• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26 
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53 
54 enum {
55 	AUDIT_PRE_PAGE_FAULT,
56 	AUDIT_POST_PAGE_FAULT,
57 	AUDIT_PRE_PTE_WRITE,
58 	AUDIT_POST_PTE_WRITE,
59 	AUDIT_PRE_SYNC,
60 	AUDIT_POST_SYNC
61 };
62 
63 #undef MMU_DEBUG
64 
65 #ifdef MMU_DEBUG
66 
67 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69 
70 #else
71 
72 #define pgprintk(x...) do { } while (0)
73 #define rmap_printk(x...) do { } while (0)
74 
75 #endif
76 
77 #ifdef MMU_DEBUG
78 static bool dbg = 0;
79 module_param(dbg, bool, 0644);
80 #endif
81 
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)							\
86 	if (!(x)) {							\
87 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
88 		       __FILE__, __LINE__, #x);				\
89 	}
90 #endif
91 
92 #define PTE_PREFETCH_NUM		8
93 
94 #define PT_FIRST_AVAIL_BITS_SHIFT 10
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 
97 #define PT64_LEVEL_BITS 9
98 
99 #define PT64_LEVEL_SHIFT(level) \
100 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 
102 #define PT64_INDEX(address, level)\
103 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104 
105 
106 #define PT32_LEVEL_BITS 10
107 
108 #define PT32_LEVEL_SHIFT(level) \
109 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 
111 #define PT32_LVL_OFFSET_MASK(level) \
112 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 						* PT32_LEVEL_BITS))) - 1))
114 
115 #define PT32_INDEX(address, level)\
116 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117 
118 
119 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
120 #define PT64_DIR_BASE_ADDR_MASK \
121 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 #define PT64_LVL_ADDR_MASK(level) \
123 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 						* PT64_LEVEL_BITS))) - 1))
125 #define PT64_LVL_OFFSET_MASK(level) \
126 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 						* PT64_LEVEL_BITS))) - 1))
128 
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 					    * PT32_LEVEL_BITS))) - 1))
135 
136 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 			| shadow_x_mask | shadow_nx_mask)
138 
139 #define ACC_EXEC_MASK    1
140 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
141 #define ACC_USER_MASK    PT_USER_MASK
142 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 
144 #include <trace/events/kvm.h>
145 
146 #define CREATE_TRACE_POINTS
147 #include "mmutrace.h"
148 
149 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 
154 /* make pte_list_desc fit well in cache line */
155 #define PTE_LIST_EXT 3
156 
157 struct pte_list_desc {
158 	u64 *sptes[PTE_LIST_EXT];
159 	struct pte_list_desc *more;
160 };
161 
162 struct kvm_shadow_walk_iterator {
163 	u64 addr;
164 	hpa_t shadow_addr;
165 	u64 *sptep;
166 	int level;
167 	unsigned index;
168 };
169 
170 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
171 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
172 	     shadow_walk_okay(&(_walker));			\
173 	     shadow_walk_next(&(_walker)))
174 
175 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
176 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
177 	     shadow_walk_okay(&(_walker)) &&				\
178 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
179 	     __shadow_walk_next(&(_walker), spte))
180 
181 static struct kmem_cache *pte_list_desc_cache;
182 static struct kmem_cache *mmu_page_header_cache;
183 static struct percpu_counter kvm_total_used_mmu_pages;
184 
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190 static u64 __read_mostly shadow_mmio_mask;
191 
192 static void mmu_spte_set(u64 *sptep, u64 spte);
193 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)195 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 {
197 	shadow_mmio_mask = mmio_mask;
198 }
199 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200 
201 /*
202  * the low bit of the generation number is always presumed to be zero.
203  * This disables mmio caching during memslot updates.  The concept is
204  * similar to a seqcount but instead of retrying the access we just punt
205  * and ignore the cache.
206  *
207  * spte bits 3-11 are used as bits 1-9 of the generation number,
208  * the bits 52-61 are used as bits 10-19 of the generation number.
209  */
210 #define MMIO_SPTE_GEN_LOW_SHIFT		2
211 #define MMIO_SPTE_GEN_HIGH_SHIFT	52
212 
213 #define MMIO_GEN_SHIFT			20
214 #define MMIO_GEN_LOW_SHIFT		10
215 #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
217 #define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
218 
generation_mmio_spte_mask(unsigned int gen)219 static u64 generation_mmio_spte_mask(unsigned int gen)
220 {
221 	u64 mask;
222 
223 	WARN_ON(gen > MMIO_MAX_GEN);
224 
225 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 	return mask;
228 }
229 
get_mmio_spte_generation(u64 spte)230 static unsigned int get_mmio_spte_generation(u64 spte)
231 {
232 	unsigned int gen;
233 
234 	spte &= ~shadow_mmio_mask;
235 
236 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 	return gen;
239 }
240 
kvm_current_mmio_generation(struct kvm * kvm)241 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242 {
243 	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 }
245 
mark_mmio_spte(struct kvm * kvm,u64 * sptep,u64 gfn,unsigned access)246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 			   unsigned access)
248 {
249 	unsigned int gen = kvm_current_mmio_generation(kvm);
250 	u64 mask = generation_mmio_spte_mask(gen);
251 
252 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254 
255 	trace_mark_mmio_spte(sptep, gfn, access, gen);
256 	mmu_spte_set(sptep, mask);
257 }
258 
is_mmio_spte(u64 spte)259 static bool is_mmio_spte(u64 spte)
260 {
261 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263 
get_mmio_spte_gfn(u64 spte)264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266 	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 	return (spte & ~mask) >> PAGE_SHIFT;
268 }
269 
get_mmio_spte_access(u64 spte)270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272 	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 	return (spte & ~mask) & ~PAGE_MASK;
274 }
275 
set_mmio_spte(struct kvm * kvm,u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 			  pfn_t pfn, unsigned access)
278 {
279 	if (unlikely(is_noslot_pfn(pfn))) {
280 		mark_mmio_spte(kvm, sptep, gfn, access);
281 		return true;
282 	}
283 
284 	return false;
285 }
286 
check_mmio_spte(struct kvm * kvm,u64 spte)287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289 	unsigned int kvm_gen, spte_gen;
290 
291 	kvm_gen = kvm_current_mmio_generation(kvm);
292 	spte_gen = get_mmio_spte_generation(spte);
293 
294 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 	return likely(kvm_gen == spte_gen);
296 }
297 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)298 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
299 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
300 {
301 	shadow_user_mask = user_mask;
302 	shadow_accessed_mask = accessed_mask;
303 	shadow_dirty_mask = dirty_mask;
304 	shadow_nx_mask = nx_mask;
305 	shadow_x_mask = x_mask;
306 }
307 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308 
is_cpuid_PSE36(void)309 static int is_cpuid_PSE36(void)
310 {
311 	return 1;
312 }
313 
is_nx(struct kvm_vcpu * vcpu)314 static int is_nx(struct kvm_vcpu *vcpu)
315 {
316 	return vcpu->arch.efer & EFER_NX;
317 }
318 
is_shadow_present_pte(u64 pte)319 static int is_shadow_present_pte(u64 pte)
320 {
321 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
322 }
323 
is_large_pte(u64 pte)324 static int is_large_pte(u64 pte)
325 {
326 	return pte & PT_PAGE_SIZE_MASK;
327 }
328 
is_rmap_spte(u64 pte)329 static int is_rmap_spte(u64 pte)
330 {
331 	return is_shadow_present_pte(pte);
332 }
333 
is_last_spte(u64 pte,int level)334 static int is_last_spte(u64 pte, int level)
335 {
336 	if (level == PT_PAGE_TABLE_LEVEL)
337 		return 1;
338 	if (is_large_pte(pte))
339 		return 1;
340 	return 0;
341 }
342 
spte_to_pfn(u64 pte)343 static pfn_t spte_to_pfn(u64 pte)
344 {
345 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
346 }
347 
pse36_gfn_delta(u32 gpte)348 static gfn_t pse36_gfn_delta(u32 gpte)
349 {
350 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351 
352 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
353 }
354 
355 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)356 static void __set_spte(u64 *sptep, u64 spte)
357 {
358 	*sptep = spte;
359 }
360 
__update_clear_spte_fast(u64 * sptep,u64 spte)361 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362 {
363 	*sptep = spte;
364 }
365 
__update_clear_spte_slow(u64 * sptep,u64 spte)366 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367 {
368 	return xchg(sptep, spte);
369 }
370 
__get_spte_lockless(u64 * sptep)371 static u64 __get_spte_lockless(u64 *sptep)
372 {
373 	return ACCESS_ONCE(*sptep);
374 }
375 #else
376 union split_spte {
377 	struct {
378 		u32 spte_low;
379 		u32 spte_high;
380 	};
381 	u64 spte;
382 };
383 
count_spte_clear(u64 * sptep,u64 spte)384 static void count_spte_clear(u64 *sptep, u64 spte)
385 {
386 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
387 
388 	if (is_shadow_present_pte(spte))
389 		return;
390 
391 	/* Ensure the spte is completely set before we increase the count */
392 	smp_wmb();
393 	sp->clear_spte_count++;
394 }
395 
__set_spte(u64 * sptep,u64 spte)396 static void __set_spte(u64 *sptep, u64 spte)
397 {
398 	union split_spte *ssptep, sspte;
399 
400 	ssptep = (union split_spte *)sptep;
401 	sspte = (union split_spte)spte;
402 
403 	ssptep->spte_high = sspte.spte_high;
404 
405 	/*
406 	 * If we map the spte from nonpresent to present, We should store
407 	 * the high bits firstly, then set present bit, so cpu can not
408 	 * fetch this spte while we are setting the spte.
409 	 */
410 	smp_wmb();
411 
412 	ssptep->spte_low = sspte.spte_low;
413 }
414 
__update_clear_spte_fast(u64 * sptep,u64 spte)415 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
416 {
417 	union split_spte *ssptep, sspte;
418 
419 	ssptep = (union split_spte *)sptep;
420 	sspte = (union split_spte)spte;
421 
422 	ssptep->spte_low = sspte.spte_low;
423 
424 	/*
425 	 * If we map the spte from present to nonpresent, we should clear
426 	 * present bit firstly to avoid vcpu fetch the old high bits.
427 	 */
428 	smp_wmb();
429 
430 	ssptep->spte_high = sspte.spte_high;
431 	count_spte_clear(sptep, spte);
432 }
433 
__update_clear_spte_slow(u64 * sptep,u64 spte)434 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
435 {
436 	union split_spte *ssptep, sspte, orig;
437 
438 	ssptep = (union split_spte *)sptep;
439 	sspte = (union split_spte)spte;
440 
441 	/* xchg acts as a barrier before the setting of the high bits */
442 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
443 	orig.spte_high = ssptep->spte_high;
444 	ssptep->spte_high = sspte.spte_high;
445 	count_spte_clear(sptep, spte);
446 
447 	return orig.spte;
448 }
449 
450 /*
451  * The idea using the light way get the spte on x86_32 guest is from
452  * gup_get_pte(arch/x86/mm/gup.c).
453  *
454  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
455  * coalesces them and we are running out of the MMU lock.  Therefore
456  * we need to protect against in-progress updates of the spte.
457  *
458  * Reading the spte while an update is in progress may get the old value
459  * for the high part of the spte.  The race is fine for a present->non-present
460  * change (because the high part of the spte is ignored for non-present spte),
461  * but for a present->present change we must reread the spte.
462  *
463  * All such changes are done in two steps (present->non-present and
464  * non-present->present), hence it is enough to count the number of
465  * present->non-present updates: if it changed while reading the spte,
466  * we might have hit the race.  This is done using clear_spte_count.
467  */
__get_spte_lockless(u64 * sptep)468 static u64 __get_spte_lockless(u64 *sptep)
469 {
470 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
471 	union split_spte spte, *orig = (union split_spte *)sptep;
472 	int count;
473 
474 retry:
475 	count = sp->clear_spte_count;
476 	smp_rmb();
477 
478 	spte.spte_low = orig->spte_low;
479 	smp_rmb();
480 
481 	spte.spte_high = orig->spte_high;
482 	smp_rmb();
483 
484 	if (unlikely(spte.spte_low != orig->spte_low ||
485 	      count != sp->clear_spte_count))
486 		goto retry;
487 
488 	return spte.spte;
489 }
490 #endif
491 
spte_is_locklessly_modifiable(u64 spte)492 static bool spte_is_locklessly_modifiable(u64 spte)
493 {
494 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
495 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
496 }
497 
spte_has_volatile_bits(u64 spte)498 static bool spte_has_volatile_bits(u64 spte)
499 {
500 	/*
501 	 * Always atomicly update spte if it can be updated
502 	 * out of mmu-lock, it can ensure dirty bit is not lost,
503 	 * also, it can help us to get a stable is_writable_pte()
504 	 * to ensure tlb flush is not missed.
505 	 */
506 	if (spte_is_locklessly_modifiable(spte))
507 		return true;
508 
509 	if (!shadow_accessed_mask)
510 		return false;
511 
512 	if (!is_shadow_present_pte(spte))
513 		return false;
514 
515 	if ((spte & shadow_accessed_mask) &&
516 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
517 		return false;
518 
519 	return true;
520 }
521 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)522 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
523 {
524 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
525 }
526 
527 /* Rules for using mmu_spte_set:
528  * Set the sptep from nonpresent to present.
529  * Note: the sptep being assigned *must* be either not present
530  * or in a state where the hardware will not attempt to update
531  * the spte.
532  */
mmu_spte_set(u64 * sptep,u64 new_spte)533 static void mmu_spte_set(u64 *sptep, u64 new_spte)
534 {
535 	WARN_ON(is_shadow_present_pte(*sptep));
536 	__set_spte(sptep, new_spte);
537 }
538 
539 /* Rules for using mmu_spte_update:
540  * Update the state bits, it means the mapped pfn is not changged.
541  *
542  * Whenever we overwrite a writable spte with a read-only one we
543  * should flush remote TLBs. Otherwise rmap_write_protect
544  * will find a read-only spte, even though the writable spte
545  * might be cached on a CPU's TLB, the return value indicates this
546  * case.
547  */
mmu_spte_update(u64 * sptep,u64 new_spte)548 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
549 {
550 	u64 old_spte = *sptep;
551 	bool ret = false;
552 
553 	WARN_ON(!is_rmap_spte(new_spte));
554 
555 	if (!is_shadow_present_pte(old_spte)) {
556 		mmu_spte_set(sptep, new_spte);
557 		return ret;
558 	}
559 
560 	if (!spte_has_volatile_bits(old_spte))
561 		__update_clear_spte_fast(sptep, new_spte);
562 	else
563 		old_spte = __update_clear_spte_slow(sptep, new_spte);
564 
565 	/*
566 	 * For the spte updated out of mmu-lock is safe, since
567 	 * we always atomicly update it, see the comments in
568 	 * spte_has_volatile_bits().
569 	 */
570 	if (spte_is_locklessly_modifiable(old_spte) &&
571 	      !is_writable_pte(new_spte))
572 		ret = true;
573 
574 	if (!shadow_accessed_mask)
575 		return ret;
576 
577 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
578 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
579 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
580 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
581 
582 	return ret;
583 }
584 
585 /*
586  * Rules for using mmu_spte_clear_track_bits:
587  * It sets the sptep from present to nonpresent, and track the
588  * state bits, it is used to clear the last level sptep.
589  */
mmu_spte_clear_track_bits(u64 * sptep)590 static int mmu_spte_clear_track_bits(u64 *sptep)
591 {
592 	pfn_t pfn;
593 	u64 old_spte = *sptep;
594 
595 	if (!spte_has_volatile_bits(old_spte))
596 		__update_clear_spte_fast(sptep, 0ull);
597 	else
598 		old_spte = __update_clear_spte_slow(sptep, 0ull);
599 
600 	if (!is_rmap_spte(old_spte))
601 		return 0;
602 
603 	pfn = spte_to_pfn(old_spte);
604 
605 	/*
606 	 * KVM does not hold the refcount of the page used by
607 	 * kvm mmu, before reclaiming the page, we should
608 	 * unmap it from mmu first.
609 	 */
610 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
611 
612 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
613 		kvm_set_pfn_accessed(pfn);
614 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
615 		kvm_set_pfn_dirty(pfn);
616 	return 1;
617 }
618 
619 /*
620  * Rules for using mmu_spte_clear_no_track:
621  * Directly clear spte without caring the state bits of sptep,
622  * it is used to set the upper level spte.
623  */
mmu_spte_clear_no_track(u64 * sptep)624 static void mmu_spte_clear_no_track(u64 *sptep)
625 {
626 	__update_clear_spte_fast(sptep, 0ull);
627 }
628 
mmu_spte_get_lockless(u64 * sptep)629 static u64 mmu_spte_get_lockless(u64 *sptep)
630 {
631 	return __get_spte_lockless(sptep);
632 }
633 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 	/*
637 	 * Prevent page table teardown by making any free-er wait during
638 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 	 */
640 	local_irq_disable();
641 	vcpu->mode = READING_SHADOW_PAGE_TABLES;
642 	/*
643 	 * Make sure a following spte read is not reordered ahead of the write
644 	 * to vcpu->mode.
645 	 */
646 	smp_mb();
647 }
648 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 	/*
652 	 * Make sure the write to vcpu->mode is not reordered in front of
653 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
654 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 	 */
656 	smp_mb();
657 	vcpu->mode = OUTSIDE_GUEST_MODE;
658 	local_irq_enable();
659 }
660 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)661 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
662 				  struct kmem_cache *base_cache, int min)
663 {
664 	void *obj;
665 
666 	if (cache->nobjs >= min)
667 		return 0;
668 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
669 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
670 		if (!obj)
671 			return -ENOMEM;
672 		cache->objects[cache->nobjs++] = obj;
673 	}
674 	return 0;
675 }
676 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)677 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
678 {
679 	return cache->nobjs;
680 }
681 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)682 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
683 				  struct kmem_cache *cache)
684 {
685 	while (mc->nobjs)
686 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
687 }
688 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)689 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
690 				       int min)
691 {
692 	void *page;
693 
694 	if (cache->nobjs >= min)
695 		return 0;
696 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
697 		page = (void *)__get_free_page(GFP_KERNEL);
698 		if (!page)
699 			return -ENOMEM;
700 		cache->objects[cache->nobjs++] = page;
701 	}
702 	return 0;
703 }
704 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)705 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
706 {
707 	while (mc->nobjs)
708 		free_page((unsigned long)mc->objects[--mc->nobjs]);
709 }
710 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)711 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
712 {
713 	int r;
714 
715 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
716 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
717 	if (r)
718 		goto out;
719 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
720 	if (r)
721 		goto out;
722 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
723 				   mmu_page_header_cache, 4);
724 out:
725 	return r;
726 }
727 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)728 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
729 {
730 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
731 				pte_list_desc_cache);
732 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
733 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
734 				mmu_page_header_cache);
735 }
736 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)737 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
738 {
739 	void *p;
740 
741 	BUG_ON(!mc->nobjs);
742 	p = mc->objects[--mc->nobjs];
743 	return p;
744 }
745 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)746 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
747 {
748 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
749 }
750 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)751 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
752 {
753 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
754 }
755 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)756 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
757 {
758 	if (!sp->role.direct)
759 		return sp->gfns[index];
760 
761 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
762 }
763 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)764 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
765 {
766 	if (sp->role.direct)
767 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
768 	else
769 		sp->gfns[index] = gfn;
770 }
771 
772 /*
773  * Return the pointer to the large page information for a given gfn,
774  * handling slots that are not large page aligned.
775  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)776 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
777 					      struct kvm_memory_slot *slot,
778 					      int level)
779 {
780 	unsigned long idx;
781 
782 	idx = gfn_to_index(gfn, slot->base_gfn, level);
783 	return &slot->arch.lpage_info[level - 2][idx];
784 }
785 
account_shadowed(struct kvm * kvm,gfn_t gfn)786 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
787 {
788 	struct kvm_memory_slot *slot;
789 	struct kvm_lpage_info *linfo;
790 	int i;
791 
792 	slot = gfn_to_memslot(kvm, gfn);
793 	for (i = PT_DIRECTORY_LEVEL;
794 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
795 		linfo = lpage_info_slot(gfn, slot, i);
796 		linfo->write_count += 1;
797 	}
798 	kvm->arch.indirect_shadow_pages++;
799 }
800 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)801 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
802 {
803 	struct kvm_memory_slot *slot;
804 	struct kvm_lpage_info *linfo;
805 	int i;
806 
807 	slot = gfn_to_memslot(kvm, gfn);
808 	for (i = PT_DIRECTORY_LEVEL;
809 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
810 		linfo = lpage_info_slot(gfn, slot, i);
811 		linfo->write_count -= 1;
812 		WARN_ON(linfo->write_count < 0);
813 	}
814 	kvm->arch.indirect_shadow_pages--;
815 }
816 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)817 static int has_wrprotected_page(struct kvm *kvm,
818 				gfn_t gfn,
819 				int level)
820 {
821 	struct kvm_memory_slot *slot;
822 	struct kvm_lpage_info *linfo;
823 
824 	slot = gfn_to_memslot(kvm, gfn);
825 	if (slot) {
826 		linfo = lpage_info_slot(gfn, slot, level);
827 		return linfo->write_count;
828 	}
829 
830 	return 1;
831 }
832 
host_mapping_level(struct kvm * kvm,gfn_t gfn)833 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
834 {
835 	unsigned long page_size;
836 	int i, ret = 0;
837 
838 	page_size = kvm_host_page_size(kvm, gfn);
839 
840 	for (i = PT_PAGE_TABLE_LEVEL;
841 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
842 		if (page_size >= KVM_HPAGE_SIZE(i))
843 			ret = i;
844 		else
845 			break;
846 	}
847 
848 	return ret;
849 }
850 
851 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)852 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
853 			    bool no_dirty_log)
854 {
855 	struct kvm_memory_slot *slot;
856 
857 	slot = gfn_to_memslot(vcpu->kvm, gfn);
858 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
859 	      (no_dirty_log && slot->dirty_bitmap))
860 		slot = NULL;
861 
862 	return slot;
863 }
864 
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)865 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
866 {
867 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
868 }
869 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)870 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
871 {
872 	int host_level, level, max_level;
873 
874 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
875 
876 	if (host_level == PT_PAGE_TABLE_LEVEL)
877 		return host_level;
878 
879 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
880 
881 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
882 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
883 			break;
884 
885 	return level - 1;
886 }
887 
888 /*
889  * Pte mapping structures:
890  *
891  * If pte_list bit zero is zero, then pte_list point to the spte.
892  *
893  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
894  * pte_list_desc containing more mappings.
895  *
896  * Returns the number of pte entries before the spte was added or zero if
897  * the spte was not added.
898  *
899  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)900 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
901 			unsigned long *pte_list)
902 {
903 	struct pte_list_desc *desc;
904 	int i, count = 0;
905 
906 	if (!*pte_list) {
907 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
908 		*pte_list = (unsigned long)spte;
909 	} else if (!(*pte_list & 1)) {
910 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
911 		desc = mmu_alloc_pte_list_desc(vcpu);
912 		desc->sptes[0] = (u64 *)*pte_list;
913 		desc->sptes[1] = spte;
914 		*pte_list = (unsigned long)desc | 1;
915 		++count;
916 	} else {
917 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
918 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
919 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
920 			desc = desc->more;
921 			count += PTE_LIST_EXT;
922 		}
923 		if (desc->sptes[PTE_LIST_EXT-1]) {
924 			desc->more = mmu_alloc_pte_list_desc(vcpu);
925 			desc = desc->more;
926 		}
927 		for (i = 0; desc->sptes[i]; ++i)
928 			++count;
929 		desc->sptes[i] = spte;
930 	}
931 	return count;
932 }
933 
934 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)935 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
936 			   int i, struct pte_list_desc *prev_desc)
937 {
938 	int j;
939 
940 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
941 		;
942 	desc->sptes[i] = desc->sptes[j];
943 	desc->sptes[j] = NULL;
944 	if (j != 0)
945 		return;
946 	if (!prev_desc && !desc->more)
947 		*pte_list = (unsigned long)desc->sptes[0];
948 	else
949 		if (prev_desc)
950 			prev_desc->more = desc->more;
951 		else
952 			*pte_list = (unsigned long)desc->more | 1;
953 	mmu_free_pte_list_desc(desc);
954 }
955 
pte_list_remove(u64 * spte,unsigned long * pte_list)956 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
957 {
958 	struct pte_list_desc *desc;
959 	struct pte_list_desc *prev_desc;
960 	int i;
961 
962 	if (!*pte_list) {
963 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
964 		BUG();
965 	} else if (!(*pte_list & 1)) {
966 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
967 		if ((u64 *)*pte_list != spte) {
968 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
969 			BUG();
970 		}
971 		*pte_list = 0;
972 	} else {
973 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
974 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
975 		prev_desc = NULL;
976 		while (desc) {
977 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
978 				if (desc->sptes[i] == spte) {
979 					pte_list_desc_remove_entry(pte_list,
980 							       desc, i,
981 							       prev_desc);
982 					return;
983 				}
984 			prev_desc = desc;
985 			desc = desc->more;
986 		}
987 		pr_err("pte_list_remove: %p many->many\n", spte);
988 		BUG();
989 	}
990 }
991 
992 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)993 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
994 {
995 	struct pte_list_desc *desc;
996 	int i;
997 
998 	if (!*pte_list)
999 		return;
1000 
1001 	if (!(*pte_list & 1))
1002 		return fn((u64 *)*pte_list);
1003 
1004 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1005 	while (desc) {
1006 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1007 			fn(desc->sptes[i]);
1008 		desc = desc->more;
1009 	}
1010 }
1011 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1012 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1013 				    struct kvm_memory_slot *slot)
1014 {
1015 	unsigned long idx;
1016 
1017 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1018 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1019 }
1020 
1021 /*
1022  * Take gfn and return the reverse mapping to it.
1023  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)1024 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1025 {
1026 	struct kvm_memory_slot *slot;
1027 
1028 	slot = gfn_to_memslot(kvm, gfn);
1029 	return __gfn_to_rmap(gfn, level, slot);
1030 }
1031 
rmap_can_add(struct kvm_vcpu * vcpu)1032 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1033 {
1034 	struct kvm_mmu_memory_cache *cache;
1035 
1036 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1037 	return mmu_memory_cache_free_objects(cache);
1038 }
1039 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1040 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1041 {
1042 	struct kvm_mmu_page *sp;
1043 	unsigned long *rmapp;
1044 
1045 	sp = page_header(__pa(spte));
1046 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1047 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1048 	return pte_list_add(vcpu, spte, rmapp);
1049 }
1050 
rmap_remove(struct kvm * kvm,u64 * spte)1051 static void rmap_remove(struct kvm *kvm, u64 *spte)
1052 {
1053 	struct kvm_mmu_page *sp;
1054 	gfn_t gfn;
1055 	unsigned long *rmapp;
1056 
1057 	sp = page_header(__pa(spte));
1058 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1059 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1060 	pte_list_remove(spte, rmapp);
1061 }
1062 
1063 /*
1064  * Used by the following functions to iterate through the sptes linked by a
1065  * rmap.  All fields are private and not assumed to be used outside.
1066  */
1067 struct rmap_iterator {
1068 	/* private fields */
1069 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1070 	int pos;			/* index of the sptep */
1071 };
1072 
1073 /*
1074  * Iteration must be started by this function.  This should also be used after
1075  * removing/dropping sptes from the rmap link because in such cases the
1076  * information in the itererator may not be valid.
1077  *
1078  * Returns sptep if found, NULL otherwise.
1079  */
rmap_get_first(unsigned long rmap,struct rmap_iterator * iter)1080 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1081 {
1082 	if (!rmap)
1083 		return NULL;
1084 
1085 	if (!(rmap & 1)) {
1086 		iter->desc = NULL;
1087 		return (u64 *)rmap;
1088 	}
1089 
1090 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1091 	iter->pos = 0;
1092 	return iter->desc->sptes[iter->pos];
1093 }
1094 
1095 /*
1096  * Must be used with a valid iterator: e.g. after rmap_get_first().
1097  *
1098  * Returns sptep if found, NULL otherwise.
1099  */
rmap_get_next(struct rmap_iterator * iter)1100 static u64 *rmap_get_next(struct rmap_iterator *iter)
1101 {
1102 	if (iter->desc) {
1103 		if (iter->pos < PTE_LIST_EXT - 1) {
1104 			u64 *sptep;
1105 
1106 			++iter->pos;
1107 			sptep = iter->desc->sptes[iter->pos];
1108 			if (sptep)
1109 				return sptep;
1110 		}
1111 
1112 		iter->desc = iter->desc->more;
1113 
1114 		if (iter->desc) {
1115 			iter->pos = 0;
1116 			/* desc->sptes[0] cannot be NULL */
1117 			return iter->desc->sptes[iter->pos];
1118 		}
1119 	}
1120 
1121 	return NULL;
1122 }
1123 
drop_spte(struct kvm * kvm,u64 * sptep)1124 static void drop_spte(struct kvm *kvm, u64 *sptep)
1125 {
1126 	if (mmu_spte_clear_track_bits(sptep))
1127 		rmap_remove(kvm, sptep);
1128 }
1129 
1130 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1131 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1132 {
1133 	if (is_large_pte(*sptep)) {
1134 		WARN_ON(page_header(__pa(sptep))->role.level ==
1135 			PT_PAGE_TABLE_LEVEL);
1136 		drop_spte(kvm, sptep);
1137 		--kvm->stat.lpages;
1138 		return true;
1139 	}
1140 
1141 	return false;
1142 }
1143 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1144 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1145 {
1146 	if (__drop_large_spte(vcpu->kvm, sptep))
1147 		kvm_flush_remote_tlbs(vcpu->kvm);
1148 }
1149 
1150 /*
1151  * Write-protect on the specified @sptep, @pt_protect indicates whether
1152  * spte write-protection is caused by protecting shadow page table.
1153  *
1154  * Note: write protection is difference between dirty logging and spte
1155  * protection:
1156  * - for dirty logging, the spte can be set to writable at anytime if
1157  *   its dirty bitmap is properly set.
1158  * - for spte protection, the spte can be writable only after unsync-ing
1159  *   shadow page.
1160  *
1161  * Return true if tlb need be flushed.
1162  */
spte_write_protect(struct kvm * kvm,u64 * sptep,bool pt_protect)1163 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1164 {
1165 	u64 spte = *sptep;
1166 
1167 	if (!is_writable_pte(spte) &&
1168 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1169 		return false;
1170 
1171 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1172 
1173 	if (pt_protect)
1174 		spte &= ~SPTE_MMU_WRITEABLE;
1175 	spte = spte & ~PT_WRITABLE_MASK;
1176 
1177 	return mmu_spte_update(sptep, spte);
1178 }
1179 
__rmap_write_protect(struct kvm * kvm,unsigned long * rmapp,bool pt_protect)1180 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1181 				 bool pt_protect)
1182 {
1183 	u64 *sptep;
1184 	struct rmap_iterator iter;
1185 	bool flush = false;
1186 
1187 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1188 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1189 
1190 		flush |= spte_write_protect(kvm, sptep, pt_protect);
1191 		sptep = rmap_get_next(&iter);
1192 	}
1193 
1194 	return flush;
1195 }
1196 
1197 /**
1198  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1199  * @kvm: kvm instance
1200  * @slot: slot to protect
1201  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1202  * @mask: indicates which pages we should protect
1203  *
1204  * Used when we do not need to care about huge page mappings: e.g. during dirty
1205  * logging we do not have any such mappings.
1206  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1207 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1208 				     struct kvm_memory_slot *slot,
1209 				     gfn_t gfn_offset, unsigned long mask)
1210 {
1211 	unsigned long *rmapp;
1212 
1213 	while (mask) {
1214 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1215 				      PT_PAGE_TABLE_LEVEL, slot);
1216 		__rmap_write_protect(kvm, rmapp, false);
1217 
1218 		/* clear the first set bit */
1219 		mask &= mask - 1;
1220 	}
1221 }
1222 
rmap_write_protect(struct kvm * kvm,u64 gfn)1223 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1224 {
1225 	struct kvm_memory_slot *slot;
1226 	unsigned long *rmapp;
1227 	int i;
1228 	bool write_protected = false;
1229 
1230 	slot = gfn_to_memslot(kvm, gfn);
1231 
1232 	for (i = PT_PAGE_TABLE_LEVEL;
1233 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1234 		rmapp = __gfn_to_rmap(gfn, i, slot);
1235 		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1236 	}
1237 
1238 	return write_protected;
1239 }
1240 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1241 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1242 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1243 			   unsigned long data)
1244 {
1245 	u64 *sptep;
1246 	struct rmap_iterator iter;
1247 	int need_tlb_flush = 0;
1248 
1249 	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1250 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1251 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1252 			     sptep, *sptep, gfn, level);
1253 
1254 		drop_spte(kvm, sptep);
1255 		need_tlb_flush = 1;
1256 	}
1257 
1258 	return need_tlb_flush;
1259 }
1260 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1261 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1262 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1263 			     unsigned long data)
1264 {
1265 	u64 *sptep;
1266 	struct rmap_iterator iter;
1267 	int need_flush = 0;
1268 	u64 new_spte;
1269 	pte_t *ptep = (pte_t *)data;
1270 	pfn_t new_pfn;
1271 
1272 	WARN_ON(pte_huge(*ptep));
1273 	new_pfn = pte_pfn(*ptep);
1274 
1275 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1276 		BUG_ON(!is_shadow_present_pte(*sptep));
1277 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1278 			     sptep, *sptep, gfn, level);
1279 
1280 		need_flush = 1;
1281 
1282 		if (pte_write(*ptep)) {
1283 			drop_spte(kvm, sptep);
1284 			sptep = rmap_get_first(*rmapp, &iter);
1285 		} else {
1286 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1287 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1288 
1289 			new_spte &= ~PT_WRITABLE_MASK;
1290 			new_spte &= ~SPTE_HOST_WRITEABLE;
1291 			new_spte &= ~shadow_accessed_mask;
1292 
1293 			mmu_spte_clear_track_bits(sptep);
1294 			mmu_spte_set(sptep, new_spte);
1295 			sptep = rmap_get_next(&iter);
1296 		}
1297 	}
1298 
1299 	if (need_flush)
1300 		kvm_flush_remote_tlbs(kvm);
1301 
1302 	return 0;
1303 }
1304 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1305 static int kvm_handle_hva_range(struct kvm *kvm,
1306 				unsigned long start,
1307 				unsigned long end,
1308 				unsigned long data,
1309 				int (*handler)(struct kvm *kvm,
1310 					       unsigned long *rmapp,
1311 					       struct kvm_memory_slot *slot,
1312 					       gfn_t gfn,
1313 					       int level,
1314 					       unsigned long data))
1315 {
1316 	int j;
1317 	int ret = 0;
1318 	struct kvm_memslots *slots;
1319 	struct kvm_memory_slot *memslot;
1320 
1321 	slots = kvm_memslots(kvm);
1322 
1323 	kvm_for_each_memslot(memslot, slots) {
1324 		unsigned long hva_start, hva_end;
1325 		gfn_t gfn_start, gfn_end;
1326 
1327 		hva_start = max(start, memslot->userspace_addr);
1328 		hva_end = min(end, memslot->userspace_addr +
1329 					(memslot->npages << PAGE_SHIFT));
1330 		if (hva_start >= hva_end)
1331 			continue;
1332 		/*
1333 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1334 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1335 		 */
1336 		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1337 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1338 
1339 		for (j = PT_PAGE_TABLE_LEVEL;
1340 		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1341 			unsigned long idx, idx_end;
1342 			unsigned long *rmapp;
1343 			gfn_t gfn = gfn_start;
1344 
1345 			/*
1346 			 * {idx(page_j) | page_j intersects with
1347 			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1348 			 */
1349 			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1350 			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1351 
1352 			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1353 
1354 			for (; idx <= idx_end;
1355 			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1356 				ret |= handler(kvm, rmapp++, memslot,
1357 					       gfn, j, data);
1358 		}
1359 	}
1360 
1361 	return ret;
1362 }
1363 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1364 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1365 			  unsigned long data,
1366 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1367 					 struct kvm_memory_slot *slot,
1368 					 gfn_t gfn, int level,
1369 					 unsigned long data))
1370 {
1371 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1372 }
1373 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1374 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1375 {
1376 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1377 }
1378 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1379 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1380 {
1381 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1382 }
1383 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1384 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1385 {
1386 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1387 }
1388 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1389 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1390 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 			 unsigned long data)
1392 {
1393 	u64 *sptep;
1394 	struct rmap_iterator uninitialized_var(iter);
1395 	int young = 0;
1396 
1397 	BUG_ON(!shadow_accessed_mask);
1398 
1399 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1400 	     sptep = rmap_get_next(&iter)) {
1401 		BUG_ON(!is_shadow_present_pte(*sptep));
1402 
1403 		if (*sptep & shadow_accessed_mask) {
1404 			young = 1;
1405 			clear_bit((ffs(shadow_accessed_mask) - 1),
1406 				 (unsigned long *)sptep);
1407 		}
1408 	}
1409 	trace_kvm_age_page(gfn, level, slot, young);
1410 	return young;
1411 }
1412 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1413 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1414 			      struct kvm_memory_slot *slot, gfn_t gfn,
1415 			      int level, unsigned long data)
1416 {
1417 	u64 *sptep;
1418 	struct rmap_iterator iter;
1419 	int young = 0;
1420 
1421 	/*
1422 	 * If there's no access bit in the secondary pte set by the
1423 	 * hardware it's up to gup-fast/gup to set the access bit in
1424 	 * the primary pte or in the page structure.
1425 	 */
1426 	if (!shadow_accessed_mask)
1427 		goto out;
1428 
1429 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1430 	     sptep = rmap_get_next(&iter)) {
1431 		BUG_ON(!is_shadow_present_pte(*sptep));
1432 
1433 		if (*sptep & shadow_accessed_mask) {
1434 			young = 1;
1435 			break;
1436 		}
1437 	}
1438 out:
1439 	return young;
1440 }
1441 
1442 #define RMAP_RECYCLE_THRESHOLD 1000
1443 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1444 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1445 {
1446 	unsigned long *rmapp;
1447 	struct kvm_mmu_page *sp;
1448 
1449 	sp = page_header(__pa(spte));
1450 
1451 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1452 
1453 	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1454 	kvm_flush_remote_tlbs(vcpu->kvm);
1455 }
1456 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1457 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1458 {
1459 	/*
1460 	 * In case of absence of EPT Access and Dirty Bits supports,
1461 	 * emulate the accessed bit for EPT, by checking if this page has
1462 	 * an EPT mapping, and clearing it if it does. On the next access,
1463 	 * a new EPT mapping will be established.
1464 	 * This has some overhead, but not as much as the cost of swapping
1465 	 * out actively used pages or breaking up actively used hugepages.
1466 	 */
1467 	if (!shadow_accessed_mask) {
1468 		/*
1469 		 * We are holding the kvm->mmu_lock, and we are blowing up
1470 		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1471 		 * This is correct as long as we don't decouple the mmu_lock
1472 		 * protected regions (like invalidate_range_start|end does).
1473 		 */
1474 		kvm->mmu_notifier_seq++;
1475 		return kvm_handle_hva_range(kvm, start, end, 0,
1476 					    kvm_unmap_rmapp);
1477 	}
1478 
1479 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1480 }
1481 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1482 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1483 {
1484 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1485 }
1486 
1487 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1488 static int is_empty_shadow_page(u64 *spt)
1489 {
1490 	u64 *pos;
1491 	u64 *end;
1492 
1493 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1494 		if (is_shadow_present_pte(*pos)) {
1495 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1496 			       pos, *pos);
1497 			return 0;
1498 		}
1499 	return 1;
1500 }
1501 #endif
1502 
1503 /*
1504  * This value is the sum of all of the kvm instances's
1505  * kvm->arch.n_used_mmu_pages values.  We need a global,
1506  * aggregate version in order to make the slab shrinker
1507  * faster
1508  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1509 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1510 {
1511 	kvm->arch.n_used_mmu_pages += nr;
1512 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1513 }
1514 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1515 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1516 {
1517 	ASSERT(is_empty_shadow_page(sp->spt));
1518 	hlist_del(&sp->hash_link);
1519 	list_del(&sp->link);
1520 	free_page((unsigned long)sp->spt);
1521 	if (!sp->role.direct)
1522 		free_page((unsigned long)sp->gfns);
1523 	kmem_cache_free(mmu_page_header_cache, sp);
1524 }
1525 
kvm_page_table_hashfn(gfn_t gfn)1526 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1527 {
1528 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1529 }
1530 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1531 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1532 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1533 {
1534 	if (!parent_pte)
1535 		return;
1536 
1537 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1538 }
1539 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1540 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1541 				       u64 *parent_pte)
1542 {
1543 	pte_list_remove(parent_pte, &sp->parent_ptes);
1544 }
1545 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1546 static void drop_parent_pte(struct kvm_mmu_page *sp,
1547 			    u64 *parent_pte)
1548 {
1549 	mmu_page_remove_parent_pte(sp, parent_pte);
1550 	mmu_spte_clear_no_track(parent_pte);
1551 }
1552 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1553 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1554 					       u64 *parent_pte, int direct)
1555 {
1556 	struct kvm_mmu_page *sp;
1557 
1558 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1559 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1560 	if (!direct)
1561 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1562 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1563 
1564 	/*
1565 	 * The active_mmu_pages list is the FIFO list, do not move the
1566 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1567 	 * this feature. See the comments in kvm_zap_obsolete_pages().
1568 	 */
1569 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1570 	sp->parent_ptes = 0;
1571 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1572 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1573 	return sp;
1574 }
1575 
1576 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1577 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1578 {
1579 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1580 }
1581 
mark_unsync(u64 * spte)1582 static void mark_unsync(u64 *spte)
1583 {
1584 	struct kvm_mmu_page *sp;
1585 	unsigned int index;
1586 
1587 	sp = page_header(__pa(spte));
1588 	index = spte - sp->spt;
1589 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1590 		return;
1591 	if (sp->unsync_children++)
1592 		return;
1593 	kvm_mmu_mark_parents_unsync(sp);
1594 }
1595 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1596 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1597 			       struct kvm_mmu_page *sp)
1598 {
1599 	return 1;
1600 }
1601 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1602 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1603 {
1604 }
1605 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1606 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1607 				 struct kvm_mmu_page *sp, u64 *spte,
1608 				 const void *pte)
1609 {
1610 	WARN_ON(1);
1611 }
1612 
1613 #define KVM_PAGE_ARRAY_NR 16
1614 
1615 struct kvm_mmu_pages {
1616 	struct mmu_page_and_offset {
1617 		struct kvm_mmu_page *sp;
1618 		unsigned int idx;
1619 	} page[KVM_PAGE_ARRAY_NR];
1620 	unsigned int nr;
1621 };
1622 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1623 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1624 			 int idx)
1625 {
1626 	int i;
1627 
1628 	if (sp->unsync)
1629 		for (i=0; i < pvec->nr; i++)
1630 			if (pvec->page[i].sp == sp)
1631 				return 0;
1632 
1633 	pvec->page[pvec->nr].sp = sp;
1634 	pvec->page[pvec->nr].idx = idx;
1635 	pvec->nr++;
1636 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1637 }
1638 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1639 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 			   struct kvm_mmu_pages *pvec)
1641 {
1642 	int i, ret, nr_unsync_leaf = 0;
1643 
1644 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1645 		struct kvm_mmu_page *child;
1646 		u64 ent = sp->spt[i];
1647 
1648 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1649 			goto clear_child_bitmap;
1650 
1651 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1652 
1653 		if (child->unsync_children) {
1654 			if (mmu_pages_add(pvec, child, i))
1655 				return -ENOSPC;
1656 
1657 			ret = __mmu_unsync_walk(child, pvec);
1658 			if (!ret)
1659 				goto clear_child_bitmap;
1660 			else if (ret > 0)
1661 				nr_unsync_leaf += ret;
1662 			else
1663 				return ret;
1664 		} else if (child->unsync) {
1665 			nr_unsync_leaf++;
1666 			if (mmu_pages_add(pvec, child, i))
1667 				return -ENOSPC;
1668 		} else
1669 			 goto clear_child_bitmap;
1670 
1671 		continue;
1672 
1673 clear_child_bitmap:
1674 		__clear_bit(i, sp->unsync_child_bitmap);
1675 		sp->unsync_children--;
1676 		WARN_ON((int)sp->unsync_children < 0);
1677 	}
1678 
1679 
1680 	return nr_unsync_leaf;
1681 }
1682 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1683 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1684 			   struct kvm_mmu_pages *pvec)
1685 {
1686 	if (!sp->unsync_children)
1687 		return 0;
1688 
1689 	mmu_pages_add(pvec, sp, 0);
1690 	return __mmu_unsync_walk(sp, pvec);
1691 }
1692 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1693 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1694 {
1695 	WARN_ON(!sp->unsync);
1696 	trace_kvm_mmu_sync_page(sp);
1697 	sp->unsync = 0;
1698 	--kvm->stat.mmu_unsync;
1699 }
1700 
1701 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1702 				    struct list_head *invalid_list);
1703 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1704 				    struct list_head *invalid_list);
1705 
1706 /*
1707  * NOTE: we should pay more attention on the zapped-obsolete page
1708  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1709  * since it has been deleted from active_mmu_pages but still can be found
1710  * at hast list.
1711  *
1712  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1713  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1714  * all the obsolete pages.
1715  */
1716 #define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1717 	hlist_for_each_entry(_sp,					\
1718 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1719 		if ((_sp)->gfn != (_gfn)) {} else
1720 
1721 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1722 	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1723 		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1724 
1725 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1726 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1727 			   struct list_head *invalid_list, bool clear_unsync)
1728 {
1729 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1730 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1731 		return 1;
1732 	}
1733 
1734 	if (clear_unsync)
1735 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1736 
1737 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1738 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1739 		return 1;
1740 	}
1741 
1742 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1743 	return 0;
1744 }
1745 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1746 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1747 				   struct kvm_mmu_page *sp)
1748 {
1749 	LIST_HEAD(invalid_list);
1750 	int ret;
1751 
1752 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1753 	if (ret)
1754 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1755 
1756 	return ret;
1757 }
1758 
1759 #ifdef CONFIG_KVM_MMU_AUDIT
1760 #include "mmu_audit.c"
1761 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1762 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1763 static void mmu_audit_disable(void) { }
1764 #endif
1765 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1766 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1767 			 struct list_head *invalid_list)
1768 {
1769 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1770 }
1771 
1772 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1773 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1774 {
1775 	struct kvm_mmu_page *s;
1776 	LIST_HEAD(invalid_list);
1777 	bool flush = false;
1778 
1779 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1780 		if (!s->unsync)
1781 			continue;
1782 
1783 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1784 		kvm_unlink_unsync_page(vcpu->kvm, s);
1785 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1786 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1787 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1788 			continue;
1789 		}
1790 		flush = true;
1791 	}
1792 
1793 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1794 	if (flush)
1795 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1796 }
1797 
1798 struct mmu_page_path {
1799 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1800 	unsigned int idx[PT64_ROOT_LEVEL-1];
1801 };
1802 
1803 #define for_each_sp(pvec, sp, parents, i)			\
1804 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1805 			sp = pvec.page[i].sp;			\
1806 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1807 			i = mmu_pages_next(&pvec, &parents, i))
1808 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1809 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1810 			  struct mmu_page_path *parents,
1811 			  int i)
1812 {
1813 	int n;
1814 
1815 	for (n = i+1; n < pvec->nr; n++) {
1816 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1817 
1818 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1819 			parents->idx[0] = pvec->page[n].idx;
1820 			return n;
1821 		}
1822 
1823 		parents->parent[sp->role.level-2] = sp;
1824 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1825 	}
1826 
1827 	return n;
1828 }
1829 
mmu_pages_clear_parents(struct mmu_page_path * parents)1830 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1831 {
1832 	struct kvm_mmu_page *sp;
1833 	unsigned int level = 0;
1834 
1835 	do {
1836 		unsigned int idx = parents->idx[level];
1837 
1838 		sp = parents->parent[level];
1839 		if (!sp)
1840 			return;
1841 
1842 		--sp->unsync_children;
1843 		WARN_ON((int)sp->unsync_children < 0);
1844 		__clear_bit(idx, sp->unsync_child_bitmap);
1845 		level++;
1846 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1847 }
1848 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1849 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1850 			       struct mmu_page_path *parents,
1851 			       struct kvm_mmu_pages *pvec)
1852 {
1853 	parents->parent[parent->role.level-1] = NULL;
1854 	pvec->nr = 0;
1855 }
1856 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1857 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1858 			      struct kvm_mmu_page *parent)
1859 {
1860 	int i;
1861 	struct kvm_mmu_page *sp;
1862 	struct mmu_page_path parents;
1863 	struct kvm_mmu_pages pages;
1864 	LIST_HEAD(invalid_list);
1865 
1866 	kvm_mmu_pages_init(parent, &parents, &pages);
1867 	while (mmu_unsync_walk(parent, &pages)) {
1868 		bool protected = false;
1869 
1870 		for_each_sp(pages, sp, parents, i)
1871 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1872 
1873 		if (protected)
1874 			kvm_flush_remote_tlbs(vcpu->kvm);
1875 
1876 		for_each_sp(pages, sp, parents, i) {
1877 			kvm_sync_page(vcpu, sp, &invalid_list);
1878 			mmu_pages_clear_parents(&parents);
1879 		}
1880 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1881 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1882 		kvm_mmu_pages_init(parent, &parents, &pages);
1883 	}
1884 }
1885 
init_shadow_page_table(struct kvm_mmu_page * sp)1886 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1887 {
1888 	int i;
1889 
1890 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1891 		sp->spt[i] = 0ull;
1892 }
1893 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1894 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1895 {
1896 	sp->write_flooding_count = 0;
1897 }
1898 
clear_sp_write_flooding_count(u64 * spte)1899 static void clear_sp_write_flooding_count(u64 *spte)
1900 {
1901 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
1902 
1903 	__clear_sp_write_flooding_count(sp);
1904 }
1905 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1906 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1907 {
1908 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1909 }
1910 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)1911 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1912 					     gfn_t gfn,
1913 					     gva_t gaddr,
1914 					     unsigned level,
1915 					     int direct,
1916 					     unsigned access,
1917 					     u64 *parent_pte)
1918 {
1919 	union kvm_mmu_page_role role;
1920 	unsigned quadrant;
1921 	struct kvm_mmu_page *sp;
1922 	bool need_sync = false;
1923 
1924 	role = vcpu->arch.mmu.base_role;
1925 	role.level = level;
1926 	role.direct = direct;
1927 	if (role.direct)
1928 		role.cr4_pae = 0;
1929 	role.access = access;
1930 	if (!vcpu->arch.mmu.direct_map
1931 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1932 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1933 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1934 		role.quadrant = quadrant;
1935 	}
1936 	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1937 		if (is_obsolete_sp(vcpu->kvm, sp))
1938 			continue;
1939 
1940 		if (!need_sync && sp->unsync)
1941 			need_sync = true;
1942 
1943 		if (sp->role.word != role.word)
1944 			continue;
1945 
1946 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1947 			break;
1948 
1949 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1950 		if (sp->unsync_children) {
1951 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1952 			kvm_mmu_mark_parents_unsync(sp);
1953 		} else if (sp->unsync)
1954 			kvm_mmu_mark_parents_unsync(sp);
1955 
1956 		__clear_sp_write_flooding_count(sp);
1957 		trace_kvm_mmu_get_page(sp, false);
1958 		return sp;
1959 	}
1960 	++vcpu->kvm->stat.mmu_cache_miss;
1961 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1962 	if (!sp)
1963 		return sp;
1964 	sp->gfn = gfn;
1965 	sp->role = role;
1966 	hlist_add_head(&sp->hash_link,
1967 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1968 	if (!direct) {
1969 		if (rmap_write_protect(vcpu->kvm, gfn))
1970 			kvm_flush_remote_tlbs(vcpu->kvm);
1971 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1972 			kvm_sync_pages(vcpu, gfn);
1973 
1974 		account_shadowed(vcpu->kvm, gfn);
1975 	}
1976 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1977 	init_shadow_page_table(sp);
1978 	trace_kvm_mmu_get_page(sp, true);
1979 	return sp;
1980 }
1981 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)1982 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1983 			     struct kvm_vcpu *vcpu, u64 addr)
1984 {
1985 	iterator->addr = addr;
1986 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1987 	iterator->level = vcpu->arch.mmu.shadow_root_level;
1988 
1989 	if (iterator->level == PT64_ROOT_LEVEL &&
1990 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1991 	    !vcpu->arch.mmu.direct_map)
1992 		--iterator->level;
1993 
1994 	if (iterator->level == PT32E_ROOT_LEVEL) {
1995 		iterator->shadow_addr
1996 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1997 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1998 		--iterator->level;
1999 		if (!iterator->shadow_addr)
2000 			iterator->level = 0;
2001 	}
2002 }
2003 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2004 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2005 {
2006 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2007 		return false;
2008 
2009 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2010 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2011 	return true;
2012 }
2013 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2014 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2015 			       u64 spte)
2016 {
2017 	if (is_last_spte(spte, iterator->level)) {
2018 		iterator->level = 0;
2019 		return;
2020 	}
2021 
2022 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2023 	--iterator->level;
2024 }
2025 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2026 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2027 {
2028 	return __shadow_walk_next(iterator, *iterator->sptep);
2029 }
2030 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp,bool accessed)2031 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2032 {
2033 	u64 spte;
2034 
2035 	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2036 			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2037 
2038 	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2039 	       shadow_user_mask | shadow_x_mask;
2040 
2041 	if (accessed)
2042 		spte |= shadow_accessed_mask;
2043 
2044 	mmu_spte_set(sptep, spte);
2045 }
2046 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2047 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2048 				   unsigned direct_access)
2049 {
2050 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2051 		struct kvm_mmu_page *child;
2052 
2053 		/*
2054 		 * For the direct sp, if the guest pte's dirty bit
2055 		 * changed form clean to dirty, it will corrupt the
2056 		 * sp's access: allow writable in the read-only sp,
2057 		 * so we should update the spte at this point to get
2058 		 * a new sp with the correct access.
2059 		 */
2060 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2061 		if (child->role.access == direct_access)
2062 			return;
2063 
2064 		drop_parent_pte(child, sptep);
2065 		kvm_flush_remote_tlbs(vcpu->kvm);
2066 	}
2067 }
2068 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2069 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2070 			     u64 *spte)
2071 {
2072 	u64 pte;
2073 	struct kvm_mmu_page *child;
2074 
2075 	pte = *spte;
2076 	if (is_shadow_present_pte(pte)) {
2077 		if (is_last_spte(pte, sp->role.level)) {
2078 			drop_spte(kvm, spte);
2079 			if (is_large_pte(pte))
2080 				--kvm->stat.lpages;
2081 		} else {
2082 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2083 			drop_parent_pte(child, spte);
2084 		}
2085 		return true;
2086 	}
2087 
2088 	if (is_mmio_spte(pte))
2089 		mmu_spte_clear_no_track(spte);
2090 
2091 	return false;
2092 }
2093 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2094 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2095 					 struct kvm_mmu_page *sp)
2096 {
2097 	unsigned i;
2098 
2099 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2100 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2101 }
2102 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)2103 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2104 {
2105 	mmu_page_remove_parent_pte(sp, parent_pte);
2106 }
2107 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2108 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2109 {
2110 	u64 *sptep;
2111 	struct rmap_iterator iter;
2112 
2113 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2114 		drop_parent_pte(sp, sptep);
2115 }
2116 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2117 static int mmu_zap_unsync_children(struct kvm *kvm,
2118 				   struct kvm_mmu_page *parent,
2119 				   struct list_head *invalid_list)
2120 {
2121 	int i, zapped = 0;
2122 	struct mmu_page_path parents;
2123 	struct kvm_mmu_pages pages;
2124 
2125 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2126 		return 0;
2127 
2128 	kvm_mmu_pages_init(parent, &parents, &pages);
2129 	while (mmu_unsync_walk(parent, &pages)) {
2130 		struct kvm_mmu_page *sp;
2131 
2132 		for_each_sp(pages, sp, parents, i) {
2133 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2134 			mmu_pages_clear_parents(&parents);
2135 			zapped++;
2136 		}
2137 		kvm_mmu_pages_init(parent, &parents, &pages);
2138 	}
2139 
2140 	return zapped;
2141 }
2142 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2143 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2144 				    struct list_head *invalid_list)
2145 {
2146 	int ret;
2147 
2148 	trace_kvm_mmu_prepare_zap_page(sp);
2149 	++kvm->stat.mmu_shadow_zapped;
2150 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2151 	kvm_mmu_page_unlink_children(kvm, sp);
2152 	kvm_mmu_unlink_parents(kvm, sp);
2153 
2154 	if (!sp->role.invalid && !sp->role.direct)
2155 		unaccount_shadowed(kvm, sp->gfn);
2156 
2157 	if (sp->unsync)
2158 		kvm_unlink_unsync_page(kvm, sp);
2159 	if (!sp->root_count) {
2160 		/* Count self */
2161 		ret++;
2162 		list_move(&sp->link, invalid_list);
2163 		kvm_mod_used_mmu_pages(kvm, -1);
2164 	} else {
2165 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2166 
2167 		/*
2168 		 * The obsolete pages can not be used on any vcpus.
2169 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2170 		 */
2171 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2172 			kvm_reload_remote_mmus(kvm);
2173 	}
2174 
2175 	sp->role.invalid = 1;
2176 	return ret;
2177 }
2178 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2179 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2180 				    struct list_head *invalid_list)
2181 {
2182 	struct kvm_mmu_page *sp, *nsp;
2183 
2184 	if (list_empty(invalid_list))
2185 		return;
2186 
2187 	/*
2188 	 * wmb: make sure everyone sees our modifications to the page tables
2189 	 * rmb: make sure we see changes to vcpu->mode
2190 	 */
2191 	smp_mb();
2192 
2193 	/*
2194 	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2195 	 * page table walks.
2196 	 */
2197 	kvm_flush_remote_tlbs(kvm);
2198 
2199 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2200 		WARN_ON(!sp->role.invalid || sp->root_count);
2201 		kvm_mmu_free_page(sp);
2202 	}
2203 }
2204 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2205 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2206 					struct list_head *invalid_list)
2207 {
2208 	struct kvm_mmu_page *sp;
2209 
2210 	if (list_empty(&kvm->arch.active_mmu_pages))
2211 		return false;
2212 
2213 	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2214 			struct kvm_mmu_page, link);
2215 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2216 
2217 	return true;
2218 }
2219 
2220 /*
2221  * Changing the number of mmu pages allocated to the vm
2222  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2223  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2224 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2225 {
2226 	LIST_HEAD(invalid_list);
2227 
2228 	spin_lock(&kvm->mmu_lock);
2229 
2230 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2231 		/* Need to free some mmu pages to achieve the goal. */
2232 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2233 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2234 				break;
2235 
2236 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2237 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2238 	}
2239 
2240 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2241 
2242 	spin_unlock(&kvm->mmu_lock);
2243 }
2244 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2245 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2246 {
2247 	struct kvm_mmu_page *sp;
2248 	LIST_HEAD(invalid_list);
2249 	int r;
2250 
2251 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2252 	r = 0;
2253 	spin_lock(&kvm->mmu_lock);
2254 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2255 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2256 			 sp->role.word);
2257 		r = 1;
2258 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2259 	}
2260 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2261 	spin_unlock(&kvm->mmu_lock);
2262 
2263 	return r;
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2266 
2267 /*
2268  * The function is based on mtrr_type_lookup() in
2269  * arch/x86/kernel/cpu/mtrr/generic.c
2270  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2271 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2272 			 u64 start, u64 end)
2273 {
2274 	int i;
2275 	u64 base, mask;
2276 	u8 prev_match, curr_match;
2277 	int num_var_ranges = KVM_NR_VAR_MTRR;
2278 
2279 	if (!mtrr_state->enabled)
2280 		return 0xFF;
2281 
2282 	/* Make end inclusive end, instead of exclusive */
2283 	end--;
2284 
2285 	/* Look in fixed ranges. Just return the type as per start */
2286 	if (mtrr_state->have_fixed && (start < 0x100000)) {
2287 		int idx;
2288 
2289 		if (start < 0x80000) {
2290 			idx = 0;
2291 			idx += (start >> 16);
2292 			return mtrr_state->fixed_ranges[idx];
2293 		} else if (start < 0xC0000) {
2294 			idx = 1 * 8;
2295 			idx += ((start - 0x80000) >> 14);
2296 			return mtrr_state->fixed_ranges[idx];
2297 		} else if (start < 0x1000000) {
2298 			idx = 3 * 8;
2299 			idx += ((start - 0xC0000) >> 12);
2300 			return mtrr_state->fixed_ranges[idx];
2301 		}
2302 	}
2303 
2304 	/*
2305 	 * Look in variable ranges
2306 	 * Look of multiple ranges matching this address and pick type
2307 	 * as per MTRR precedence
2308 	 */
2309 	if (!(mtrr_state->enabled & 2))
2310 		return mtrr_state->def_type;
2311 
2312 	prev_match = 0xFF;
2313 	for (i = 0; i < num_var_ranges; ++i) {
2314 		unsigned short start_state, end_state;
2315 
2316 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2317 			continue;
2318 
2319 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2320 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2321 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2322 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2323 
2324 		start_state = ((start & mask) == (base & mask));
2325 		end_state = ((end & mask) == (base & mask));
2326 		if (start_state != end_state)
2327 			return 0xFE;
2328 
2329 		if ((start & mask) != (base & mask))
2330 			continue;
2331 
2332 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2333 		if (prev_match == 0xFF) {
2334 			prev_match = curr_match;
2335 			continue;
2336 		}
2337 
2338 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2339 		    curr_match == MTRR_TYPE_UNCACHABLE)
2340 			return MTRR_TYPE_UNCACHABLE;
2341 
2342 		if ((prev_match == MTRR_TYPE_WRBACK &&
2343 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2344 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2345 		     curr_match == MTRR_TYPE_WRBACK)) {
2346 			prev_match = MTRR_TYPE_WRTHROUGH;
2347 			curr_match = MTRR_TYPE_WRTHROUGH;
2348 		}
2349 
2350 		if (prev_match != curr_match)
2351 			return MTRR_TYPE_UNCACHABLE;
2352 	}
2353 
2354 	if (prev_match != 0xFF)
2355 		return prev_match;
2356 
2357 	return mtrr_state->def_type;
2358 }
2359 
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2360 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2361 {
2362 	u8 mtrr;
2363 
2364 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2365 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2366 	if (mtrr == 0xfe || mtrr == 0xff)
2367 		mtrr = MTRR_TYPE_WRBACK;
2368 	return mtrr;
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2371 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2372 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2373 {
2374 	trace_kvm_mmu_unsync_page(sp);
2375 	++vcpu->kvm->stat.mmu_unsync;
2376 	sp->unsync = 1;
2377 
2378 	kvm_mmu_mark_parents_unsync(sp);
2379 }
2380 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2381 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2382 {
2383 	struct kvm_mmu_page *s;
2384 
2385 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2386 		if (s->unsync)
2387 			continue;
2388 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2389 		__kvm_unsync_page(vcpu, s);
2390 	}
2391 }
2392 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2393 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2394 				  bool can_unsync)
2395 {
2396 	struct kvm_mmu_page *s;
2397 	bool need_unsync = false;
2398 
2399 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2400 		if (!can_unsync)
2401 			return 1;
2402 
2403 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2404 			return 1;
2405 
2406 		if (!s->unsync)
2407 			need_unsync = true;
2408 	}
2409 	if (need_unsync)
2410 		kvm_unsync_pages(vcpu, gfn);
2411 	return 0;
2412 }
2413 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2414 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2415 		    unsigned pte_access, int level,
2416 		    gfn_t gfn, pfn_t pfn, bool speculative,
2417 		    bool can_unsync, bool host_writable)
2418 {
2419 	u64 spte;
2420 	int ret = 0;
2421 
2422 	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2423 		return 0;
2424 
2425 	spte = PT_PRESENT_MASK;
2426 	if (!speculative)
2427 		spte |= shadow_accessed_mask;
2428 
2429 	if (pte_access & ACC_EXEC_MASK)
2430 		spte |= shadow_x_mask;
2431 	else
2432 		spte |= shadow_nx_mask;
2433 
2434 	if (pte_access & ACC_USER_MASK)
2435 		spte |= shadow_user_mask;
2436 
2437 	if (level > PT_PAGE_TABLE_LEVEL)
2438 		spte |= PT_PAGE_SIZE_MASK;
2439 	if (tdp_enabled)
2440 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2441 			kvm_is_reserved_pfn(pfn));
2442 
2443 	if (host_writable)
2444 		spte |= SPTE_HOST_WRITEABLE;
2445 	else
2446 		pte_access &= ~ACC_WRITE_MASK;
2447 
2448 	spte |= (u64)pfn << PAGE_SHIFT;
2449 
2450 	if (pte_access & ACC_WRITE_MASK) {
2451 
2452 		/*
2453 		 * Other vcpu creates new sp in the window between
2454 		 * mapping_level() and acquiring mmu-lock. We can
2455 		 * allow guest to retry the access, the mapping can
2456 		 * be fixed if guest refault.
2457 		 */
2458 		if (level > PT_PAGE_TABLE_LEVEL &&
2459 		    has_wrprotected_page(vcpu->kvm, gfn, level))
2460 			goto done;
2461 
2462 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2463 
2464 		/*
2465 		 * Optimization: for pte sync, if spte was writable the hash
2466 		 * lookup is unnecessary (and expensive). Write protection
2467 		 * is responsibility of mmu_get_page / kvm_sync_page.
2468 		 * Same reasoning can be applied to dirty page accounting.
2469 		 */
2470 		if (!can_unsync && is_writable_pte(*sptep))
2471 			goto set_pte;
2472 
2473 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2474 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2475 				 __func__, gfn);
2476 			ret = 1;
2477 			pte_access &= ~ACC_WRITE_MASK;
2478 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2479 		}
2480 	}
2481 
2482 	if (pte_access & ACC_WRITE_MASK)
2483 		mark_page_dirty(vcpu->kvm, gfn);
2484 
2485 set_pte:
2486 	if (mmu_spte_update(sptep, spte))
2487 		kvm_flush_remote_tlbs(vcpu->kvm);
2488 done:
2489 	return ret;
2490 }
2491 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2492 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2493 			 unsigned pte_access, int write_fault, int *emulate,
2494 			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2495 			 bool host_writable)
2496 {
2497 	int was_rmapped = 0;
2498 	int rmap_count;
2499 
2500 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2501 		 *sptep, write_fault, gfn);
2502 
2503 	if (is_rmap_spte(*sptep)) {
2504 		/*
2505 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2506 		 * the parent of the now unreachable PTE.
2507 		 */
2508 		if (level > PT_PAGE_TABLE_LEVEL &&
2509 		    !is_large_pte(*sptep)) {
2510 			struct kvm_mmu_page *child;
2511 			u64 pte = *sptep;
2512 
2513 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2514 			drop_parent_pte(child, sptep);
2515 			kvm_flush_remote_tlbs(vcpu->kvm);
2516 		} else if (pfn != spte_to_pfn(*sptep)) {
2517 			pgprintk("hfn old %llx new %llx\n",
2518 				 spte_to_pfn(*sptep), pfn);
2519 			drop_spte(vcpu->kvm, sptep);
2520 			kvm_flush_remote_tlbs(vcpu->kvm);
2521 		} else
2522 			was_rmapped = 1;
2523 	}
2524 
2525 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2526 	      true, host_writable)) {
2527 		if (write_fault)
2528 			*emulate = 1;
2529 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2530 	}
2531 
2532 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2533 		*emulate = 1;
2534 
2535 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2536 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2537 		 is_large_pte(*sptep)? "2MB" : "4kB",
2538 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2539 		 *sptep, sptep);
2540 	if (!was_rmapped && is_large_pte(*sptep))
2541 		++vcpu->kvm->stat.lpages;
2542 
2543 	if (is_shadow_present_pte(*sptep)) {
2544 		if (!was_rmapped) {
2545 			rmap_count = rmap_add(vcpu, sptep, gfn);
2546 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2547 				rmap_recycle(vcpu, sptep, gfn);
2548 		}
2549 	}
2550 
2551 	kvm_release_pfn_clean(pfn);
2552 }
2553 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2554 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2555 				     bool no_dirty_log)
2556 {
2557 	struct kvm_memory_slot *slot;
2558 
2559 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2560 	if (!slot)
2561 		return KVM_PFN_ERR_FAULT;
2562 
2563 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2564 }
2565 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2566 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2567 				    struct kvm_mmu_page *sp,
2568 				    u64 *start, u64 *end)
2569 {
2570 	struct page *pages[PTE_PREFETCH_NUM];
2571 	unsigned access = sp->role.access;
2572 	int i, ret;
2573 	gfn_t gfn;
2574 
2575 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2576 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2577 		return -1;
2578 
2579 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2580 	if (ret <= 0)
2581 		return -1;
2582 
2583 	for (i = 0; i < ret; i++, gfn++, start++)
2584 		mmu_set_spte(vcpu, start, access, 0, NULL,
2585 			     sp->role.level, gfn, page_to_pfn(pages[i]),
2586 			     true, true);
2587 
2588 	return 0;
2589 }
2590 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2591 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2592 				  struct kvm_mmu_page *sp, u64 *sptep)
2593 {
2594 	u64 *spte, *start = NULL;
2595 	int i;
2596 
2597 	WARN_ON(!sp->role.direct);
2598 
2599 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2600 	spte = sp->spt + i;
2601 
2602 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2603 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2604 			if (!start)
2605 				continue;
2606 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2607 				break;
2608 			start = NULL;
2609 		} else if (!start)
2610 			start = spte;
2611 	}
2612 }
2613 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2614 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2615 {
2616 	struct kvm_mmu_page *sp;
2617 
2618 	/*
2619 	 * Since it's no accessed bit on EPT, it's no way to
2620 	 * distinguish between actually accessed translations
2621 	 * and prefetched, so disable pte prefetch if EPT is
2622 	 * enabled.
2623 	 */
2624 	if (!shadow_accessed_mask)
2625 		return;
2626 
2627 	sp = page_header(__pa(sptep));
2628 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2629 		return;
2630 
2631 	__direct_pte_prefetch(vcpu, sp, sptep);
2632 }
2633 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2634 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2635 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2636 			bool prefault)
2637 {
2638 	struct kvm_shadow_walk_iterator iterator;
2639 	struct kvm_mmu_page *sp;
2640 	int emulate = 0;
2641 	gfn_t pseudo_gfn;
2642 
2643 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2644 		return 0;
2645 
2646 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2647 		if (iterator.level == level) {
2648 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2649 				     write, &emulate, level, gfn, pfn,
2650 				     prefault, map_writable);
2651 			direct_pte_prefetch(vcpu, iterator.sptep);
2652 			++vcpu->stat.pf_fixed;
2653 			break;
2654 		}
2655 
2656 		drop_large_spte(vcpu, iterator.sptep);
2657 		if (!is_shadow_present_pte(*iterator.sptep)) {
2658 			u64 base_addr = iterator.addr;
2659 
2660 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2661 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2662 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2663 					      iterator.level - 1,
2664 					      1, ACC_ALL, iterator.sptep);
2665 
2666 			link_shadow_page(iterator.sptep, sp, true);
2667 		}
2668 	}
2669 	return emulate;
2670 }
2671 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2672 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2673 {
2674 	siginfo_t info;
2675 
2676 	info.si_signo	= SIGBUS;
2677 	info.si_errno	= 0;
2678 	info.si_code	= BUS_MCEERR_AR;
2679 	info.si_addr	= (void __user *)address;
2680 	info.si_addr_lsb = PAGE_SHIFT;
2681 
2682 	send_sig_info(SIGBUS, &info, tsk);
2683 }
2684 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2685 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2686 {
2687 	/*
2688 	 * Do not cache the mmio info caused by writing the readonly gfn
2689 	 * into the spte otherwise read access on readonly gfn also can
2690 	 * caused mmio page fault and treat it as mmio access.
2691 	 * Return 1 to tell kvm to emulate it.
2692 	 */
2693 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2694 		return 1;
2695 
2696 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2697 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2698 		return 0;
2699 	}
2700 
2701 	return -EFAULT;
2702 }
2703 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2704 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2705 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2706 {
2707 	pfn_t pfn = *pfnp;
2708 	gfn_t gfn = *gfnp;
2709 	int level = *levelp;
2710 
2711 	/*
2712 	 * Check if it's a transparent hugepage. If this would be an
2713 	 * hugetlbfs page, level wouldn't be set to
2714 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2715 	 * here.
2716 	 */
2717 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2718 	    level == PT_PAGE_TABLE_LEVEL &&
2719 	    PageTransCompound(pfn_to_page(pfn)) &&
2720 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2721 		unsigned long mask;
2722 		/*
2723 		 * mmu_notifier_retry was successful and we hold the
2724 		 * mmu_lock here, so the pmd can't become splitting
2725 		 * from under us, and in turn
2726 		 * __split_huge_page_refcount() can't run from under
2727 		 * us and we can safely transfer the refcount from
2728 		 * PG_tail to PG_head as we switch the pfn to tail to
2729 		 * head.
2730 		 */
2731 		*levelp = level = PT_DIRECTORY_LEVEL;
2732 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2733 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2734 		if (pfn & mask) {
2735 			gfn &= ~mask;
2736 			*gfnp = gfn;
2737 			kvm_release_pfn_clean(pfn);
2738 			pfn &= ~mask;
2739 			kvm_get_pfn(pfn);
2740 			*pfnp = pfn;
2741 		}
2742 	}
2743 }
2744 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2745 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2746 				pfn_t pfn, unsigned access, int *ret_val)
2747 {
2748 	bool ret = true;
2749 
2750 	/* The pfn is invalid, report the error! */
2751 	if (unlikely(is_error_pfn(pfn))) {
2752 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2753 		goto exit;
2754 	}
2755 
2756 	if (unlikely(is_noslot_pfn(pfn)))
2757 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2758 
2759 	ret = false;
2760 exit:
2761 	return ret;
2762 }
2763 
page_fault_can_be_fast(u32 error_code)2764 static bool page_fault_can_be_fast(u32 error_code)
2765 {
2766 	/*
2767 	 * Do not fix the mmio spte with invalid generation number which
2768 	 * need to be updated by slow page fault path.
2769 	 */
2770 	if (unlikely(error_code & PFERR_RSVD_MASK))
2771 		return false;
2772 
2773 	/*
2774 	 * #PF can be fast only if the shadow page table is present and it
2775 	 * is caused by write-protect, that means we just need change the
2776 	 * W bit of the spte which can be done out of mmu-lock.
2777 	 */
2778 	if (!(error_code & PFERR_PRESENT_MASK) ||
2779 	      !(error_code & PFERR_WRITE_MASK))
2780 		return false;
2781 
2782 	return true;
2783 }
2784 
2785 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 spte)2786 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2787 			u64 *sptep, u64 spte)
2788 {
2789 	gfn_t gfn;
2790 
2791 	WARN_ON(!sp->role.direct);
2792 
2793 	/*
2794 	 * The gfn of direct spte is stable since it is calculated
2795 	 * by sp->gfn.
2796 	 */
2797 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2798 
2799 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2800 		mark_page_dirty(vcpu->kvm, gfn);
2801 
2802 	return true;
2803 }
2804 
2805 /*
2806  * Return value:
2807  * - true: let the vcpu to access on the same address again.
2808  * - false: let the real page fault path to fix it.
2809  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2810 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2811 			    u32 error_code)
2812 {
2813 	struct kvm_shadow_walk_iterator iterator;
2814 	struct kvm_mmu_page *sp;
2815 	bool ret = false;
2816 	u64 spte = 0ull;
2817 
2818 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2819 		return false;
2820 
2821 	if (!page_fault_can_be_fast(error_code))
2822 		return false;
2823 
2824 	walk_shadow_page_lockless_begin(vcpu);
2825 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2826 		if (!is_shadow_present_pte(spte) || iterator.level < level)
2827 			break;
2828 
2829 	/*
2830 	 * If the mapping has been changed, let the vcpu fault on the
2831 	 * same address again.
2832 	 */
2833 	if (!is_rmap_spte(spte)) {
2834 		ret = true;
2835 		goto exit;
2836 	}
2837 
2838 	sp = page_header(__pa(iterator.sptep));
2839 	if (!is_last_spte(spte, sp->role.level))
2840 		goto exit;
2841 
2842 	/*
2843 	 * Check if it is a spurious fault caused by TLB lazily flushed.
2844 	 *
2845 	 * Need not check the access of upper level table entries since
2846 	 * they are always ACC_ALL.
2847 	 */
2848 	 if (is_writable_pte(spte)) {
2849 		ret = true;
2850 		goto exit;
2851 	}
2852 
2853 	/*
2854 	 * Currently, to simplify the code, only the spte write-protected
2855 	 * by dirty-log can be fast fixed.
2856 	 */
2857 	if (!spte_is_locklessly_modifiable(spte))
2858 		goto exit;
2859 
2860 	/*
2861 	 * Do not fix write-permission on the large spte since we only dirty
2862 	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2863 	 * that means other pages are missed if its slot is dirty-logged.
2864 	 *
2865 	 * Instead, we let the slow page fault path create a normal spte to
2866 	 * fix the access.
2867 	 *
2868 	 * See the comments in kvm_arch_commit_memory_region().
2869 	 */
2870 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2871 		goto exit;
2872 
2873 	/*
2874 	 * Currently, fast page fault only works for direct mapping since
2875 	 * the gfn is not stable for indirect shadow page.
2876 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2877 	 */
2878 	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2879 exit:
2880 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2881 			      spte, ret);
2882 	walk_shadow_page_lockless_end(vcpu);
2883 
2884 	return ret;
2885 }
2886 
2887 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2888 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2889 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2890 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)2891 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2892 			 gfn_t gfn, bool prefault)
2893 {
2894 	int r;
2895 	int level;
2896 	int force_pt_level;
2897 	pfn_t pfn;
2898 	unsigned long mmu_seq;
2899 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2900 
2901 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2902 	if (likely(!force_pt_level)) {
2903 		level = mapping_level(vcpu, gfn);
2904 		/*
2905 		 * This path builds a PAE pagetable - so we can map
2906 		 * 2mb pages at maximum. Therefore check if the level
2907 		 * is larger than that.
2908 		 */
2909 		if (level > PT_DIRECTORY_LEVEL)
2910 			level = PT_DIRECTORY_LEVEL;
2911 
2912 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2913 	} else
2914 		level = PT_PAGE_TABLE_LEVEL;
2915 
2916 	if (fast_page_fault(vcpu, v, level, error_code))
2917 		return 0;
2918 
2919 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2920 	smp_rmb();
2921 
2922 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2923 		return 0;
2924 
2925 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2926 		return r;
2927 
2928 	spin_lock(&vcpu->kvm->mmu_lock);
2929 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2930 		goto out_unlock;
2931 	make_mmu_pages_available(vcpu);
2932 	if (likely(!force_pt_level))
2933 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2934 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2935 			 prefault);
2936 	spin_unlock(&vcpu->kvm->mmu_lock);
2937 
2938 
2939 	return r;
2940 
2941 out_unlock:
2942 	spin_unlock(&vcpu->kvm->mmu_lock);
2943 	kvm_release_pfn_clean(pfn);
2944 	return 0;
2945 }
2946 
2947 
mmu_free_roots(struct kvm_vcpu * vcpu)2948 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2949 {
2950 	int i;
2951 	struct kvm_mmu_page *sp;
2952 	LIST_HEAD(invalid_list);
2953 
2954 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2955 		return;
2956 
2957 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2958 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2959 	     vcpu->arch.mmu.direct_map)) {
2960 		hpa_t root = vcpu->arch.mmu.root_hpa;
2961 
2962 		spin_lock(&vcpu->kvm->mmu_lock);
2963 		sp = page_header(root);
2964 		--sp->root_count;
2965 		if (!sp->root_count && sp->role.invalid) {
2966 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2967 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2968 		}
2969 		spin_unlock(&vcpu->kvm->mmu_lock);
2970 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2971 		return;
2972 	}
2973 
2974 	spin_lock(&vcpu->kvm->mmu_lock);
2975 	for (i = 0; i < 4; ++i) {
2976 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2977 
2978 		if (root) {
2979 			root &= PT64_BASE_ADDR_MASK;
2980 			sp = page_header(root);
2981 			--sp->root_count;
2982 			if (!sp->root_count && sp->role.invalid)
2983 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2984 							 &invalid_list);
2985 		}
2986 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2987 	}
2988 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2989 	spin_unlock(&vcpu->kvm->mmu_lock);
2990 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2991 }
2992 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)2993 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2994 {
2995 	int ret = 0;
2996 
2997 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2998 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2999 		ret = 1;
3000 	}
3001 
3002 	return ret;
3003 }
3004 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3005 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3006 {
3007 	struct kvm_mmu_page *sp;
3008 	unsigned i;
3009 
3010 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3011 		spin_lock(&vcpu->kvm->mmu_lock);
3012 		make_mmu_pages_available(vcpu);
3013 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3014 				      1, ACC_ALL, NULL);
3015 		++sp->root_count;
3016 		spin_unlock(&vcpu->kvm->mmu_lock);
3017 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3018 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3019 		for (i = 0; i < 4; ++i) {
3020 			hpa_t root = vcpu->arch.mmu.pae_root[i];
3021 
3022 			ASSERT(!VALID_PAGE(root));
3023 			spin_lock(&vcpu->kvm->mmu_lock);
3024 			make_mmu_pages_available(vcpu);
3025 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3026 					      i << 30,
3027 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
3028 					      NULL);
3029 			root = __pa(sp->spt);
3030 			++sp->root_count;
3031 			spin_unlock(&vcpu->kvm->mmu_lock);
3032 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3033 		}
3034 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3035 	} else
3036 		BUG();
3037 
3038 	return 0;
3039 }
3040 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3041 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3042 {
3043 	struct kvm_mmu_page *sp;
3044 	u64 pdptr, pm_mask;
3045 	gfn_t root_gfn;
3046 	int i;
3047 
3048 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3049 
3050 	if (mmu_check_root(vcpu, root_gfn))
3051 		return 1;
3052 
3053 	/*
3054 	 * Do we shadow a long mode page table? If so we need to
3055 	 * write-protect the guests page table root.
3056 	 */
3057 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3058 		hpa_t root = vcpu->arch.mmu.root_hpa;
3059 
3060 		ASSERT(!VALID_PAGE(root));
3061 
3062 		spin_lock(&vcpu->kvm->mmu_lock);
3063 		make_mmu_pages_available(vcpu);
3064 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3065 				      0, ACC_ALL, NULL);
3066 		root = __pa(sp->spt);
3067 		++sp->root_count;
3068 		spin_unlock(&vcpu->kvm->mmu_lock);
3069 		vcpu->arch.mmu.root_hpa = root;
3070 		return 0;
3071 	}
3072 
3073 	/*
3074 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3075 	 * or a PAE 3-level page table. In either case we need to be aware that
3076 	 * the shadow page table may be a PAE or a long mode page table.
3077 	 */
3078 	pm_mask = PT_PRESENT_MASK;
3079 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3080 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3081 
3082 	for (i = 0; i < 4; ++i) {
3083 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3084 
3085 		ASSERT(!VALID_PAGE(root));
3086 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3087 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3088 			if (!is_present_gpte(pdptr)) {
3089 				vcpu->arch.mmu.pae_root[i] = 0;
3090 				continue;
3091 			}
3092 			root_gfn = pdptr >> PAGE_SHIFT;
3093 			if (mmu_check_root(vcpu, root_gfn))
3094 				return 1;
3095 		}
3096 		spin_lock(&vcpu->kvm->mmu_lock);
3097 		make_mmu_pages_available(vcpu);
3098 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3099 				      PT32_ROOT_LEVEL, 0,
3100 				      ACC_ALL, NULL);
3101 		root = __pa(sp->spt);
3102 		++sp->root_count;
3103 		spin_unlock(&vcpu->kvm->mmu_lock);
3104 
3105 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3106 	}
3107 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3108 
3109 	/*
3110 	 * If we shadow a 32 bit page table with a long mode page
3111 	 * table we enter this path.
3112 	 */
3113 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3114 		if (vcpu->arch.mmu.lm_root == NULL) {
3115 			/*
3116 			 * The additional page necessary for this is only
3117 			 * allocated on demand.
3118 			 */
3119 
3120 			u64 *lm_root;
3121 
3122 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3123 			if (lm_root == NULL)
3124 				return 1;
3125 
3126 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3127 
3128 			vcpu->arch.mmu.lm_root = lm_root;
3129 		}
3130 
3131 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3132 	}
3133 
3134 	return 0;
3135 }
3136 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3137 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3138 {
3139 	if (vcpu->arch.mmu.direct_map)
3140 		return mmu_alloc_direct_roots(vcpu);
3141 	else
3142 		return mmu_alloc_shadow_roots(vcpu);
3143 }
3144 
mmu_sync_roots(struct kvm_vcpu * vcpu)3145 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3146 {
3147 	int i;
3148 	struct kvm_mmu_page *sp;
3149 
3150 	if (vcpu->arch.mmu.direct_map)
3151 		return;
3152 
3153 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3154 		return;
3155 
3156 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3157 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3158 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3159 		hpa_t root = vcpu->arch.mmu.root_hpa;
3160 		sp = page_header(root);
3161 		mmu_sync_children(vcpu, sp);
3162 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3163 		return;
3164 	}
3165 	for (i = 0; i < 4; ++i) {
3166 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3167 
3168 		if (root && VALID_PAGE(root)) {
3169 			root &= PT64_BASE_ADDR_MASK;
3170 			sp = page_header(root);
3171 			mmu_sync_children(vcpu, sp);
3172 		}
3173 	}
3174 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3175 }
3176 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3177 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3178 {
3179 	spin_lock(&vcpu->kvm->mmu_lock);
3180 	mmu_sync_roots(vcpu);
3181 	spin_unlock(&vcpu->kvm->mmu_lock);
3182 }
3183 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3184 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3185 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3186 				  u32 access, struct x86_exception *exception)
3187 {
3188 	if (exception)
3189 		exception->error_code = 0;
3190 	return vaddr;
3191 }
3192 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3193 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3194 					 u32 access,
3195 					 struct x86_exception *exception)
3196 {
3197 	if (exception)
3198 		exception->error_code = 0;
3199 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3200 }
3201 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)3202 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3203 {
3204 	if (direct)
3205 		return vcpu_match_mmio_gpa(vcpu, addr);
3206 
3207 	return vcpu_match_mmio_gva(vcpu, addr);
3208 }
3209 
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)3210 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3211 {
3212 	struct kvm_shadow_walk_iterator iterator;
3213 	u64 spte = 0ull;
3214 
3215 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3216 		return spte;
3217 
3218 	walk_shadow_page_lockless_begin(vcpu);
3219 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3220 		if (!is_shadow_present_pte(spte))
3221 			break;
3222 	walk_shadow_page_lockless_end(vcpu);
3223 
3224 	return spte;
3225 }
3226 
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)3227 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3228 {
3229 	u64 spte;
3230 
3231 	if (quickly_check_mmio_pf(vcpu, addr, direct))
3232 		return RET_MMIO_PF_EMULATE;
3233 
3234 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3235 
3236 	if (is_mmio_spte(spte)) {
3237 		gfn_t gfn = get_mmio_spte_gfn(spte);
3238 		unsigned access = get_mmio_spte_access(spte);
3239 
3240 		if (!check_mmio_spte(vcpu->kvm, spte))
3241 			return RET_MMIO_PF_INVALID;
3242 
3243 		if (direct)
3244 			addr = 0;
3245 
3246 		trace_handle_mmio_page_fault(addr, gfn, access);
3247 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3248 		return RET_MMIO_PF_EMULATE;
3249 	}
3250 
3251 	/*
3252 	 * If the page table is zapped by other cpus, let CPU fault again on
3253 	 * the address.
3254 	 */
3255 	return RET_MMIO_PF_RETRY;
3256 }
3257 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3258 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)3259 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3260 				  u32 error_code, bool direct)
3261 {
3262 	int ret;
3263 
3264 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3265 	WARN_ON(ret == RET_MMIO_PF_BUG);
3266 	return ret;
3267 }
3268 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3269 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3270 				u32 error_code, bool prefault)
3271 {
3272 	gfn_t gfn;
3273 	int r;
3274 
3275 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3276 
3277 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3278 		r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3279 
3280 		if (likely(r != RET_MMIO_PF_INVALID))
3281 			return r;
3282 	}
3283 
3284 	r = mmu_topup_memory_caches(vcpu);
3285 	if (r)
3286 		return r;
3287 
3288 	ASSERT(vcpu);
3289 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3290 
3291 	gfn = gva >> PAGE_SHIFT;
3292 
3293 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3294 			     error_code, gfn, prefault);
3295 }
3296 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3297 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3298 {
3299 	struct kvm_arch_async_pf arch;
3300 
3301 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3302 	arch.gfn = gfn;
3303 	arch.direct_map = vcpu->arch.mmu.direct_map;
3304 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3305 
3306 	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3307 }
3308 
can_do_async_pf(struct kvm_vcpu * vcpu)3309 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3310 {
3311 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3312 		     kvm_event_needs_reinjection(vcpu)))
3313 		return false;
3314 
3315 	return kvm_x86_ops->interrupt_allowed(vcpu);
3316 }
3317 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3318 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3319 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3320 {
3321 	bool async;
3322 
3323 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3324 
3325 	if (!async)
3326 		return false; /* *pfn has correct page already */
3327 
3328 	if (!prefault && can_do_async_pf(vcpu)) {
3329 		trace_kvm_try_async_get_page(gva, gfn);
3330 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3331 			trace_kvm_async_pf_doublefault(gva, gfn);
3332 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3333 			return true;
3334 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3335 			return true;
3336 	}
3337 
3338 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3339 
3340 	return false;
3341 }
3342 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3343 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3344 			  bool prefault)
3345 {
3346 	pfn_t pfn;
3347 	int r;
3348 	int level;
3349 	int force_pt_level;
3350 	gfn_t gfn = gpa >> PAGE_SHIFT;
3351 	unsigned long mmu_seq;
3352 	int write = error_code & PFERR_WRITE_MASK;
3353 	bool map_writable;
3354 
3355 	ASSERT(vcpu);
3356 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3357 
3358 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3359 		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3360 
3361 		if (likely(r != RET_MMIO_PF_INVALID))
3362 			return r;
3363 	}
3364 
3365 	r = mmu_topup_memory_caches(vcpu);
3366 	if (r)
3367 		return r;
3368 
3369 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3370 	if (likely(!force_pt_level)) {
3371 		level = mapping_level(vcpu, gfn);
3372 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3373 	} else
3374 		level = PT_PAGE_TABLE_LEVEL;
3375 
3376 	if (fast_page_fault(vcpu, gpa, level, error_code))
3377 		return 0;
3378 
3379 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3380 	smp_rmb();
3381 
3382 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3383 		return 0;
3384 
3385 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3386 		return r;
3387 
3388 	spin_lock(&vcpu->kvm->mmu_lock);
3389 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3390 		goto out_unlock;
3391 	make_mmu_pages_available(vcpu);
3392 	if (likely(!force_pt_level))
3393 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3394 	r = __direct_map(vcpu, gpa, write, map_writable,
3395 			 level, gfn, pfn, prefault);
3396 	spin_unlock(&vcpu->kvm->mmu_lock);
3397 
3398 	return r;
3399 
3400 out_unlock:
3401 	spin_unlock(&vcpu->kvm->mmu_lock);
3402 	kvm_release_pfn_clean(pfn);
3403 	return 0;
3404 }
3405 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3406 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3407 				   struct kvm_mmu *context)
3408 {
3409 	context->page_fault = nonpaging_page_fault;
3410 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3411 	context->sync_page = nonpaging_sync_page;
3412 	context->invlpg = nonpaging_invlpg;
3413 	context->update_pte = nonpaging_update_pte;
3414 	context->root_level = 0;
3415 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3416 	context->root_hpa = INVALID_PAGE;
3417 	context->direct_map = true;
3418 	context->nx = false;
3419 }
3420 
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu)3421 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3422 {
3423 	mmu_free_roots(vcpu);
3424 }
3425 
get_cr3(struct kvm_vcpu * vcpu)3426 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3427 {
3428 	return kvm_read_cr3(vcpu);
3429 }
3430 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3431 static void inject_page_fault(struct kvm_vcpu *vcpu,
3432 			      struct x86_exception *fault)
3433 {
3434 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3435 }
3436 
sync_mmio_spte(struct kvm * kvm,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3437 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3438 			   unsigned access, int *nr_present)
3439 {
3440 	if (unlikely(is_mmio_spte(*sptep))) {
3441 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3442 			mmu_spte_clear_no_track(sptep);
3443 			return true;
3444 		}
3445 
3446 		(*nr_present)++;
3447 		mark_mmio_spte(kvm, sptep, gfn, access);
3448 		return true;
3449 	}
3450 
3451 	return false;
3452 }
3453 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3454 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3455 {
3456 	unsigned index;
3457 
3458 	index = level - 1;
3459 	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3460 	return mmu->last_pte_bitmap & (1 << index);
3461 }
3462 
3463 #define PTTYPE_EPT 18 /* arbitrary */
3464 #define PTTYPE PTTYPE_EPT
3465 #include "paging_tmpl.h"
3466 #undef PTTYPE
3467 
3468 #define PTTYPE 64
3469 #include "paging_tmpl.h"
3470 #undef PTTYPE
3471 
3472 #define PTTYPE 32
3473 #include "paging_tmpl.h"
3474 #undef PTTYPE
3475 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3476 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3477 				  struct kvm_mmu *context)
3478 {
3479 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3480 	u64 exb_bit_rsvd = 0;
3481 	u64 gbpages_bit_rsvd = 0;
3482 	u64 nonleaf_bit8_rsvd = 0;
3483 
3484 	context->bad_mt_xwr = 0;
3485 
3486 	if (!context->nx)
3487 		exb_bit_rsvd = rsvd_bits(63, 63);
3488 	if (!guest_cpuid_has_gbpages(vcpu))
3489 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3490 
3491 	/*
3492 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3493 	 * leaf entries) on AMD CPUs only.
3494 	 */
3495 	if (guest_cpuid_is_amd(vcpu))
3496 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3497 
3498 	switch (context->root_level) {
3499 	case PT32_ROOT_LEVEL:
3500 		/* no rsvd bits for 2 level 4K page table entries */
3501 		context->rsvd_bits_mask[0][1] = 0;
3502 		context->rsvd_bits_mask[0][0] = 0;
3503 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3504 
3505 		if (!is_pse(vcpu)) {
3506 			context->rsvd_bits_mask[1][1] = 0;
3507 			break;
3508 		}
3509 
3510 		if (is_cpuid_PSE36())
3511 			/* 36bits PSE 4MB page */
3512 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3513 		else
3514 			/* 32 bits PSE 4MB page */
3515 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3516 		break;
3517 	case PT32E_ROOT_LEVEL:
3518 		context->rsvd_bits_mask[0][2] =
3519 			rsvd_bits(maxphyaddr, 63) |
3520 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3521 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3522 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3523 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3524 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3525 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3526 			rsvd_bits(maxphyaddr, 62) |
3527 			rsvd_bits(13, 20);		/* large page */
3528 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3529 		break;
3530 	case PT64_ROOT_LEVEL:
3531 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3532 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3533 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3534 			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3535 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3536 			rsvd_bits(maxphyaddr, 51);
3537 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3538 			rsvd_bits(maxphyaddr, 51);
3539 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3540 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3541 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3542 			rsvd_bits(13, 29);
3543 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3544 			rsvd_bits(maxphyaddr, 51) |
3545 			rsvd_bits(13, 20);		/* large page */
3546 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3547 		break;
3548 	}
3549 }
3550 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3551 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3552 		struct kvm_mmu *context, bool execonly)
3553 {
3554 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3555 	int pte;
3556 
3557 	context->rsvd_bits_mask[0][3] =
3558 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3559 	context->rsvd_bits_mask[0][2] =
3560 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3561 	context->rsvd_bits_mask[0][1] =
3562 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3563 	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3564 
3565 	/* large page */
3566 	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3567 	context->rsvd_bits_mask[1][2] =
3568 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3569 	context->rsvd_bits_mask[1][1] =
3570 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3571 	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3572 
3573 	for (pte = 0; pte < 64; pte++) {
3574 		int rwx_bits = pte & 7;
3575 		int mt = pte >> 3;
3576 		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3577 				rwx_bits == 0x2 || rwx_bits == 0x6 ||
3578 				(rwx_bits == 0x4 && !execonly))
3579 			context->bad_mt_xwr |= (1ull << pte);
3580 	}
3581 }
3582 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)3583 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3584 				      struct kvm_mmu *mmu, bool ept)
3585 {
3586 	unsigned bit, byte, pfec;
3587 	u8 map;
3588 	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3589 
3590 	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3591 	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3592 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3593 		pfec = byte << 1;
3594 		map = 0;
3595 		wf = pfec & PFERR_WRITE_MASK;
3596 		uf = pfec & PFERR_USER_MASK;
3597 		ff = pfec & PFERR_FETCH_MASK;
3598 		/*
3599 		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3600 		 * subject to SMAP restrictions, and cleared otherwise. The
3601 		 * bit is only meaningful if the SMAP bit is set in CR4.
3602 		 */
3603 		smapf = !(pfec & PFERR_RSVD_MASK);
3604 		for (bit = 0; bit < 8; ++bit) {
3605 			x = bit & ACC_EXEC_MASK;
3606 			w = bit & ACC_WRITE_MASK;
3607 			u = bit & ACC_USER_MASK;
3608 
3609 			if (!ept) {
3610 				/* Not really needed: !nx will cause pte.nx to fault */
3611 				x |= !mmu->nx;
3612 				/* Allow supervisor writes if !cr0.wp */
3613 				w |= !is_write_protection(vcpu) && !uf;
3614 				/* Disallow supervisor fetches of user code if cr4.smep */
3615 				x &= !(cr4_smep && u && !uf);
3616 
3617 				/*
3618 				 * SMAP:kernel-mode data accesses from user-mode
3619 				 * mappings should fault. A fault is considered
3620 				 * as a SMAP violation if all of the following
3621 				 * conditions are ture:
3622 				 *   - X86_CR4_SMAP is set in CR4
3623 				 *   - An user page is accessed
3624 				 *   - Page fault in kernel mode
3625 				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3626 				 *
3627 				 *   Here, we cover the first three conditions.
3628 				 *   The fourth is computed dynamically in
3629 				 *   permission_fault() and is in smapf.
3630 				 *
3631 				 *   Also, SMAP does not affect instruction
3632 				 *   fetches, add the !ff check here to make it
3633 				 *   clearer.
3634 				 */
3635 				smap = cr4_smap && u && !uf && !ff;
3636 			} else
3637 				/* Not really needed: no U/S accesses on ept  */
3638 				u = 1;
3639 
3640 			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3641 				(smapf && smap);
3642 			map |= fault << bit;
3643 		}
3644 		mmu->permissions[byte] = map;
3645 	}
3646 }
3647 
update_last_pte_bitmap(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3648 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3649 {
3650 	u8 map;
3651 	unsigned level, root_level = mmu->root_level;
3652 	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3653 
3654 	if (root_level == PT32E_ROOT_LEVEL)
3655 		--root_level;
3656 	/* PT_PAGE_TABLE_LEVEL always terminates */
3657 	map = 1 | (1 << ps_set_index);
3658 	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3659 		if (level <= PT_PDPE_LEVEL
3660 		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3661 			map |= 1 << (ps_set_index | (level - 1));
3662 	}
3663 	mmu->last_pte_bitmap = map;
3664 }
3665 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3666 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3667 					 struct kvm_mmu *context,
3668 					 int level)
3669 {
3670 	context->nx = is_nx(vcpu);
3671 	context->root_level = level;
3672 
3673 	reset_rsvds_bits_mask(vcpu, context);
3674 	update_permission_bitmask(vcpu, context, false);
3675 	update_last_pte_bitmap(vcpu, context);
3676 
3677 	ASSERT(is_pae(vcpu));
3678 	context->page_fault = paging64_page_fault;
3679 	context->gva_to_gpa = paging64_gva_to_gpa;
3680 	context->sync_page = paging64_sync_page;
3681 	context->invlpg = paging64_invlpg;
3682 	context->update_pte = paging64_update_pte;
3683 	context->shadow_root_level = level;
3684 	context->root_hpa = INVALID_PAGE;
3685 	context->direct_map = false;
3686 }
3687 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3688 static void paging64_init_context(struct kvm_vcpu *vcpu,
3689 				  struct kvm_mmu *context)
3690 {
3691 	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3692 }
3693 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3694 static void paging32_init_context(struct kvm_vcpu *vcpu,
3695 				  struct kvm_mmu *context)
3696 {
3697 	context->nx = false;
3698 	context->root_level = PT32_ROOT_LEVEL;
3699 
3700 	reset_rsvds_bits_mask(vcpu, context);
3701 	update_permission_bitmask(vcpu, context, false);
3702 	update_last_pte_bitmap(vcpu, context);
3703 
3704 	context->page_fault = paging32_page_fault;
3705 	context->gva_to_gpa = paging32_gva_to_gpa;
3706 	context->sync_page = paging32_sync_page;
3707 	context->invlpg = paging32_invlpg;
3708 	context->update_pte = paging32_update_pte;
3709 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3710 	context->root_hpa = INVALID_PAGE;
3711 	context->direct_map = false;
3712 }
3713 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3714 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3715 				   struct kvm_mmu *context)
3716 {
3717 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3718 }
3719 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3720 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3721 {
3722 	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3723 
3724 	context->base_role.word = 0;
3725 	context->page_fault = tdp_page_fault;
3726 	context->sync_page = nonpaging_sync_page;
3727 	context->invlpg = nonpaging_invlpg;
3728 	context->update_pte = nonpaging_update_pte;
3729 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3730 	context->root_hpa = INVALID_PAGE;
3731 	context->direct_map = true;
3732 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3733 	context->get_cr3 = get_cr3;
3734 	context->get_pdptr = kvm_pdptr_read;
3735 	context->inject_page_fault = kvm_inject_page_fault;
3736 
3737 	if (!is_paging(vcpu)) {
3738 		context->nx = false;
3739 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3740 		context->root_level = 0;
3741 	} else if (is_long_mode(vcpu)) {
3742 		context->nx = is_nx(vcpu);
3743 		context->root_level = PT64_ROOT_LEVEL;
3744 		reset_rsvds_bits_mask(vcpu, context);
3745 		context->gva_to_gpa = paging64_gva_to_gpa;
3746 	} else if (is_pae(vcpu)) {
3747 		context->nx = is_nx(vcpu);
3748 		context->root_level = PT32E_ROOT_LEVEL;
3749 		reset_rsvds_bits_mask(vcpu, context);
3750 		context->gva_to_gpa = paging64_gva_to_gpa;
3751 	} else {
3752 		context->nx = false;
3753 		context->root_level = PT32_ROOT_LEVEL;
3754 		reset_rsvds_bits_mask(vcpu, context);
3755 		context->gva_to_gpa = paging32_gva_to_gpa;
3756 	}
3757 
3758 	update_permission_bitmask(vcpu, context, false);
3759 	update_last_pte_bitmap(vcpu, context);
3760 }
3761 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3762 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3763 {
3764 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3765 	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3766 	ASSERT(vcpu);
3767 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3768 
3769 	if (!is_paging(vcpu))
3770 		nonpaging_init_context(vcpu, context);
3771 	else if (is_long_mode(vcpu))
3772 		paging64_init_context(vcpu, context);
3773 	else if (is_pae(vcpu))
3774 		paging32E_init_context(vcpu, context);
3775 	else
3776 		paging32_init_context(vcpu, context);
3777 
3778 	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3779 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3780 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3781 	vcpu->arch.mmu.base_role.smep_andnot_wp
3782 		= smep && !is_write_protection(vcpu);
3783 	context->base_role.smap_andnot_wp
3784 		= smap && !is_write_protection(vcpu);
3785 }
3786 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3787 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3788 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3789 		bool execonly)
3790 {
3791 	ASSERT(vcpu);
3792 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3793 
3794 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3795 
3796 	context->nx = true;
3797 	context->page_fault = ept_page_fault;
3798 	context->gva_to_gpa = ept_gva_to_gpa;
3799 	context->sync_page = ept_sync_page;
3800 	context->invlpg = ept_invlpg;
3801 	context->update_pte = ept_update_pte;
3802 	context->root_level = context->shadow_root_level;
3803 	context->root_hpa = INVALID_PAGE;
3804 	context->direct_map = false;
3805 
3806 	update_permission_bitmask(vcpu, context, true);
3807 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3808 }
3809 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3810 
init_kvm_softmmu(struct kvm_vcpu * vcpu)3811 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3812 {
3813 	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3814 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3815 	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3816 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3817 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3818 }
3819 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3820 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3821 {
3822 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3823 
3824 	g_context->get_cr3           = get_cr3;
3825 	g_context->get_pdptr         = kvm_pdptr_read;
3826 	g_context->inject_page_fault = kvm_inject_page_fault;
3827 
3828 	/*
3829 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3830 	 * translation of l2_gpa to l1_gpa addresses is done using the
3831 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3832 	 * functions between mmu and nested_mmu are swapped.
3833 	 */
3834 	if (!is_paging(vcpu)) {
3835 		g_context->nx = false;
3836 		g_context->root_level = 0;
3837 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3838 	} else if (is_long_mode(vcpu)) {
3839 		g_context->nx = is_nx(vcpu);
3840 		g_context->root_level = PT64_ROOT_LEVEL;
3841 		reset_rsvds_bits_mask(vcpu, g_context);
3842 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3843 	} else if (is_pae(vcpu)) {
3844 		g_context->nx = is_nx(vcpu);
3845 		g_context->root_level = PT32E_ROOT_LEVEL;
3846 		reset_rsvds_bits_mask(vcpu, g_context);
3847 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3848 	} else {
3849 		g_context->nx = false;
3850 		g_context->root_level = PT32_ROOT_LEVEL;
3851 		reset_rsvds_bits_mask(vcpu, g_context);
3852 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3853 	}
3854 
3855 	update_permission_bitmask(vcpu, g_context, false);
3856 	update_last_pte_bitmap(vcpu, g_context);
3857 }
3858 
init_kvm_mmu(struct kvm_vcpu * vcpu)3859 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3860 {
3861 	if (mmu_is_nested(vcpu))
3862 		return init_kvm_nested_mmu(vcpu);
3863 	else if (tdp_enabled)
3864 		return init_kvm_tdp_mmu(vcpu);
3865 	else
3866 		return init_kvm_softmmu(vcpu);
3867 }
3868 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3869 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3870 {
3871 	ASSERT(vcpu);
3872 
3873 	kvm_mmu_unload(vcpu);
3874 	init_kvm_mmu(vcpu);
3875 }
3876 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3877 
kvm_mmu_load(struct kvm_vcpu * vcpu)3878 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3879 {
3880 	int r;
3881 
3882 	r = mmu_topup_memory_caches(vcpu);
3883 	if (r)
3884 		goto out;
3885 	r = mmu_alloc_roots(vcpu);
3886 	kvm_mmu_sync_roots(vcpu);
3887 	if (r)
3888 		goto out;
3889 	/* set_cr3() should ensure TLB has been flushed */
3890 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3891 out:
3892 	return r;
3893 }
3894 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3895 
kvm_mmu_unload(struct kvm_vcpu * vcpu)3896 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3897 {
3898 	mmu_free_roots(vcpu);
3899 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3900 }
3901 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3902 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)3903 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3904 				  struct kvm_mmu_page *sp, u64 *spte,
3905 				  const void *new)
3906 {
3907 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3908 		++vcpu->kvm->stat.mmu_pde_zapped;
3909 		return;
3910         }
3911 
3912 	++vcpu->kvm->stat.mmu_pte_updated;
3913 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3914 }
3915 
need_remote_flush(u64 old,u64 new)3916 static bool need_remote_flush(u64 old, u64 new)
3917 {
3918 	if (!is_shadow_present_pte(old))
3919 		return false;
3920 	if (!is_shadow_present_pte(new))
3921 		return true;
3922 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3923 		return true;
3924 	old ^= shadow_nx_mask;
3925 	new ^= shadow_nx_mask;
3926 	return (old & ~new & PT64_PERM_MASK) != 0;
3927 }
3928 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)3929 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3930 				    bool remote_flush, bool local_flush)
3931 {
3932 	if (zap_page)
3933 		return;
3934 
3935 	if (remote_flush)
3936 		kvm_flush_remote_tlbs(vcpu->kvm);
3937 	else if (local_flush)
3938 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3939 }
3940 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)3941 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3942 				    const u8 *new, int *bytes)
3943 {
3944 	u64 gentry;
3945 	int r;
3946 
3947 	/*
3948 	 * Assume that the pte write on a page table of the same type
3949 	 * as the current vcpu paging mode since we update the sptes only
3950 	 * when they have the same mode.
3951 	 */
3952 	if (is_pae(vcpu) && *bytes == 4) {
3953 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3954 		*gpa &= ~(gpa_t)7;
3955 		*bytes = 8;
3956 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3957 		if (r)
3958 			gentry = 0;
3959 		new = (const u8 *)&gentry;
3960 	}
3961 
3962 	switch (*bytes) {
3963 	case 4:
3964 		gentry = *(const u32 *)new;
3965 		break;
3966 	case 8:
3967 		gentry = *(const u64 *)new;
3968 		break;
3969 	default:
3970 		gentry = 0;
3971 		break;
3972 	}
3973 
3974 	return gentry;
3975 }
3976 
3977 /*
3978  * If we're seeing too many writes to a page, it may no longer be a page table,
3979  * or we may be forking, in which case it is better to unmap the page.
3980  */
detect_write_flooding(struct kvm_mmu_page * sp)3981 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3982 {
3983 	/*
3984 	 * Skip write-flooding detected for the sp whose level is 1, because
3985 	 * it can become unsync, then the guest page is not write-protected.
3986 	 */
3987 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3988 		return false;
3989 
3990 	return ++sp->write_flooding_count >= 3;
3991 }
3992 
3993 /*
3994  * Misaligned accesses are too much trouble to fix up; also, they usually
3995  * indicate a page is not used as a page table.
3996  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)3997 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3998 				    int bytes)
3999 {
4000 	unsigned offset, pte_size, misaligned;
4001 
4002 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4003 		 gpa, bytes, sp->role.word);
4004 
4005 	offset = offset_in_page(gpa);
4006 	pte_size = sp->role.cr4_pae ? 8 : 4;
4007 
4008 	/*
4009 	 * Sometimes, the OS only writes the last one bytes to update status
4010 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4011 	 */
4012 	if (!(offset & (pte_size - 1)) && bytes == 1)
4013 		return false;
4014 
4015 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4016 	misaligned |= bytes < 4;
4017 
4018 	return misaligned;
4019 }
4020 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4021 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4022 {
4023 	unsigned page_offset, quadrant;
4024 	u64 *spte;
4025 	int level;
4026 
4027 	page_offset = offset_in_page(gpa);
4028 	level = sp->role.level;
4029 	*nspte = 1;
4030 	if (!sp->role.cr4_pae) {
4031 		page_offset <<= 1;	/* 32->64 */
4032 		/*
4033 		 * A 32-bit pde maps 4MB while the shadow pdes map
4034 		 * only 2MB.  So we need to double the offset again
4035 		 * and zap two pdes instead of one.
4036 		 */
4037 		if (level == PT32_ROOT_LEVEL) {
4038 			page_offset &= ~7; /* kill rounding error */
4039 			page_offset <<= 1;
4040 			*nspte = 2;
4041 		}
4042 		quadrant = page_offset >> PAGE_SHIFT;
4043 		page_offset &= ~PAGE_MASK;
4044 		if (quadrant != sp->role.quadrant)
4045 			return NULL;
4046 	}
4047 
4048 	spte = &sp->spt[page_offset / sizeof(*spte)];
4049 	return spte;
4050 }
4051 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)4052 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4053 		       const u8 *new, int bytes)
4054 {
4055 	gfn_t gfn = gpa >> PAGE_SHIFT;
4056 	struct kvm_mmu_page *sp;
4057 	LIST_HEAD(invalid_list);
4058 	u64 entry, gentry, *spte;
4059 	int npte;
4060 	bool remote_flush, local_flush, zap_page;
4061 	union kvm_mmu_page_role mask = { };
4062 
4063 	mask.cr0_wp = 1;
4064 	mask.cr4_pae = 1;
4065 	mask.nxe = 1;
4066 	mask.smep_andnot_wp = 1;
4067 	mask.smap_andnot_wp = 1;
4068 
4069 	/*
4070 	 * If we don't have indirect shadow pages, it means no page is
4071 	 * write-protected, so we can exit simply.
4072 	 */
4073 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4074 		return;
4075 
4076 	zap_page = remote_flush = local_flush = false;
4077 
4078 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4079 
4080 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4081 
4082 	/*
4083 	 * No need to care whether allocation memory is successful
4084 	 * or not since pte prefetch is skiped if it does not have
4085 	 * enough objects in the cache.
4086 	 */
4087 	mmu_topup_memory_caches(vcpu);
4088 
4089 	spin_lock(&vcpu->kvm->mmu_lock);
4090 	++vcpu->kvm->stat.mmu_pte_write;
4091 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4092 
4093 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4094 		if (detect_write_misaligned(sp, gpa, bytes) ||
4095 		      detect_write_flooding(sp)) {
4096 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4097 						     &invalid_list);
4098 			++vcpu->kvm->stat.mmu_flooded;
4099 			continue;
4100 		}
4101 
4102 		spte = get_written_sptes(sp, gpa, &npte);
4103 		if (!spte)
4104 			continue;
4105 
4106 		local_flush = true;
4107 		while (npte--) {
4108 			entry = *spte;
4109 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4110 			if (gentry &&
4111 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4112 			      & mask.word) && rmap_can_add(vcpu))
4113 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4114 			if (need_remote_flush(entry, *spte))
4115 				remote_flush = true;
4116 			++spte;
4117 		}
4118 	}
4119 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4120 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4121 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4122 	spin_unlock(&vcpu->kvm->mmu_lock);
4123 }
4124 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4125 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4126 {
4127 	gpa_t gpa;
4128 	int r;
4129 
4130 	if (vcpu->arch.mmu.direct_map)
4131 		return 0;
4132 
4133 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4134 
4135 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4136 
4137 	return r;
4138 }
4139 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4140 
make_mmu_pages_available(struct kvm_vcpu * vcpu)4141 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4142 {
4143 	LIST_HEAD(invalid_list);
4144 
4145 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4146 		return;
4147 
4148 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4149 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4150 			break;
4151 
4152 		++vcpu->kvm->stat.mmu_recycled;
4153 	}
4154 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4155 }
4156 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)4157 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4158 {
4159 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4160 		return vcpu_match_mmio_gpa(vcpu, addr);
4161 
4162 	return vcpu_match_mmio_gva(vcpu, addr);
4163 }
4164 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4165 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4166 		       void *insn, int insn_len)
4167 {
4168 	int r, emulation_type = EMULTYPE_RETRY;
4169 	enum emulation_result er;
4170 
4171 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4172 	if (r < 0)
4173 		goto out;
4174 
4175 	if (!r) {
4176 		r = 1;
4177 		goto out;
4178 	}
4179 
4180 	if (is_mmio_page_fault(vcpu, cr2))
4181 		emulation_type = 0;
4182 
4183 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4184 
4185 	switch (er) {
4186 	case EMULATE_DONE:
4187 		return 1;
4188 	case EMULATE_USER_EXIT:
4189 		++vcpu->stat.mmio_exits;
4190 		/* fall through */
4191 	case EMULATE_FAIL:
4192 		return 0;
4193 	default:
4194 		BUG();
4195 	}
4196 out:
4197 	return r;
4198 }
4199 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4200 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4201 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4202 {
4203 	vcpu->arch.mmu.invlpg(vcpu, gva);
4204 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4205 	++vcpu->stat.invlpg;
4206 }
4207 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4208 
kvm_enable_tdp(void)4209 void kvm_enable_tdp(void)
4210 {
4211 	tdp_enabled = true;
4212 }
4213 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4214 
kvm_disable_tdp(void)4215 void kvm_disable_tdp(void)
4216 {
4217 	tdp_enabled = false;
4218 }
4219 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4220 
free_mmu_pages(struct kvm_vcpu * vcpu)4221 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4222 {
4223 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4224 	if (vcpu->arch.mmu.lm_root != NULL)
4225 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4226 }
4227 
alloc_mmu_pages(struct kvm_vcpu * vcpu)4228 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4229 {
4230 	struct page *page;
4231 	int i;
4232 
4233 	ASSERT(vcpu);
4234 
4235 	/*
4236 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4237 	 * Therefore we need to allocate shadow page tables in the first
4238 	 * 4GB of memory, which happens to fit the DMA32 zone.
4239 	 */
4240 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4241 	if (!page)
4242 		return -ENOMEM;
4243 
4244 	vcpu->arch.mmu.pae_root = page_address(page);
4245 	for (i = 0; i < 4; ++i)
4246 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4247 
4248 	return 0;
4249 }
4250 
kvm_mmu_create(struct kvm_vcpu * vcpu)4251 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4252 {
4253 	ASSERT(vcpu);
4254 
4255 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4256 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4257 	vcpu->arch.mmu.translate_gpa = translate_gpa;
4258 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4259 
4260 	return alloc_mmu_pages(vcpu);
4261 }
4262 
kvm_mmu_setup(struct kvm_vcpu * vcpu)4263 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4264 {
4265 	ASSERT(vcpu);
4266 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4267 
4268 	init_kvm_mmu(vcpu);
4269 }
4270 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)4271 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4272 {
4273 	struct kvm_memory_slot *memslot;
4274 	gfn_t last_gfn;
4275 	int i;
4276 
4277 	memslot = id_to_memslot(kvm->memslots, slot);
4278 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4279 
4280 	spin_lock(&kvm->mmu_lock);
4281 
4282 	for (i = PT_PAGE_TABLE_LEVEL;
4283 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4284 		unsigned long *rmapp;
4285 		unsigned long last_index, index;
4286 
4287 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4288 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4289 
4290 		for (index = 0; index <= last_index; ++index, ++rmapp) {
4291 			if (*rmapp)
4292 				__rmap_write_protect(kvm, rmapp, false);
4293 
4294 			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4295 				cond_resched_lock(&kvm->mmu_lock);
4296 		}
4297 	}
4298 
4299 	spin_unlock(&kvm->mmu_lock);
4300 
4301 	/*
4302 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4303 	 * which do tlb flush out of mmu-lock should be serialized by
4304 	 * kvm->slots_lock otherwise tlb flush would be missed.
4305 	 */
4306 	lockdep_assert_held(&kvm->slots_lock);
4307 
4308 	/*
4309 	 * We can flush all the TLBs out of the mmu lock without TLB
4310 	 * corruption since we just change the spte from writable to
4311 	 * readonly so that we only need to care the case of changing
4312 	 * spte from present to present (changing the spte from present
4313 	 * to nonpresent will flush all the TLBs immediately), in other
4314 	 * words, the only case we care is mmu_spte_update() where we
4315 	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4316 	 * instead of PT_WRITABLE_MASK, that means it does not depend
4317 	 * on PT_WRITABLE_MASK anymore.
4318 	 */
4319 	kvm_flush_remote_tlbs(kvm);
4320 }
4321 
4322 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)4323 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4324 {
4325 	struct kvm_mmu_page *sp, *node;
4326 	int batch = 0;
4327 
4328 restart:
4329 	list_for_each_entry_safe_reverse(sp, node,
4330 	      &kvm->arch.active_mmu_pages, link) {
4331 		int ret;
4332 
4333 		/*
4334 		 * No obsolete page exists before new created page since
4335 		 * active_mmu_pages is the FIFO list.
4336 		 */
4337 		if (!is_obsolete_sp(kvm, sp))
4338 			break;
4339 
4340 		/*
4341 		 * Since we are reversely walking the list and the invalid
4342 		 * list will be moved to the head, skip the invalid page
4343 		 * can help us to avoid the infinity list walking.
4344 		 */
4345 		if (sp->role.invalid)
4346 			continue;
4347 
4348 		/*
4349 		 * Need not flush tlb since we only zap the sp with invalid
4350 		 * generation number.
4351 		 */
4352 		if (batch >= BATCH_ZAP_PAGES &&
4353 		      cond_resched_lock(&kvm->mmu_lock)) {
4354 			batch = 0;
4355 			goto restart;
4356 		}
4357 
4358 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4359 				&kvm->arch.zapped_obsolete_pages);
4360 		batch += ret;
4361 
4362 		if (ret)
4363 			goto restart;
4364 	}
4365 
4366 	/*
4367 	 * Should flush tlb before free page tables since lockless-walking
4368 	 * may use the pages.
4369 	 */
4370 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4371 }
4372 
4373 /*
4374  * Fast invalidate all shadow pages and use lock-break technique
4375  * to zap obsolete pages.
4376  *
4377  * It's required when memslot is being deleted or VM is being
4378  * destroyed, in these cases, we should ensure that KVM MMU does
4379  * not use any resource of the being-deleted slot or all slots
4380  * after calling the function.
4381  */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)4382 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4383 {
4384 	spin_lock(&kvm->mmu_lock);
4385 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4386 	kvm->arch.mmu_valid_gen++;
4387 
4388 	/*
4389 	 * Notify all vcpus to reload its shadow page table
4390 	 * and flush TLB. Then all vcpus will switch to new
4391 	 * shadow page table with the new mmu_valid_gen.
4392 	 *
4393 	 * Note: we should do this under the protection of
4394 	 * mmu-lock, otherwise, vcpu would purge shadow page
4395 	 * but miss tlb flush.
4396 	 */
4397 	kvm_reload_remote_mmus(kvm);
4398 
4399 	kvm_zap_obsolete_pages(kvm);
4400 	spin_unlock(&kvm->mmu_lock);
4401 }
4402 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)4403 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4404 {
4405 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4406 }
4407 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm)4408 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4409 {
4410 	/*
4411 	 * The very rare case: if the generation-number is round,
4412 	 * zap all shadow pages.
4413 	 */
4414 	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4415 		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4416 		kvm_mmu_invalidate_zap_all_pages(kvm);
4417 	}
4418 }
4419 
4420 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)4421 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4422 {
4423 	struct kvm *kvm;
4424 	int nr_to_scan = sc->nr_to_scan;
4425 	unsigned long freed = 0;
4426 
4427 	spin_lock(&kvm_lock);
4428 
4429 	list_for_each_entry(kvm, &vm_list, vm_list) {
4430 		int idx;
4431 		LIST_HEAD(invalid_list);
4432 
4433 		/*
4434 		 * Never scan more than sc->nr_to_scan VM instances.
4435 		 * Will not hit this condition practically since we do not try
4436 		 * to shrink more than one VM and it is very unlikely to see
4437 		 * !n_used_mmu_pages so many times.
4438 		 */
4439 		if (!nr_to_scan--)
4440 			break;
4441 		/*
4442 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4443 		 * here. We may skip a VM instance errorneosly, but we do not
4444 		 * want to shrink a VM that only started to populate its MMU
4445 		 * anyway.
4446 		 */
4447 		if (!kvm->arch.n_used_mmu_pages &&
4448 		      !kvm_has_zapped_obsolete_pages(kvm))
4449 			continue;
4450 
4451 		idx = srcu_read_lock(&kvm->srcu);
4452 		spin_lock(&kvm->mmu_lock);
4453 
4454 		if (kvm_has_zapped_obsolete_pages(kvm)) {
4455 			kvm_mmu_commit_zap_page(kvm,
4456 			      &kvm->arch.zapped_obsolete_pages);
4457 			goto unlock;
4458 		}
4459 
4460 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4461 			freed++;
4462 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4463 
4464 unlock:
4465 		spin_unlock(&kvm->mmu_lock);
4466 		srcu_read_unlock(&kvm->srcu, idx);
4467 
4468 		/*
4469 		 * unfair on small ones
4470 		 * per-vm shrinkers cry out
4471 		 * sadness comes quickly
4472 		 */
4473 		list_move_tail(&kvm->vm_list, &vm_list);
4474 		break;
4475 	}
4476 
4477 	spin_unlock(&kvm_lock);
4478 	return freed;
4479 }
4480 
4481 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)4482 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4483 {
4484 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4485 }
4486 
4487 static struct shrinker mmu_shrinker = {
4488 	.count_objects = mmu_shrink_count,
4489 	.scan_objects = mmu_shrink_scan,
4490 	.seeks = DEFAULT_SEEKS * 10,
4491 };
4492 
mmu_destroy_caches(void)4493 static void mmu_destroy_caches(void)
4494 {
4495 	if (pte_list_desc_cache)
4496 		kmem_cache_destroy(pte_list_desc_cache);
4497 	if (mmu_page_header_cache)
4498 		kmem_cache_destroy(mmu_page_header_cache);
4499 }
4500 
kvm_mmu_module_init(void)4501 int kvm_mmu_module_init(void)
4502 {
4503 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4504 					    sizeof(struct pte_list_desc),
4505 					    0, 0, NULL);
4506 	if (!pte_list_desc_cache)
4507 		goto nomem;
4508 
4509 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4510 						  sizeof(struct kvm_mmu_page),
4511 						  0, 0, NULL);
4512 	if (!mmu_page_header_cache)
4513 		goto nomem;
4514 
4515 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4516 		goto nomem;
4517 
4518 	register_shrinker(&mmu_shrinker);
4519 
4520 	return 0;
4521 
4522 nomem:
4523 	mmu_destroy_caches();
4524 	return -ENOMEM;
4525 }
4526 
4527 /*
4528  * Caculate mmu pages needed for kvm.
4529  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)4530 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4531 {
4532 	unsigned int nr_mmu_pages;
4533 	unsigned int  nr_pages = 0;
4534 	struct kvm_memslots *slots;
4535 	struct kvm_memory_slot *memslot;
4536 
4537 	slots = kvm_memslots(kvm);
4538 
4539 	kvm_for_each_memslot(memslot, slots)
4540 		nr_pages += memslot->npages;
4541 
4542 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4543 	nr_mmu_pages = max(nr_mmu_pages,
4544 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4545 
4546 	return nr_mmu_pages;
4547 }
4548 
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])4549 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4550 {
4551 	struct kvm_shadow_walk_iterator iterator;
4552 	u64 spte;
4553 	int nr_sptes = 0;
4554 
4555 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4556 		return nr_sptes;
4557 
4558 	walk_shadow_page_lockless_begin(vcpu);
4559 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4560 		sptes[iterator.level-1] = spte;
4561 		nr_sptes++;
4562 		if (!is_shadow_present_pte(spte))
4563 			break;
4564 	}
4565 	walk_shadow_page_lockless_end(vcpu);
4566 
4567 	return nr_sptes;
4568 }
4569 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4570 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4571 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4572 {
4573 	ASSERT(vcpu);
4574 
4575 	kvm_mmu_unload(vcpu);
4576 	free_mmu_pages(vcpu);
4577 	mmu_free_memory_caches(vcpu);
4578 }
4579 
kvm_mmu_module_exit(void)4580 void kvm_mmu_module_exit(void)
4581 {
4582 	mmu_destroy_caches();
4583 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4584 	unregister_shrinker(&mmu_shrinker);
4585 	mmu_audit_disable();
4586 }
4587