• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60 
61 #include "common.h"
62 
63 void jprobe_return_end(void);
64 
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
72 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
73 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
74 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
75 	 << (row % 32))
76 	/*
77 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 	 * Groups, and some special opcodes can not boost.
79 	 * This is non-const and volatile to keep gcc from statically
80 	 * optimizing it out, as variable_test_bit makes gcc think only
81 	 * *(unsigned long*) is used.
82 	 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
85 	/*      ----------------------------------------------          */
86 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
102 	/*      -----------------------------------------------         */
103 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
104 };
105 #undef W
106 
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 	{"__switch_to", }, /* This function switches only current task, but
109 			      doesn't switch kernel stack.*/
110 	{NULL, NULL}	/* Terminator */
111 };
112 
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114 
115 static nokprobe_inline void
__synthesize_relative_insn(void * from,void * to,u8 op)116 __synthesize_relative_insn(void *from, void *to, u8 op)
117 {
118 	struct __arch_relative_insn {
119 		u8 op;
120 		s32 raddr;
121 	} __packed *insn;
122 
123 	insn = (struct __arch_relative_insn *)from;
124 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 	insn->op = op;
126 }
127 
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)129 void synthesize_reljump(void *from, void *to)
130 {
131 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_reljump);
134 
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)136 void synthesize_relcall(void *from, void *to)
137 {
138 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_relcall);
141 
142 /*
143  * Skip the prefixes of the instruction.
144  */
skip_prefixes(kprobe_opcode_t * insn)145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146 {
147 	insn_attr_t attr;
148 
149 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 	while (inat_is_legacy_prefix(attr)) {
151 		insn++;
152 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 	}
154 #ifdef CONFIG_X86_64
155 	if (inat_is_rex_prefix(attr))
156 		insn++;
157 #endif
158 	return insn;
159 }
160 NOKPROBE_SYMBOL(skip_prefixes);
161 
162 /*
163  * Returns non-zero if opcode is boostable.
164  * RIP relative instructions are adjusted at copying time in 64 bits mode
165  */
can_boost(kprobe_opcode_t * opcodes,void * addr)166 int can_boost(kprobe_opcode_t *opcodes, void *addr)
167 {
168 	kprobe_opcode_t opcode;
169 	kprobe_opcode_t *orig_opcodes = opcodes;
170 
171 	if (search_exception_tables((unsigned long)addr))
172 		return 0;	/* Page fault may occur on this address. */
173 
174 retry:
175 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 		return 0;
177 	opcode = *(opcodes++);
178 
179 	/* 2nd-byte opcode */
180 	if (opcode == 0x0f) {
181 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 			return 0;
183 		return test_bit(*opcodes,
184 				(unsigned long *)twobyte_is_boostable);
185 	}
186 
187 	switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 	case 0x40:
190 		goto retry; /* REX prefix is boostable */
191 #endif
192 	case 0x60:
193 		if (0x63 < opcode && opcode < 0x67)
194 			goto retry; /* prefixes */
195 		/* can't boost Address-size override and bound */
196 		return (opcode != 0x62 && opcode != 0x67);
197 	case 0x70:
198 		return 0; /* can't boost conditional jump */
199 	case 0xc0:
200 		/* can't boost software-interruptions */
201 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 	case 0xd0:
203 		/* can boost AA* and XLAT */
204 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 	case 0xe0:
206 		/* can boost in/out and absolute jmps */
207 		return ((opcode & 0x04) || opcode == 0xea);
208 	case 0xf0:
209 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 			goto retry; /* lock/rep(ne) prefix */
211 		/* clear and set flags are boostable */
212 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 	default:
214 		/* segment override prefixes are boostable */
215 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 			goto retry; /* prefixes */
217 		/* CS override prefix and call are not boostable */
218 		return (opcode != 0x2e && opcode != 0x9a);
219 	}
220 }
221 
222 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 {
225 	struct kprobe *kp;
226 
227 	kp = get_kprobe((void *)addr);
228 	/* There is no probe, return original address */
229 	if (!kp)
230 		return addr;
231 
232 	/*
233 	 *  Basically, kp->ainsn.insn has an original instruction.
234 	 *  However, RIP-relative instruction can not do single-stepping
235 	 *  at different place, __copy_instruction() tweaks the displacement of
236 	 *  that instruction. In that case, we can't recover the instruction
237 	 *  from the kp->ainsn.insn.
238 	 *
239 	 *  On the other hand, kp->opcode has a copy of the first byte of
240 	 *  the probed instruction, which is overwritten by int3. And
241 	 *  the instruction at kp->addr is not modified by kprobes except
242 	 *  for the first byte, we can recover the original instruction
243 	 *  from it and kp->opcode.
244 	 */
245 	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
246 	buf[0] = kp->opcode;
247 	return (unsigned long)buf;
248 }
249 
250 /*
251  * Recover the probed instruction at addr for further analysis.
252  * Caller must lock kprobes by kprobe_mutex, or disable preemption
253  * for preventing to release referencing kprobes.
254  */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)255 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
256 {
257 	unsigned long __addr;
258 
259 	__addr = __recover_optprobed_insn(buf, addr);
260 	if (__addr != addr)
261 		return __addr;
262 
263 	return __recover_probed_insn(buf, addr);
264 }
265 
266 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)267 static int can_probe(unsigned long paddr)
268 {
269 	unsigned long addr, __addr, offset = 0;
270 	struct insn insn;
271 	kprobe_opcode_t buf[MAX_INSN_SIZE];
272 
273 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
274 		return 0;
275 
276 	/* Decode instructions */
277 	addr = paddr - offset;
278 	while (addr < paddr) {
279 		/*
280 		 * Check if the instruction has been modified by another
281 		 * kprobe, in which case we replace the breakpoint by the
282 		 * original instruction in our buffer.
283 		 * Also, jump optimization will change the breakpoint to
284 		 * relative-jump. Since the relative-jump itself is
285 		 * normally used, we just go through if there is no kprobe.
286 		 */
287 		__addr = recover_probed_instruction(buf, addr);
288 		kernel_insn_init(&insn, (void *)__addr);
289 		insn_get_length(&insn);
290 
291 		/*
292 		 * Another debugging subsystem might insert this breakpoint.
293 		 * In that case, we can't recover it.
294 		 */
295 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
296 			return 0;
297 		addr += insn.length;
298 	}
299 
300 	return (addr == paddr);
301 }
302 
303 /*
304  * Returns non-zero if opcode modifies the interrupt flag.
305  */
is_IF_modifier(kprobe_opcode_t * insn)306 static int is_IF_modifier(kprobe_opcode_t *insn)
307 {
308 	/* Skip prefixes */
309 	insn = skip_prefixes(insn);
310 
311 	switch (*insn) {
312 	case 0xfa:		/* cli */
313 	case 0xfb:		/* sti */
314 	case 0xcf:		/* iret/iretd */
315 	case 0x9d:		/* popf/popfd */
316 		return 1;
317 	}
318 
319 	return 0;
320 }
321 
322 /*
323  * Copy an instruction and adjust the displacement if the instruction
324  * uses the %rip-relative addressing mode.
325  * If it does, Return the address of the 32-bit displacement word.
326  * If not, return null.
327  * Only applicable to 64-bit x86.
328  */
__copy_instruction(u8 * dest,u8 * src)329 int __copy_instruction(u8 *dest, u8 *src)
330 {
331 	struct insn insn;
332 	kprobe_opcode_t buf[MAX_INSN_SIZE];
333 	int length;
334 
335 	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
336 	insn_get_length(&insn);
337 	length = insn.length;
338 
339 	/* Another subsystem puts a breakpoint, failed to recover */
340 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
341 		return 0;
342 	memcpy(dest, insn.kaddr, length);
343 
344 #ifdef CONFIG_X86_64
345 	if (insn_rip_relative(&insn)) {
346 		s64 newdisp;
347 		u8 *disp;
348 		kernel_insn_init(&insn, dest);
349 		insn_get_displacement(&insn);
350 		/*
351 		 * The copied instruction uses the %rip-relative addressing
352 		 * mode.  Adjust the displacement for the difference between
353 		 * the original location of this instruction and the location
354 		 * of the copy that will actually be run.  The tricky bit here
355 		 * is making sure that the sign extension happens correctly in
356 		 * this calculation, since we need a signed 32-bit result to
357 		 * be sign-extended to 64 bits when it's added to the %rip
358 		 * value and yield the same 64-bit result that the sign-
359 		 * extension of the original signed 32-bit displacement would
360 		 * have given.
361 		 */
362 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
363 		if ((s64) (s32) newdisp != newdisp) {
364 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
365 			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
366 			return 0;
367 		}
368 		disp = (u8 *) dest + insn_offset_displacement(&insn);
369 		*(s32 *) disp = (s32) newdisp;
370 	}
371 #endif
372 	return length;
373 }
374 
arch_copy_kprobe(struct kprobe * p)375 static int arch_copy_kprobe(struct kprobe *p)
376 {
377 	int ret;
378 
379 	/* Copy an instruction with recovering if other optprobe modifies it.*/
380 	ret = __copy_instruction(p->ainsn.insn, p->addr);
381 	if (!ret)
382 		return -EINVAL;
383 
384 	/*
385 	 * __copy_instruction can modify the displacement of the instruction,
386 	 * but it doesn't affect boostable check.
387 	 */
388 	if (can_boost(p->ainsn.insn, p->addr))
389 		p->ainsn.boostable = 0;
390 	else
391 		p->ainsn.boostable = -1;
392 
393 	/* Check whether the instruction modifies Interrupt Flag or not */
394 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
395 
396 	/* Also, displacement change doesn't affect the first byte */
397 	p->opcode = p->ainsn.insn[0];
398 
399 	return 0;
400 }
401 
arch_prepare_kprobe(struct kprobe * p)402 int arch_prepare_kprobe(struct kprobe *p)
403 {
404 	if (alternatives_text_reserved(p->addr, p->addr))
405 		return -EINVAL;
406 
407 	if (!can_probe((unsigned long)p->addr))
408 		return -EILSEQ;
409 	/* insn: must be on special executable page on x86. */
410 	p->ainsn.insn = get_insn_slot();
411 	if (!p->ainsn.insn)
412 		return -ENOMEM;
413 
414 	return arch_copy_kprobe(p);
415 }
416 
arch_arm_kprobe(struct kprobe * p)417 void arch_arm_kprobe(struct kprobe *p)
418 {
419 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
420 }
421 
arch_disarm_kprobe(struct kprobe * p)422 void arch_disarm_kprobe(struct kprobe *p)
423 {
424 	text_poke(p->addr, &p->opcode, 1);
425 }
426 
arch_remove_kprobe(struct kprobe * p)427 void arch_remove_kprobe(struct kprobe *p)
428 {
429 	if (p->ainsn.insn) {
430 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
431 		p->ainsn.insn = NULL;
432 	}
433 }
434 
435 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)436 save_previous_kprobe(struct kprobe_ctlblk *kcb)
437 {
438 	kcb->prev_kprobe.kp = kprobe_running();
439 	kcb->prev_kprobe.status = kcb->kprobe_status;
440 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
441 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
442 }
443 
444 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)445 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
446 {
447 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
448 	kcb->kprobe_status = kcb->prev_kprobe.status;
449 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
450 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
451 }
452 
453 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)454 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
455 		   struct kprobe_ctlblk *kcb)
456 {
457 	__this_cpu_write(current_kprobe, p);
458 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
459 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
460 	if (p->ainsn.if_modifier)
461 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
462 }
463 
clear_btf(void)464 static nokprobe_inline void clear_btf(void)
465 {
466 	if (test_thread_flag(TIF_BLOCKSTEP)) {
467 		unsigned long debugctl = get_debugctlmsr();
468 
469 		debugctl &= ~DEBUGCTLMSR_BTF;
470 		update_debugctlmsr(debugctl);
471 	}
472 }
473 
restore_btf(void)474 static nokprobe_inline void restore_btf(void)
475 {
476 	if (test_thread_flag(TIF_BLOCKSTEP)) {
477 		unsigned long debugctl = get_debugctlmsr();
478 
479 		debugctl |= DEBUGCTLMSR_BTF;
480 		update_debugctlmsr(debugctl);
481 	}
482 }
483 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)484 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
485 {
486 	unsigned long *sara = stack_addr(regs);
487 
488 	ri->ret_addr = (kprobe_opcode_t *) *sara;
489 
490 	/* Replace the return addr with trampoline addr */
491 	*sara = (unsigned long) &kretprobe_trampoline;
492 }
493 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
494 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)495 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
496 			     struct kprobe_ctlblk *kcb, int reenter)
497 {
498 	if (setup_detour_execution(p, regs, reenter))
499 		return;
500 
501 #if !defined(CONFIG_PREEMPT)
502 	if (p->ainsn.boostable == 1 && !p->post_handler) {
503 		/* Boost up -- we can execute copied instructions directly */
504 		if (!reenter)
505 			reset_current_kprobe();
506 		/*
507 		 * Reentering boosted probe doesn't reset current_kprobe,
508 		 * nor set current_kprobe, because it doesn't use single
509 		 * stepping.
510 		 */
511 		regs->ip = (unsigned long)p->ainsn.insn;
512 		preempt_enable_no_resched();
513 		return;
514 	}
515 #endif
516 	if (reenter) {
517 		save_previous_kprobe(kcb);
518 		set_current_kprobe(p, regs, kcb);
519 		kcb->kprobe_status = KPROBE_REENTER;
520 	} else
521 		kcb->kprobe_status = KPROBE_HIT_SS;
522 	/* Prepare real single stepping */
523 	clear_btf();
524 	regs->flags |= X86_EFLAGS_TF;
525 	regs->flags &= ~X86_EFLAGS_IF;
526 	/* single step inline if the instruction is an int3 */
527 	if (p->opcode == BREAKPOINT_INSTRUCTION)
528 		regs->ip = (unsigned long)p->addr;
529 	else
530 		regs->ip = (unsigned long)p->ainsn.insn;
531 }
532 NOKPROBE_SYMBOL(setup_singlestep);
533 
534 /*
535  * We have reentered the kprobe_handler(), since another probe was hit while
536  * within the handler. We save the original kprobes variables and just single
537  * step on the instruction of the new probe without calling any user handlers.
538  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)539 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
540 			  struct kprobe_ctlblk *kcb)
541 {
542 	switch (kcb->kprobe_status) {
543 	case KPROBE_HIT_SSDONE:
544 	case KPROBE_HIT_ACTIVE:
545 	case KPROBE_HIT_SS:
546 		kprobes_inc_nmissed_count(p);
547 		setup_singlestep(p, regs, kcb, 1);
548 		break;
549 	case KPROBE_REENTER:
550 		/* A probe has been hit in the codepath leading up to, or just
551 		 * after, single-stepping of a probed instruction. This entire
552 		 * codepath should strictly reside in .kprobes.text section.
553 		 * Raise a BUG or we'll continue in an endless reentering loop
554 		 * and eventually a stack overflow.
555 		 */
556 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
557 		       p->addr);
558 		dump_kprobe(p);
559 		BUG();
560 	default:
561 		/* impossible cases */
562 		WARN_ON(1);
563 		return 0;
564 	}
565 
566 	return 1;
567 }
568 NOKPROBE_SYMBOL(reenter_kprobe);
569 
570 /*
571  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
572  * remain disabled throughout this function.
573  */
kprobe_int3_handler(struct pt_regs * regs)574 int kprobe_int3_handler(struct pt_regs *regs)
575 {
576 	kprobe_opcode_t *addr;
577 	struct kprobe *p;
578 	struct kprobe_ctlblk *kcb;
579 
580 	if (user_mode_vm(regs))
581 		return 0;
582 
583 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
584 	/*
585 	 * We don't want to be preempted for the entire
586 	 * duration of kprobe processing. We conditionally
587 	 * re-enable preemption at the end of this function,
588 	 * and also in reenter_kprobe() and setup_singlestep().
589 	 */
590 	preempt_disable();
591 
592 	kcb = get_kprobe_ctlblk();
593 	p = get_kprobe(addr);
594 
595 	if (p) {
596 		if (kprobe_running()) {
597 			if (reenter_kprobe(p, regs, kcb))
598 				return 1;
599 		} else {
600 			set_current_kprobe(p, regs, kcb);
601 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
602 
603 			/*
604 			 * If we have no pre-handler or it returned 0, we
605 			 * continue with normal processing.  If we have a
606 			 * pre-handler and it returned non-zero, it prepped
607 			 * for calling the break_handler below on re-entry
608 			 * for jprobe processing, so get out doing nothing
609 			 * more here.
610 			 */
611 			if (!p->pre_handler || !p->pre_handler(p, regs))
612 				setup_singlestep(p, regs, kcb, 0);
613 			return 1;
614 		}
615 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
616 		/*
617 		 * The breakpoint instruction was removed right
618 		 * after we hit it.  Another cpu has removed
619 		 * either a probepoint or a debugger breakpoint
620 		 * at this address.  In either case, no further
621 		 * handling of this interrupt is appropriate.
622 		 * Back up over the (now missing) int3 and run
623 		 * the original instruction.
624 		 */
625 		regs->ip = (unsigned long)addr;
626 		preempt_enable_no_resched();
627 		return 1;
628 	} else if (kprobe_running()) {
629 		p = __this_cpu_read(current_kprobe);
630 		if (p->break_handler && p->break_handler(p, regs)) {
631 			if (!skip_singlestep(p, regs, kcb))
632 				setup_singlestep(p, regs, kcb, 0);
633 			return 1;
634 		}
635 	} /* else: not a kprobe fault; let the kernel handle it */
636 
637 	preempt_enable_no_resched();
638 	return 0;
639 }
640 NOKPROBE_SYMBOL(kprobe_int3_handler);
641 
642 /*
643  * When a retprobed function returns, this code saves registers and
644  * calls trampoline_handler() runs, which calls the kretprobe's handler.
645  */
kretprobe_trampoline_holder(void)646 static void __used kretprobe_trampoline_holder(void)
647 {
648 	asm volatile (
649 			".global kretprobe_trampoline\n"
650 			"kretprobe_trampoline: \n"
651 #ifdef CONFIG_X86_64
652 			/* We don't bother saving the ss register */
653 			"	pushq %rsp\n"
654 			"	pushfq\n"
655 			SAVE_REGS_STRING
656 			"	movq %rsp, %rdi\n"
657 			"	call trampoline_handler\n"
658 			/* Replace saved sp with true return address. */
659 			"	movq %rax, 152(%rsp)\n"
660 			RESTORE_REGS_STRING
661 			"	popfq\n"
662 #else
663 			"	pushf\n"
664 			SAVE_REGS_STRING
665 			"	movl %esp, %eax\n"
666 			"	call trampoline_handler\n"
667 			/* Move flags to cs */
668 			"	movl 56(%esp), %edx\n"
669 			"	movl %edx, 52(%esp)\n"
670 			/* Replace saved flags with true return address. */
671 			"	movl %eax, 56(%esp)\n"
672 			RESTORE_REGS_STRING
673 			"	popf\n"
674 #endif
675 			"	ret\n");
676 }
677 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
678 NOKPROBE_SYMBOL(kretprobe_trampoline);
679 
680 /*
681  * Called from kretprobe_trampoline
682  */
trampoline_handler(struct pt_regs * regs)683 __visible __used void *trampoline_handler(struct pt_regs *regs)
684 {
685 	struct kretprobe_instance *ri = NULL;
686 	struct hlist_head *head, empty_rp;
687 	struct hlist_node *tmp;
688 	unsigned long flags, orig_ret_address = 0;
689 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
690 	kprobe_opcode_t *correct_ret_addr = NULL;
691 
692 	INIT_HLIST_HEAD(&empty_rp);
693 	kretprobe_hash_lock(current, &head, &flags);
694 	/* fixup registers */
695 #ifdef CONFIG_X86_64
696 	regs->cs = __KERNEL_CS;
697 #else
698 	regs->cs = __KERNEL_CS | get_kernel_rpl();
699 	regs->gs = 0;
700 #endif
701 	regs->ip = trampoline_address;
702 	regs->orig_ax = ~0UL;
703 
704 	/*
705 	 * It is possible to have multiple instances associated with a given
706 	 * task either because multiple functions in the call path have
707 	 * return probes installed on them, and/or more than one
708 	 * return probe was registered for a target function.
709 	 *
710 	 * We can handle this because:
711 	 *     - instances are always pushed into the head of the list
712 	 *     - when multiple return probes are registered for the same
713 	 *	 function, the (chronologically) first instance's ret_addr
714 	 *	 will be the real return address, and all the rest will
715 	 *	 point to kretprobe_trampoline.
716 	 */
717 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
718 		if (ri->task != current)
719 			/* another task is sharing our hash bucket */
720 			continue;
721 
722 		orig_ret_address = (unsigned long)ri->ret_addr;
723 
724 		if (orig_ret_address != trampoline_address)
725 			/*
726 			 * This is the real return address. Any other
727 			 * instances associated with this task are for
728 			 * other calls deeper on the call stack
729 			 */
730 			break;
731 	}
732 
733 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
734 
735 	correct_ret_addr = ri->ret_addr;
736 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737 		if (ri->task != current)
738 			/* another task is sharing our hash bucket */
739 			continue;
740 
741 		orig_ret_address = (unsigned long)ri->ret_addr;
742 		if (ri->rp && ri->rp->handler) {
743 			__this_cpu_write(current_kprobe, &ri->rp->kp);
744 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
745 			ri->ret_addr = correct_ret_addr;
746 			ri->rp->handler(ri, regs);
747 			__this_cpu_write(current_kprobe, NULL);
748 		}
749 
750 		recycle_rp_inst(ri, &empty_rp);
751 
752 		if (orig_ret_address != trampoline_address)
753 			/*
754 			 * This is the real return address. Any other
755 			 * instances associated with this task are for
756 			 * other calls deeper on the call stack
757 			 */
758 			break;
759 	}
760 
761 	kretprobe_hash_unlock(current, &flags);
762 
763 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
764 		hlist_del(&ri->hlist);
765 		kfree(ri);
766 	}
767 	return (void *)orig_ret_address;
768 }
769 NOKPROBE_SYMBOL(trampoline_handler);
770 
771 /*
772  * Called after single-stepping.  p->addr is the address of the
773  * instruction whose first byte has been replaced by the "int 3"
774  * instruction.  To avoid the SMP problems that can occur when we
775  * temporarily put back the original opcode to single-step, we
776  * single-stepped a copy of the instruction.  The address of this
777  * copy is p->ainsn.insn.
778  *
779  * This function prepares to return from the post-single-step
780  * interrupt.  We have to fix up the stack as follows:
781  *
782  * 0) Except in the case of absolute or indirect jump or call instructions,
783  * the new ip is relative to the copied instruction.  We need to make
784  * it relative to the original instruction.
785  *
786  * 1) If the single-stepped instruction was pushfl, then the TF and IF
787  * flags are set in the just-pushed flags, and may need to be cleared.
788  *
789  * 2) If the single-stepped instruction was a call, the return address
790  * that is atop the stack is the address following the copied instruction.
791  * We need to make it the address following the original instruction.
792  *
793  * If this is the first time we've single-stepped the instruction at
794  * this probepoint, and the instruction is boostable, boost it: add a
795  * jump instruction after the copied instruction, that jumps to the next
796  * instruction after the probepoint.
797  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)798 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
799 			     struct kprobe_ctlblk *kcb)
800 {
801 	unsigned long *tos = stack_addr(regs);
802 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
803 	unsigned long orig_ip = (unsigned long)p->addr;
804 	kprobe_opcode_t *insn = p->ainsn.insn;
805 
806 	/* Skip prefixes */
807 	insn = skip_prefixes(insn);
808 
809 	regs->flags &= ~X86_EFLAGS_TF;
810 	switch (*insn) {
811 	case 0x9c:	/* pushfl */
812 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
813 		*tos |= kcb->kprobe_old_flags;
814 		break;
815 	case 0xc2:	/* iret/ret/lret */
816 	case 0xc3:
817 	case 0xca:
818 	case 0xcb:
819 	case 0xcf:
820 	case 0xea:	/* jmp absolute -- ip is correct */
821 		/* ip is already adjusted, no more changes required */
822 		p->ainsn.boostable = 1;
823 		goto no_change;
824 	case 0xe8:	/* call relative - Fix return addr */
825 		*tos = orig_ip + (*tos - copy_ip);
826 		break;
827 #ifdef CONFIG_X86_32
828 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
829 		*tos = orig_ip + (*tos - copy_ip);
830 		goto no_change;
831 #endif
832 	case 0xff:
833 		if ((insn[1] & 0x30) == 0x10) {
834 			/*
835 			 * call absolute, indirect
836 			 * Fix return addr; ip is correct.
837 			 * But this is not boostable
838 			 */
839 			*tos = orig_ip + (*tos - copy_ip);
840 			goto no_change;
841 		} else if (((insn[1] & 0x31) == 0x20) ||
842 			   ((insn[1] & 0x31) == 0x21)) {
843 			/*
844 			 * jmp near and far, absolute indirect
845 			 * ip is correct. And this is boostable
846 			 */
847 			p->ainsn.boostable = 1;
848 			goto no_change;
849 		}
850 	default:
851 		break;
852 	}
853 
854 	if (p->ainsn.boostable == 0) {
855 		if ((regs->ip > copy_ip) &&
856 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
857 			/*
858 			 * These instructions can be executed directly if it
859 			 * jumps back to correct address.
860 			 */
861 			synthesize_reljump((void *)regs->ip,
862 				(void *)orig_ip + (regs->ip - copy_ip));
863 			p->ainsn.boostable = 1;
864 		} else {
865 			p->ainsn.boostable = -1;
866 		}
867 	}
868 
869 	regs->ip += orig_ip - copy_ip;
870 
871 no_change:
872 	restore_btf();
873 }
874 NOKPROBE_SYMBOL(resume_execution);
875 
876 /*
877  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
878  * remain disabled throughout this function.
879  */
kprobe_debug_handler(struct pt_regs * regs)880 int kprobe_debug_handler(struct pt_regs *regs)
881 {
882 	struct kprobe *cur = kprobe_running();
883 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
884 
885 	if (!cur)
886 		return 0;
887 
888 	resume_execution(cur, regs, kcb);
889 	regs->flags |= kcb->kprobe_saved_flags;
890 
891 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
892 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
893 		cur->post_handler(cur, regs, 0);
894 	}
895 
896 	/* Restore back the original saved kprobes variables and continue. */
897 	if (kcb->kprobe_status == KPROBE_REENTER) {
898 		restore_previous_kprobe(kcb);
899 		goto out;
900 	}
901 	reset_current_kprobe();
902 out:
903 	preempt_enable_no_resched();
904 
905 	/*
906 	 * if somebody else is singlestepping across a probe point, flags
907 	 * will have TF set, in which case, continue the remaining processing
908 	 * of do_debug, as if this is not a probe hit.
909 	 */
910 	if (regs->flags & X86_EFLAGS_TF)
911 		return 0;
912 
913 	return 1;
914 }
915 NOKPROBE_SYMBOL(kprobe_debug_handler);
916 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)917 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
918 {
919 	struct kprobe *cur = kprobe_running();
920 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
921 
922 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
923 		/* This must happen on single-stepping */
924 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
925 			kcb->kprobe_status != KPROBE_REENTER);
926 		/*
927 		 * We are here because the instruction being single
928 		 * stepped caused a page fault. We reset the current
929 		 * kprobe and the ip points back to the probe address
930 		 * and allow the page fault handler to continue as a
931 		 * normal page fault.
932 		 */
933 		regs->ip = (unsigned long)cur->addr;
934 		/*
935 		 * Trap flag (TF) has been set here because this fault
936 		 * happened where the single stepping will be done.
937 		 * So clear it by resetting the current kprobe:
938 		 */
939 		regs->flags &= ~X86_EFLAGS_TF;
940 
941 		/*
942 		 * If the TF flag was set before the kprobe hit,
943 		 * don't touch it:
944 		 */
945 		regs->flags |= kcb->kprobe_old_flags;
946 
947 		if (kcb->kprobe_status == KPROBE_REENTER)
948 			restore_previous_kprobe(kcb);
949 		else
950 			reset_current_kprobe();
951 		preempt_enable_no_resched();
952 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
953 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
954 		/*
955 		 * We increment the nmissed count for accounting,
956 		 * we can also use npre/npostfault count for accounting
957 		 * these specific fault cases.
958 		 */
959 		kprobes_inc_nmissed_count(cur);
960 
961 		/*
962 		 * We come here because instructions in the pre/post
963 		 * handler caused the page_fault, this could happen
964 		 * if handler tries to access user space by
965 		 * copy_from_user(), get_user() etc. Let the
966 		 * user-specified handler try to fix it first.
967 		 */
968 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
969 			return 1;
970 
971 		/*
972 		 * In case the user-specified fault handler returned
973 		 * zero, try to fix up.
974 		 */
975 		if (fixup_exception(regs))
976 			return 1;
977 
978 		/*
979 		 * fixup routine could not handle it,
980 		 * Let do_page_fault() fix it.
981 		 */
982 	}
983 
984 	return 0;
985 }
986 NOKPROBE_SYMBOL(kprobe_fault_handler);
987 
988 /*
989  * Wrapper routine for handling exceptions.
990  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)991 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
992 			     void *data)
993 {
994 	struct die_args *args = data;
995 	int ret = NOTIFY_DONE;
996 
997 	if (args->regs && user_mode_vm(args->regs))
998 		return ret;
999 
1000 	if (val == DIE_GPF) {
1001 		/*
1002 		 * To be potentially processing a kprobe fault and to
1003 		 * trust the result from kprobe_running(), we have
1004 		 * be non-preemptible.
1005 		 */
1006 		if (!preemptible() && kprobe_running() &&
1007 		    kprobe_fault_handler(args->regs, args->trapnr))
1008 			ret = NOTIFY_STOP;
1009 	}
1010 	return ret;
1011 }
1012 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1013 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1014 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1015 {
1016 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1017 	unsigned long addr;
1018 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1019 
1020 	kcb->jprobe_saved_regs = *regs;
1021 	kcb->jprobe_saved_sp = stack_addr(regs);
1022 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1023 
1024 	/*
1025 	 * As Linus pointed out, gcc assumes that the callee
1026 	 * owns the argument space and could overwrite it, e.g.
1027 	 * tailcall optimization. So, to be absolutely safe
1028 	 * we also save and restore enough stack bytes to cover
1029 	 * the argument area.
1030 	 */
1031 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1032 	       MIN_STACK_SIZE(addr));
1033 	regs->flags &= ~X86_EFLAGS_IF;
1034 	trace_hardirqs_off();
1035 	regs->ip = (unsigned long)(jp->entry);
1036 
1037 	/*
1038 	 * jprobes use jprobe_return() which skips the normal return
1039 	 * path of the function, and this messes up the accounting of the
1040 	 * function graph tracer to get messed up.
1041 	 *
1042 	 * Pause function graph tracing while performing the jprobe function.
1043 	 */
1044 	pause_graph_tracing();
1045 	return 1;
1046 }
1047 NOKPROBE_SYMBOL(setjmp_pre_handler);
1048 
jprobe_return(void)1049 void jprobe_return(void)
1050 {
1051 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1052 
1053 	asm volatile (
1054 #ifdef CONFIG_X86_64
1055 			"       xchg   %%rbx,%%rsp	\n"
1056 #else
1057 			"       xchgl   %%ebx,%%esp	\n"
1058 #endif
1059 			"       int3			\n"
1060 			"       .globl jprobe_return_end\n"
1061 			"       jprobe_return_end:	\n"
1062 			"       nop			\n"::"b"
1063 			(kcb->jprobe_saved_sp):"memory");
1064 }
1065 NOKPROBE_SYMBOL(jprobe_return);
1066 NOKPROBE_SYMBOL(jprobe_return_end);
1067 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1068 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1069 {
1070 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1071 	u8 *addr = (u8 *) (regs->ip - 1);
1072 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1073 	void *saved_sp = kcb->jprobe_saved_sp;
1074 
1075 	if ((addr > (u8 *) jprobe_return) &&
1076 	    (addr < (u8 *) jprobe_return_end)) {
1077 		if (stack_addr(regs) != saved_sp) {
1078 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1079 			printk(KERN_ERR
1080 			       "current sp %p does not match saved sp %p\n",
1081 			       stack_addr(regs), saved_sp);
1082 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1083 			show_regs(saved_regs);
1084 			printk(KERN_ERR "Current registers\n");
1085 			show_regs(regs);
1086 			BUG();
1087 		}
1088 		/* It's OK to start function graph tracing again */
1089 		unpause_graph_tracing();
1090 		*regs = kcb->jprobe_saved_regs;
1091 		memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1092 		preempt_enable_no_resched();
1093 		return 1;
1094 	}
1095 	return 0;
1096 }
1097 NOKPROBE_SYMBOL(longjmp_break_handler);
1098 
arch_within_kprobe_blacklist(unsigned long addr)1099 bool arch_within_kprobe_blacklist(unsigned long addr)
1100 {
1101 	return  (addr >= (unsigned long)__kprobes_text_start &&
1102 		 addr < (unsigned long)__kprobes_text_end) ||
1103 		(addr >= (unsigned long)__entry_text_start &&
1104 		 addr < (unsigned long)__entry_text_end);
1105 }
1106 
arch_init_kprobes(void)1107 int __init arch_init_kprobes(void)
1108 {
1109 	return 0;
1110 }
1111 
arch_trampoline_kprobe(struct kprobe * p)1112 int arch_trampoline_kprobe(struct kprobe *p)
1113 {
1114 	return 0;
1115 }
1116