1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60
61 #include "common.h"
62
63 void jprobe_return_end(void);
64
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
76 /*
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
81 * *(unsigned long*) is used.
82 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104 };
105 #undef W
106
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
111 };
112
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114
115 static nokprobe_inline void
__synthesize_relative_insn(void * from,void * to,u8 op)116 __synthesize_relative_insn(void *from, void *to, u8 op)
117 {
118 struct __arch_relative_insn {
119 u8 op;
120 s32 raddr;
121 } __packed *insn;
122
123 insn = (struct __arch_relative_insn *)from;
124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 insn->op = op;
126 }
127
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)129 void synthesize_reljump(void *from, void *to)
130 {
131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_reljump);
134
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)136 void synthesize_relcall(void *from, void *to)
137 {
138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_relcall);
141
142 /*
143 * Skip the prefixes of the instruction.
144 */
skip_prefixes(kprobe_opcode_t * insn)145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146 {
147 insn_attr_t attr;
148
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 while (inat_is_legacy_prefix(attr)) {
151 insn++;
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 }
154 #ifdef CONFIG_X86_64
155 if (inat_is_rex_prefix(attr))
156 insn++;
157 #endif
158 return insn;
159 }
160 NOKPROBE_SYMBOL(skip_prefixes);
161
162 /*
163 * Returns non-zero if opcode is boostable.
164 * RIP relative instructions are adjusted at copying time in 64 bits mode
165 */
can_boost(kprobe_opcode_t * opcodes,void * addr)166 int can_boost(kprobe_opcode_t *opcodes, void *addr)
167 {
168 kprobe_opcode_t opcode;
169 kprobe_opcode_t *orig_opcodes = opcodes;
170
171 if (search_exception_tables((unsigned long)addr))
172 return 0; /* Page fault may occur on this address. */
173
174 retry:
175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 return 0;
177 opcode = *(opcodes++);
178
179 /* 2nd-byte opcode */
180 if (opcode == 0x0f) {
181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 return 0;
183 return test_bit(*opcodes,
184 (unsigned long *)twobyte_is_boostable);
185 }
186
187 switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 case 0x40:
190 goto retry; /* REX prefix is boostable */
191 #endif
192 case 0x60:
193 if (0x63 < opcode && opcode < 0x67)
194 goto retry; /* prefixes */
195 /* can't boost Address-size override and bound */
196 return (opcode != 0x62 && opcode != 0x67);
197 case 0x70:
198 return 0; /* can't boost conditional jump */
199 case 0xc0:
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 case 0xd0:
203 /* can boost AA* and XLAT */
204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 case 0xe0:
206 /* can boost in/out and absolute jmps */
207 return ((opcode & 0x04) || opcode == 0xea);
208 case 0xf0:
209 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 goto retry; /* lock/rep(ne) prefix */
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
214 /* segment override prefixes are boostable */
215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 goto retry; /* prefixes */
217 /* CS override prefix and call are not boostable */
218 return (opcode != 0x2e && opcode != 0x9a);
219 }
220 }
221
222 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 {
225 struct kprobe *kp;
226
227 kp = get_kprobe((void *)addr);
228 /* There is no probe, return original address */
229 if (!kp)
230 return addr;
231
232 /*
233 * Basically, kp->ainsn.insn has an original instruction.
234 * However, RIP-relative instruction can not do single-stepping
235 * at different place, __copy_instruction() tweaks the displacement of
236 * that instruction. In that case, we can't recover the instruction
237 * from the kp->ainsn.insn.
238 *
239 * On the other hand, kp->opcode has a copy of the first byte of
240 * the probed instruction, which is overwritten by int3. And
241 * the instruction at kp->addr is not modified by kprobes except
242 * for the first byte, we can recover the original instruction
243 * from it and kp->opcode.
244 */
245 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
246 buf[0] = kp->opcode;
247 return (unsigned long)buf;
248 }
249
250 /*
251 * Recover the probed instruction at addr for further analysis.
252 * Caller must lock kprobes by kprobe_mutex, or disable preemption
253 * for preventing to release referencing kprobes.
254 */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
256 {
257 unsigned long __addr;
258
259 __addr = __recover_optprobed_insn(buf, addr);
260 if (__addr != addr)
261 return __addr;
262
263 return __recover_probed_insn(buf, addr);
264 }
265
266 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)267 static int can_probe(unsigned long paddr)
268 {
269 unsigned long addr, __addr, offset = 0;
270 struct insn insn;
271 kprobe_opcode_t buf[MAX_INSN_SIZE];
272
273 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
274 return 0;
275
276 /* Decode instructions */
277 addr = paddr - offset;
278 while (addr < paddr) {
279 /*
280 * Check if the instruction has been modified by another
281 * kprobe, in which case we replace the breakpoint by the
282 * original instruction in our buffer.
283 * Also, jump optimization will change the breakpoint to
284 * relative-jump. Since the relative-jump itself is
285 * normally used, we just go through if there is no kprobe.
286 */
287 __addr = recover_probed_instruction(buf, addr);
288 kernel_insn_init(&insn, (void *)__addr);
289 insn_get_length(&insn);
290
291 /*
292 * Another debugging subsystem might insert this breakpoint.
293 * In that case, we can't recover it.
294 */
295 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
296 return 0;
297 addr += insn.length;
298 }
299
300 return (addr == paddr);
301 }
302
303 /*
304 * Returns non-zero if opcode modifies the interrupt flag.
305 */
is_IF_modifier(kprobe_opcode_t * insn)306 static int is_IF_modifier(kprobe_opcode_t *insn)
307 {
308 /* Skip prefixes */
309 insn = skip_prefixes(insn);
310
311 switch (*insn) {
312 case 0xfa: /* cli */
313 case 0xfb: /* sti */
314 case 0xcf: /* iret/iretd */
315 case 0x9d: /* popf/popfd */
316 return 1;
317 }
318
319 return 0;
320 }
321
322 /*
323 * Copy an instruction and adjust the displacement if the instruction
324 * uses the %rip-relative addressing mode.
325 * If it does, Return the address of the 32-bit displacement word.
326 * If not, return null.
327 * Only applicable to 64-bit x86.
328 */
__copy_instruction(u8 * dest,u8 * src)329 int __copy_instruction(u8 *dest, u8 *src)
330 {
331 struct insn insn;
332 kprobe_opcode_t buf[MAX_INSN_SIZE];
333 int length;
334
335 kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
336 insn_get_length(&insn);
337 length = insn.length;
338
339 /* Another subsystem puts a breakpoint, failed to recover */
340 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
341 return 0;
342 memcpy(dest, insn.kaddr, length);
343
344 #ifdef CONFIG_X86_64
345 if (insn_rip_relative(&insn)) {
346 s64 newdisp;
347 u8 *disp;
348 kernel_insn_init(&insn, dest);
349 insn_get_displacement(&insn);
350 /*
351 * The copied instruction uses the %rip-relative addressing
352 * mode. Adjust the displacement for the difference between
353 * the original location of this instruction and the location
354 * of the copy that will actually be run. The tricky bit here
355 * is making sure that the sign extension happens correctly in
356 * this calculation, since we need a signed 32-bit result to
357 * be sign-extended to 64 bits when it's added to the %rip
358 * value and yield the same 64-bit result that the sign-
359 * extension of the original signed 32-bit displacement would
360 * have given.
361 */
362 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
363 if ((s64) (s32) newdisp != newdisp) {
364 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
365 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
366 return 0;
367 }
368 disp = (u8 *) dest + insn_offset_displacement(&insn);
369 *(s32 *) disp = (s32) newdisp;
370 }
371 #endif
372 return length;
373 }
374
arch_copy_kprobe(struct kprobe * p)375 static int arch_copy_kprobe(struct kprobe *p)
376 {
377 int ret;
378
379 /* Copy an instruction with recovering if other optprobe modifies it.*/
380 ret = __copy_instruction(p->ainsn.insn, p->addr);
381 if (!ret)
382 return -EINVAL;
383
384 /*
385 * __copy_instruction can modify the displacement of the instruction,
386 * but it doesn't affect boostable check.
387 */
388 if (can_boost(p->ainsn.insn, p->addr))
389 p->ainsn.boostable = 0;
390 else
391 p->ainsn.boostable = -1;
392
393 /* Check whether the instruction modifies Interrupt Flag or not */
394 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
395
396 /* Also, displacement change doesn't affect the first byte */
397 p->opcode = p->ainsn.insn[0];
398
399 return 0;
400 }
401
arch_prepare_kprobe(struct kprobe * p)402 int arch_prepare_kprobe(struct kprobe *p)
403 {
404 if (alternatives_text_reserved(p->addr, p->addr))
405 return -EINVAL;
406
407 if (!can_probe((unsigned long)p->addr))
408 return -EILSEQ;
409 /* insn: must be on special executable page on x86. */
410 p->ainsn.insn = get_insn_slot();
411 if (!p->ainsn.insn)
412 return -ENOMEM;
413
414 return arch_copy_kprobe(p);
415 }
416
arch_arm_kprobe(struct kprobe * p)417 void arch_arm_kprobe(struct kprobe *p)
418 {
419 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
420 }
421
arch_disarm_kprobe(struct kprobe * p)422 void arch_disarm_kprobe(struct kprobe *p)
423 {
424 text_poke(p->addr, &p->opcode, 1);
425 }
426
arch_remove_kprobe(struct kprobe * p)427 void arch_remove_kprobe(struct kprobe *p)
428 {
429 if (p->ainsn.insn) {
430 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
431 p->ainsn.insn = NULL;
432 }
433 }
434
435 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)436 save_previous_kprobe(struct kprobe_ctlblk *kcb)
437 {
438 kcb->prev_kprobe.kp = kprobe_running();
439 kcb->prev_kprobe.status = kcb->kprobe_status;
440 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
441 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
442 }
443
444 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)445 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
446 {
447 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
448 kcb->kprobe_status = kcb->prev_kprobe.status;
449 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
450 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
451 }
452
453 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)454 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
455 struct kprobe_ctlblk *kcb)
456 {
457 __this_cpu_write(current_kprobe, p);
458 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
459 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
460 if (p->ainsn.if_modifier)
461 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
462 }
463
clear_btf(void)464 static nokprobe_inline void clear_btf(void)
465 {
466 if (test_thread_flag(TIF_BLOCKSTEP)) {
467 unsigned long debugctl = get_debugctlmsr();
468
469 debugctl &= ~DEBUGCTLMSR_BTF;
470 update_debugctlmsr(debugctl);
471 }
472 }
473
restore_btf(void)474 static nokprobe_inline void restore_btf(void)
475 {
476 if (test_thread_flag(TIF_BLOCKSTEP)) {
477 unsigned long debugctl = get_debugctlmsr();
478
479 debugctl |= DEBUGCTLMSR_BTF;
480 update_debugctlmsr(debugctl);
481 }
482 }
483
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)484 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
485 {
486 unsigned long *sara = stack_addr(regs);
487
488 ri->ret_addr = (kprobe_opcode_t *) *sara;
489
490 /* Replace the return addr with trampoline addr */
491 *sara = (unsigned long) &kretprobe_trampoline;
492 }
493 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
494
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)495 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
496 struct kprobe_ctlblk *kcb, int reenter)
497 {
498 if (setup_detour_execution(p, regs, reenter))
499 return;
500
501 #if !defined(CONFIG_PREEMPT)
502 if (p->ainsn.boostable == 1 && !p->post_handler) {
503 /* Boost up -- we can execute copied instructions directly */
504 if (!reenter)
505 reset_current_kprobe();
506 /*
507 * Reentering boosted probe doesn't reset current_kprobe,
508 * nor set current_kprobe, because it doesn't use single
509 * stepping.
510 */
511 regs->ip = (unsigned long)p->ainsn.insn;
512 preempt_enable_no_resched();
513 return;
514 }
515 #endif
516 if (reenter) {
517 save_previous_kprobe(kcb);
518 set_current_kprobe(p, regs, kcb);
519 kcb->kprobe_status = KPROBE_REENTER;
520 } else
521 kcb->kprobe_status = KPROBE_HIT_SS;
522 /* Prepare real single stepping */
523 clear_btf();
524 regs->flags |= X86_EFLAGS_TF;
525 regs->flags &= ~X86_EFLAGS_IF;
526 /* single step inline if the instruction is an int3 */
527 if (p->opcode == BREAKPOINT_INSTRUCTION)
528 regs->ip = (unsigned long)p->addr;
529 else
530 regs->ip = (unsigned long)p->ainsn.insn;
531 }
532 NOKPROBE_SYMBOL(setup_singlestep);
533
534 /*
535 * We have reentered the kprobe_handler(), since another probe was hit while
536 * within the handler. We save the original kprobes variables and just single
537 * step on the instruction of the new probe without calling any user handlers.
538 */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)539 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
540 struct kprobe_ctlblk *kcb)
541 {
542 switch (kcb->kprobe_status) {
543 case KPROBE_HIT_SSDONE:
544 case KPROBE_HIT_ACTIVE:
545 case KPROBE_HIT_SS:
546 kprobes_inc_nmissed_count(p);
547 setup_singlestep(p, regs, kcb, 1);
548 break;
549 case KPROBE_REENTER:
550 /* A probe has been hit in the codepath leading up to, or just
551 * after, single-stepping of a probed instruction. This entire
552 * codepath should strictly reside in .kprobes.text section.
553 * Raise a BUG or we'll continue in an endless reentering loop
554 * and eventually a stack overflow.
555 */
556 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
557 p->addr);
558 dump_kprobe(p);
559 BUG();
560 default:
561 /* impossible cases */
562 WARN_ON(1);
563 return 0;
564 }
565
566 return 1;
567 }
568 NOKPROBE_SYMBOL(reenter_kprobe);
569
570 /*
571 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
572 * remain disabled throughout this function.
573 */
kprobe_int3_handler(struct pt_regs * regs)574 int kprobe_int3_handler(struct pt_regs *regs)
575 {
576 kprobe_opcode_t *addr;
577 struct kprobe *p;
578 struct kprobe_ctlblk *kcb;
579
580 if (user_mode_vm(regs))
581 return 0;
582
583 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
584 /*
585 * We don't want to be preempted for the entire
586 * duration of kprobe processing. We conditionally
587 * re-enable preemption at the end of this function,
588 * and also in reenter_kprobe() and setup_singlestep().
589 */
590 preempt_disable();
591
592 kcb = get_kprobe_ctlblk();
593 p = get_kprobe(addr);
594
595 if (p) {
596 if (kprobe_running()) {
597 if (reenter_kprobe(p, regs, kcb))
598 return 1;
599 } else {
600 set_current_kprobe(p, regs, kcb);
601 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
602
603 /*
604 * If we have no pre-handler or it returned 0, we
605 * continue with normal processing. If we have a
606 * pre-handler and it returned non-zero, it prepped
607 * for calling the break_handler below on re-entry
608 * for jprobe processing, so get out doing nothing
609 * more here.
610 */
611 if (!p->pre_handler || !p->pre_handler(p, regs))
612 setup_singlestep(p, regs, kcb, 0);
613 return 1;
614 }
615 } else if (*addr != BREAKPOINT_INSTRUCTION) {
616 /*
617 * The breakpoint instruction was removed right
618 * after we hit it. Another cpu has removed
619 * either a probepoint or a debugger breakpoint
620 * at this address. In either case, no further
621 * handling of this interrupt is appropriate.
622 * Back up over the (now missing) int3 and run
623 * the original instruction.
624 */
625 regs->ip = (unsigned long)addr;
626 preempt_enable_no_resched();
627 return 1;
628 } else if (kprobe_running()) {
629 p = __this_cpu_read(current_kprobe);
630 if (p->break_handler && p->break_handler(p, regs)) {
631 if (!skip_singlestep(p, regs, kcb))
632 setup_singlestep(p, regs, kcb, 0);
633 return 1;
634 }
635 } /* else: not a kprobe fault; let the kernel handle it */
636
637 preempt_enable_no_resched();
638 return 0;
639 }
640 NOKPROBE_SYMBOL(kprobe_int3_handler);
641
642 /*
643 * When a retprobed function returns, this code saves registers and
644 * calls trampoline_handler() runs, which calls the kretprobe's handler.
645 */
kretprobe_trampoline_holder(void)646 static void __used kretprobe_trampoline_holder(void)
647 {
648 asm volatile (
649 ".global kretprobe_trampoline\n"
650 "kretprobe_trampoline: \n"
651 #ifdef CONFIG_X86_64
652 /* We don't bother saving the ss register */
653 " pushq %rsp\n"
654 " pushfq\n"
655 SAVE_REGS_STRING
656 " movq %rsp, %rdi\n"
657 " call trampoline_handler\n"
658 /* Replace saved sp with true return address. */
659 " movq %rax, 152(%rsp)\n"
660 RESTORE_REGS_STRING
661 " popfq\n"
662 #else
663 " pushf\n"
664 SAVE_REGS_STRING
665 " movl %esp, %eax\n"
666 " call trampoline_handler\n"
667 /* Move flags to cs */
668 " movl 56(%esp), %edx\n"
669 " movl %edx, 52(%esp)\n"
670 /* Replace saved flags with true return address. */
671 " movl %eax, 56(%esp)\n"
672 RESTORE_REGS_STRING
673 " popf\n"
674 #endif
675 " ret\n");
676 }
677 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
678 NOKPROBE_SYMBOL(kretprobe_trampoline);
679
680 /*
681 * Called from kretprobe_trampoline
682 */
trampoline_handler(struct pt_regs * regs)683 __visible __used void *trampoline_handler(struct pt_regs *regs)
684 {
685 struct kretprobe_instance *ri = NULL;
686 struct hlist_head *head, empty_rp;
687 struct hlist_node *tmp;
688 unsigned long flags, orig_ret_address = 0;
689 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
690 kprobe_opcode_t *correct_ret_addr = NULL;
691
692 INIT_HLIST_HEAD(&empty_rp);
693 kretprobe_hash_lock(current, &head, &flags);
694 /* fixup registers */
695 #ifdef CONFIG_X86_64
696 regs->cs = __KERNEL_CS;
697 #else
698 regs->cs = __KERNEL_CS | get_kernel_rpl();
699 regs->gs = 0;
700 #endif
701 regs->ip = trampoline_address;
702 regs->orig_ax = ~0UL;
703
704 /*
705 * It is possible to have multiple instances associated with a given
706 * task either because multiple functions in the call path have
707 * return probes installed on them, and/or more than one
708 * return probe was registered for a target function.
709 *
710 * We can handle this because:
711 * - instances are always pushed into the head of the list
712 * - when multiple return probes are registered for the same
713 * function, the (chronologically) first instance's ret_addr
714 * will be the real return address, and all the rest will
715 * point to kretprobe_trampoline.
716 */
717 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
718 if (ri->task != current)
719 /* another task is sharing our hash bucket */
720 continue;
721
722 orig_ret_address = (unsigned long)ri->ret_addr;
723
724 if (orig_ret_address != trampoline_address)
725 /*
726 * This is the real return address. Any other
727 * instances associated with this task are for
728 * other calls deeper on the call stack
729 */
730 break;
731 }
732
733 kretprobe_assert(ri, orig_ret_address, trampoline_address);
734
735 correct_ret_addr = ri->ret_addr;
736 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737 if (ri->task != current)
738 /* another task is sharing our hash bucket */
739 continue;
740
741 orig_ret_address = (unsigned long)ri->ret_addr;
742 if (ri->rp && ri->rp->handler) {
743 __this_cpu_write(current_kprobe, &ri->rp->kp);
744 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
745 ri->ret_addr = correct_ret_addr;
746 ri->rp->handler(ri, regs);
747 __this_cpu_write(current_kprobe, NULL);
748 }
749
750 recycle_rp_inst(ri, &empty_rp);
751
752 if (orig_ret_address != trampoline_address)
753 /*
754 * This is the real return address. Any other
755 * instances associated with this task are for
756 * other calls deeper on the call stack
757 */
758 break;
759 }
760
761 kretprobe_hash_unlock(current, &flags);
762
763 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
764 hlist_del(&ri->hlist);
765 kfree(ri);
766 }
767 return (void *)orig_ret_address;
768 }
769 NOKPROBE_SYMBOL(trampoline_handler);
770
771 /*
772 * Called after single-stepping. p->addr is the address of the
773 * instruction whose first byte has been replaced by the "int 3"
774 * instruction. To avoid the SMP problems that can occur when we
775 * temporarily put back the original opcode to single-step, we
776 * single-stepped a copy of the instruction. The address of this
777 * copy is p->ainsn.insn.
778 *
779 * This function prepares to return from the post-single-step
780 * interrupt. We have to fix up the stack as follows:
781 *
782 * 0) Except in the case of absolute or indirect jump or call instructions,
783 * the new ip is relative to the copied instruction. We need to make
784 * it relative to the original instruction.
785 *
786 * 1) If the single-stepped instruction was pushfl, then the TF and IF
787 * flags are set in the just-pushed flags, and may need to be cleared.
788 *
789 * 2) If the single-stepped instruction was a call, the return address
790 * that is atop the stack is the address following the copied instruction.
791 * We need to make it the address following the original instruction.
792 *
793 * If this is the first time we've single-stepped the instruction at
794 * this probepoint, and the instruction is boostable, boost it: add a
795 * jump instruction after the copied instruction, that jumps to the next
796 * instruction after the probepoint.
797 */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)798 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
799 struct kprobe_ctlblk *kcb)
800 {
801 unsigned long *tos = stack_addr(regs);
802 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
803 unsigned long orig_ip = (unsigned long)p->addr;
804 kprobe_opcode_t *insn = p->ainsn.insn;
805
806 /* Skip prefixes */
807 insn = skip_prefixes(insn);
808
809 regs->flags &= ~X86_EFLAGS_TF;
810 switch (*insn) {
811 case 0x9c: /* pushfl */
812 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
813 *tos |= kcb->kprobe_old_flags;
814 break;
815 case 0xc2: /* iret/ret/lret */
816 case 0xc3:
817 case 0xca:
818 case 0xcb:
819 case 0xcf:
820 case 0xea: /* jmp absolute -- ip is correct */
821 /* ip is already adjusted, no more changes required */
822 p->ainsn.boostable = 1;
823 goto no_change;
824 case 0xe8: /* call relative - Fix return addr */
825 *tos = orig_ip + (*tos - copy_ip);
826 break;
827 #ifdef CONFIG_X86_32
828 case 0x9a: /* call absolute -- same as call absolute, indirect */
829 *tos = orig_ip + (*tos - copy_ip);
830 goto no_change;
831 #endif
832 case 0xff:
833 if ((insn[1] & 0x30) == 0x10) {
834 /*
835 * call absolute, indirect
836 * Fix return addr; ip is correct.
837 * But this is not boostable
838 */
839 *tos = orig_ip + (*tos - copy_ip);
840 goto no_change;
841 } else if (((insn[1] & 0x31) == 0x20) ||
842 ((insn[1] & 0x31) == 0x21)) {
843 /*
844 * jmp near and far, absolute indirect
845 * ip is correct. And this is boostable
846 */
847 p->ainsn.boostable = 1;
848 goto no_change;
849 }
850 default:
851 break;
852 }
853
854 if (p->ainsn.boostable == 0) {
855 if ((regs->ip > copy_ip) &&
856 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
857 /*
858 * These instructions can be executed directly if it
859 * jumps back to correct address.
860 */
861 synthesize_reljump((void *)regs->ip,
862 (void *)orig_ip + (regs->ip - copy_ip));
863 p->ainsn.boostable = 1;
864 } else {
865 p->ainsn.boostable = -1;
866 }
867 }
868
869 regs->ip += orig_ip - copy_ip;
870
871 no_change:
872 restore_btf();
873 }
874 NOKPROBE_SYMBOL(resume_execution);
875
876 /*
877 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
878 * remain disabled throughout this function.
879 */
kprobe_debug_handler(struct pt_regs * regs)880 int kprobe_debug_handler(struct pt_regs *regs)
881 {
882 struct kprobe *cur = kprobe_running();
883 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
884
885 if (!cur)
886 return 0;
887
888 resume_execution(cur, regs, kcb);
889 regs->flags |= kcb->kprobe_saved_flags;
890
891 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
892 kcb->kprobe_status = KPROBE_HIT_SSDONE;
893 cur->post_handler(cur, regs, 0);
894 }
895
896 /* Restore back the original saved kprobes variables and continue. */
897 if (kcb->kprobe_status == KPROBE_REENTER) {
898 restore_previous_kprobe(kcb);
899 goto out;
900 }
901 reset_current_kprobe();
902 out:
903 preempt_enable_no_resched();
904
905 /*
906 * if somebody else is singlestepping across a probe point, flags
907 * will have TF set, in which case, continue the remaining processing
908 * of do_debug, as if this is not a probe hit.
909 */
910 if (regs->flags & X86_EFLAGS_TF)
911 return 0;
912
913 return 1;
914 }
915 NOKPROBE_SYMBOL(kprobe_debug_handler);
916
kprobe_fault_handler(struct pt_regs * regs,int trapnr)917 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
918 {
919 struct kprobe *cur = kprobe_running();
920 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
921
922 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
923 /* This must happen on single-stepping */
924 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
925 kcb->kprobe_status != KPROBE_REENTER);
926 /*
927 * We are here because the instruction being single
928 * stepped caused a page fault. We reset the current
929 * kprobe and the ip points back to the probe address
930 * and allow the page fault handler to continue as a
931 * normal page fault.
932 */
933 regs->ip = (unsigned long)cur->addr;
934 /*
935 * Trap flag (TF) has been set here because this fault
936 * happened where the single stepping will be done.
937 * So clear it by resetting the current kprobe:
938 */
939 regs->flags &= ~X86_EFLAGS_TF;
940
941 /*
942 * If the TF flag was set before the kprobe hit,
943 * don't touch it:
944 */
945 regs->flags |= kcb->kprobe_old_flags;
946
947 if (kcb->kprobe_status == KPROBE_REENTER)
948 restore_previous_kprobe(kcb);
949 else
950 reset_current_kprobe();
951 preempt_enable_no_resched();
952 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
953 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
954 /*
955 * We increment the nmissed count for accounting,
956 * we can also use npre/npostfault count for accounting
957 * these specific fault cases.
958 */
959 kprobes_inc_nmissed_count(cur);
960
961 /*
962 * We come here because instructions in the pre/post
963 * handler caused the page_fault, this could happen
964 * if handler tries to access user space by
965 * copy_from_user(), get_user() etc. Let the
966 * user-specified handler try to fix it first.
967 */
968 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
969 return 1;
970
971 /*
972 * In case the user-specified fault handler returned
973 * zero, try to fix up.
974 */
975 if (fixup_exception(regs))
976 return 1;
977
978 /*
979 * fixup routine could not handle it,
980 * Let do_page_fault() fix it.
981 */
982 }
983
984 return 0;
985 }
986 NOKPROBE_SYMBOL(kprobe_fault_handler);
987
988 /*
989 * Wrapper routine for handling exceptions.
990 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)991 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
992 void *data)
993 {
994 struct die_args *args = data;
995 int ret = NOTIFY_DONE;
996
997 if (args->regs && user_mode_vm(args->regs))
998 return ret;
999
1000 if (val == DIE_GPF) {
1001 /*
1002 * To be potentially processing a kprobe fault and to
1003 * trust the result from kprobe_running(), we have
1004 * be non-preemptible.
1005 */
1006 if (!preemptible() && kprobe_running() &&
1007 kprobe_fault_handler(args->regs, args->trapnr))
1008 ret = NOTIFY_STOP;
1009 }
1010 return ret;
1011 }
1012 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1013
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1014 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1015 {
1016 struct jprobe *jp = container_of(p, struct jprobe, kp);
1017 unsigned long addr;
1018 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1019
1020 kcb->jprobe_saved_regs = *regs;
1021 kcb->jprobe_saved_sp = stack_addr(regs);
1022 addr = (unsigned long)(kcb->jprobe_saved_sp);
1023
1024 /*
1025 * As Linus pointed out, gcc assumes that the callee
1026 * owns the argument space and could overwrite it, e.g.
1027 * tailcall optimization. So, to be absolutely safe
1028 * we also save and restore enough stack bytes to cover
1029 * the argument area.
1030 */
1031 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1032 MIN_STACK_SIZE(addr));
1033 regs->flags &= ~X86_EFLAGS_IF;
1034 trace_hardirqs_off();
1035 regs->ip = (unsigned long)(jp->entry);
1036
1037 /*
1038 * jprobes use jprobe_return() which skips the normal return
1039 * path of the function, and this messes up the accounting of the
1040 * function graph tracer to get messed up.
1041 *
1042 * Pause function graph tracing while performing the jprobe function.
1043 */
1044 pause_graph_tracing();
1045 return 1;
1046 }
1047 NOKPROBE_SYMBOL(setjmp_pre_handler);
1048
jprobe_return(void)1049 void jprobe_return(void)
1050 {
1051 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1052
1053 asm volatile (
1054 #ifdef CONFIG_X86_64
1055 " xchg %%rbx,%%rsp \n"
1056 #else
1057 " xchgl %%ebx,%%esp \n"
1058 #endif
1059 " int3 \n"
1060 " .globl jprobe_return_end\n"
1061 " jprobe_return_end: \n"
1062 " nop \n"::"b"
1063 (kcb->jprobe_saved_sp):"memory");
1064 }
1065 NOKPROBE_SYMBOL(jprobe_return);
1066 NOKPROBE_SYMBOL(jprobe_return_end);
1067
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1068 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1069 {
1070 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1071 u8 *addr = (u8 *) (regs->ip - 1);
1072 struct jprobe *jp = container_of(p, struct jprobe, kp);
1073 void *saved_sp = kcb->jprobe_saved_sp;
1074
1075 if ((addr > (u8 *) jprobe_return) &&
1076 (addr < (u8 *) jprobe_return_end)) {
1077 if (stack_addr(regs) != saved_sp) {
1078 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1079 printk(KERN_ERR
1080 "current sp %p does not match saved sp %p\n",
1081 stack_addr(regs), saved_sp);
1082 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1083 show_regs(saved_regs);
1084 printk(KERN_ERR "Current registers\n");
1085 show_regs(regs);
1086 BUG();
1087 }
1088 /* It's OK to start function graph tracing again */
1089 unpause_graph_tracing();
1090 *regs = kcb->jprobe_saved_regs;
1091 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1092 preempt_enable_no_resched();
1093 return 1;
1094 }
1095 return 0;
1096 }
1097 NOKPROBE_SYMBOL(longjmp_break_handler);
1098
arch_within_kprobe_blacklist(unsigned long addr)1099 bool arch_within_kprobe_blacklist(unsigned long addr)
1100 {
1101 return (addr >= (unsigned long)__kprobes_text_start &&
1102 addr < (unsigned long)__kprobes_text_end) ||
1103 (addr >= (unsigned long)__entry_text_start &&
1104 addr < (unsigned long)__entry_text_end);
1105 }
1106
arch_init_kprobes(void)1107 int __init arch_init_kprobes(void)
1108 {
1109 return 0;
1110 }
1111
arch_trampoline_kprobe(struct kprobe * p)1112 int arch_trampoline_kprobe(struct kprobe *p)
1113 {
1114 return 0;
1115 }
1116