sure to decrease n_added. */
1212 	if (i >= cpuc->n_events - cpuc->n_added)
1213 		--cpuc->n_added;
1214 
1215 	if (x86_pmu.put_event_constraints)
1216 		x86_pmu.put_event_constraints(cpuc, event);
1217 
1218 	/* Delete the array entry. */
1219 	while (++i < cpuc->n_events)
1220 		cpuc->event_list[i-1] = cpuc->event_list[i];
1221 	--cpuc->n_events;
1222 
1223 	perf_event_update_userpage(event);
1224 }
1225 
x86_pmu_handle_irq(struct pt_regs * regs)1226 int x86_pmu_handle_irq(struct pt_regs *regs)
1227 {
1228 	struct perf_sample_data data;
1229 	struct cpu_hw_events *cpuc;
1230 	struct perf_event *event;
1231 	int idx, handled = 0;
1232 	u64 val;
1233 
1234 	cpuc = this_cpu_ptr(&cpu_hw_events);
1235 
1236 	/*
1237 	 * Some chipsets need to unmask the LVTPC in a particular spot
1238 	 * inside the nmi handler.  As a result, the unmasking was pushed
1239 	 * into all the nmi handlers.
1240 	 *
1241 	 * This generic handler doesn't seem to have any issues where the
1242 	 * unmasking occurs so it was left at the top.
1243 	 */
1244 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1245 
1246 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1247 		if (!test_bit(idx, cpuc->active_mask)) {
1248 			/*
1249 			 * Though we deactivated the counter some cpus
1250 			 * might still deliver spurious interrupts still
1251 			 * in flight. Catch them:
1252 			 */
1253 			if (__test_and_clear_bit(idx, cpuc->running))
1254 				handled++;
1255 			continue;
1256 		}
1257 
1258 		event = cpuc->events[idx];
1259 
1260 		val = x86_perf_event_update(event);
1261 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1262 			continue;
1263 
1264 		/*
1265 		 * event overflow
1266 		 */
1267 		handled++;
1268 		perf_sample_data_init(&data, 0, event->hw.last_period);
1269 
1270 		if (!x86_perf_event_set_period(event))
1271 			continue;
1272 
1273 		if (perf_event_overflow(event, &data, regs))
1274 			x86_pmu_stop(event, 0);
1275 	}
1276 
1277 	if (handled)
1278 		inc_irq_stat(apic_perf_irqs);
1279 
1280 	return handled;
1281 }
1282 
perf_events_lapic_init(void)1283 void perf_events_lapic_init(void)
1284 {
1285 	if (!x86_pmu.apic || !x86_pmu_initialized())
1286 		return;
1287 
1288 	/*
1289 	 * Always use NMI for PMU
1290 	 */
1291 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1292 }
1293 
1294 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1295 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1296 {
1297 	u64 start_clock;
1298 	u64 finish_clock;
1299 	int ret;
1300 
1301 	if (!atomic_read(&active_events))
1302 		return NMI_DONE;
1303 
1304 	start_clock = sched_clock();
1305 	ret = x86_pmu.handle_irq(regs);
1306 	finish_clock = sched_clock();
1307 
1308 	perf_sample_event_took(finish_clock - start_clock);
1309 
1310 	return ret;
1311 }
1312 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1313 
1314 struct event_constraint emptyconstraint;
1315 struct event_constraint unconstrained;
1316 
1317 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1318 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1319 {
1320 	unsigned int cpu = (long)hcpu;
1321 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1322 	int ret = NOTIFY_OK;
1323 
1324 	switch (action & ~CPU_TASKS_FROZEN) {
1325 	case CPU_UP_PREPARE:
1326 		cpuc->kfree_on_online = NULL;
1327 		if (x86_pmu.cpu_prepare)
1328 			ret = x86_pmu.cpu_prepare(cpu);
1329 		break;
1330 
1331 	case CPU_STARTING:
1332 		if (x86_pmu.attr_rdpmc)
1333 			cr4_set_bits(X86_CR4_PCE);
1334 		if (x86_pmu.cpu_starting)
1335 			x86_pmu.cpu_starting(cpu);
1336 		break;
1337 
1338 	case CPU_ONLINE:
1339 		kfree(cpuc->kfree_on_online);
1340 		break;
1341 
1342 	case CPU_DYING:
1343 		if (x86_pmu.cpu_dying)
1344 			x86_pmu.cpu_dying(cpu);
1345 		break;
1346 
1347 	case CPU_UP_CANCELED:
1348 	case CPU_DEAD:
1349 		if (x86_pmu.cpu_dead)
1350 			x86_pmu.cpu_dead(cpu);
1351 		break;
1352 
1353 	default:
1354 		break;
1355 	}
1356 
1357 	return ret;
1358 }
1359 
pmu_check_apic(void)1360 static void __init pmu_check_apic(void)
1361 {
1362 	if (cpu_has_apic)
1363 		return;
1364 
1365 	x86_pmu.apic = 0;
1366 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1367 	pr_info("no hardware sampling interrupt available.\n");
1368 
1369 	/*
1370 	 * If we have a PMU initialized but no APIC
1371 	 * interrupts, we cannot sample hardware
1372 	 * events (user-space has to fall back and
1373 	 * sample via a hrtimer based software event):
1374 	 */
1375 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1376 
1377 }
1378 
1379 static struct attribute_group x86_pmu_format_group = {
1380 	.name = "format",
1381 	.attrs = NULL,
1382 };
1383 
1384 /*
1385  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1386  * out of events_attr attributes.
1387  */
filter_events(struct attribute ** attrs)1388 static void __init filter_events(struct attribute **attrs)
1389 {
1390 	struct device_attribute *d;
1391 	struct perf_pmu_events_attr *pmu_attr;
1392 	int i, j;
1393 
1394 	for (i = 0; attrs[i]; i++) {
1395 		d = (struct device_attribute *)attrs[i];
1396 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1397 		/* str trumps id */
1398 		if (pmu_attr->event_str)
1399 			continue;
1400 		if (x86_pmu.event_map(i))
1401 			continue;
1402 
1403 		for (j = i; attrs[j]; j++)
1404 			attrs[j] = attrs[j + 1];
1405 
1406 		/* Check the shifted attr. */
1407 		i--;
1408 	}
1409 }
1410 
1411 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1412 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1413 {
1414 	struct attribute **new;
1415 	int j, i;
1416 
1417 	for (j = 0; a[j]; j++)
1418 		;
1419 	for (i = 0; b[i]; i++)
1420 		j++;
1421 	j++;
1422 
1423 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1424 	if (!new)
1425 		return NULL;
1426 
1427 	j = 0;
1428 	for (i = 0; a[i]; i++)
1429 		new[j++] = a[i];
1430 	for (i = 0; b[i]; i++)
1431 		new[j++] = b[i];
1432 	new[j] = NULL;
1433 
1434 	return new;
1435 }
1436 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1437 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1438 			  char *page)
1439 {
1440 	struct perf_pmu_events_attr *pmu_attr = \
1441 		container_of(attr, struct perf_pmu_events_attr, attr);
1442 	u64 config = x86_pmu.event_map(pmu_attr->id);
1443 
1444 	/* string trumps id */
1445 	if (pmu_attr->event_str)
1446 		return sprintf(page, "%s", pmu_attr->event_str);
1447 
1448 	return x86_pmu.events_sysfs_show(page, config);
1449 }
1450 
1451 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1452 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1453 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1454 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1455 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1456 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1457 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1458 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1459 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1460 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1461 
1462 static struct attribute *empty_attrs;
1463 
1464 static struct attribute *events_attr[] = {
1465 	EVENT_PTR(CPU_CYCLES),
1466 	EVENT_PTR(INSTRUCTIONS),
1467 	EVENT_PTR(CACHE_REFERENCES),
1468 	EVENT_PTR(CACHE_MISSES),
1469 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1470 	EVENT_PTR(BRANCH_MISSES),
1471 	EVENT_PTR(BUS_CYCLES),
1472 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1473 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1474 	EVENT_PTR(REF_CPU_CYCLES),
1475 	NULL,
1476 };
1477 
1478 static struct attribute_group x86_pmu_events_group = {
1479 	.name = "events",
1480 	.attrs = events_attr,
1481 };
1482 
x86_event_sysfs_show(char * page,u64 config,u64 event)1483 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1484 {
1485 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1486 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1487 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1488 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1489 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1490 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1491 	ssize_t ret;
1492 
1493 	/*
1494 	* We have whole page size to spend and just little data
1495 	* to write, so we can safely use sprintf.
1496 	*/
1497 	ret = sprintf(page, "event=0x%02llx", event);
1498 
1499 	if (umask)
1500 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1501 
1502 	if (edge)
1503 		ret += sprintf(page + ret, ",edge");
1504 
1505 	if (pc)
1506 		ret += sprintf(page + ret, ",pc");
1507 
1508 	if (any)
1509 		ret += sprintf(page + ret, ",any");
1510 
1511 	if (inv)
1512 		ret += sprintf(page + ret, ",inv");
1513 
1514 	if (cmask)
1515 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1516 
1517 	ret += sprintf(page + ret, "\n");
1518 
1519 	return ret;
1520 }
1521 
init_hw_perf_events(void)1522 static int __init init_hw_perf_events(void)
1523 {
1524 	struct x86_pmu_quirk *quirk;
1525 	int err;
1526 
1527 	pr_info("Performance Events: ");
1528 
1529 	switch (boot_cpu_data.x86_vendor) {
1530 	case X86_VENDOR_INTEL:
1531 		err = intel_pmu_init();
1532 		break;
1533 	case X86_VENDOR_AMD:
1534 		err = amd_pmu_init();
1535 		break;
1536 	default:
1537 		err = -ENOTSUPP;
1538 	}
1539 	if (err != 0) {
1540 		pr_cont("no PMU driver, software events only.\n");
1541 		return 0;
1542 	}
1543 
1544 	pmu_check_apic();
1545 
1546 	/* sanity check that the hardware exists or is emulated */
1547 	if (!check_hw_exists())
1548 		return 0;
1549 
1550 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1551 
1552 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1553 
1554 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1555 		quirk->func();
1556 
1557 	if (!x86_pmu.intel_ctrl)
1558 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1559 
1560 	perf_events_lapic_init();
1561 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1562 
1563 	unconstrained = (struct event_constraint)
1564 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1565 				   0, x86_pmu.num_counters, 0, 0);
1566 
1567 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1568 
1569 	if (x86_pmu.event_attrs)
1570 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1571 
1572 	if (!x86_pmu.events_sysfs_show)
1573 		x86_pmu_events_group.attrs = &empty_attrs;
1574 	else
1575 		filter_events(x86_pmu_events_group.attrs);
1576 
1577 	if (x86_pmu.cpu_events) {
1578 		struct attribute **tmp;
1579 
1580 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1581 		if (!WARN_ON(!tmp))
1582 			x86_pmu_events_group.attrs = tmp;
1583 	}
1584 
1585 	pr_info("... version:                %d\n",     x86_pmu.version);
1586 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1587 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1588 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1589 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1590 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1591 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1592 
1593 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1594 	perf_cpu_notifier(x86_pmu_notifier);
1595 
1596 	return 0;
1597 }
1598 early_initcall(init_hw_perf_events);
1599 
x86_pmu_read(struct perf_event * event)1600 static inline void x86_pmu_read(struct perf_event *event)
1601 {
1602 	x86_perf_event_update(event);
1603 }
1604 
1605 /*
1606  * Start group events scheduling transaction
1607  * Set the flag to make pmu::enable() not perform the
1608  * schedulability test, it will be performed at commit time
1609  */
x86_pmu_start_txn(struct pmu * pmu)1610 static void x86_pmu_start_txn(struct pmu *pmu)
1611 {
1612 	perf_pmu_disable(pmu);
1613 	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1614 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1615 }
1616 
1617 /*
1618  * Stop group events scheduling transaction
1619  * Clear the flag and pmu::enable() will perform the
1620  * schedulability test.
1621  */
x86_pmu_cancel_txn(struct pmu * pmu)1622 static void x86_pmu_cancel_txn(struct pmu *pmu)
1623 {
1624 	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1625 	/*
1626 	 * Truncate collected array by the number of events added in this
1627 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1628 	 */
1629 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1630 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1631 	perf_pmu_enable(pmu);
1632 }
1633 
1634 /*
1635  * Commit group events scheduling transaction
1636  * Perform the group schedulability test as a whole
1637  * Return 0 if success
1638  *
1639  * Does not cancel the transaction on failure; expects the caller to do this.
1640  */
x86_pmu_commit_txn(struct pmu * pmu)1641 static int x86_pmu_commit_txn(struct pmu *pmu)
1642 {
1643 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1644 	int assign[X86_PMC_IDX_MAX];
1645 	int n, ret;
1646 
1647 	n = cpuc->n_events;
1648 
1649 	if (!x86_pmu_initialized())
1650 		return -EAGAIN;
1651 
1652 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1653 	if (ret)
1654 		return ret;
1655 
1656 	/*
1657 	 * copy new assignment, now we know it is possible
1658 	 * will be used by hw_perf_enable()
1659 	 */
1660 	memcpy(cpuc->assign, assign, n*sizeof(int));
1661 
1662 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1663 	perf_pmu_enable(pmu);
1664 	return 0;
1665 }
1666 /*
1667  * a fake_cpuc is used to validate event groups. Due to
1668  * the extra reg logic, we need to also allocate a fake
1669  * per_core and per_cpu structure. Otherwise, group events
1670  * using extra reg may conflict without the kernel being
1671  * able to catch this when the last event gets added to
1672  * the group.
1673  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1674 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1675 {
1676 	kfree(cpuc->shared_regs);
1677 	kfree(cpuc);
1678 }
1679 
allocate_fake_cpuc(void)1680 static struct cpu_hw_events *allocate_fake_cpuc(void)
1681 {
1682 	struct cpu_hw_events *cpuc;
1683 	int cpu = raw_smp_processor_id();
1684 
1685 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1686 	if (!cpuc)
1687 		return ERR_PTR(-ENOMEM);
1688 
1689 	/* only needed, if we have extra_regs */
1690 	if (x86_pmu.extra_regs) {
1691 		cpuc->shared_regs = allocate_shared_regs(cpu);
1692 		if (!cpuc->shared_regs)
1693 			goto error;
1694 	}
1695 	cpuc->is_fake = 1;
1696 	return cpuc;
1697 error:
1698 	free_fake_cpuc(cpuc);
1699 	return ERR_PTR(-ENOMEM);
1700 }
1701 
1702 /*
1703  * validate that we can schedule this event
1704  */
validate_event(struct perf_event * event)1705 static int validate_event(struct perf_event *event)
1706 {
1707 	struct cpu_hw_events *fake_cpuc;
1708 	struct event_constraint *c;
1709 	int ret = 0;
1710 
1711 	fake_cpuc = allocate_fake_cpuc();
1712 	if (IS_ERR(fake_cpuc))
1713 		return PTR_ERR(fake_cpuc);
1714 
1715 	c = x86_pmu.get_event_constraints(fake_cpuc, event);
1716 
1717 	if (!c || !c->weight)
1718 		ret = -EINVAL;
1719 
1720 	if (x86_pmu.put_event_constraints)
1721 		x86_pmu.put_event_constraints(fake_cpuc, event);
1722 
1723 	free_fake_cpuc(fake_cpuc);
1724 
1725 	return ret;
1726 }
1727 
1728 /*
1729  * validate a single event group
1730  *
1731  * validation include:
1732  *	- check events are compatible which each other
1733  *	- events do not compete for the same counter
1734  *	- number of events <= number of counters
1735  *
1736  * validation ensures the group can be loaded onto the
1737  * PMU if it was the only group available.
1738  */
validate_group(struct perf_event * event)1739 static int validate_group(struct perf_event *event)
1740 {
1741 	struct perf_event *leader = event->group_leader;
1742 	struct cpu_hw_events *fake_cpuc;
1743 	int ret = -EINVAL, n;
1744 
1745 	fake_cpuc = allocate_fake_cpuc();
1746 	if (IS_ERR(fake_cpuc))
1747 		return PTR_ERR(fake_cpuc);
1748 	/*
1749 	 * the event is not yet connected with its
1750 	 * siblings therefore we must first collect
1751 	 * existing siblings, then add the new event
1752 	 * before we can simulate the scheduling
1753 	 */
1754 	n = collect_events(fake_cpuc, leader, true);
1755 	if (n < 0)
1756 		goto out;
1757 
1758 	fake_cpuc->n_events = n;
1759 	n = collect_events(fake_cpuc, event, false);
1760 	if (n < 0)
1761 		goto out;
1762 
1763 	fake_cpuc->n_events = n;
1764 
1765 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1766 
1767 out:
1768 	free_fake_cpuc(fake_cpuc);
1769 	return ret;
1770 }
1771 
x86_pmu_event_init(struct perf_event * event)1772 static int x86_pmu_event_init(struct perf_event *event)
1773 {
1774 	struct pmu *tmp;
1775 	int err;
1776 
1777 	switch (event->attr.type) {
1778 	case PERF_TYPE_RAW:
1779 	case PERF_TYPE_HARDWARE:
1780 	case PERF_TYPE_HW_CACHE:
1781 		break;
1782 
1783 	default:
1784 		return -ENOENT;
1785 	}
1786 
1787 	err = __x86_pmu_event_init(event);
1788 	if (!err) {
1789 		/*
1790 		 * we temporarily connect event to its pmu
1791 		 * such that validate_group() can classify
1792 		 * it as an x86 event using is_x86_event()
1793 		 */
1794 		tmp = event->pmu;
1795 		event->pmu = &pmu;
1796 
1797 		if (event->group_leader != event)
1798 			err = validate_group(event);
1799 		else
1800 			err = validate_event(event);
1801 
1802 		event->pmu = tmp;
1803 	}
1804 	if (err) {
1805 		if (event->destroy)
1806 			event->destroy(event);
1807 	}
1808 
1809 	return err;
1810 }
1811 
x86_pmu_event_idx(struct perf_event * event)1812 static int x86_pmu_event_idx(struct perf_event *event)
1813 {
1814 	int idx = event->hw.idx;
1815 
1816 	if (!x86_pmu.attr_rdpmc)
1817 		return 0;
1818 
1819 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1820 		idx -= INTEL_PMC_IDX_FIXED;
1821 		idx |= 1 << 30;
1822 	}
1823 
1824 	return idx + 1;
1825 }
1826 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1827 static ssize_t get_attr_rdpmc(struct device *cdev,
1828 			      struct device_attribute *attr,
1829 			      char *buf)
1830 {
1831 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1832 }
1833 
change_rdpmc(void * info)1834 static void change_rdpmc(void *info)
1835 {
1836 	bool enable = !!(unsigned long)info;
1837 
1838 	if (enable)
1839 		cr4_set_bits(X86_CR4_PCE);
1840 	else
1841 		cr4_clear_bits(X86_CR4_PCE);
1842 }
1843 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1844 static ssize_t set_attr_rdpmc(struct device *cdev,
1845 			      struct device_attribute *attr,
1846 			      const char *buf, size_t count)
1847 {
1848 	unsigned long val;
1849 	ssize_t ret;
1850 
1851 	ret = kstrtoul(buf, 0, &val);
1852 	if (ret)
1853 		return ret;
1854 
1855 	if (x86_pmu.attr_rdpmc_broken)
1856 		return -ENOTSUPP;
1857 
1858 	if (!!val != !!x86_pmu.attr_rdpmc) {
1859 		x86_pmu.attr_rdpmc = !!val;
1860 		on_each_cpu(change_rdpmc, (void *)val, 1);
1861 	}
1862 
1863 	return count;
1864 }
1865 
1866 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1867 
1868 static struct attribute *x86_pmu_attrs[] = {
1869 	&dev_attr_rdpmc.attr,
1870 	NULL,
1871 };
1872 
1873 static struct attribute_group x86_pmu_attr_group = {
1874 	.attrs = x86_pmu_attrs,
1875 };
1876 
1877 static const struct attribute_group *x86_pmu_attr_groups[] = {
1878 	&x86_pmu_attr_group,
1879 	&x86_pmu_format_group,
1880 	&x86_pmu_events_group,
1881 	NULL,
1882 };
1883 
x86_pmu_flush_branch_stack(void)1884 static void x86_pmu_flush_branch_stack(void)
1885 {
1886 	if (x86_pmu.flush_branch_stack)
1887 		x86_pmu.flush_branch_stack();
1888 }
1889 
perf_check_microcode(void)1890 void perf_check_microcode(void)
1891 {
1892 	if (x86_pmu.check_microcode)
1893 		x86_pmu.check_microcode();
1894 }
1895 EXPORT_SYMBOL_GPL(perf_check_microcode);
1896 
1897 static struct pmu pmu = {
1898 	.pmu_enable		= x86_pmu_enable,
1899 	.pmu_disable		= x86_pmu_disable,
1900 
1901 	.attr_groups		= x86_pmu_attr_groups,
1902 
1903 	.event_init		= x86_pmu_event_init,
1904 
1905 	.add			= x86_pmu_add,
1906 	.del			= x86_pmu_del,
1907 	.start			= x86_pmu_start,
1908 	.stop			= x86_pmu_stop,
1909 	.read			= x86_pmu_read,
1910 
1911 	.start_txn		= x86_pmu_start_txn,
1912 	.cancel_txn		= x86_pmu_cancel_txn,
1913 	.commit_txn		= x86_pmu_commit_txn,
1914 
1915 	.event_idx		= x86_pmu_event_idx,
1916 	.flush_branch_stack	= x86_pmu_flush_branch_stack,
1917 };
1918 
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)1919 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1920 {
1921 	struct cyc2ns_data *data;
1922 
1923 	userpg->cap_user_time = 0;
1924 	userpg->cap_user_time_zero = 0;
1925 	userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
1926 	userpg->pmc_width = x86_pmu.cntval_bits;
1927 
1928 	if (!sched_clock_stable())
1929 		return;
1930 
1931 	data = cyc2ns_read_begin();
1932 
1933 	userpg->cap_user_time = 1;
1934 	userpg->time_mult = data->cyc2ns_mul;
1935 	userpg->time_shift = data->cyc2ns_shift;
1936 	userpg->time_offset = data->cyc2ns_offset - now;
1937 
1938 	userpg->cap_user_time_zero = 1;
1939 	userpg->time_zero = data->cyc2ns_offset;
1940 
1941 	cyc2ns_read_end(data);
1942 }
1943 
1944 /*
1945  * callchain support
1946  */
1947 
backtrace_stack(void * data,char * name)1948 static int backtrace_stack(void *data, char *name)
1949 {
1950 	return 0;
1951 }
1952 
backtrace_address(void * data,unsigned long addr,int reliable)1953 static void backtrace_address(void *data, unsigned long addr, int reliable)
1954 {
1955 	struct perf_callchain_entry *entry = data;
1956 
1957 	perf_callchain_store(entry, addr);
1958 }
1959 
1960 static const struct stacktrace_ops backtrace_ops = {
1961 	.stack			= backtrace_stack,
1962 	.address		= backtrace_address,
1963 	.walk_stack		= print_context_stack_bp,
1964 };
1965 
1966 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1967 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1968 {
1969 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1970 		/* TODO: We don't support guest os callchain now */
1971 		return;
1972 	}
1973 
1974 	perf_callchain_store(entry, regs->ip);
1975 
1976 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1977 }
1978 
1979 static inline int
valid_user_frame(const void __user * fp,unsigned long size)1980 valid_user_frame(const void __user *fp, unsigned long size)
1981 {
1982 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1983 }
1984 
get_segment_base(unsigned int segment)1985 static unsigned long get_segment_base(unsigned int segment)
1986 {
1987 	struct desc_struct *desc;
1988 	int idx = segment >> 3;
1989 
1990 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1991 		struct ldt_struct *ldt;
1992 
1993 		if (idx > LDT_ENTRIES)
1994 			return 0;
1995 
1996 		/* IRQs are off, so this synchronizes with smp_store_release */
1997 		ldt = lockless_dereference(current->active_mm->context.ldt);
1998 		if (!ldt || idx > ldt->size)
1999 			return 0;
2000 
2001 		desc = &ldt->entries[idx];
2002 	} else {
2003 		if (idx > GDT_ENTRIES)
2004 			return 0;
2005 
2006 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2007 	}
2008 
2009 	return get_desc_base(desc);
2010 }
2011 
2012 #ifdef CONFIG_COMPAT
2013 
2014 #include <asm/compat.h>
2015 
2016 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2017 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2018 {
2019 	/* 32-bit process in 64-bit kernel. */
2020 	unsigned long ss_base, cs_base;
2021 	struct stack_frame_ia32 frame;
2022 	const void __user *fp;
2023 
2024 	if (!test_thread_flag(TIF_IA32))
2025 		return 0;
2026 
2027 	cs_base = get_segment_base(regs->cs);
2028 	ss_base = get_segment_base(regs->ss);
2029 
2030 	fp = compat_ptr(ss_base + regs->bp);
2031 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2032 		unsigned long bytes;
2033 		frame.next_frame     = 0;
2034 		frame.return_address = 0;
2035 
2036 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2037 		if (bytes != 0)
2038 			break;
2039 
2040 		if (!valid_user_frame(fp, sizeof(frame)))
2041 			break;
2042 
2043 		perf_callchain_store(entry, cs_base + frame.return_address);
2044 		fp = compat_ptr(ss_base + frame.next_frame);
2045 	}
2046 	return 1;
2047 }
2048 #else
2049 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2050 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2051 {
2052     return 0;
2053 }
2054 #endif
2055 
2056 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2057 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2058 {
2059 	struct stack_frame frame;
2060 	const void __user *fp;
2061 
2062 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2063 		/* TODO: We don't support guest os callchain now */
2064 		return;
2065 	}
2066 
2067 	/*
2068 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2069 	 */
2070 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2071 		return;
2072 
2073 	fp = (void __user *)regs->bp;
2074 
2075 	perf_callchain_store(entry, regs->ip);
2076 
2077 	if (!current->mm)
2078 		return;
2079 
2080 	if (perf_callchain_user32(regs, entry))
2081 		return;
2082 
2083 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2084 		unsigned long bytes;
2085 		frame.next_frame	     = NULL;
2086 		frame.return_address = 0;
2087 
2088 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2089 		if (bytes != 0)
2090 			break;
2091 
2092 		if (!valid_user_frame(fp, sizeof(frame)))
2093 			break;
2094 
2095 		perf_callchain_store(entry, frame.return_address);
2096 		fp = frame.next_frame;
2097 	}
2098 }
2099 
2100 /*
2101  * Deal with code segment offsets for the various execution modes:
2102  *
2103  *   VM86 - the good olde 16 bit days, where the linear address is
2104  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2105  *
2106  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2107  *          to figure out what the 32bit base address is.
2108  *
2109  *    X32 - has TIF_X32 set, but is running in x86_64
2110  *
2111  * X86_64 - CS,DS,SS,ES are all zero based.
2112  */
code_segment_base(struct pt_regs * regs)2113 static unsigned long code_segment_base(struct pt_regs *regs)
2114 {
2115 	/*
2116 	 * If we are in VM86 mode, add the segment offset to convert to a
2117 	 * linear address.
2118 	 */
2119 	if (regs->flags & X86_VM_MASK)
2120 		return 0x10 * regs->cs;
2121 
2122 	/*
2123 	 * For IA32 we look at the GDT/LDT segment base to convert the
2124 	 * effective IP to a linear address.
2125 	 */
2126 #ifdef CONFIG_X86_32
2127 	if (user_mode(regs) && regs->cs != __USER_CS)
2128 		return get_segment_base(regs->cs);
2129 #else
2130 	if (test_thread_flag(TIF_IA32)) {
2131 		if (user_mode(regs) && regs->cs != __USER32_CS)
2132 			return get_segment_base(regs->cs);
2133 	}
2134 #endif
2135 	return 0;
2136 }
2137 
perf_instruction_pointer(struct pt_regs * regs)2138 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2139 {
2140 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2141 		return perf_guest_cbs->get_guest_ip();
2142 
2143 	return regs->ip + code_segment_base(regs);
2144 }
2145 
perf_misc_flags(struct pt_regs * regs)2146 unsigned long perf_misc_flags(struct pt_regs *regs)
2147 {
2148 	int misc = 0;
2149 
2150 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2151 		if (perf_guest_cbs->is_user_mode())
2152 			misc |= PERF_RECORD_MISC_GUEST_USER;
2153 		else
2154 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2155 	} else {
2156 		if (user_mode(regs))
2157 			misc |= PERF_RECORD_MISC_USER;
2158 		else
2159 			misc |= PERF_RECORD_MISC_KERNEL;
2160 	}
2161 
2162 	if (regs->flags & PERF_EFLAGS_EXACT)
2163 		misc |= PERF_RECORD_MISC_EXACT_IP;
2164 
2165 	return misc;
2166 }
2167 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2168 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2169 {
2170 	cap->version		= x86_pmu.version;
2171 	cap->num_counters_gp	= x86_pmu.num_counters;
2172 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2173 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2174 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2175 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2176 	cap->events_mask_len	= x86_pmu.events_mask_len;
2177 }
2178 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2179