1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 u64 __read_mostly hw_cache_event_ids
49 [PERF_COUNT_HW_CACHE_MAX]
50 [PERF_COUNT_HW_CACHE_OP_MAX]
51 [PERF_COUNT_HW_CACHE_RESULT_MAX];
52 u64 __read_mostly hw_cache_extra_regs
53 [PERF_COUNT_HW_CACHE_MAX]
54 [PERF_COUNT_HW_CACHE_OP_MAX]
55 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56
57 /*
58 * Propagate event elapsed time into the generic event.
59 * Can only be executed on the CPU where the event is active.
60 * Returns the delta events processed.
61 */
x86_perf_event_update(struct perf_event * event)62 u64 x86_perf_event_update(struct perf_event *event)
63 {
64 struct hw_perf_event *hwc = &event->hw;
65 int shift = 64 - x86_pmu.cntval_bits;
66 u64 prev_raw_count, new_raw_count;
67 int idx = hwc->idx;
68 s64 delta;
69
70 if (idx == INTEL_PMC_IDX_FIXED_BTS)
71 return 0;
72
73 /*
74 * Careful: an NMI might modify the previous event value.
75 *
76 * Our tactic to handle this is to first atomically read and
77 * exchange a new raw count - then add that new-prev delta
78 * count to the generic event atomically:
79 */
80 again:
81 prev_raw_count = local64_read(&hwc->prev_count);
82 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
83
84 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
85 new_raw_count) != prev_raw_count)
86 goto again;
87
88 /*
89 * Now we have the new raw value and have updated the prev
90 * timestamp already. We can now calculate the elapsed delta
91 * (event-)time and add that to the generic event.
92 *
93 * Careful, not all hw sign-extends above the physical width
94 * of the count.
95 */
96 delta = (new_raw_count << shift) - (prev_raw_count << shift);
97 delta >>= shift;
98
99 local64_add(delta, &event->count);
100 local64_sub(delta, &hwc->period_left);
101
102 return new_raw_count;
103 }
104
105 /*
106 * Find and validate any extra registers to set up.
107 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)108 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
109 {
110 struct hw_perf_event_extra *reg;
111 struct extra_reg *er;
112
113 reg = &event->hw.extra_reg;
114
115 if (!x86_pmu.extra_regs)
116 return 0;
117
118 for (er = x86_pmu.extra_regs; er->msr; er++) {
119 if (er->event != (config & er->config_mask))
120 continue;
121 if (event->attr.config1 & ~er->valid_mask)
122 return -EINVAL;
123 /* Check if the extra msrs can be safely accessed*/
124 if (!er->extra_msr_access)
125 return -ENXIO;
126
127 reg->idx = er->idx;
128 reg->config = event->attr.config1;
129 reg->reg = er->msr;
130 break;
131 }
132 return 0;
133 }
134
135 static atomic_t active_events;
136 static DEFINE_MUTEX(pmc_reserve_mutex);
137
138 #ifdef CONFIG_X86_LOCAL_APIC
139
reserve_pmc_hardware(void)140 static bool reserve_pmc_hardware(void)
141 {
142 int i;
143
144 for (i = 0; i < x86_pmu.num_counters; i++) {
145 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
146 goto perfctr_fail;
147 }
148
149 for (i = 0; i < x86_pmu.num_counters; i++) {
150 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
151 goto eventsel_fail;
152 }
153
154 return true;
155
156 eventsel_fail:
157 for (i--; i >= 0; i--)
158 release_evntsel_nmi(x86_pmu_config_addr(i));
159
160 i = x86_pmu.num_counters;
161
162 perfctr_fail:
163 for (i--; i >= 0; i--)
164 release_perfctr_nmi(x86_pmu_event_addr(i));
165
166 return false;
167 }
168
release_pmc_hardware(void)169 static void release_pmc_hardware(void)
170 {
171 int i;
172
173 for (i = 0; i < x86_pmu.num_counters; i++) {
174 release_perfctr_nmi(x86_pmu_event_addr(i));
175 release_evntsel_nmi(x86_pmu_config_addr(i));
176 }
177 }
178
179 #else
180
reserve_pmc_hardware(void)181 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)182 static void release_pmc_hardware(void) {}
183
184 #endif
185
check_hw_exists(void)186 static bool check_hw_exists(void)
187 {
188 u64 val, val_fail, val_new= ~0;
189 int i, reg, reg_fail, ret = 0;
190 int bios_fail = 0;
191
192 /*
193 * Check to see if the BIOS enabled any of the counters, if so
194 * complain and bail.
195 */
196 for (i = 0; i < x86_pmu.num_counters; i++) {
197 reg = x86_pmu_config_addr(i);
198 ret = rdmsrl_safe(reg, &val);
199 if (ret)
200 goto msr_fail;
201 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
202 bios_fail = 1;
203 val_fail = val;
204 reg_fail = reg;
205 }
206 }
207
208 if (x86_pmu.num_counters_fixed) {
209 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210 ret = rdmsrl_safe(reg, &val);
211 if (ret)
212 goto msr_fail;
213 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214 if (val & (0x03 << i*4)) {
215 bios_fail = 1;
216 val_fail = val;
217 reg_fail = reg;
218 }
219 }
220 }
221
222 /*
223 * Read the current value, change it and read it back to see if it
224 * matches, this is needed to detect certain hardware emulators
225 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
226 */
227 reg = x86_pmu_event_addr(0);
228 if (rdmsrl_safe(reg, &val))
229 goto msr_fail;
230 val ^= 0xffffUL;
231 ret = wrmsrl_safe(reg, val);
232 ret |= rdmsrl_safe(reg, &val_new);
233 if (ret || val != val_new)
234 goto msr_fail;
235
236 /*
237 * We still allow the PMU driver to operate:
238 */
239 if (bios_fail) {
240 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
241 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
242 }
243
244 return true;
245
246 msr_fail:
247 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
248 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
249 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
250 reg, val_new);
251
252 return false;
253 }
254
hw_perf_event_destroy(struct perf_event * event)255 static void hw_perf_event_destroy(struct perf_event *event)
256 {
257 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
258 release_pmc_hardware();
259 release_ds_buffers();
260 mutex_unlock(&pmc_reserve_mutex);
261 }
262 }
263
x86_pmu_initialized(void)264 static inline int x86_pmu_initialized(void)
265 {
266 return x86_pmu.handle_irq != NULL;
267 }
268
269 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)270 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
271 {
272 struct perf_event_attr *attr = &event->attr;
273 unsigned int cache_type, cache_op, cache_result;
274 u64 config, val;
275
276 config = attr->config;
277
278 cache_type = (config >> 0) & 0xff;
279 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
280 return -EINVAL;
281
282 cache_op = (config >> 8) & 0xff;
283 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
284 return -EINVAL;
285
286 cache_result = (config >> 16) & 0xff;
287 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
288 return -EINVAL;
289
290 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
291
292 if (val == 0)
293 return -ENOENT;
294
295 if (val == -1)
296 return -EINVAL;
297
298 hwc->config |= val;
299 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
300 return x86_pmu_extra_regs(val, event);
301 }
302
x86_setup_perfctr(struct perf_event * event)303 int x86_setup_perfctr(struct perf_event *event)
304 {
305 struct perf_event_attr *attr = &event->attr;
306 struct hw_perf_event *hwc = &event->hw;
307 u64 config;
308
309 if (!is_sampling_event(event)) {
310 hwc->sample_period = x86_pmu.max_period;
311 hwc->last_period = hwc->sample_period;
312 local64_set(&hwc->period_left, hwc->sample_period);
313 }
314
315 if (attr->type == PERF_TYPE_RAW)
316 return x86_pmu_extra_regs(event->attr.config, event);
317
318 if (attr->type == PERF_TYPE_HW_CACHE)
319 return set_ext_hw_attr(hwc, event);
320
321 if (attr->config >= x86_pmu.max_events)
322 return -EINVAL;
323
324 /*
325 * The generic map:
326 */
327 config = x86_pmu.event_map(attr->config);
328
329 if (config == 0)
330 return -ENOENT;
331
332 if (config == -1LL)
333 return -EINVAL;
334
335 /*
336 * Branch tracing:
337 */
338 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
339 !attr->freq && hwc->sample_period == 1) {
340 /* BTS is not supported by this architecture. */
341 if (!x86_pmu.bts_active)
342 return -EOPNOTSUPP;
343
344 /* BTS is currently only allowed for user-mode. */
345 if (!attr->exclude_kernel)
346 return -EOPNOTSUPP;
347 }
348
349 hwc->config |= config;
350
351 return 0;
352 }
353
354 /*
355 * check that branch_sample_type is compatible with
356 * settings needed for precise_ip > 1 which implies
357 * using the LBR to capture ALL taken branches at the
358 * priv levels of the measurement
359 */
precise_br_compat(struct perf_event * event)360 static inline int precise_br_compat(struct perf_event *event)
361 {
362 u64 m = event->attr.branch_sample_type;
363 u64 b = 0;
364
365 /* must capture all branches */
366 if (!(m & PERF_SAMPLE_BRANCH_ANY))
367 return 0;
368
369 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
370
371 if (!event->attr.exclude_user)
372 b |= PERF_SAMPLE_BRANCH_USER;
373
374 if (!event->attr.exclude_kernel)
375 b |= PERF_SAMPLE_BRANCH_KERNEL;
376
377 /*
378 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
379 */
380
381 return m == b;
382 }
383
x86_pmu_hw_config(struct perf_event * event)384 int x86_pmu_hw_config(struct perf_event *event)
385 {
386 if (event->attr.precise_ip) {
387 int precise = 0;
388
389 /* Support for constant skid */
390 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
391 precise++;
392
393 /* Support for IP fixup */
394 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
395 precise++;
396 }
397
398 if (event->attr.precise_ip > precise)
399 return -EOPNOTSUPP;
400 /*
401 * check that PEBS LBR correction does not conflict with
402 * whatever the user is asking with attr->branch_sample_type
403 */
404 if (event->attr.precise_ip > 1 &&
405 x86_pmu.intel_cap.pebs_format < 2) {
406 u64 *br_type = &event->attr.branch_sample_type;
407
408 if (has_branch_stack(event)) {
409 if (!precise_br_compat(event))
410 return -EOPNOTSUPP;
411
412 /* branch_sample_type is compatible */
413
414 } else {
415 /*
416 * user did not specify branch_sample_type
417 *
418 * For PEBS fixups, we capture all
419 * the branches at the priv level of the
420 * event.
421 */
422 *br_type = PERF_SAMPLE_BRANCH_ANY;
423
424 if (!event->attr.exclude_user)
425 *br_type |= PERF_SAMPLE_BRANCH_USER;
426
427 if (!event->attr.exclude_kernel)
428 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
429 }
430 }
431 }
432
433 /*
434 * Generate PMC IRQs:
435 * (keep 'enabled' bit clear for now)
436 */
437 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438
439 /*
440 * Count user and OS events unless requested not to
441 */
442 if (!event->attr.exclude_user)
443 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444 if (!event->attr.exclude_kernel)
445 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446
447 if (event->attr.type == PERF_TYPE_RAW)
448 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449
450 return x86_setup_perfctr(event);
451 }
452
453 /*
454 * Setup the hardware configuration for a given attr_type
455 */
__x86_pmu_event_init(struct perf_event * event)456 static int __x86_pmu_event_init(struct perf_event *event)
457 {
458 int err;
459
460 if (!x86_pmu_initialized())
461 return -ENODEV;
462
463 err = 0;
464 if (!atomic_inc_not_zero(&active_events)) {
465 mutex_lock(&pmc_reserve_mutex);
466 if (atomic_read(&active_events) == 0) {
467 if (!reserve_pmc_hardware())
468 err = -EBUSY;
469 else
470 reserve_ds_buffers();
471 }
472 if (!err)
473 atomic_inc(&active_events);
474 mutex_unlock(&pmc_reserve_mutex);
475 }
476 if (err)
477 return err;
478
479 event->destroy = hw_perf_event_destroy;
480
481 event->hw.idx = -1;
482 event->hw.last_cpu = -1;
483 event->hw.last_tag = ~0ULL;
484
485 /* mark unused */
486 event->hw.extra_reg.idx = EXTRA_REG_NONE;
487 event->hw.branch_reg.idx = EXTRA_REG_NONE;
488
489 return x86_pmu.hw_config(event);
490 }
491
x86_pmu_disable_all(void)492 void x86_pmu_disable_all(void)
493 {
494 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
495 int idx;
496
497 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
498 u64 val;
499
500 if (!test_bit(idx, cpuc->active_mask))
501 continue;
502 rdmsrl(x86_pmu_config_addr(idx), val);
503 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
504 continue;
505 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
506 wrmsrl(x86_pmu_config_addr(idx), val);
507 }
508 }
509
x86_pmu_disable(struct pmu * pmu)510 static void x86_pmu_disable(struct pmu *pmu)
511 {
512 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
513
514 if (!x86_pmu_initialized())
515 return;
516
517 if (!cpuc->enabled)
518 return;
519
520 cpuc->n_added = 0;
521 cpuc->enabled = 0;
522 barrier();
523
524 x86_pmu.disable_all();
525 }
526
x86_pmu_enable_all(int added)527 void x86_pmu_enable_all(int added)
528 {
529 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
530 int idx;
531
532 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
533 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
534
535 if (!test_bit(idx, cpuc->active_mask))
536 continue;
537
538 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
539 }
540 }
541
542 static struct pmu pmu;
543
is_x86_event(struct perf_event * event)544 static inline int is_x86_event(struct perf_event *event)
545 {
546 return event->pmu == &pmu;
547 }
548
549 /*
550 * Event scheduler state:
551 *
552 * Assign events iterating over all events and counters, beginning
553 * with events with least weights first. Keep the current iterator
554 * state in struct sched_state.
555 */
556 struct sched_state {
557 int weight;
558 int event; /* event index */
559 int counter; /* counter index */
560 int unassigned; /* number of events to be assigned left */
561 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
562 };
563
564 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
565 #define SCHED_STATES_MAX 2
566
567 struct perf_sched {
568 int max_weight;
569 int max_events;
570 struct perf_event **events;
571 struct sched_state state;
572 int saved_states;
573 struct sched_state saved[SCHED_STATES_MAX];
574 };
575
576 /*
577 * Initialize interator that runs through all events and counters.
578 */
perf_sched_init(struct perf_sched * sched,struct perf_event ** events,int num,int wmin,int wmax)579 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
580 int num, int wmin, int wmax)
581 {
582 int idx;
583
584 memset(sched, 0, sizeof(*sched));
585 sched->max_events = num;
586 sched->max_weight = wmax;
587 sched->events = events;
588
589 for (idx = 0; idx < num; idx++) {
590 if (events[idx]->hw.constraint->weight == wmin)
591 break;
592 }
593
594 sched->state.event = idx; /* start with min weight */
595 sched->state.weight = wmin;
596 sched->state.unassigned = num;
597 }
598
perf_sched_save_state(struct perf_sched * sched)599 static void perf_sched_save_state(struct perf_sched *sched)
600 {
601 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
602 return;
603
604 sched->saved[sched->saved_states] = sched->state;
605 sched->saved_states++;
606 }
607
perf_sched_restore_state(struct perf_sched * sched)608 static bool perf_sched_restore_state(struct perf_sched *sched)
609 {
610 if (!sched->saved_states)
611 return false;
612
613 sched->saved_states--;
614 sched->state = sched->saved[sched->saved_states];
615
616 /* continue with next counter: */
617 clear_bit(sched->state.counter++, sched->state.used);
618
619 return true;
620 }
621
622 /*
623 * Select a counter for the current event to schedule. Return true on
624 * success.
625 */
__perf_sched_find_counter(struct perf_sched * sched)626 static bool __perf_sched_find_counter(struct perf_sched *sched)
627 {
628 struct event_constraint *c;
629 int idx;
630
631 if (!sched->state.unassigned)
632 return false;
633
634 if (sched->state.event >= sched->max_events)
635 return false;
636
637 c = sched->events[sched->state.event]->hw.constraint;
638 /* Prefer fixed purpose counters */
639 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
640 idx = INTEL_PMC_IDX_FIXED;
641 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
642 if (!__test_and_set_bit(idx, sched->state.used))
643 goto done;
644 }
645 }
646 /* Grab the first unused counter starting with idx */
647 idx = sched->state.counter;
648 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
649 if (!__test_and_set_bit(idx, sched->state.used))
650 goto done;
651 }
652
653 return false;
654
655 done:
656 sched->state.counter = idx;
657
658 if (c->overlap)
659 perf_sched_save_state(sched);
660
661 return true;
662 }
663
perf_sched_find_counter(struct perf_sched * sched)664 static bool perf_sched_find_counter(struct perf_sched *sched)
665 {
666 while (!__perf_sched_find_counter(sched)) {
667 if (!perf_sched_restore_state(sched))
668 return false;
669 }
670
671 return true;
672 }
673
674 /*
675 * Go through all unassigned events and find the next one to schedule.
676 * Take events with the least weight first. Return true on success.
677 */
perf_sched_next_event(struct perf_sched * sched)678 static bool perf_sched_next_event(struct perf_sched *sched)
679 {
680 struct event_constraint *c;
681
682 if (!sched->state.unassigned || !--sched->state.unassigned)
683 return false;
684
685 do {
686 /* next event */
687 sched->state.event++;
688 if (sched->state.event >= sched->max_events) {
689 /* next weight */
690 sched->state.event = 0;
691 sched->state.weight++;
692 if (sched->state.weight > sched->max_weight)
693 return false;
694 }
695 c = sched->events[sched->state.event]->hw.constraint;
696 } while (c->weight != sched->state.weight);
697
698 sched->state.counter = 0; /* start with first counter */
699
700 return true;
701 }
702
703 /*
704 * Assign a counter for each event.
705 */
perf_assign_events(struct perf_event ** events,int n,int wmin,int wmax,int * assign)706 int perf_assign_events(struct perf_event **events, int n,
707 int wmin, int wmax, int *assign)
708 {
709 struct perf_sched sched;
710
711 perf_sched_init(&sched, events, n, wmin, wmax);
712
713 do {
714 if (!perf_sched_find_counter(&sched))
715 break; /* failed */
716 if (assign)
717 assign[sched.state.event] = sched.state.counter;
718 } while (perf_sched_next_event(&sched));
719
720 return sched.state.unassigned;
721 }
722 EXPORT_SYMBOL_GPL(perf_assign_events);
723
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)724 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
725 {
726 struct event_constraint *c;
727 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
728 struct perf_event *e;
729 int i, wmin, wmax, num = 0;
730 struct hw_perf_event *hwc;
731
732 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733
734 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
735 hwc = &cpuc->event_list[i]->hw;
736 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
737 hwc->constraint = c;
738
739 wmin = min(wmin, c->weight);
740 wmax = max(wmax, c->weight);
741 }
742
743 /*
744 * fastpath, try to reuse previous register
745 */
746 for (i = 0; i < n; i++) {
747 hwc = &cpuc->event_list[i]->hw;
748 c = hwc->constraint;
749
750 /* never assigned */
751 if (hwc->idx == -1)
752 break;
753
754 /* constraint still honored */
755 if (!test_bit(hwc->idx, c->idxmsk))
756 break;
757
758 /* not already used */
759 if (test_bit(hwc->idx, used_mask))
760 break;
761
762 __set_bit(hwc->idx, used_mask);
763 if (assign)
764 assign[i] = hwc->idx;
765 }
766
767 /* slow path */
768 if (i != n)
769 num = perf_assign_events(cpuc->event_list, n, wmin,
770 wmax, assign);
771
772 /*
773 * Mark the event as committed, so we do not put_constraint()
774 * in case new events are added and fail scheduling.
775 */
776 if (!num && assign) {
777 for (i = 0; i < n; i++) {
778 e = cpuc->event_list[i];
779 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
780 }
781 }
782 /*
783 * scheduling failed or is just a simulation,
784 * free resources if necessary
785 */
786 if (!assign || num) {
787 for (i = 0; i < n; i++) {
788 e = cpuc->event_list[i];
789 /*
790 * do not put_constraint() on comitted events,
791 * because they are good to go
792 */
793 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
794 continue;
795
796 if (x86_pmu.put_event_constraints)
797 x86_pmu.put_event_constraints(cpuc, e);
798 }
799 }
800 return num ? -EINVAL : 0;
801 }
802
803 /*
804 * dogrp: true if must collect siblings events (group)
805 * returns total number of events and error code
806 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)807 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
808 {
809 struct perf_event *event;
810 int n, max_count;
811
812 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
813
814 /* current number of events already accepted */
815 n = cpuc->n_events;
816
817 if (is_x86_event(leader)) {
818 if (n >= max_count)
819 return -EINVAL;
820 cpuc->event_list[n] = leader;
821 n++;
822 }
823 if (!dogrp)
824 return n;
825
826 list_for_each_entry(event, &leader->sibling_list, group_entry) {
827 if (!is_x86_event(event) ||
828 event->state <= PERF_EVENT_STATE_OFF)
829 continue;
830
831 if (n >= max_count)
832 return -EINVAL;
833
834 cpuc->event_list[n] = event;
835 n++;
836 }
837 return n;
838 }
839
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)840 static inline void x86_assign_hw_event(struct perf_event *event,
841 struct cpu_hw_events *cpuc, int i)
842 {
843 struct hw_perf_event *hwc = &event->hw;
844
845 hwc->idx = cpuc->assign[i];
846 hwc->last_cpu = smp_processor_id();
847 hwc->last_tag = ++cpuc->tags[i];
848
849 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
850 hwc->config_base = 0;
851 hwc->event_base = 0;
852 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
853 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
854 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
855 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
856 } else {
857 hwc->config_base = x86_pmu_config_addr(hwc->idx);
858 hwc->event_base = x86_pmu_event_addr(hwc->idx);
859 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
860 }
861 }
862
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)863 static inline int match_prev_assignment(struct hw_perf_event *hwc,
864 struct cpu_hw_events *cpuc,
865 int i)
866 {
867 return hwc->idx == cpuc->assign[i] &&
868 hwc->last_cpu == smp_processor_id() &&
869 hwc->last_tag == cpuc->tags[i];
870 }
871
872 static void x86_pmu_start(struct perf_event *event, int flags);
873
x86_pmu_enable(struct pmu * pmu)874 static void x86_pmu_enable(struct pmu *pmu)
875 {
876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
877 struct perf_event *event;
878 struct hw_perf_event *hwc;
879 int i, added = cpuc->n_added;
880
881 if (!x86_pmu_initialized())
882 return;
883
884 if (cpuc->enabled)
885 return;
886
887 if (cpuc->n_added) {
888 int n_running = cpuc->n_events - cpuc->n_added;
889 /*
890 * apply assignment obtained either from
891 * hw_perf_group_sched_in() or x86_pmu_enable()
892 *
893 * step1: save events moving to new counters
894 */
895 for (i = 0; i < n_running; i++) {
896 event = cpuc->event_list[i];
897 hwc = &event->hw;
898
899 /*
900 * we can avoid reprogramming counter if:
901 * - assigned same counter as last time
902 * - running on same CPU as last time
903 * - no other event has used the counter since
904 */
905 if (hwc->idx == -1 ||
906 match_prev_assignment(hwc, cpuc, i))
907 continue;
908
909 /*
910 * Ensure we don't accidentally enable a stopped
911 * counter simply because we rescheduled.
912 */
913 if (hwc->state & PERF_HES_STOPPED)
914 hwc->state |= PERF_HES_ARCH;
915
916 x86_pmu_stop(event, PERF_EF_UPDATE);
917 }
918
919 /*
920 * step2: reprogram moved events into new counters
921 */
922 for (i = 0; i < cpuc->n_events; i++) {
923 event = cpuc->event_list[i];
924 hwc = &event->hw;
925
926 if (!match_prev_assignment(hwc, cpuc, i))
927 x86_assign_hw_event(event, cpuc, i);
928 else if (i < n_running)
929 continue;
930
931 if (hwc->state & PERF_HES_ARCH)
932 continue;
933
934 x86_pmu_start(event, PERF_EF_RELOAD);
935 }
936 cpuc->n_added = 0;
937 perf_events_lapic_init();
938 }
939
940 cpuc->enabled = 1;
941 barrier();
942
943 x86_pmu.enable_all(added);
944 }
945
946 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
947
948 /*
949 * Set the next IRQ period, based on the hwc->period_left value.
950 * To be called with the event disabled in hw:
951 */
x86_perf_event_set_period(struct perf_event * event)952 int x86_perf_event_set_period(struct perf_event *event)
953 {
954 struct hw_perf_event *hwc = &event->hw;
955 s64 left = local64_read(&hwc->period_left);
956 s64 period = hwc->sample_period;
957 int ret = 0, idx = hwc->idx;
958
959 if (idx == INTEL_PMC_IDX_FIXED_BTS)
960 return 0;
961
962 /*
963 * If we are way outside a reasonable range then just skip forward:
964 */
965 if (unlikely(left <= -period)) {
966 left = period;
967 local64_set(&hwc->period_left, left);
968 hwc->last_period = period;
969 ret = 1;
970 }
971
972 if (unlikely(left <= 0)) {
973 left += period;
974 local64_set(&hwc->period_left, left);
975 hwc->last_period = period;
976 ret = 1;
977 }
978 /*
979 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
980 */
981 if (unlikely(left < 2))
982 left = 2;
983
984 if (left > x86_pmu.max_period)
985 left = x86_pmu.max_period;
986
987 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
988
989 /*
990 * The hw event starts counting from this event offset,
991 * mark it to be able to extra future deltas:
992 */
993 local64_set(&hwc->prev_count, (u64)-left);
994
995 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
996
997 /*
998 * Due to erratum on certan cpu we need
999 * a second write to be sure the register
1000 * is updated properly
1001 */
1002 if (x86_pmu.perfctr_second_write) {
1003 wrmsrl(hwc->event_base,
1004 (u64)(-left) & x86_pmu.cntval_mask);
1005 }
1006
1007 perf_event_update_userpage(event);
1008
1009 return ret;
1010 }
1011
x86_pmu_enable_event(struct perf_event * event)1012 void x86_pmu_enable_event(struct perf_event *event)
1013 {
1014 if (__this_cpu_read(cpu_hw_events.enabled))
1015 __x86_pmu_enable_event(&event->hw,
1016 ARCH_PERFMON_EVENTSEL_ENABLE);
1017 }
1018
1019 /*
1020 * Add a single event to the PMU.
1021 *
1022 * The event is added to the group of enabled events
1023 * but only if it can be scehduled with existing events.
1024 */
x86_pmu_add(struct perf_event * event,int flags)1025 static int x86_pmu_add(struct perf_event *event, int flags)
1026 {
1027 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1028 struct hw_perf_event *hwc;
1029 int assign[X86_PMC_IDX_MAX];
1030 int n, n0, ret;
1031
1032 hwc = &event->hw;
1033
1034 perf_pmu_disable(event->pmu);
1035 n0 = cpuc->n_events;
1036 ret = n = collect_events(cpuc, event, false);
1037 if (ret < 0)
1038 goto out;
1039
1040 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1041 if (!(flags & PERF_EF_START))
1042 hwc->state |= PERF_HES_ARCH;
1043
1044 /*
1045 * If group events scheduling transaction was started,
1046 * skip the schedulability test here, it will be performed
1047 * at commit time (->commit_txn) as a whole.
1048 */
1049 if (cpuc->group_flag & PERF_EVENT_TXN)
1050 goto done_collect;
1051
1052 ret = x86_pmu.schedule_events(cpuc, n, assign);
1053 if (ret)
1054 goto out;
1055 /*
1056 * copy new assignment, now we know it is possible
1057 * will be used by hw_perf_enable()
1058 */
1059 memcpy(cpuc->assign, assign, n*sizeof(int));
1060
1061 done_collect:
1062 /*
1063 * Commit the collect_events() state. See x86_pmu_del() and
1064 * x86_pmu_*_txn().
1065 */
1066 cpuc->n_events = n;
1067 cpuc->n_added += n - n0;
1068 cpuc->n_txn += n - n0;
1069
1070 ret = 0;
1071 out:
1072 perf_pmu_enable(event->pmu);
1073 return ret;
1074 }
1075
x86_pmu_start(struct perf_event * event,int flags)1076 static void x86_pmu_start(struct perf_event *event, int flags)
1077 {
1078 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1079 int idx = event->hw.idx;
1080
1081 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1082 return;
1083
1084 if (WARN_ON_ONCE(idx == -1))
1085 return;
1086
1087 if (flags & PERF_EF_RELOAD) {
1088 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1089 x86_perf_event_set_period(event);
1090 }
1091
1092 event->hw.state = 0;
1093
1094 cpuc->events[idx] = event;
1095 __set_bit(idx, cpuc->active_mask);
1096 __set_bit(idx, cpuc->running);
1097 x86_pmu.enable(event);
1098 perf_event_update_userpage(event);
1099 }
1100
perf_event_print_debug(void)1101 void perf_event_print_debug(void)
1102 {
1103 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1104 u64 pebs;
1105 struct cpu_hw_events *cpuc;
1106 unsigned long flags;
1107 int cpu, idx;
1108
1109 if (!x86_pmu.num_counters)
1110 return;
1111
1112 local_irq_save(flags);
1113
1114 cpu = smp_processor_id();
1115 cpuc = &per_cpu(cpu_hw_events, cpu);
1116
1117 if (x86_pmu.version >= 2) {
1118 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1119 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1120 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1121 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1122 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1123
1124 pr_info("\n");
1125 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1126 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1127 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1128 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1129 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1130 }
1131 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1132
1133 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1134 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1135 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1136
1137 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1138
1139 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1140 cpu, idx, pmc_ctrl);
1141 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1142 cpu, idx, pmc_count);
1143 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1144 cpu, idx, prev_left);
1145 }
1146 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1147 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1148
1149 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1150 cpu, idx, pmc_count);
1151 }
1152 local_irq_restore(flags);
1153 }
1154
x86_pmu_stop(struct perf_event * event,int flags)1155 void x86_pmu_stop(struct perf_event *event, int flags)
1156 {
1157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1158 struct hw_perf_event *hwc = &event->hw;
1159
1160 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1161 x86_pmu.disable(event);
1162 cpuc->events[hwc->idx] = NULL;
1163 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1164 hwc->state |= PERF_HES_STOPPED;
1165 }
1166
1167 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1168 /*
1169 * Drain the remaining delta count out of a event
1170 * that we are disabling:
1171 */
1172 x86_perf_event_update(event);
1173 hwc->state |= PERF_HES_UPTODATE;
1174 }
1175 }
1176
x86_pmu_del(struct perf_event * event,int flags)1177 static void x86_pmu_del(struct perf_event *event, int flags)
1178 {
1179 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1180 int i;
1181
1182 /*
1183 * event is descheduled
1184 */
1185 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1186
1187 /*
1188 * If we're called during a txn, we don't need to do anything.
1189 * The events never got scheduled and ->cancel_txn will truncate
1190 * the event_list.
1191 *
1192 * XXX assumes any ->del() called during a TXN will only be on
1193 * an event added during that same TXN.
1194 */
1195 if (cpuc->group_flag & PERF_EVENT_TXN)
1196 return;
1197
1198 /*
1199 * Not a TXN, therefore cleanup properly.
1200 */
1201 x86_pmu_stop(event, PERF_EF_UPDATE);
1202
1203 for (i = 0; i < cpuc->n_events; i++) {
1204 if (event == cpuc->event_list[i])
1205 break;
1206 }
1207
1208 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1209 return;
1210
1211 /* If we have a newly added event; make sure to decrease n_added. */
1212 if (i >= cpuc->n_events - cpuc->n_added)
1213 --cpuc->n_added;
1214
1215 if (x86_pmu.put_event_constraints)
1216 x86_pmu.put_event_constraints(cpuc, event);
1217
1218 /* Delete the array entry. */
1219 while (++i < cpuc->n_events)
1220 cpuc->event_list[i-1] = cpuc->event_list[i];
1221 --cpuc->n_events;
1222
1223 perf_event_update_userpage(event);
1224 }
1225
x86_pmu_handle_irq(struct pt_regs * regs)1226 int x86_pmu_handle_irq(struct pt_regs *regs)
1227 {
1228 struct perf_sample_data data;
1229 struct cpu_hw_events *cpuc;
1230 struct perf_event *event;
1231 int idx, handled = 0;
1232 u64 val;
1233
1234 cpuc = this_cpu_ptr(&cpu_hw_events);
1235
1236 /*
1237 * Some chipsets need to unmask the LVTPC in a particular spot
1238 * inside the nmi handler. As a result, the unmasking was pushed
1239 * into all the nmi handlers.
1240 *
1241 * This generic handler doesn't seem to have any issues where the
1242 * unmasking occurs so it was left at the top.
1243 */
1244 apic_write(APIC_LVTPC, APIC_DM_NMI);
1245
1246 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1247 if (!test_bit(idx, cpuc->active_mask)) {
1248 /*
1249 * Though we deactivated the counter some cpus
1250 * might still deliver spurious interrupts still
1251 * in flight. Catch them:
1252 */
1253 if (__test_and_clear_bit(idx, cpuc->running))
1254 handled++;
1255 continue;
1256 }
1257
1258 event = cpuc->events[idx];
1259
1260 val = x86_perf_event_update(event);
1261 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1262 continue;
1263
1264 /*
1265 * event overflow
1266 */
1267 handled++;
1268 perf_sample_data_init(&data, 0, event->hw.last_period);
1269
1270 if (!x86_perf_event_set_period(event))
1271 continue;
1272
1273 if (perf_event_overflow(event, &data, regs))
1274 x86_pmu_stop(event, 0);
1275 }
1276
1277 if (handled)
1278 inc_irq_stat(apic_perf_irqs);
1279
1280 return handled;
1281 }
1282
perf_events_lapic_init(void)1283 void perf_events_lapic_init(void)
1284 {
1285 if (!x86_pmu.apic || !x86_pmu_initialized())
1286 return;
1287
1288 /*
1289 * Always use NMI for PMU
1290 */
1291 apic_write(APIC_LVTPC, APIC_DM_NMI);
1292 }
1293
1294 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1295 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1296 {
1297 u64 start_clock;
1298 u64 finish_clock;
1299 int ret;
1300
1301 if (!atomic_read(&active_events))
1302 return NMI_DONE;
1303
1304 start_clock = sched_clock();
1305 ret = x86_pmu.handle_irq(regs);
1306 finish_clock = sched_clock();
1307
1308 perf_sample_event_took(finish_clock - start_clock);
1309
1310 return ret;
1311 }
1312 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1313
1314 struct event_constraint emptyconstraint;
1315 struct event_constraint unconstrained;
1316
1317 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1318 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1319 {
1320 unsigned int cpu = (long)hcpu;
1321 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1322 int ret = NOTIFY_OK;
1323
1324 switch (action & ~CPU_TASKS_FROZEN) {
1325 case CPU_UP_PREPARE:
1326 cpuc->kfree_on_online = NULL;
1327 if (x86_pmu.cpu_prepare)
1328 ret = x86_pmu.cpu_prepare(cpu);
1329 break;
1330
1331 case CPU_STARTING:
1332 if (x86_pmu.attr_rdpmc)
1333 cr4_set_bits(X86_CR4_PCE);
1334 if (x86_pmu.cpu_starting)
1335 x86_pmu.cpu_starting(cpu);
1336 break;
1337
1338 case CPU_ONLINE:
1339 kfree(cpuc->kfree_on_online);
1340 break;
1341
1342 case CPU_DYING:
1343 if (x86_pmu.cpu_dying)
1344 x86_pmu.cpu_dying(cpu);
1345 break;
1346
1347 case CPU_UP_CANCELED:
1348 case CPU_DEAD:
1349 if (x86_pmu.cpu_dead)
1350 x86_pmu.cpu_dead(cpu);
1351 break;
1352
1353 default:
1354 break;
1355 }
1356
1357 return ret;
1358 }
1359
pmu_check_apic(void)1360 static void __init pmu_check_apic(void)
1361 {
1362 if (cpu_has_apic)
1363 return;
1364
1365 x86_pmu.apic = 0;
1366 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1367 pr_info("no hardware sampling interrupt available.\n");
1368
1369 /*
1370 * If we have a PMU initialized but no APIC
1371 * interrupts, we cannot sample hardware
1372 * events (user-space has to fall back and
1373 * sample via a hrtimer based software event):
1374 */
1375 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1376
1377 }
1378
1379 static struct attribute_group x86_pmu_format_group = {
1380 .name = "format",
1381 .attrs = NULL,
1382 };
1383
1384 /*
1385 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1386 * out of events_attr attributes.
1387 */
filter_events(struct attribute ** attrs)1388 static void __init filter_events(struct attribute **attrs)
1389 {
1390 struct device_attribute *d;
1391 struct perf_pmu_events_attr *pmu_attr;
1392 int i, j;
1393
1394 for (i = 0; attrs[i]; i++) {
1395 d = (struct device_attribute *)attrs[i];
1396 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1397 /* str trumps id */
1398 if (pmu_attr->event_str)
1399 continue;
1400 if (x86_pmu.event_map(i))
1401 continue;
1402
1403 for (j = i; attrs[j]; j++)
1404 attrs[j] = attrs[j + 1];
1405
1406 /* Check the shifted attr. */
1407 i--;
1408 }
1409 }
1410
1411 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1412 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1413 {
1414 struct attribute **new;
1415 int j, i;
1416
1417 for (j = 0; a[j]; j++)
1418 ;
1419 for (i = 0; b[i]; i++)
1420 j++;
1421 j++;
1422
1423 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1424 if (!new)
1425 return NULL;
1426
1427 j = 0;
1428 for (i = 0; a[i]; i++)
1429 new[j++] = a[i];
1430 for (i = 0; b[i]; i++)
1431 new[j++] = b[i];
1432 new[j] = NULL;
1433
1434 return new;
1435 }
1436
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1437 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1438 char *page)
1439 {
1440 struct perf_pmu_events_attr *pmu_attr = \
1441 container_of(attr, struct perf_pmu_events_attr, attr);
1442 u64 config = x86_pmu.event_map(pmu_attr->id);
1443
1444 /* string trumps id */
1445 if (pmu_attr->event_str)
1446 return sprintf(page, "%s", pmu_attr->event_str);
1447
1448 return x86_pmu.events_sysfs_show(page, config);
1449 }
1450
1451 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1452 EVENT_ATTR(instructions, INSTRUCTIONS );
1453 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1454 EVENT_ATTR(cache-misses, CACHE_MISSES );
1455 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1456 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1457 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1458 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1459 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1460 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1461
1462 static struct attribute *empty_attrs;
1463
1464 static struct attribute *events_attr[] = {
1465 EVENT_PTR(CPU_CYCLES),
1466 EVENT_PTR(INSTRUCTIONS),
1467 EVENT_PTR(CACHE_REFERENCES),
1468 EVENT_PTR(CACHE_MISSES),
1469 EVENT_PTR(BRANCH_INSTRUCTIONS),
1470 EVENT_PTR(BRANCH_MISSES),
1471 EVENT_PTR(BUS_CYCLES),
1472 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1473 EVENT_PTR(STALLED_CYCLES_BACKEND),
1474 EVENT_PTR(REF_CPU_CYCLES),
1475 NULL,
1476 };
1477
1478 static struct attribute_group x86_pmu_events_group = {
1479 .name = "events",
1480 .attrs = events_attr,
1481 };
1482
x86_event_sysfs_show(char * page,u64 config,u64 event)1483 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1484 {
1485 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1486 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1487 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1488 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1489 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1490 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1491 ssize_t ret;
1492
1493 /*
1494 * We have whole page size to spend and just little data
1495 * to write, so we can safely use sprintf.
1496 */
1497 ret = sprintf(page, "event=0x%02llx", event);
1498
1499 if (umask)
1500 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1501
1502 if (edge)
1503 ret += sprintf(page + ret, ",edge");
1504
1505 if (pc)
1506 ret += sprintf(page + ret, ",pc");
1507
1508 if (any)
1509 ret += sprintf(page + ret, ",any");
1510
1511 if (inv)
1512 ret += sprintf(page + ret, ",inv");
1513
1514 if (cmask)
1515 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1516
1517 ret += sprintf(page + ret, "\n");
1518
1519 return ret;
1520 }
1521
init_hw_perf_events(void)1522 static int __init init_hw_perf_events(void)
1523 {
1524 struct x86_pmu_quirk *quirk;
1525 int err;
1526
1527 pr_info("Performance Events: ");
1528
1529 switch (boot_cpu_data.x86_vendor) {
1530 case X86_VENDOR_INTEL:
1531 err = intel_pmu_init();
1532 break;
1533 case X86_VENDOR_AMD:
1534 err = amd_pmu_init();
1535 break;
1536 default:
1537 err = -ENOTSUPP;
1538 }
1539 if (err != 0) {
1540 pr_cont("no PMU driver, software events only.\n");
1541 return 0;
1542 }
1543
1544 pmu_check_apic();
1545
1546 /* sanity check that the hardware exists or is emulated */
1547 if (!check_hw_exists())
1548 return 0;
1549
1550 pr_cont("%s PMU driver.\n", x86_pmu.name);
1551
1552 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1553
1554 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1555 quirk->func();
1556
1557 if (!x86_pmu.intel_ctrl)
1558 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1559
1560 perf_events_lapic_init();
1561 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1562
1563 unconstrained = (struct event_constraint)
1564 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1565 0, x86_pmu.num_counters, 0, 0);
1566
1567 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1568
1569 if (x86_pmu.event_attrs)
1570 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1571
1572 if (!x86_pmu.events_sysfs_show)
1573 x86_pmu_events_group.attrs = &empty_attrs;
1574 else
1575 filter_events(x86_pmu_events_group.attrs);
1576
1577 if (x86_pmu.cpu_events) {
1578 struct attribute **tmp;
1579
1580 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1581 if (!WARN_ON(!tmp))
1582 x86_pmu_events_group.attrs = tmp;
1583 }
1584
1585 pr_info("... version: %d\n", x86_pmu.version);
1586 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1587 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1588 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1589 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1590 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1591 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1592
1593 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1594 perf_cpu_notifier(x86_pmu_notifier);
1595
1596 return 0;
1597 }
1598 early_initcall(init_hw_perf_events);
1599
x86_pmu_read(struct perf_event * event)1600 static inline void x86_pmu_read(struct perf_event *event)
1601 {
1602 x86_perf_event_update(event);
1603 }
1604
1605 /*
1606 * Start group events scheduling transaction
1607 * Set the flag to make pmu::enable() not perform the
1608 * schedulability test, it will be performed at commit time
1609 */
x86_pmu_start_txn(struct pmu * pmu)1610 static void x86_pmu_start_txn(struct pmu *pmu)
1611 {
1612 perf_pmu_disable(pmu);
1613 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1614 __this_cpu_write(cpu_hw_events.n_txn, 0);
1615 }
1616
1617 /*
1618 * Stop group events scheduling transaction
1619 * Clear the flag and pmu::enable() will perform the
1620 * schedulability test.
1621 */
x86_pmu_cancel_txn(struct pmu * pmu)1622 static void x86_pmu_cancel_txn(struct pmu *pmu)
1623 {
1624 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1625 /*
1626 * Truncate collected array by the number of events added in this
1627 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1628 */
1629 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1630 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1631 perf_pmu_enable(pmu);
1632 }
1633
1634 /*
1635 * Commit group events scheduling transaction
1636 * Perform the group schedulability test as a whole
1637 * Return 0 if success
1638 *
1639 * Does not cancel the transaction on failure; expects the caller to do this.
1640 */
x86_pmu_commit_txn(struct pmu * pmu)1641 static int x86_pmu_commit_txn(struct pmu *pmu)
1642 {
1643 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1644 int assign[X86_PMC_IDX_MAX];
1645 int n, ret;
1646
1647 n = cpuc->n_events;
1648
1649 if (!x86_pmu_initialized())
1650 return -EAGAIN;
1651
1652 ret = x86_pmu.schedule_events(cpuc, n, assign);
1653 if (ret)
1654 return ret;
1655
1656 /*
1657 * copy new assignment, now we know it is possible
1658 * will be used by hw_perf_enable()
1659 */
1660 memcpy(cpuc->assign, assign, n*sizeof(int));
1661
1662 cpuc->group_flag &= ~PERF_EVENT_TXN;
1663 perf_pmu_enable(pmu);
1664 return 0;
1665 }
1666 /*
1667 * a fake_cpuc is used to validate event groups. Due to
1668 * the extra reg logic, we need to also allocate a fake
1669 * per_core and per_cpu structure. Otherwise, group events
1670 * using extra reg may conflict without the kernel being
1671 * able to catch this when the last event gets added to
1672 * the group.
1673 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1674 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1675 {
1676 kfree(cpuc->shared_regs);
1677 kfree(cpuc);
1678 }
1679
allocate_fake_cpuc(void)1680 static struct cpu_hw_events *allocate_fake_cpuc(void)
1681 {
1682 struct cpu_hw_events *cpuc;
1683 int cpu = raw_smp_processor_id();
1684
1685 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1686 if (!cpuc)
1687 return ERR_PTR(-ENOMEM);
1688
1689 /* only needed, if we have extra_regs */
1690 if (x86_pmu.extra_regs) {
1691 cpuc->shared_regs = allocate_shared_regs(cpu);
1692 if (!cpuc->shared_regs)
1693 goto error;
1694 }
1695 cpuc->is_fake = 1;
1696 return cpuc;
1697 error:
1698 free_fake_cpuc(cpuc);
1699 return ERR_PTR(-ENOMEM);
1700 }
1701
1702 /*
1703 * validate that we can schedule this event
1704 */
validate_event(struct perf_event * event)1705 static int validate_event(struct perf_event *event)
1706 {
1707 struct cpu_hw_events *fake_cpuc;
1708 struct event_constraint *c;
1709 int ret = 0;
1710
1711 fake_cpuc = allocate_fake_cpuc();
1712 if (IS_ERR(fake_cpuc))
1713 return PTR_ERR(fake_cpuc);
1714
1715 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1716
1717 if (!c || !c->weight)
1718 ret = -EINVAL;
1719
1720 if (x86_pmu.put_event_constraints)
1721 x86_pmu.put_event_constraints(fake_cpuc, event);
1722
1723 free_fake_cpuc(fake_cpuc);
1724
1725 return ret;
1726 }
1727
1728 /*
1729 * validate a single event group
1730 *
1731 * validation include:
1732 * - check events are compatible which each other
1733 * - events do not compete for the same counter
1734 * - number of events <= number of counters
1735 *
1736 * validation ensures the group can be loaded onto the
1737 * PMU if it was the only group available.
1738 */
validate_group(struct perf_event * event)1739 static int validate_group(struct perf_event *event)
1740 {
1741 struct perf_event *leader = event->group_leader;
1742 struct cpu_hw_events *fake_cpuc;
1743 int ret = -EINVAL, n;
1744
1745 fake_cpuc = allocate_fake_cpuc();
1746 if (IS_ERR(fake_cpuc))
1747 return PTR_ERR(fake_cpuc);
1748 /*
1749 * the event is not yet connected with its
1750 * siblings therefore we must first collect
1751 * existing siblings, then add the new event
1752 * before we can simulate the scheduling
1753 */
1754 n = collect_events(fake_cpuc, leader, true);
1755 if (n < 0)
1756 goto out;
1757
1758 fake_cpuc->n_events = n;
1759 n = collect_events(fake_cpuc, event, false);
1760 if (n < 0)
1761 goto out;
1762
1763 fake_cpuc->n_events = n;
1764
1765 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1766
1767 out:
1768 free_fake_cpuc(fake_cpuc);
1769 return ret;
1770 }
1771
x86_pmu_event_init(struct perf_event * event)1772 static int x86_pmu_event_init(struct perf_event *event)
1773 {
1774 struct pmu *tmp;
1775 int err;
1776
1777 switch (event->attr.type) {
1778 case PERF_TYPE_RAW:
1779 case PERF_TYPE_HARDWARE:
1780 case PERF_TYPE_HW_CACHE:
1781 break;
1782
1783 default:
1784 return -ENOENT;
1785 }
1786
1787 err = __x86_pmu_event_init(event);
1788 if (!err) {
1789 /*
1790 * we temporarily connect event to its pmu
1791 * such that validate_group() can classify
1792 * it as an x86 event using is_x86_event()
1793 */
1794 tmp = event->pmu;
1795 event->pmu = &pmu;
1796
1797 if (event->group_leader != event)
1798 err = validate_group(event);
1799 else
1800 err = validate_event(event);
1801
1802 event->pmu = tmp;
1803 }
1804 if (err) {
1805 if (event->destroy)
1806 event->destroy(event);
1807 }
1808
1809 return err;
1810 }
1811
x86_pmu_event_idx(struct perf_event * event)1812 static int x86_pmu_event_idx(struct perf_event *event)
1813 {
1814 int idx = event->hw.idx;
1815
1816 if (!x86_pmu.attr_rdpmc)
1817 return 0;
1818
1819 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1820 idx -= INTEL_PMC_IDX_FIXED;
1821 idx |= 1 << 30;
1822 }
1823
1824 return idx + 1;
1825 }
1826
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1827 static ssize_t get_attr_rdpmc(struct device *cdev,
1828 struct device_attribute *attr,
1829 char *buf)
1830 {
1831 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1832 }
1833
change_rdpmc(void * info)1834 static void change_rdpmc(void *info)
1835 {
1836 bool enable = !!(unsigned long)info;
1837
1838 if (enable)
1839 cr4_set_bits(X86_CR4_PCE);
1840 else
1841 cr4_clear_bits(X86_CR4_PCE);
1842 }
1843
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1844 static ssize_t set_attr_rdpmc(struct device *cdev,
1845 struct device_attribute *attr,
1846 const char *buf, size_t count)
1847 {
1848 unsigned long val;
1849 ssize_t ret;
1850
1851 ret = kstrtoul(buf, 0, &val);
1852 if (ret)
1853 return ret;
1854
1855 if (x86_pmu.attr_rdpmc_broken)
1856 return -ENOTSUPP;
1857
1858 if (!!val != !!x86_pmu.attr_rdpmc) {
1859 x86_pmu.attr_rdpmc = !!val;
1860 on_each_cpu(change_rdpmc, (void *)val, 1);
1861 }
1862
1863 return count;
1864 }
1865
1866 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1867
1868 static struct attribute *x86_pmu_attrs[] = {
1869 &dev_attr_rdpmc.attr,
1870 NULL,
1871 };
1872
1873 static struct attribute_group x86_pmu_attr_group = {
1874 .attrs = x86_pmu_attrs,
1875 };
1876
1877 static const struct attribute_group *x86_pmu_attr_groups[] = {
1878 &x86_pmu_attr_group,
1879 &x86_pmu_format_group,
1880 &x86_pmu_events_group,
1881 NULL,
1882 };
1883
x86_pmu_flush_branch_stack(void)1884 static void x86_pmu_flush_branch_stack(void)
1885 {
1886 if (x86_pmu.flush_branch_stack)
1887 x86_pmu.flush_branch_stack();
1888 }
1889
perf_check_microcode(void)1890 void perf_check_microcode(void)
1891 {
1892 if (x86_pmu.check_microcode)
1893 x86_pmu.check_microcode();
1894 }
1895 EXPORT_SYMBOL_GPL(perf_check_microcode);
1896
1897 static struct pmu pmu = {
1898 .pmu_enable = x86_pmu_enable,
1899 .pmu_disable = x86_pmu_disable,
1900
1901 .attr_groups = x86_pmu_attr_groups,
1902
1903 .event_init = x86_pmu_event_init,
1904
1905 .add = x86_pmu_add,
1906 .del = x86_pmu_del,
1907 .start = x86_pmu_start,
1908 .stop = x86_pmu_stop,
1909 .read = x86_pmu_read,
1910
1911 .start_txn = x86_pmu_start_txn,
1912 .cancel_txn = x86_pmu_cancel_txn,
1913 .commit_txn = x86_pmu_commit_txn,
1914
1915 .event_idx = x86_pmu_event_idx,
1916 .flush_branch_stack = x86_pmu_flush_branch_stack,
1917 };
1918
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)1919 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1920 {
1921 struct cyc2ns_data *data;
1922
1923 userpg->cap_user_time = 0;
1924 userpg->cap_user_time_zero = 0;
1925 userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
1926 userpg->pmc_width = x86_pmu.cntval_bits;
1927
1928 if (!sched_clock_stable())
1929 return;
1930
1931 data = cyc2ns_read_begin();
1932
1933 userpg->cap_user_time = 1;
1934 userpg->time_mult = data->cyc2ns_mul;
1935 userpg->time_shift = data->cyc2ns_shift;
1936 userpg->time_offset = data->cyc2ns_offset - now;
1937
1938 userpg->cap_user_time_zero = 1;
1939 userpg->time_zero = data->cyc2ns_offset;
1940
1941 cyc2ns_read_end(data);
1942 }
1943
1944 /*
1945 * callchain support
1946 */
1947
backtrace_stack(void * data,char * name)1948 static int backtrace_stack(void *data, char *name)
1949 {
1950 return 0;
1951 }
1952
backtrace_address(void * data,unsigned long addr,int reliable)1953 static void backtrace_address(void *data, unsigned long addr, int reliable)
1954 {
1955 struct perf_callchain_entry *entry = data;
1956
1957 perf_callchain_store(entry, addr);
1958 }
1959
1960 static const struct stacktrace_ops backtrace_ops = {
1961 .stack = backtrace_stack,
1962 .address = backtrace_address,
1963 .walk_stack = print_context_stack_bp,
1964 };
1965
1966 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1967 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1968 {
1969 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1970 /* TODO: We don't support guest os callchain now */
1971 return;
1972 }
1973
1974 perf_callchain_store(entry, regs->ip);
1975
1976 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1977 }
1978
1979 static inline int
valid_user_frame(const void __user * fp,unsigned long size)1980 valid_user_frame(const void __user *fp, unsigned long size)
1981 {
1982 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1983 }
1984
get_segment_base(unsigned int segment)1985 static unsigned long get_segment_base(unsigned int segment)
1986 {
1987 struct desc_struct *desc;
1988 int idx = segment >> 3;
1989
1990 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1991 struct ldt_struct *ldt;
1992
1993 if (idx > LDT_ENTRIES)
1994 return 0;
1995
1996 /* IRQs are off, so this synchronizes with smp_store_release */
1997 ldt = lockless_dereference(current->active_mm->context.ldt);
1998 if (!ldt || idx > ldt->size)
1999 return 0;
2000
2001 desc = &ldt->entries[idx];
2002 } else {
2003 if (idx > GDT_ENTRIES)
2004 return 0;
2005
2006 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2007 }
2008
2009 return get_desc_base(desc);
2010 }
2011
2012 #ifdef CONFIG_COMPAT
2013
2014 #include <asm/compat.h>
2015
2016 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2017 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2018 {
2019 /* 32-bit process in 64-bit kernel. */
2020 unsigned long ss_base, cs_base;
2021 struct stack_frame_ia32 frame;
2022 const void __user *fp;
2023
2024 if (!test_thread_flag(TIF_IA32))
2025 return 0;
2026
2027 cs_base = get_segment_base(regs->cs);
2028 ss_base = get_segment_base(regs->ss);
2029
2030 fp = compat_ptr(ss_base + regs->bp);
2031 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2032 unsigned long bytes;
2033 frame.next_frame = 0;
2034 frame.return_address = 0;
2035
2036 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2037 if (bytes != 0)
2038 break;
2039
2040 if (!valid_user_frame(fp, sizeof(frame)))
2041 break;
2042
2043 perf_callchain_store(entry, cs_base + frame.return_address);
2044 fp = compat_ptr(ss_base + frame.next_frame);
2045 }
2046 return 1;
2047 }
2048 #else
2049 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2050 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2051 {
2052 return 0;
2053 }
2054 #endif
2055
2056 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2057 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2058 {
2059 struct stack_frame frame;
2060 const void __user *fp;
2061
2062 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2063 /* TODO: We don't support guest os callchain now */
2064 return;
2065 }
2066
2067 /*
2068 * We don't know what to do with VM86 stacks.. ignore them for now.
2069 */
2070 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2071 return;
2072
2073 fp = (void __user *)regs->bp;
2074
2075 perf_callchain_store(entry, regs->ip);
2076
2077 if (!current->mm)
2078 return;
2079
2080 if (perf_callchain_user32(regs, entry))
2081 return;
2082
2083 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2084 unsigned long bytes;
2085 frame.next_frame = NULL;
2086 frame.return_address = 0;
2087
2088 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2089 if (bytes != 0)
2090 break;
2091
2092 if (!valid_user_frame(fp, sizeof(frame)))
2093 break;
2094
2095 perf_callchain_store(entry, frame.return_address);
2096 fp = frame.next_frame;
2097 }
2098 }
2099
2100 /*
2101 * Deal with code segment offsets for the various execution modes:
2102 *
2103 * VM86 - the good olde 16 bit days, where the linear address is
2104 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2105 *
2106 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2107 * to figure out what the 32bit base address is.
2108 *
2109 * X32 - has TIF_X32 set, but is running in x86_64
2110 *
2111 * X86_64 - CS,DS,SS,ES are all zero based.
2112 */
code_segment_base(struct pt_regs * regs)2113 static unsigned long code_segment_base(struct pt_regs *regs)
2114 {
2115 /*
2116 * If we are in VM86 mode, add the segment offset to convert to a
2117 * linear address.
2118 */
2119 if (regs->flags & X86_VM_MASK)
2120 return 0x10 * regs->cs;
2121
2122 /*
2123 * For IA32 we look at the GDT/LDT segment base to convert the
2124 * effective IP to a linear address.
2125 */
2126 #ifdef CONFIG_X86_32
2127 if (user_mode(regs) && regs->cs != __USER_CS)
2128 return get_segment_base(regs->cs);
2129 #else
2130 if (test_thread_flag(TIF_IA32)) {
2131 if (user_mode(regs) && regs->cs != __USER32_CS)
2132 return get_segment_base(regs->cs);
2133 }
2134 #endif
2135 return 0;
2136 }
2137
perf_instruction_pointer(struct pt_regs * regs)2138 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2139 {
2140 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2141 return perf_guest_cbs->get_guest_ip();
2142
2143 return regs->ip + code_segment_base(regs);
2144 }
2145
perf_misc_flags(struct pt_regs * regs)2146 unsigned long perf_misc_flags(struct pt_regs *regs)
2147 {
2148 int misc = 0;
2149
2150 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2151 if (perf_guest_cbs->is_user_mode())
2152 misc |= PERF_RECORD_MISC_GUEST_USER;
2153 else
2154 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2155 } else {
2156 if (user_mode(regs))
2157 misc |= PERF_RECORD_MISC_USER;
2158 else
2159 misc |= PERF_RECORD_MISC_KERNEL;
2160 }
2161
2162 if (regs->flags & PERF_EFLAGS_EXACT)
2163 misc |= PERF_RECORD_MISC_EXACT_IP;
2164
2165 return misc;
2166 }
2167
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2168 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2169 {
2170 cap->version = x86_pmu.version;
2171 cap->num_counters_gp = x86_pmu.num_counters;
2172 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2173 cap->bit_width_gp = x86_pmu.cntval_bits;
2174 cap->bit_width_fixed = x86_pmu.cntval_bits;
2175 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2176 cap->events_mask_len = x86_pmu.events_mask_len;
2177 }
2178 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2179