1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM),
50 {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 MSR_FS_BASE,
86 #endif
87 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95 struct vmcb *hsave;
96 u64 hsave_msr;
97 u64 vm_cr_msr;
98 u64 vmcb;
99
100 /* These are the merged vectors */
101 u32 *msrpm;
102
103 /* gpa pointers to the real vectors */
104 u64 vmcb_msrpm;
105 u64 vmcb_iopm;
106
107 /* A VMEXIT is required but not yet emulated */
108 bool exit_required;
109
110 /* cache for intercepts of the guest */
111 u32 intercept_cr;
112 u32 intercept_dr;
113 u32 intercept_exceptions;
114 u64 intercept;
115
116 /* Nested Paging related state */
117 u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
126 */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130 struct kvm_vcpu vcpu;
131 struct vmcb *vmcb;
132 unsigned long vmcb_pa;
133 struct svm_cpu_data *svm_data;
134 uint64_t asid_generation;
135 uint64_t sysenter_esp;
136 uint64_t sysenter_eip;
137
138 u64 next_rip;
139
140 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 struct {
142 u16 fs;
143 u16 gs;
144 u16 ldt;
145 u64 gs_base;
146 } host;
147
148 u32 *msrpm;
149
150 ulong nmi_iret_rip;
151
152 struct nested_state nested;
153
154 bool nmi_singlestep;
155
156 unsigned int3_injected;
157 unsigned long int3_rip;
158 u32 apf_reason;
159
160 u64 tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165
166 #define MSR_INVALID 0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169 u32 index; /* Index of the MSR */
170 bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 { .index = MSR_STAR, .always = true },
173 { .index = MSR_IA32_SYSENTER_CS, .always = true },
174 #ifdef CONFIG_X86_64
175 { .index = MSR_GS_BASE, .always = true },
176 { .index = MSR_FS_BASE, .always = true },
177 { .index = MSR_KERNEL_GS_BASE, .always = true },
178 { .index = MSR_LSTAR, .always = true },
179 { .index = MSR_CSTAR, .always = true },
180 { .index = MSR_SYSCALL_MASK, .always = true },
181 #endif
182 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
183 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
184 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
185 { .index = MSR_IA32_LASTINTTOIP, .always = false },
186 { .index = MSR_INVALID, .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
218 VMCB_ASID, /* ASID */
219 VMCB_INTR, /* int_ctl, int_vector */
220 VMCB_NPT, /* npt_en, nCR3, gPAT */
221 VMCB_CR, /* CR0, CR3, CR4, EFER */
222 VMCB_DR, /* DR6, DR7 */
223 VMCB_DT, /* GDT, IDT */
224 VMCB_SEG, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2, /* CR2 only */
226 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
mark_all_dirty(struct vmcb * vmcb)233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235 vmcb->control.clean = 0;
236 }
237
mark_all_clean(struct vmcb * vmcb)238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
mark_dirty(struct vmcb * vmcb,int bit)244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246 vmcb->control.clean &= ~(1 << bit);
247 }
248
to_svm(struct kvm_vcpu * vcpu)249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251 return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
recalc_intercepts(struct vcpu_svm * svm)254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256 struct vmcb_control_area *c, *h;
257 struct nested_state *g;
258
259 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261 if (!is_guest_mode(&svm->vcpu))
262 return;
263
264 c = &svm->vmcb->control;
265 h = &svm->nested.hsave->control;
266 g = &svm->nested;
267
268 c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 c->intercept = h->intercept | g->intercept;
272 }
273
get_host_vmcb(struct vcpu_svm * svm)274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276 if (is_guest_mode(&svm->vcpu))
277 return svm->nested.hsave;
278 else
279 return svm->vmcb;
280 }
281
set_cr_intercept(struct vcpu_svm * svm,int bit)282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 vmcb->control.intercept_cr |= (1U << bit);
287
288 recalc_intercepts(svm);
289 }
290
clr_cr_intercept(struct vcpu_svm * svm,int bit)291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 struct vmcb *vmcb = get_host_vmcb(svm);
294
295 vmcb->control.intercept_cr &= ~(1U << bit);
296
297 recalc_intercepts(svm);
298 }
299
is_cr_intercept(struct vcpu_svm * svm,int bit)300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302 struct vmcb *vmcb = get_host_vmcb(svm);
303
304 return vmcb->control.intercept_cr & (1U << bit);
305 }
306
set_dr_intercepts(struct vcpu_svm * svm)307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 | (1 << INTERCEPT_DR1_READ)
313 | (1 << INTERCEPT_DR2_READ)
314 | (1 << INTERCEPT_DR3_READ)
315 | (1 << INTERCEPT_DR4_READ)
316 | (1 << INTERCEPT_DR5_READ)
317 | (1 << INTERCEPT_DR6_READ)
318 | (1 << INTERCEPT_DR7_READ)
319 | (1 << INTERCEPT_DR0_WRITE)
320 | (1 << INTERCEPT_DR1_WRITE)
321 | (1 << INTERCEPT_DR2_WRITE)
322 | (1 << INTERCEPT_DR3_WRITE)
323 | (1 << INTERCEPT_DR4_WRITE)
324 | (1 << INTERCEPT_DR5_WRITE)
325 | (1 << INTERCEPT_DR6_WRITE)
326 | (1 << INTERCEPT_DR7_WRITE);
327
328 recalc_intercepts(svm);
329 }
330
clr_dr_intercepts(struct vcpu_svm * svm)331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333 struct vmcb *vmcb = get_host_vmcb(svm);
334
335 vmcb->control.intercept_dr = 0;
336
337 recalc_intercepts(svm);
338 }
339
set_exception_intercept(struct vcpu_svm * svm,int bit)340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342 struct vmcb *vmcb = get_host_vmcb(svm);
343
344 vmcb->control.intercept_exceptions |= (1U << bit);
345
346 recalc_intercepts(svm);
347 }
348
clr_exception_intercept(struct vcpu_svm * svm,int bit)349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351 struct vmcb *vmcb = get_host_vmcb(svm);
352
353 vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355 recalc_intercepts(svm);
356 }
357
set_intercept(struct vcpu_svm * svm,int bit)358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360 struct vmcb *vmcb = get_host_vmcb(svm);
361
362 vmcb->control.intercept |= (1ULL << bit);
363
364 recalc_intercepts(svm);
365 }
366
clr_intercept(struct vcpu_svm * svm,int bit)367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369 struct vmcb *vmcb = get_host_vmcb(svm);
370
371 vmcb->control.intercept &= ~(1ULL << bit);
372
373 recalc_intercepts(svm);
374 }
375
enable_gif(struct vcpu_svm * svm)376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378 svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
disable_gif(struct vcpu_svm * svm)381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
gif_set(struct vcpu_svm * svm)386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394 u16 limit0;
395 u16 base0;
396 unsigned base1:8, type:5, dpl:2, p:1;
397 unsigned limit1:4, zero0:3, g:1, base2:8;
398 u32 base3;
399 u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403 int cpu;
404
405 u64 asid_generation;
406 u32 max_asid;
407 u32 next_asid;
408 struct kvm_ldttss_desc *tss_desc;
409
410 struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416 int cpu;
417 int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
svm_msrpm_offset(u32 msr)426 static u32 svm_msrpm_offset(u32 msr)
427 {
428 u32 offset;
429 int i;
430
431 for (i = 0; i < NUM_MSR_MAPS; i++) {
432 if (msr < msrpm_ranges[i] ||
433 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 continue;
435
436 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
438
439 /* Now we have the u8 offset - but need the u32 offset */
440 return offset / 4;
441 }
442
443 /* MSR not in any range */
444 return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
clgi(void)449 static inline void clgi(void)
450 {
451 asm volatile (__ex(SVM_CLGI));
452 }
453
stgi(void)454 static inline void stgi(void)
455 {
456 asm volatile (__ex(SVM_STGI));
457 }
458
invlpga(unsigned long addr,u32 asid)459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
get_npt_level(void)464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467 return PT64_ROOT_LEVEL;
468 #else
469 return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475 vcpu->arch.efer = efer;
476 if (!npt_enabled && !(efer & EFER_LMA))
477 efer &= ~EFER_LME;
478
479 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
is_external_interrupt(u32 info)483 static int is_external_interrupt(u32 info)
484 {
485 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491 struct vcpu_svm *svm = to_svm(vcpu);
492 u32 ret = 0;
493
494 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 return ret;
497 }
498
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501 struct vcpu_svm *svm = to_svm(vcpu);
502
503 if (mask == 0)
504 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 else
506 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
skip_emulated_instruction(struct kvm_vcpu * vcpu)510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512 struct vcpu_svm *svm = to_svm(vcpu);
513
514 if (svm->vmcb->control.next_rip != 0) {
515 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
516 svm->next_rip = svm->vmcb->control.next_rip;
517 }
518
519 if (!svm->next_rip) {
520 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
521 EMULATE_DONE)
522 printk(KERN_DEBUG "%s: NOP\n", __func__);
523 return;
524 }
525 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
526 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
527 __func__, kvm_rip_read(vcpu), svm->next_rip);
528
529 kvm_rip_write(vcpu, svm->next_rip);
530 svm_set_interrupt_shadow(vcpu, 0);
531 }
532
svm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)533 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
534 bool has_error_code, u32 error_code,
535 bool reinject)
536 {
537 struct vcpu_svm *svm = to_svm(vcpu);
538
539 /*
540 * If we are within a nested VM we'd better #VMEXIT and let the guest
541 * handle the exception
542 */
543 if (!reinject &&
544 nested_svm_check_exception(svm, nr, has_error_code, error_code))
545 return;
546
547 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
548 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
549
550 /*
551 * For guest debugging where we have to reinject #BP if some
552 * INT3 is guest-owned:
553 * Emulate nRIP by moving RIP forward. Will fail if injection
554 * raises a fault that is not intercepted. Still better than
555 * failing in all cases.
556 */
557 skip_emulated_instruction(&svm->vcpu);
558 rip = kvm_rip_read(&svm->vcpu);
559 svm->int3_rip = rip + svm->vmcb->save.cs.base;
560 svm->int3_injected = rip - old_rip;
561 }
562
563 svm->vmcb->control.event_inj = nr
564 | SVM_EVTINJ_VALID
565 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
566 | SVM_EVTINJ_TYPE_EXEPT;
567 svm->vmcb->control.event_inj_err = error_code;
568 }
569
svm_init_erratum_383(void)570 static void svm_init_erratum_383(void)
571 {
572 u32 low, high;
573 int err;
574 u64 val;
575
576 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
577 return;
578
579 /* Use _safe variants to not break nested virtualization */
580 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
581 if (err)
582 return;
583
584 val |= (1ULL << 47);
585
586 low = lower_32_bits(val);
587 high = upper_32_bits(val);
588
589 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
590
591 erratum_383_found = true;
592 }
593
svm_init_osvw(struct kvm_vcpu * vcpu)594 static void svm_init_osvw(struct kvm_vcpu *vcpu)
595 {
596 /*
597 * Guests should see errata 400 and 415 as fixed (assuming that
598 * HLT and IO instructions are intercepted).
599 */
600 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
601 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
602
603 /*
604 * By increasing VCPU's osvw.length to 3 we are telling the guest that
605 * all osvw.status bits inside that length, including bit 0 (which is
606 * reserved for erratum 298), are valid. However, if host processor's
607 * osvw_len is 0 then osvw_status[0] carries no information. We need to
608 * be conservative here and therefore we tell the guest that erratum 298
609 * is present (because we really don't know).
610 */
611 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
612 vcpu->arch.osvw.status |= 1;
613 }
614
has_svm(void)615 static int has_svm(void)
616 {
617 const char *msg;
618
619 if (!cpu_has_svm(&msg)) {
620 printk(KERN_INFO "has_svm: %s\n", msg);
621 return 0;
622 }
623
624 return 1;
625 }
626
svm_hardware_disable(void)627 static void svm_hardware_disable(void)
628 {
629 /* Make sure we clean up behind us */
630 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
631 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
632
633 cpu_svm_disable();
634
635 amd_pmu_disable_virt();
636 }
637
svm_hardware_enable(void)638 static int svm_hardware_enable(void)
639 {
640
641 struct svm_cpu_data *sd;
642 uint64_t efer;
643 struct desc_ptr gdt_descr;
644 struct desc_struct *gdt;
645 int me = raw_smp_processor_id();
646
647 rdmsrl(MSR_EFER, efer);
648 if (efer & EFER_SVME)
649 return -EBUSY;
650
651 if (!has_svm()) {
652 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
653 return -EINVAL;
654 }
655 sd = per_cpu(svm_data, me);
656 if (!sd) {
657 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
658 return -EINVAL;
659 }
660
661 sd->asid_generation = 1;
662 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
663 sd->next_asid = sd->max_asid + 1;
664
665 native_store_gdt(&gdt_descr);
666 gdt = (struct desc_struct *)gdt_descr.address;
667 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
668
669 wrmsrl(MSR_EFER, efer | EFER_SVME);
670
671 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
672
673 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
674 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
675 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
676 }
677
678
679 /*
680 * Get OSVW bits.
681 *
682 * Note that it is possible to have a system with mixed processor
683 * revisions and therefore different OSVW bits. If bits are not the same
684 * on different processors then choose the worst case (i.e. if erratum
685 * is present on one processor and not on another then assume that the
686 * erratum is present everywhere).
687 */
688 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
689 uint64_t len, status = 0;
690 int err;
691
692 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
693 if (!err)
694 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
695 &err);
696
697 if (err)
698 osvw_status = osvw_len = 0;
699 else {
700 if (len < osvw_len)
701 osvw_len = len;
702 osvw_status |= status;
703 osvw_status &= (1ULL << osvw_len) - 1;
704 }
705 } else
706 osvw_status = osvw_len = 0;
707
708 svm_init_erratum_383();
709
710 amd_pmu_enable_virt();
711
712 return 0;
713 }
714
svm_cpu_uninit(int cpu)715 static void svm_cpu_uninit(int cpu)
716 {
717 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
718
719 if (!sd)
720 return;
721
722 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
723 __free_page(sd->save_area);
724 kfree(sd);
725 }
726
svm_cpu_init(int cpu)727 static int svm_cpu_init(int cpu)
728 {
729 struct svm_cpu_data *sd;
730 int r;
731
732 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
733 if (!sd)
734 return -ENOMEM;
735 sd->cpu = cpu;
736 sd->save_area = alloc_page(GFP_KERNEL);
737 r = -ENOMEM;
738 if (!sd->save_area)
739 goto err_1;
740
741 per_cpu(svm_data, cpu) = sd;
742
743 return 0;
744
745 err_1:
746 kfree(sd);
747 return r;
748
749 }
750
valid_msr_intercept(u32 index)751 static bool valid_msr_intercept(u32 index)
752 {
753 int i;
754
755 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
756 if (direct_access_msrs[i].index == index)
757 return true;
758
759 return false;
760 }
761
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)762 static void set_msr_interception(u32 *msrpm, unsigned msr,
763 int read, int write)
764 {
765 u8 bit_read, bit_write;
766 unsigned long tmp;
767 u32 offset;
768
769 /*
770 * If this warning triggers extend the direct_access_msrs list at the
771 * beginning of the file
772 */
773 WARN_ON(!valid_msr_intercept(msr));
774
775 offset = svm_msrpm_offset(msr);
776 bit_read = 2 * (msr & 0x0f);
777 bit_write = 2 * (msr & 0x0f) + 1;
778 tmp = msrpm[offset];
779
780 BUG_ON(offset == MSR_INVALID);
781
782 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
783 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
784
785 msrpm[offset] = tmp;
786 }
787
svm_vcpu_init_msrpm(u32 * msrpm)788 static void svm_vcpu_init_msrpm(u32 *msrpm)
789 {
790 int i;
791
792 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
793
794 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
795 if (!direct_access_msrs[i].always)
796 continue;
797
798 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
799 }
800 }
801
add_msr_offset(u32 offset)802 static void add_msr_offset(u32 offset)
803 {
804 int i;
805
806 for (i = 0; i < MSRPM_OFFSETS; ++i) {
807
808 /* Offset already in list? */
809 if (msrpm_offsets[i] == offset)
810 return;
811
812 /* Slot used by another offset? */
813 if (msrpm_offsets[i] != MSR_INVALID)
814 continue;
815
816 /* Add offset to list */
817 msrpm_offsets[i] = offset;
818
819 return;
820 }
821
822 /*
823 * If this BUG triggers the msrpm_offsets table has an overflow. Just
824 * increase MSRPM_OFFSETS in this case.
825 */
826 BUG();
827 }
828
init_msrpm_offsets(void)829 static void init_msrpm_offsets(void)
830 {
831 int i;
832
833 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
834
835 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
836 u32 offset;
837
838 offset = svm_msrpm_offset(direct_access_msrs[i].index);
839 BUG_ON(offset == MSR_INVALID);
840
841 add_msr_offset(offset);
842 }
843 }
844
svm_enable_lbrv(struct vcpu_svm * svm)845 static void svm_enable_lbrv(struct vcpu_svm *svm)
846 {
847 u32 *msrpm = svm->msrpm;
848
849 svm->vmcb->control.lbr_ctl = 1;
850 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
851 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
852 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
854 }
855
svm_disable_lbrv(struct vcpu_svm * svm)856 static void svm_disable_lbrv(struct vcpu_svm *svm)
857 {
858 u32 *msrpm = svm->msrpm;
859
860 svm->vmcb->control.lbr_ctl = 0;
861 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
862 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
863 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
865 }
866
svm_hardware_setup(void)867 static __init int svm_hardware_setup(void)
868 {
869 int cpu;
870 struct page *iopm_pages;
871 void *iopm_va;
872 int r;
873
874 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
875
876 if (!iopm_pages)
877 return -ENOMEM;
878
879 iopm_va = page_address(iopm_pages);
880 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
881 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
882
883 init_msrpm_offsets();
884
885 if (boot_cpu_has(X86_FEATURE_NX))
886 kvm_enable_efer_bits(EFER_NX);
887
888 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
889 kvm_enable_efer_bits(EFER_FFXSR);
890
891 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
892 u64 max;
893
894 kvm_has_tsc_control = true;
895
896 /*
897 * Make sure the user can only configure tsc_khz values that
898 * fit into a signed integer.
899 * A min value is not calculated needed because it will always
900 * be 1 on all machines and a value of 0 is used to disable
901 * tsc-scaling for the vcpu.
902 */
903 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
904
905 kvm_max_guest_tsc_khz = max;
906 }
907
908 if (nested) {
909 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
910 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
911 }
912
913 for_each_possible_cpu(cpu) {
914 r = svm_cpu_init(cpu);
915 if (r)
916 goto err;
917 }
918
919 if (!boot_cpu_has(X86_FEATURE_NPT))
920 npt_enabled = false;
921
922 if (npt_enabled && !npt) {
923 printk(KERN_INFO "kvm: Nested Paging disabled\n");
924 npt_enabled = false;
925 }
926
927 if (npt_enabled) {
928 printk(KERN_INFO "kvm: Nested Paging enabled\n");
929 kvm_enable_tdp();
930 } else
931 kvm_disable_tdp();
932
933 return 0;
934
935 err:
936 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
937 iopm_base = 0;
938 return r;
939 }
940
svm_hardware_unsetup(void)941 static __exit void svm_hardware_unsetup(void)
942 {
943 int cpu;
944
945 for_each_possible_cpu(cpu)
946 svm_cpu_uninit(cpu);
947
948 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
949 iopm_base = 0;
950 }
951
init_seg(struct vmcb_seg * seg)952 static void init_seg(struct vmcb_seg *seg)
953 {
954 seg->selector = 0;
955 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
956 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
957 seg->limit = 0xffff;
958 seg->base = 0;
959 }
960
init_sys_seg(struct vmcb_seg * seg,uint32_t type)961 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
962 {
963 seg->selector = 0;
964 seg->attrib = SVM_SELECTOR_P_MASK | type;
965 seg->limit = 0xffff;
966 seg->base = 0;
967 }
968
__scale_tsc(u64 ratio,u64 tsc)969 static u64 __scale_tsc(u64 ratio, u64 tsc)
970 {
971 u64 mult, frac, _tsc;
972
973 mult = ratio >> 32;
974 frac = ratio & ((1ULL << 32) - 1);
975
976 _tsc = tsc;
977 _tsc *= mult;
978 _tsc += (tsc >> 32) * frac;
979 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
980
981 return _tsc;
982 }
983
svm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)984 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
985 {
986 struct vcpu_svm *svm = to_svm(vcpu);
987 u64 _tsc = tsc;
988
989 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
990 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
991
992 return _tsc;
993 }
994
svm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)995 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
996 {
997 struct vcpu_svm *svm = to_svm(vcpu);
998 u64 ratio;
999 u64 khz;
1000
1001 /* Guest TSC same frequency as host TSC? */
1002 if (!scale) {
1003 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1004 return;
1005 }
1006
1007 /* TSC scaling supported? */
1008 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1009 if (user_tsc_khz > tsc_khz) {
1010 vcpu->arch.tsc_catchup = 1;
1011 vcpu->arch.tsc_always_catchup = 1;
1012 } else
1013 WARN(1, "user requested TSC rate below hardware speed\n");
1014 return;
1015 }
1016
1017 khz = user_tsc_khz;
1018
1019 /* TSC scaling required - calculate ratio */
1020 ratio = khz << 32;
1021 do_div(ratio, tsc_khz);
1022
1023 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1024 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1025 user_tsc_khz);
1026 return;
1027 }
1028 svm->tsc_ratio = ratio;
1029 }
1030
svm_read_tsc_offset(struct kvm_vcpu * vcpu)1031 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1032 {
1033 struct vcpu_svm *svm = to_svm(vcpu);
1034
1035 return svm->vmcb->control.tsc_offset;
1036 }
1037
svm_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1038 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1039 {
1040 struct vcpu_svm *svm = to_svm(vcpu);
1041 u64 g_tsc_offset = 0;
1042
1043 if (is_guest_mode(vcpu)) {
1044 g_tsc_offset = svm->vmcb->control.tsc_offset -
1045 svm->nested.hsave->control.tsc_offset;
1046 svm->nested.hsave->control.tsc_offset = offset;
1047 } else
1048 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1049 svm->vmcb->control.tsc_offset,
1050 offset);
1051
1052 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1053
1054 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1055 }
1056
svm_adjust_tsc_offset(struct kvm_vcpu * vcpu,s64 adjustment,bool host)1057 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1058 {
1059 struct vcpu_svm *svm = to_svm(vcpu);
1060
1061 WARN_ON(adjustment < 0);
1062 if (host)
1063 adjustment = svm_scale_tsc(vcpu, adjustment);
1064
1065 svm->vmcb->control.tsc_offset += adjustment;
1066 if (is_guest_mode(vcpu))
1067 svm->nested.hsave->control.tsc_offset += adjustment;
1068 else
1069 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1070 svm->vmcb->control.tsc_offset - adjustment,
1071 svm->vmcb->control.tsc_offset);
1072
1073 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1074 }
1075
svm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1076 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1077 {
1078 u64 tsc;
1079
1080 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1081
1082 return target_tsc - tsc;
1083 }
1084
init_vmcb(struct vcpu_svm * svm)1085 static void init_vmcb(struct vcpu_svm *svm)
1086 {
1087 struct vmcb_control_area *control = &svm->vmcb->control;
1088 struct vmcb_save_area *save = &svm->vmcb->save;
1089
1090 svm->vcpu.fpu_active = 1;
1091 svm->vcpu.arch.hflags = 0;
1092
1093 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1094 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1095 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1096 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1097 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1098 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1099 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1100
1101 set_dr_intercepts(svm);
1102
1103 set_exception_intercept(svm, PF_VECTOR);
1104 set_exception_intercept(svm, UD_VECTOR);
1105 set_exception_intercept(svm, MC_VECTOR);
1106 set_exception_intercept(svm, AC_VECTOR);
1107
1108 set_intercept(svm, INTERCEPT_INTR);
1109 set_intercept(svm, INTERCEPT_NMI);
1110 set_intercept(svm, INTERCEPT_SMI);
1111 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1112 set_intercept(svm, INTERCEPT_RDPMC);
1113 set_intercept(svm, INTERCEPT_CPUID);
1114 set_intercept(svm, INTERCEPT_INVD);
1115 set_intercept(svm, INTERCEPT_HLT);
1116 set_intercept(svm, INTERCEPT_INVLPG);
1117 set_intercept(svm, INTERCEPT_INVLPGA);
1118 set_intercept(svm, INTERCEPT_IOIO_PROT);
1119 set_intercept(svm, INTERCEPT_MSR_PROT);
1120 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1121 set_intercept(svm, INTERCEPT_SHUTDOWN);
1122 set_intercept(svm, INTERCEPT_VMRUN);
1123 set_intercept(svm, INTERCEPT_VMMCALL);
1124 set_intercept(svm, INTERCEPT_VMLOAD);
1125 set_intercept(svm, INTERCEPT_VMSAVE);
1126 set_intercept(svm, INTERCEPT_STGI);
1127 set_intercept(svm, INTERCEPT_CLGI);
1128 set_intercept(svm, INTERCEPT_SKINIT);
1129 set_intercept(svm, INTERCEPT_WBINVD);
1130 set_intercept(svm, INTERCEPT_MONITOR);
1131 set_intercept(svm, INTERCEPT_MWAIT);
1132 set_intercept(svm, INTERCEPT_XSETBV);
1133
1134 control->iopm_base_pa = iopm_base;
1135 control->msrpm_base_pa = __pa(svm->msrpm);
1136 control->int_ctl = V_INTR_MASKING_MASK;
1137
1138 init_seg(&save->es);
1139 init_seg(&save->ss);
1140 init_seg(&save->ds);
1141 init_seg(&save->fs);
1142 init_seg(&save->gs);
1143
1144 save->cs.selector = 0xf000;
1145 save->cs.base = 0xffff0000;
1146 /* Executable/Readable Code Segment */
1147 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1148 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1149 save->cs.limit = 0xffff;
1150
1151 save->gdtr.limit = 0xffff;
1152 save->idtr.limit = 0xffff;
1153
1154 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1155 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1156
1157 svm_set_efer(&svm->vcpu, 0);
1158 save->dr6 = 0xffff0ff0;
1159 kvm_set_rflags(&svm->vcpu, 2);
1160 save->rip = 0x0000fff0;
1161 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1162
1163 /*
1164 * This is the guest-visible cr0 value.
1165 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1166 */
1167 svm->vcpu.arch.cr0 = 0;
1168 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1169
1170 save->cr4 = X86_CR4_PAE;
1171 /* rdx = ?? */
1172
1173 if (npt_enabled) {
1174 /* Setup VMCB for Nested Paging */
1175 control->nested_ctl = 1;
1176 clr_intercept(svm, INTERCEPT_INVLPG);
1177 clr_exception_intercept(svm, PF_VECTOR);
1178 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1179 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1180 save->g_pat = 0x0007040600070406ULL;
1181 save->cr3 = 0;
1182 save->cr4 = 0;
1183 }
1184 svm->asid_generation = 0;
1185
1186 svm->nested.vmcb = 0;
1187 svm->vcpu.arch.hflags = 0;
1188
1189 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1190 control->pause_filter_count = 3000;
1191 set_intercept(svm, INTERCEPT_PAUSE);
1192 }
1193
1194 mark_all_dirty(svm->vmcb);
1195
1196 enable_gif(svm);
1197 }
1198
svm_vcpu_reset(struct kvm_vcpu * vcpu)1199 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1200 {
1201 struct vcpu_svm *svm = to_svm(vcpu);
1202 u32 dummy;
1203 u32 eax = 1;
1204
1205 init_vmcb(svm);
1206
1207 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1208 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1209 }
1210
svm_create_vcpu(struct kvm * kvm,unsigned int id)1211 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1212 {
1213 struct vcpu_svm *svm;
1214 struct page *page;
1215 struct page *msrpm_pages;
1216 struct page *hsave_page;
1217 struct page *nested_msrpm_pages;
1218 int err;
1219
1220 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1221 if (!svm) {
1222 err = -ENOMEM;
1223 goto out;
1224 }
1225
1226 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1227
1228 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1229 if (err)
1230 goto free_svm;
1231
1232 err = -ENOMEM;
1233 page = alloc_page(GFP_KERNEL);
1234 if (!page)
1235 goto uninit;
1236
1237 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1238 if (!msrpm_pages)
1239 goto free_page1;
1240
1241 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1242 if (!nested_msrpm_pages)
1243 goto free_page2;
1244
1245 hsave_page = alloc_page(GFP_KERNEL);
1246 if (!hsave_page)
1247 goto free_page3;
1248
1249 svm->nested.hsave = page_address(hsave_page);
1250
1251 svm->msrpm = page_address(msrpm_pages);
1252 svm_vcpu_init_msrpm(svm->msrpm);
1253
1254 svm->nested.msrpm = page_address(nested_msrpm_pages);
1255 svm_vcpu_init_msrpm(svm->nested.msrpm);
1256
1257 svm->vmcb = page_address(page);
1258 clear_page(svm->vmcb);
1259 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1260 svm->asid_generation = 0;
1261 init_vmcb(svm);
1262
1263 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1264 MSR_IA32_APICBASE_ENABLE;
1265 if (kvm_vcpu_is_bsp(&svm->vcpu))
1266 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1267
1268 svm_init_osvw(&svm->vcpu);
1269
1270 return &svm->vcpu;
1271
1272 free_page3:
1273 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1274 free_page2:
1275 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1276 free_page1:
1277 __free_page(page);
1278 uninit:
1279 kvm_vcpu_uninit(&svm->vcpu);
1280 free_svm:
1281 kmem_cache_free(kvm_vcpu_cache, svm);
1282 out:
1283 return ERR_PTR(err);
1284 }
1285
svm_free_vcpu(struct kvm_vcpu * vcpu)1286 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1287 {
1288 struct vcpu_svm *svm = to_svm(vcpu);
1289
1290 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1291 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1292 __free_page(virt_to_page(svm->nested.hsave));
1293 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1294 kvm_vcpu_uninit(vcpu);
1295 kmem_cache_free(kvm_vcpu_cache, svm);
1296 }
1297
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1298 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1299 {
1300 struct vcpu_svm *svm = to_svm(vcpu);
1301 int i;
1302
1303 if (unlikely(cpu != vcpu->cpu)) {
1304 svm->asid_generation = 0;
1305 mark_all_dirty(svm->vmcb);
1306 }
1307
1308 #ifdef CONFIG_X86_64
1309 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1310 #endif
1311 savesegment(fs, svm->host.fs);
1312 savesegment(gs, svm->host.gs);
1313 svm->host.ldt = kvm_read_ldt();
1314
1315 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1316 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1317
1318 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1319 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1320 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1321 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1322 }
1323 }
1324
svm_vcpu_put(struct kvm_vcpu * vcpu)1325 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1326 {
1327 struct vcpu_svm *svm = to_svm(vcpu);
1328 int i;
1329
1330 ++vcpu->stat.host_state_reload;
1331 kvm_load_ldt(svm->host.ldt);
1332 #ifdef CONFIG_X86_64
1333 loadsegment(fs, svm->host.fs);
1334 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1335 load_gs_index(svm->host.gs);
1336 #else
1337 #ifdef CONFIG_X86_32_LAZY_GS
1338 loadsegment(gs, svm->host.gs);
1339 #endif
1340 #endif
1341 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1342 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1343 }
1344
svm_get_rflags(struct kvm_vcpu * vcpu)1345 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1346 {
1347 return to_svm(vcpu)->vmcb->save.rflags;
1348 }
1349
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1350 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352 /*
1353 * Any change of EFLAGS.VM is accompained by a reload of SS
1354 * (caused by either a task switch or an inter-privilege IRET),
1355 * so we do not need to update the CPL here.
1356 */
1357 to_svm(vcpu)->vmcb->save.rflags = rflags;
1358 }
1359
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1360 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1361 {
1362 switch (reg) {
1363 case VCPU_EXREG_PDPTR:
1364 BUG_ON(!npt_enabled);
1365 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1366 break;
1367 default:
1368 BUG();
1369 }
1370 }
1371
svm_set_vintr(struct vcpu_svm * svm)1372 static void svm_set_vintr(struct vcpu_svm *svm)
1373 {
1374 set_intercept(svm, INTERCEPT_VINTR);
1375 }
1376
svm_clear_vintr(struct vcpu_svm * svm)1377 static void svm_clear_vintr(struct vcpu_svm *svm)
1378 {
1379 clr_intercept(svm, INTERCEPT_VINTR);
1380 }
1381
svm_seg(struct kvm_vcpu * vcpu,int seg)1382 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1383 {
1384 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1385
1386 switch (seg) {
1387 case VCPU_SREG_CS: return &save->cs;
1388 case VCPU_SREG_DS: return &save->ds;
1389 case VCPU_SREG_ES: return &save->es;
1390 case VCPU_SREG_FS: return &save->fs;
1391 case VCPU_SREG_GS: return &save->gs;
1392 case VCPU_SREG_SS: return &save->ss;
1393 case VCPU_SREG_TR: return &save->tr;
1394 case VCPU_SREG_LDTR: return &save->ldtr;
1395 }
1396 BUG();
1397 return NULL;
1398 }
1399
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1400 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1401 {
1402 struct vmcb_seg *s = svm_seg(vcpu, seg);
1403
1404 return s->base;
1405 }
1406
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1407 static void svm_get_segment(struct kvm_vcpu *vcpu,
1408 struct kvm_segment *var, int seg)
1409 {
1410 struct vmcb_seg *s = svm_seg(vcpu, seg);
1411
1412 var->base = s->base;
1413 var->limit = s->limit;
1414 var->selector = s->selector;
1415 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1416 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1417 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1418 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1419 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1420 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1421 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1422
1423 /*
1424 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1425 * However, the SVM spec states that the G bit is not observed by the
1426 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1427 * So let's synthesize a legal G bit for all segments, this helps
1428 * running KVM nested. It also helps cross-vendor migration, because
1429 * Intel's vmentry has a check on the 'G' bit.
1430 */
1431 var->g = s->limit > 0xfffff;
1432
1433 /*
1434 * AMD's VMCB does not have an explicit unusable field, so emulate it
1435 * for cross vendor migration purposes by "not present"
1436 */
1437 var->unusable = !var->present || (var->type == 0);
1438
1439 switch (seg) {
1440 case VCPU_SREG_TR:
1441 /*
1442 * Work around a bug where the busy flag in the tr selector
1443 * isn't exposed
1444 */
1445 var->type |= 0x2;
1446 break;
1447 case VCPU_SREG_DS:
1448 case VCPU_SREG_ES:
1449 case VCPU_SREG_FS:
1450 case VCPU_SREG_GS:
1451 /*
1452 * The accessed bit must always be set in the segment
1453 * descriptor cache, although it can be cleared in the
1454 * descriptor, the cached bit always remains at 1. Since
1455 * Intel has a check on this, set it here to support
1456 * cross-vendor migration.
1457 */
1458 if (!var->unusable)
1459 var->type |= 0x1;
1460 break;
1461 case VCPU_SREG_SS:
1462 /*
1463 * On AMD CPUs sometimes the DB bit in the segment
1464 * descriptor is left as 1, although the whole segment has
1465 * been made unusable. Clear it here to pass an Intel VMX
1466 * entry check when cross vendor migrating.
1467 */
1468 if (var->unusable)
1469 var->db = 0;
1470 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1471 break;
1472 }
1473 }
1474
svm_get_cpl(struct kvm_vcpu * vcpu)1475 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1476 {
1477 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1478
1479 return save->cpl;
1480 }
1481
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1482 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1483 {
1484 struct vcpu_svm *svm = to_svm(vcpu);
1485
1486 dt->size = svm->vmcb->save.idtr.limit;
1487 dt->address = svm->vmcb->save.idtr.base;
1488 }
1489
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1490 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1491 {
1492 struct vcpu_svm *svm = to_svm(vcpu);
1493
1494 svm->vmcb->save.idtr.limit = dt->size;
1495 svm->vmcb->save.idtr.base = dt->address ;
1496 mark_dirty(svm->vmcb, VMCB_DT);
1497 }
1498
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1499 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1500 {
1501 struct vcpu_svm *svm = to_svm(vcpu);
1502
1503 dt->size = svm->vmcb->save.gdtr.limit;
1504 dt->address = svm->vmcb->save.gdtr.base;
1505 }
1506
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1507 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509 struct vcpu_svm *svm = to_svm(vcpu);
1510
1511 svm->vmcb->save.gdtr.limit = dt->size;
1512 svm->vmcb->save.gdtr.base = dt->address ;
1513 mark_dirty(svm->vmcb, VMCB_DT);
1514 }
1515
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)1516 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1517 {
1518 }
1519
svm_decache_cr3(struct kvm_vcpu * vcpu)1520 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1521 {
1522 }
1523
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)1524 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1525 {
1526 }
1527
update_cr0_intercept(struct vcpu_svm * svm)1528 static void update_cr0_intercept(struct vcpu_svm *svm)
1529 {
1530 ulong gcr0 = svm->vcpu.arch.cr0;
1531 u64 *hcr0 = &svm->vmcb->save.cr0;
1532
1533 if (!svm->vcpu.fpu_active)
1534 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1535 else
1536 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1537 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1538
1539 mark_dirty(svm->vmcb, VMCB_CR);
1540
1541 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1542 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1543 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544 } else {
1545 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547 }
1548 }
1549
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1550 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1551 {
1552 struct vcpu_svm *svm = to_svm(vcpu);
1553
1554 #ifdef CONFIG_X86_64
1555 if (vcpu->arch.efer & EFER_LME) {
1556 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1557 vcpu->arch.efer |= EFER_LMA;
1558 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1559 }
1560
1561 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1562 vcpu->arch.efer &= ~EFER_LMA;
1563 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1564 }
1565 }
1566 #endif
1567 vcpu->arch.cr0 = cr0;
1568
1569 if (!npt_enabled)
1570 cr0 |= X86_CR0_PG | X86_CR0_WP;
1571
1572 if (!vcpu->fpu_active)
1573 cr0 |= X86_CR0_TS;
1574 /*
1575 * re-enable caching here because the QEMU bios
1576 * does not do it - this results in some delay at
1577 * reboot
1578 */
1579 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1580 svm->vmcb->save.cr0 = cr0;
1581 mark_dirty(svm->vmcb, VMCB_CR);
1582 update_cr0_intercept(svm);
1583 }
1584
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1585 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1586 {
1587 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1588 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1589
1590 if (cr4 & X86_CR4_VMXE)
1591 return 1;
1592
1593 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1594 svm_flush_tlb(vcpu);
1595
1596 vcpu->arch.cr4 = cr4;
1597 if (!npt_enabled)
1598 cr4 |= X86_CR4_PAE;
1599 cr4 |= host_cr4_mce;
1600 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1601 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1602 return 0;
1603 }
1604
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1605 static void svm_set_segment(struct kvm_vcpu *vcpu,
1606 struct kvm_segment *var, int seg)
1607 {
1608 struct vcpu_svm *svm = to_svm(vcpu);
1609 struct vmcb_seg *s = svm_seg(vcpu, seg);
1610
1611 s->base = var->base;
1612 s->limit = var->limit;
1613 s->selector = var->selector;
1614 if (var->unusable)
1615 s->attrib = 0;
1616 else {
1617 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1618 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1619 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1620 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1621 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1622 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1623 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1624 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1625 }
1626
1627 /*
1628 * This is always accurate, except if SYSRET returned to a segment
1629 * with SS.DPL != 3. Intel does not have this quirk, and always
1630 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1631 * would entail passing the CPL to userspace and back.
1632 */
1633 if (seg == VCPU_SREG_SS)
1634 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1635
1636 mark_dirty(svm->vmcb, VMCB_SEG);
1637 }
1638
update_db_bp_intercept(struct kvm_vcpu * vcpu)1639 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1640 {
1641 struct vcpu_svm *svm = to_svm(vcpu);
1642
1643 clr_exception_intercept(svm, DB_VECTOR);
1644 clr_exception_intercept(svm, BP_VECTOR);
1645
1646 if (svm->nmi_singlestep)
1647 set_exception_intercept(svm, DB_VECTOR);
1648
1649 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1650 if (vcpu->guest_debug &
1651 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1652 set_exception_intercept(svm, DB_VECTOR);
1653 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1654 set_exception_intercept(svm, BP_VECTOR);
1655 } else
1656 vcpu->guest_debug = 0;
1657 }
1658
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1659 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1660 {
1661 if (sd->next_asid > sd->max_asid) {
1662 ++sd->asid_generation;
1663 sd->next_asid = 1;
1664 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1665 }
1666
1667 svm->asid_generation = sd->asid_generation;
1668 svm->vmcb->control.asid = sd->next_asid++;
1669
1670 mark_dirty(svm->vmcb, VMCB_ASID);
1671 }
1672
svm_get_dr6(struct kvm_vcpu * vcpu)1673 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1674 {
1675 return to_svm(vcpu)->vmcb->save.dr6;
1676 }
1677
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1678 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1679 {
1680 struct vcpu_svm *svm = to_svm(vcpu);
1681
1682 svm->vmcb->save.dr6 = value;
1683 mark_dirty(svm->vmcb, VMCB_DR);
1684 }
1685
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1686 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1687 {
1688 struct vcpu_svm *svm = to_svm(vcpu);
1689
1690 get_debugreg(vcpu->arch.db[0], 0);
1691 get_debugreg(vcpu->arch.db[1], 1);
1692 get_debugreg(vcpu->arch.db[2], 2);
1693 get_debugreg(vcpu->arch.db[3], 3);
1694 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1695 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1696
1697 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1698 set_dr_intercepts(svm);
1699 }
1700
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1701 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1702 {
1703 struct vcpu_svm *svm = to_svm(vcpu);
1704
1705 svm->vmcb->save.dr7 = value;
1706 mark_dirty(svm->vmcb, VMCB_DR);
1707 }
1708
pf_interception(struct vcpu_svm * svm)1709 static int pf_interception(struct vcpu_svm *svm)
1710 {
1711 u64 fault_address = svm->vmcb->control.exit_info_2;
1712 u32 error_code;
1713 int r = 1;
1714
1715 switch (svm->apf_reason) {
1716 default:
1717 error_code = svm->vmcb->control.exit_info_1;
1718
1719 trace_kvm_page_fault(fault_address, error_code);
1720 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1721 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1722 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1723 svm->vmcb->control.insn_bytes,
1724 svm->vmcb->control.insn_len);
1725 break;
1726 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1727 svm->apf_reason = 0;
1728 local_irq_disable();
1729 kvm_async_pf_task_wait(fault_address);
1730 local_irq_enable();
1731 break;
1732 case KVM_PV_REASON_PAGE_READY:
1733 svm->apf_reason = 0;
1734 local_irq_disable();
1735 kvm_async_pf_task_wake(fault_address);
1736 local_irq_enable();
1737 break;
1738 }
1739 return r;
1740 }
1741
db_interception(struct vcpu_svm * svm)1742 static int db_interception(struct vcpu_svm *svm)
1743 {
1744 struct kvm_run *kvm_run = svm->vcpu.run;
1745
1746 if (!(svm->vcpu.guest_debug &
1747 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1748 !svm->nmi_singlestep) {
1749 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1750 return 1;
1751 }
1752
1753 if (svm->nmi_singlestep) {
1754 svm->nmi_singlestep = false;
1755 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1756 svm->vmcb->save.rflags &=
1757 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1758 update_db_bp_intercept(&svm->vcpu);
1759 }
1760
1761 if (svm->vcpu.guest_debug &
1762 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1763 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1764 kvm_run->debug.arch.pc =
1765 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1766 kvm_run->debug.arch.exception = DB_VECTOR;
1767 return 0;
1768 }
1769
1770 return 1;
1771 }
1772
bp_interception(struct vcpu_svm * svm)1773 static int bp_interception(struct vcpu_svm *svm)
1774 {
1775 struct kvm_run *kvm_run = svm->vcpu.run;
1776
1777 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1778 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1779 kvm_run->debug.arch.exception = BP_VECTOR;
1780 return 0;
1781 }
1782
ud_interception(struct vcpu_svm * svm)1783 static int ud_interception(struct vcpu_svm *svm)
1784 {
1785 int er;
1786
1787 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1788 if (er == EMULATE_USER_EXIT)
1789 return 0;
1790 if (er != EMULATE_DONE)
1791 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1792 return 1;
1793 }
1794
ac_interception(struct vcpu_svm * svm)1795 static int ac_interception(struct vcpu_svm *svm)
1796 {
1797 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1798 return 1;
1799 }
1800
svm_fpu_activate(struct kvm_vcpu * vcpu)1801 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1802 {
1803 struct vcpu_svm *svm = to_svm(vcpu);
1804
1805 clr_exception_intercept(svm, NM_VECTOR);
1806
1807 svm->vcpu.fpu_active = 1;
1808 update_cr0_intercept(svm);
1809 }
1810
nm_interception(struct vcpu_svm * svm)1811 static int nm_interception(struct vcpu_svm *svm)
1812 {
1813 svm_fpu_activate(&svm->vcpu);
1814 return 1;
1815 }
1816
is_erratum_383(void)1817 static bool is_erratum_383(void)
1818 {
1819 int err, i;
1820 u64 value;
1821
1822 if (!erratum_383_found)
1823 return false;
1824
1825 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1826 if (err)
1827 return false;
1828
1829 /* Bit 62 may or may not be set for this mce */
1830 value &= ~(1ULL << 62);
1831
1832 if (value != 0xb600000000010015ULL)
1833 return false;
1834
1835 /* Clear MCi_STATUS registers */
1836 for (i = 0; i < 6; ++i)
1837 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1838
1839 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1840 if (!err) {
1841 u32 low, high;
1842
1843 value &= ~(1ULL << 2);
1844 low = lower_32_bits(value);
1845 high = upper_32_bits(value);
1846
1847 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1848 }
1849
1850 /* Flush tlb to evict multi-match entries */
1851 __flush_tlb_all();
1852
1853 return true;
1854 }
1855
svm_handle_mce(struct vcpu_svm * svm)1856 static void svm_handle_mce(struct vcpu_svm *svm)
1857 {
1858 if (is_erratum_383()) {
1859 /*
1860 * Erratum 383 triggered. Guest state is corrupt so kill the
1861 * guest.
1862 */
1863 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1864
1865 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1866
1867 return;
1868 }
1869
1870 /*
1871 * On an #MC intercept the MCE handler is not called automatically in
1872 * the host. So do it by hand here.
1873 */
1874 asm volatile (
1875 "int $0x12\n");
1876 /* not sure if we ever come back to this point */
1877
1878 return;
1879 }
1880
mc_interception(struct vcpu_svm * svm)1881 static int mc_interception(struct vcpu_svm *svm)
1882 {
1883 return 1;
1884 }
1885
shutdown_interception(struct vcpu_svm * svm)1886 static int shutdown_interception(struct vcpu_svm *svm)
1887 {
1888 struct kvm_run *kvm_run = svm->vcpu.run;
1889
1890 /*
1891 * VMCB is undefined after a SHUTDOWN intercept
1892 * so reinitialize it.
1893 */
1894 clear_page(svm->vmcb);
1895 init_vmcb(svm);
1896
1897 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1898 return 0;
1899 }
1900
io_interception(struct vcpu_svm * svm)1901 static int io_interception(struct vcpu_svm *svm)
1902 {
1903 struct kvm_vcpu *vcpu = &svm->vcpu;
1904 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1905 int size, in, string;
1906 unsigned port;
1907
1908 ++svm->vcpu.stat.io_exits;
1909 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1910 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1911 if (string || in)
1912 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1913
1914 port = io_info >> 16;
1915 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1916 svm->next_rip = svm->vmcb->control.exit_info_2;
1917 skip_emulated_instruction(&svm->vcpu);
1918
1919 return kvm_fast_pio_out(vcpu, size, port);
1920 }
1921
nmi_interception(struct vcpu_svm * svm)1922 static int nmi_interception(struct vcpu_svm *svm)
1923 {
1924 return 1;
1925 }
1926
intr_interception(struct vcpu_svm * svm)1927 static int intr_interception(struct vcpu_svm *svm)
1928 {
1929 ++svm->vcpu.stat.irq_exits;
1930 return 1;
1931 }
1932
nop_on_interception(struct vcpu_svm * svm)1933 static int nop_on_interception(struct vcpu_svm *svm)
1934 {
1935 return 1;
1936 }
1937
halt_interception(struct vcpu_svm * svm)1938 static int halt_interception(struct vcpu_svm *svm)
1939 {
1940 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1941 skip_emulated_instruction(&svm->vcpu);
1942 return kvm_emulate_halt(&svm->vcpu);
1943 }
1944
vmmcall_interception(struct vcpu_svm * svm)1945 static int vmmcall_interception(struct vcpu_svm *svm)
1946 {
1947 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1948 skip_emulated_instruction(&svm->vcpu);
1949 kvm_emulate_hypercall(&svm->vcpu);
1950 return 1;
1951 }
1952
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)1953 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1954 {
1955 struct vcpu_svm *svm = to_svm(vcpu);
1956
1957 return svm->nested.nested_cr3;
1958 }
1959
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)1960 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1961 {
1962 struct vcpu_svm *svm = to_svm(vcpu);
1963 u64 cr3 = svm->nested.nested_cr3;
1964 u64 pdpte;
1965 int ret;
1966
1967 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1968 offset_in_page(cr3) + index * 8, 8);
1969 if (ret)
1970 return 0;
1971 return pdpte;
1972 }
1973
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)1974 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1975 unsigned long root)
1976 {
1977 struct vcpu_svm *svm = to_svm(vcpu);
1978
1979 svm->vmcb->control.nested_cr3 = root;
1980 mark_dirty(svm->vmcb, VMCB_NPT);
1981 svm_flush_tlb(vcpu);
1982 }
1983
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)1984 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1985 struct x86_exception *fault)
1986 {
1987 struct vcpu_svm *svm = to_svm(vcpu);
1988
1989 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1990 /*
1991 * TODO: track the cause of the nested page fault, and
1992 * correctly fill in the high bits of exit_info_1.
1993 */
1994 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1995 svm->vmcb->control.exit_code_hi = 0;
1996 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1997 svm->vmcb->control.exit_info_2 = fault->address;
1998 }
1999
2000 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2001 svm->vmcb->control.exit_info_1 |= fault->error_code;
2002
2003 /*
2004 * The present bit is always zero for page structure faults on real
2005 * hardware.
2006 */
2007 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2008 svm->vmcb->control.exit_info_1 &= ~1;
2009
2010 nested_svm_vmexit(svm);
2011 }
2012
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2013 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2014 {
2015 kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
2016
2017 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2018 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2019 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2020 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2021 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2022 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2023 }
2024
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)2025 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2026 {
2027 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2028 }
2029
nested_svm_check_permissions(struct vcpu_svm * svm)2030 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2031 {
2032 if (!(svm->vcpu.arch.efer & EFER_SVME)
2033 || !is_paging(&svm->vcpu)) {
2034 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2035 return 1;
2036 }
2037
2038 if (svm->vmcb->save.cpl) {
2039 kvm_inject_gp(&svm->vcpu, 0);
2040 return 1;
2041 }
2042
2043 return 0;
2044 }
2045
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)2046 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2047 bool has_error_code, u32 error_code)
2048 {
2049 int vmexit;
2050
2051 if (!is_guest_mode(&svm->vcpu))
2052 return 0;
2053
2054 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2055 svm->vmcb->control.exit_code_hi = 0;
2056 svm->vmcb->control.exit_info_1 = error_code;
2057 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2058
2059 vmexit = nested_svm_intercept(svm);
2060 if (vmexit == NESTED_EXIT_DONE)
2061 svm->nested.exit_required = true;
2062
2063 return vmexit;
2064 }
2065
2066 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)2067 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2068 {
2069 if (!is_guest_mode(&svm->vcpu))
2070 return true;
2071
2072 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2073 return true;
2074
2075 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2076 return false;
2077
2078 /*
2079 * if vmexit was already requested (by intercepted exception
2080 * for instance) do not overwrite it with "external interrupt"
2081 * vmexit.
2082 */
2083 if (svm->nested.exit_required)
2084 return false;
2085
2086 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2087 svm->vmcb->control.exit_info_1 = 0;
2088 svm->vmcb->control.exit_info_2 = 0;
2089
2090 if (svm->nested.intercept & 1ULL) {
2091 /*
2092 * The #vmexit can't be emulated here directly because this
2093 * code path runs with irqs and preemption disabled. A
2094 * #vmexit emulation might sleep. Only signal request for
2095 * the #vmexit here.
2096 */
2097 svm->nested.exit_required = true;
2098 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2099 return false;
2100 }
2101
2102 return true;
2103 }
2104
2105 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)2106 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2107 {
2108 if (!is_guest_mode(&svm->vcpu))
2109 return true;
2110
2111 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2112 return true;
2113
2114 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2115 svm->nested.exit_required = true;
2116
2117 return false;
2118 }
2119
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)2120 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2121 {
2122 struct page *page;
2123
2124 might_sleep();
2125
2126 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2127 if (is_error_page(page))
2128 goto error;
2129
2130 *_page = page;
2131
2132 return kmap(page);
2133
2134 error:
2135 kvm_inject_gp(&svm->vcpu, 0);
2136
2137 return NULL;
2138 }
2139
nested_svm_unmap(struct page * page)2140 static void nested_svm_unmap(struct page *page)
2141 {
2142 kunmap(page);
2143 kvm_release_page_dirty(page);
2144 }
2145
nested_svm_intercept_ioio(struct vcpu_svm * svm)2146 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2147 {
2148 unsigned port, size, iopm_len;
2149 u16 val, mask;
2150 u8 start_bit;
2151 u64 gpa;
2152
2153 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2154 return NESTED_EXIT_HOST;
2155
2156 port = svm->vmcb->control.exit_info_1 >> 16;
2157 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2158 SVM_IOIO_SIZE_SHIFT;
2159 gpa = svm->nested.vmcb_iopm + (port / 8);
2160 start_bit = port % 8;
2161 iopm_len = (start_bit + size > 8) ? 2 : 1;
2162 mask = (0xf >> (4 - size)) << start_bit;
2163 val = 0;
2164
2165 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2166 return NESTED_EXIT_DONE;
2167
2168 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2169 }
2170
nested_svm_exit_handled_msr(struct vcpu_svm * svm)2171 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2172 {
2173 u32 offset, msr, value;
2174 int write, mask;
2175
2176 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2177 return NESTED_EXIT_HOST;
2178
2179 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2180 offset = svm_msrpm_offset(msr);
2181 write = svm->vmcb->control.exit_info_1 & 1;
2182 mask = 1 << ((2 * (msr & 0xf)) + write);
2183
2184 if (offset == MSR_INVALID)
2185 return NESTED_EXIT_DONE;
2186
2187 /* Offset is in 32 bit units but need in 8 bit units */
2188 offset *= 4;
2189
2190 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2191 return NESTED_EXIT_DONE;
2192
2193 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2194 }
2195
nested_svm_exit_special(struct vcpu_svm * svm)2196 static int nested_svm_exit_special(struct vcpu_svm *svm)
2197 {
2198 u32 exit_code = svm->vmcb->control.exit_code;
2199
2200 switch (exit_code) {
2201 case SVM_EXIT_INTR:
2202 case SVM_EXIT_NMI:
2203 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2204 return NESTED_EXIT_HOST;
2205 case SVM_EXIT_NPF:
2206 /* For now we are always handling NPFs when using them */
2207 if (npt_enabled)
2208 return NESTED_EXIT_HOST;
2209 break;
2210 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2211 /* When we're shadowing, trap PFs, but not async PF */
2212 if (!npt_enabled && svm->apf_reason == 0)
2213 return NESTED_EXIT_HOST;
2214 break;
2215 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2216 nm_interception(svm);
2217 break;
2218 default:
2219 break;
2220 }
2221
2222 return NESTED_EXIT_CONTINUE;
2223 }
2224
2225 /*
2226 * If this function returns true, this #vmexit was already handled
2227 */
nested_svm_intercept(struct vcpu_svm * svm)2228 static int nested_svm_intercept(struct vcpu_svm *svm)
2229 {
2230 u32 exit_code = svm->vmcb->control.exit_code;
2231 int vmexit = NESTED_EXIT_HOST;
2232
2233 switch (exit_code) {
2234 case SVM_EXIT_MSR:
2235 vmexit = nested_svm_exit_handled_msr(svm);
2236 break;
2237 case SVM_EXIT_IOIO:
2238 vmexit = nested_svm_intercept_ioio(svm);
2239 break;
2240 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2241 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2242 if (svm->nested.intercept_cr & bit)
2243 vmexit = NESTED_EXIT_DONE;
2244 break;
2245 }
2246 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2247 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2248 if (svm->nested.intercept_dr & bit)
2249 vmexit = NESTED_EXIT_DONE;
2250 break;
2251 }
2252 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2253 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2254 if (svm->nested.intercept_exceptions & excp_bits)
2255 vmexit = NESTED_EXIT_DONE;
2256 /* async page fault always cause vmexit */
2257 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2258 svm->apf_reason != 0)
2259 vmexit = NESTED_EXIT_DONE;
2260 break;
2261 }
2262 case SVM_EXIT_ERR: {
2263 vmexit = NESTED_EXIT_DONE;
2264 break;
2265 }
2266 default: {
2267 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2268 if (svm->nested.intercept & exit_bits)
2269 vmexit = NESTED_EXIT_DONE;
2270 }
2271 }
2272
2273 return vmexit;
2274 }
2275
nested_svm_exit_handled(struct vcpu_svm * svm)2276 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2277 {
2278 int vmexit;
2279
2280 vmexit = nested_svm_intercept(svm);
2281
2282 if (vmexit == NESTED_EXIT_DONE)
2283 nested_svm_vmexit(svm);
2284
2285 return vmexit;
2286 }
2287
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)2288 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2289 {
2290 struct vmcb_control_area *dst = &dst_vmcb->control;
2291 struct vmcb_control_area *from = &from_vmcb->control;
2292
2293 dst->intercept_cr = from->intercept_cr;
2294 dst->intercept_dr = from->intercept_dr;
2295 dst->intercept_exceptions = from->intercept_exceptions;
2296 dst->intercept = from->intercept;
2297 dst->iopm_base_pa = from->iopm_base_pa;
2298 dst->msrpm_base_pa = from->msrpm_base_pa;
2299 dst->tsc_offset = from->tsc_offset;
2300 dst->asid = from->asid;
2301 dst->tlb_ctl = from->tlb_ctl;
2302 dst->int_ctl = from->int_ctl;
2303 dst->int_vector = from->int_vector;
2304 dst->int_state = from->int_state;
2305 dst->exit_code = from->exit_code;
2306 dst->exit_code_hi = from->exit_code_hi;
2307 dst->exit_info_1 = from->exit_info_1;
2308 dst->exit_info_2 = from->exit_info_2;
2309 dst->exit_int_info = from->exit_int_info;
2310 dst->exit_int_info_err = from->exit_int_info_err;
2311 dst->nested_ctl = from->nested_ctl;
2312 dst->event_inj = from->event_inj;
2313 dst->event_inj_err = from->event_inj_err;
2314 dst->nested_cr3 = from->nested_cr3;
2315 dst->lbr_ctl = from->lbr_ctl;
2316 }
2317
nested_svm_vmexit(struct vcpu_svm * svm)2318 static int nested_svm_vmexit(struct vcpu_svm *svm)
2319 {
2320 struct vmcb *nested_vmcb;
2321 struct vmcb *hsave = svm->nested.hsave;
2322 struct vmcb *vmcb = svm->vmcb;
2323 struct page *page;
2324
2325 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2326 vmcb->control.exit_info_1,
2327 vmcb->control.exit_info_2,
2328 vmcb->control.exit_int_info,
2329 vmcb->control.exit_int_info_err,
2330 KVM_ISA_SVM);
2331
2332 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2333 if (!nested_vmcb)
2334 return 1;
2335
2336 /* Exit Guest-Mode */
2337 leave_guest_mode(&svm->vcpu);
2338 svm->nested.vmcb = 0;
2339
2340 /* Give the current vmcb to the guest */
2341 disable_gif(svm);
2342
2343 nested_vmcb->save.es = vmcb->save.es;
2344 nested_vmcb->save.cs = vmcb->save.cs;
2345 nested_vmcb->save.ss = vmcb->save.ss;
2346 nested_vmcb->save.ds = vmcb->save.ds;
2347 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2348 nested_vmcb->save.idtr = vmcb->save.idtr;
2349 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2350 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2351 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2352 nested_vmcb->save.cr2 = vmcb->save.cr2;
2353 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2354 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2355 nested_vmcb->save.rip = vmcb->save.rip;
2356 nested_vmcb->save.rsp = vmcb->save.rsp;
2357 nested_vmcb->save.rax = vmcb->save.rax;
2358 nested_vmcb->save.dr7 = vmcb->save.dr7;
2359 nested_vmcb->save.dr6 = vmcb->save.dr6;
2360 nested_vmcb->save.cpl = vmcb->save.cpl;
2361
2362 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2363 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2364 nested_vmcb->control.int_state = vmcb->control.int_state;
2365 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2366 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2367 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2368 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2369 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2370 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2371 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2372
2373 /*
2374 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2375 * to make sure that we do not lose injected events. So check event_inj
2376 * here and copy it to exit_int_info if it is valid.
2377 * Exit_int_info and event_inj can't be both valid because the case
2378 * below only happens on a VMRUN instruction intercept which has
2379 * no valid exit_int_info set.
2380 */
2381 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2382 struct vmcb_control_area *nc = &nested_vmcb->control;
2383
2384 nc->exit_int_info = vmcb->control.event_inj;
2385 nc->exit_int_info_err = vmcb->control.event_inj_err;
2386 }
2387
2388 nested_vmcb->control.tlb_ctl = 0;
2389 nested_vmcb->control.event_inj = 0;
2390 nested_vmcb->control.event_inj_err = 0;
2391
2392 /* We always set V_INTR_MASKING and remember the old value in hflags */
2393 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2394 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2395
2396 /* Restore the original control entries */
2397 copy_vmcb_control_area(vmcb, hsave);
2398
2399 kvm_clear_exception_queue(&svm->vcpu);
2400 kvm_clear_interrupt_queue(&svm->vcpu);
2401
2402 svm->nested.nested_cr3 = 0;
2403
2404 /* Restore selected save entries */
2405 svm->vmcb->save.es = hsave->save.es;
2406 svm->vmcb->save.cs = hsave->save.cs;
2407 svm->vmcb->save.ss = hsave->save.ss;
2408 svm->vmcb->save.ds = hsave->save.ds;
2409 svm->vmcb->save.gdtr = hsave->save.gdtr;
2410 svm->vmcb->save.idtr = hsave->save.idtr;
2411 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2412 svm_set_efer(&svm->vcpu, hsave->save.efer);
2413 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2414 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2415 if (npt_enabled) {
2416 svm->vmcb->save.cr3 = hsave->save.cr3;
2417 svm->vcpu.arch.cr3 = hsave->save.cr3;
2418 } else {
2419 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2420 }
2421 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2422 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2423 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2424 svm->vmcb->save.dr7 = 0;
2425 svm->vmcb->save.cpl = 0;
2426 svm->vmcb->control.exit_int_info = 0;
2427
2428 mark_all_dirty(svm->vmcb);
2429
2430 nested_svm_unmap(page);
2431
2432 nested_svm_uninit_mmu_context(&svm->vcpu);
2433 kvm_mmu_reset_context(&svm->vcpu);
2434 kvm_mmu_load(&svm->vcpu);
2435
2436 return 0;
2437 }
2438
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)2439 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2440 {
2441 /*
2442 * This function merges the msr permission bitmaps of kvm and the
2443 * nested vmcb. It is optimized in that it only merges the parts where
2444 * the kvm msr permission bitmap may contain zero bits
2445 */
2446 int i;
2447
2448 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2449 return true;
2450
2451 for (i = 0; i < MSRPM_OFFSETS; i++) {
2452 u32 value, p;
2453 u64 offset;
2454
2455 if (msrpm_offsets[i] == 0xffffffff)
2456 break;
2457
2458 p = msrpm_offsets[i];
2459 offset = svm->nested.vmcb_msrpm + (p * 4);
2460
2461 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2462 return false;
2463
2464 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2465 }
2466
2467 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2468
2469 return true;
2470 }
2471
nested_vmcb_checks(struct vmcb * vmcb)2472 static bool nested_vmcb_checks(struct vmcb *vmcb)
2473 {
2474 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2475 return false;
2476
2477 if (vmcb->control.asid == 0)
2478 return false;
2479
2480 if (vmcb->control.nested_ctl && !npt_enabled)
2481 return false;
2482
2483 return true;
2484 }
2485
nested_svm_vmrun(struct vcpu_svm * svm)2486 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2487 {
2488 struct vmcb *nested_vmcb;
2489 struct vmcb *hsave = svm->nested.hsave;
2490 struct vmcb *vmcb = svm->vmcb;
2491 struct page *page;
2492 u64 vmcb_gpa;
2493
2494 vmcb_gpa = svm->vmcb->save.rax;
2495
2496 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2497 if (!nested_vmcb)
2498 return false;
2499
2500 if (!nested_vmcb_checks(nested_vmcb)) {
2501 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2502 nested_vmcb->control.exit_code_hi = 0;
2503 nested_vmcb->control.exit_info_1 = 0;
2504 nested_vmcb->control.exit_info_2 = 0;
2505
2506 nested_svm_unmap(page);
2507
2508 return false;
2509 }
2510
2511 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2512 nested_vmcb->save.rip,
2513 nested_vmcb->control.int_ctl,
2514 nested_vmcb->control.event_inj,
2515 nested_vmcb->control.nested_ctl);
2516
2517 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2518 nested_vmcb->control.intercept_cr >> 16,
2519 nested_vmcb->control.intercept_exceptions,
2520 nested_vmcb->control.intercept);
2521
2522 /* Clear internal status */
2523 kvm_clear_exception_queue(&svm->vcpu);
2524 kvm_clear_interrupt_queue(&svm->vcpu);
2525
2526 /*
2527 * Save the old vmcb, so we don't need to pick what we save, but can
2528 * restore everything when a VMEXIT occurs
2529 */
2530 hsave->save.es = vmcb->save.es;
2531 hsave->save.cs = vmcb->save.cs;
2532 hsave->save.ss = vmcb->save.ss;
2533 hsave->save.ds = vmcb->save.ds;
2534 hsave->save.gdtr = vmcb->save.gdtr;
2535 hsave->save.idtr = vmcb->save.idtr;
2536 hsave->save.efer = svm->vcpu.arch.efer;
2537 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2538 hsave->save.cr4 = svm->vcpu.arch.cr4;
2539 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2540 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2541 hsave->save.rsp = vmcb->save.rsp;
2542 hsave->save.rax = vmcb->save.rax;
2543 if (npt_enabled)
2544 hsave->save.cr3 = vmcb->save.cr3;
2545 else
2546 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2547
2548 copy_vmcb_control_area(hsave, vmcb);
2549
2550 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2551 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2552 else
2553 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2554
2555 if (nested_vmcb->control.nested_ctl) {
2556 kvm_mmu_unload(&svm->vcpu);
2557 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2558 nested_svm_init_mmu_context(&svm->vcpu);
2559 }
2560
2561 /* Load the nested guest state */
2562 svm->vmcb->save.es = nested_vmcb->save.es;
2563 svm->vmcb->save.cs = nested_vmcb->save.cs;
2564 svm->vmcb->save.ss = nested_vmcb->save.ss;
2565 svm->vmcb->save.ds = nested_vmcb->save.ds;
2566 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2567 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2568 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2569 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2570 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2571 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2572 if (npt_enabled) {
2573 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2574 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2575 } else
2576 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2577
2578 /* Guest paging mode is active - reset mmu */
2579 kvm_mmu_reset_context(&svm->vcpu);
2580
2581 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2582 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2583 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2584 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2585
2586 /* In case we don't even reach vcpu_run, the fields are not updated */
2587 svm->vmcb->save.rax = nested_vmcb->save.rax;
2588 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2589 svm->vmcb->save.rip = nested_vmcb->save.rip;
2590 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2591 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2592 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2593
2594 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2595 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2596
2597 /* cache intercepts */
2598 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2599 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2600 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2601 svm->nested.intercept = nested_vmcb->control.intercept;
2602
2603 svm_flush_tlb(&svm->vcpu);
2604 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2605 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2606 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2607 else
2608 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2609
2610 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2611 /* We only want the cr8 intercept bits of the guest */
2612 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2613 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2614 }
2615
2616 /* We don't want to see VMMCALLs from a nested guest */
2617 clr_intercept(svm, INTERCEPT_VMMCALL);
2618
2619 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2620 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2621 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2622 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2623 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2624 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2625
2626 nested_svm_unmap(page);
2627
2628 /* Enter Guest-Mode */
2629 enter_guest_mode(&svm->vcpu);
2630
2631 /*
2632 * Merge guest and host intercepts - must be called with vcpu in
2633 * guest-mode to take affect here
2634 */
2635 recalc_intercepts(svm);
2636
2637 svm->nested.vmcb = vmcb_gpa;
2638
2639 enable_gif(svm);
2640
2641 mark_all_dirty(svm->vmcb);
2642
2643 return true;
2644 }
2645
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)2646 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2647 {
2648 to_vmcb->save.fs = from_vmcb->save.fs;
2649 to_vmcb->save.gs = from_vmcb->save.gs;
2650 to_vmcb->save.tr = from_vmcb->save.tr;
2651 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2652 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2653 to_vmcb->save.star = from_vmcb->save.star;
2654 to_vmcb->save.lstar = from_vmcb->save.lstar;
2655 to_vmcb->save.cstar = from_vmcb->save.cstar;
2656 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2657 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2658 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2659 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2660 }
2661
vmload_interception(struct vcpu_svm * svm)2662 static int vmload_interception(struct vcpu_svm *svm)
2663 {
2664 struct vmcb *nested_vmcb;
2665 struct page *page;
2666
2667 if (nested_svm_check_permissions(svm))
2668 return 1;
2669
2670 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2671 if (!nested_vmcb)
2672 return 1;
2673
2674 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2675 skip_emulated_instruction(&svm->vcpu);
2676
2677 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2678 nested_svm_unmap(page);
2679
2680 return 1;
2681 }
2682
vmsave_interception(struct vcpu_svm * svm)2683 static int vmsave_interception(struct vcpu_svm *svm)
2684 {
2685 struct vmcb *nested_vmcb;
2686 struct page *page;
2687
2688 if (nested_svm_check_permissions(svm))
2689 return 1;
2690
2691 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2692 if (!nested_vmcb)
2693 return 1;
2694
2695 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2696 skip_emulated_instruction(&svm->vcpu);
2697
2698 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2699 nested_svm_unmap(page);
2700
2701 return 1;
2702 }
2703
vmrun_interception(struct vcpu_svm * svm)2704 static int vmrun_interception(struct vcpu_svm *svm)
2705 {
2706 if (nested_svm_check_permissions(svm))
2707 return 1;
2708
2709 /* Save rip after vmrun instruction */
2710 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2711
2712 if (!nested_svm_vmrun(svm))
2713 return 1;
2714
2715 if (!nested_svm_vmrun_msrpm(svm))
2716 goto failed;
2717
2718 return 1;
2719
2720 failed:
2721
2722 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2723 svm->vmcb->control.exit_code_hi = 0;
2724 svm->vmcb->control.exit_info_1 = 0;
2725 svm->vmcb->control.exit_info_2 = 0;
2726
2727 nested_svm_vmexit(svm);
2728
2729 return 1;
2730 }
2731
stgi_interception(struct vcpu_svm * svm)2732 static int stgi_interception(struct vcpu_svm *svm)
2733 {
2734 if (nested_svm_check_permissions(svm))
2735 return 1;
2736
2737 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2738 skip_emulated_instruction(&svm->vcpu);
2739 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2740
2741 enable_gif(svm);
2742
2743 return 1;
2744 }
2745
clgi_interception(struct vcpu_svm * svm)2746 static int clgi_interception(struct vcpu_svm *svm)
2747 {
2748 if (nested_svm_check_permissions(svm))
2749 return 1;
2750
2751 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2752 skip_emulated_instruction(&svm->vcpu);
2753
2754 disable_gif(svm);
2755
2756 /* After a CLGI no interrupts should come */
2757 svm_clear_vintr(svm);
2758 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2759
2760 mark_dirty(svm->vmcb, VMCB_INTR);
2761
2762 return 1;
2763 }
2764
invlpga_interception(struct vcpu_svm * svm)2765 static int invlpga_interception(struct vcpu_svm *svm)
2766 {
2767 struct kvm_vcpu *vcpu = &svm->vcpu;
2768
2769 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2770 vcpu->arch.regs[VCPU_REGS_RAX]);
2771
2772 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2773 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2774
2775 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2776 skip_emulated_instruction(&svm->vcpu);
2777 return 1;
2778 }
2779
skinit_interception(struct vcpu_svm * svm)2780 static int skinit_interception(struct vcpu_svm *svm)
2781 {
2782 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2783
2784 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2785 return 1;
2786 }
2787
xsetbv_interception(struct vcpu_svm * svm)2788 static int xsetbv_interception(struct vcpu_svm *svm)
2789 {
2790 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2791 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2792
2793 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2794 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2795 skip_emulated_instruction(&svm->vcpu);
2796 }
2797
2798 return 1;
2799 }
2800
task_switch_interception(struct vcpu_svm * svm)2801 static int task_switch_interception(struct vcpu_svm *svm)
2802 {
2803 u16 tss_selector;
2804 int reason;
2805 int int_type = svm->vmcb->control.exit_int_info &
2806 SVM_EXITINTINFO_TYPE_MASK;
2807 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2808 uint32_t type =
2809 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2810 uint32_t idt_v =
2811 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2812 bool has_error_code = false;
2813 u32 error_code = 0;
2814
2815 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2816
2817 if (svm->vmcb->control.exit_info_2 &
2818 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2819 reason = TASK_SWITCH_IRET;
2820 else if (svm->vmcb->control.exit_info_2 &
2821 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2822 reason = TASK_SWITCH_JMP;
2823 else if (idt_v)
2824 reason = TASK_SWITCH_GATE;
2825 else
2826 reason = TASK_SWITCH_CALL;
2827
2828 if (reason == TASK_SWITCH_GATE) {
2829 switch (type) {
2830 case SVM_EXITINTINFO_TYPE_NMI:
2831 svm->vcpu.arch.nmi_injected = false;
2832 break;
2833 case SVM_EXITINTINFO_TYPE_EXEPT:
2834 if (svm->vmcb->control.exit_info_2 &
2835 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2836 has_error_code = true;
2837 error_code =
2838 (u32)svm->vmcb->control.exit_info_2;
2839 }
2840 kvm_clear_exception_queue(&svm->vcpu);
2841 break;
2842 case SVM_EXITINTINFO_TYPE_INTR:
2843 kvm_clear_interrupt_queue(&svm->vcpu);
2844 break;
2845 default:
2846 break;
2847 }
2848 }
2849
2850 if (reason != TASK_SWITCH_GATE ||
2851 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2852 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2853 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2854 skip_emulated_instruction(&svm->vcpu);
2855
2856 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2857 int_vec = -1;
2858
2859 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2860 has_error_code, error_code) == EMULATE_FAIL) {
2861 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2862 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2863 svm->vcpu.run->internal.ndata = 0;
2864 return 0;
2865 }
2866 return 1;
2867 }
2868
cpuid_interception(struct vcpu_svm * svm)2869 static int cpuid_interception(struct vcpu_svm *svm)
2870 {
2871 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2872 kvm_emulate_cpuid(&svm->vcpu);
2873 return 1;
2874 }
2875
iret_interception(struct vcpu_svm * svm)2876 static int iret_interception(struct vcpu_svm *svm)
2877 {
2878 ++svm->vcpu.stat.nmi_window_exits;
2879 clr_intercept(svm, INTERCEPT_IRET);
2880 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2881 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2882 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2883 return 1;
2884 }
2885
invlpg_interception(struct vcpu_svm * svm)2886 static int invlpg_interception(struct vcpu_svm *svm)
2887 {
2888 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2889 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2890
2891 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2892 skip_emulated_instruction(&svm->vcpu);
2893 return 1;
2894 }
2895
emulate_on_interception(struct vcpu_svm * svm)2896 static int emulate_on_interception(struct vcpu_svm *svm)
2897 {
2898 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2899 }
2900
rdpmc_interception(struct vcpu_svm * svm)2901 static int rdpmc_interception(struct vcpu_svm *svm)
2902 {
2903 int err;
2904
2905 if (!static_cpu_has(X86_FEATURE_NRIPS))
2906 return emulate_on_interception(svm);
2907
2908 err = kvm_rdpmc(&svm->vcpu);
2909 kvm_complete_insn_gp(&svm->vcpu, err);
2910
2911 return 1;
2912 }
2913
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2914 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2915 {
2916 unsigned long cr0 = svm->vcpu.arch.cr0;
2917 bool ret = false;
2918 u64 intercept;
2919
2920 intercept = svm->nested.intercept;
2921
2922 if (!is_guest_mode(&svm->vcpu) ||
2923 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2924 return false;
2925
2926 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2927 val &= ~SVM_CR0_SELECTIVE_MASK;
2928
2929 if (cr0 ^ val) {
2930 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2931 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2932 }
2933
2934 return ret;
2935 }
2936
2937 #define CR_VALID (1ULL << 63)
2938
cr_interception(struct vcpu_svm * svm)2939 static int cr_interception(struct vcpu_svm *svm)
2940 {
2941 int reg, cr;
2942 unsigned long val;
2943 int err;
2944
2945 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2946 return emulate_on_interception(svm);
2947
2948 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2949 return emulate_on_interception(svm);
2950
2951 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2952 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2953
2954 err = 0;
2955 if (cr >= 16) { /* mov to cr */
2956 cr -= 16;
2957 val = kvm_register_read(&svm->vcpu, reg);
2958 switch (cr) {
2959 case 0:
2960 if (!check_selective_cr0_intercepted(svm, val))
2961 err = kvm_set_cr0(&svm->vcpu, val);
2962 else
2963 return 1;
2964
2965 break;
2966 case 3:
2967 err = kvm_set_cr3(&svm->vcpu, val);
2968 break;
2969 case 4:
2970 err = kvm_set_cr4(&svm->vcpu, val);
2971 break;
2972 case 8:
2973 err = kvm_set_cr8(&svm->vcpu, val);
2974 break;
2975 default:
2976 WARN(1, "unhandled write to CR%d", cr);
2977 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2978 return 1;
2979 }
2980 } else { /* mov from cr */
2981 switch (cr) {
2982 case 0:
2983 val = kvm_read_cr0(&svm->vcpu);
2984 break;
2985 case 2:
2986 val = svm->vcpu.arch.cr2;
2987 break;
2988 case 3:
2989 val = kvm_read_cr3(&svm->vcpu);
2990 break;
2991 case 4:
2992 val = kvm_read_cr4(&svm->vcpu);
2993 break;
2994 case 8:
2995 val = kvm_get_cr8(&svm->vcpu);
2996 break;
2997 default:
2998 WARN(1, "unhandled read from CR%d", cr);
2999 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3000 return 1;
3001 }
3002 kvm_register_write(&svm->vcpu, reg, val);
3003 }
3004 kvm_complete_insn_gp(&svm->vcpu, err);
3005
3006 return 1;
3007 }
3008
dr_interception(struct vcpu_svm * svm)3009 static int dr_interception(struct vcpu_svm *svm)
3010 {
3011 int reg, dr;
3012 unsigned long val;
3013 int err;
3014
3015 if (svm->vcpu.guest_debug == 0) {
3016 /*
3017 * No more DR vmexits; force a reload of the debug registers
3018 * and reenter on this instruction. The next vmexit will
3019 * retrieve the full state of the debug registers.
3020 */
3021 clr_dr_intercepts(svm);
3022 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3023 return 1;
3024 }
3025
3026 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3027 return emulate_on_interception(svm);
3028
3029 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3030 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3031
3032 if (dr >= 16) { /* mov to DRn */
3033 val = kvm_register_read(&svm->vcpu, reg);
3034 kvm_set_dr(&svm->vcpu, dr - 16, val);
3035 } else {
3036 err = kvm_get_dr(&svm->vcpu, dr, &val);
3037 if (!err)
3038 kvm_register_write(&svm->vcpu, reg, val);
3039 }
3040
3041 skip_emulated_instruction(&svm->vcpu);
3042
3043 return 1;
3044 }
3045
cr8_write_interception(struct vcpu_svm * svm)3046 static int cr8_write_interception(struct vcpu_svm *svm)
3047 {
3048 struct kvm_run *kvm_run = svm->vcpu.run;
3049 int r;
3050
3051 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3052 /* instruction emulation calls kvm_set_cr8() */
3053 r = cr_interception(svm);
3054 if (irqchip_in_kernel(svm->vcpu.kvm))
3055 return r;
3056 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3057 return r;
3058 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3059 return 0;
3060 }
3061
svm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)3062 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3063 {
3064 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3065 return vmcb->control.tsc_offset +
3066 svm_scale_tsc(vcpu, host_tsc);
3067 }
3068
svm_get_msr(struct kvm_vcpu * vcpu,unsigned ecx,u64 * data)3069 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3070 {
3071 struct vcpu_svm *svm = to_svm(vcpu);
3072
3073 switch (ecx) {
3074 case MSR_IA32_TSC: {
3075 *data = svm->vmcb->control.tsc_offset +
3076 svm_scale_tsc(vcpu, native_read_tsc());
3077
3078 break;
3079 }
3080 case MSR_STAR:
3081 *data = svm->vmcb->save.star;
3082 break;
3083 #ifdef CONFIG_X86_64
3084 case MSR_LSTAR:
3085 *data = svm->vmcb->save.lstar;
3086 break;
3087 case MSR_CSTAR:
3088 *data = svm->vmcb->save.cstar;
3089 break;
3090 case MSR_KERNEL_GS_BASE:
3091 *data = svm->vmcb->save.kernel_gs_base;
3092 break;
3093 case MSR_SYSCALL_MASK:
3094 *data = svm->vmcb->save.sfmask;
3095 break;
3096 #endif
3097 case MSR_IA32_SYSENTER_CS:
3098 *data = svm->vmcb->save.sysenter_cs;
3099 break;
3100 case MSR_IA32_SYSENTER_EIP:
3101 *data = svm->sysenter_eip;
3102 break;
3103 case MSR_IA32_SYSENTER_ESP:
3104 *data = svm->sysenter_esp;
3105 break;
3106 /*
3107 * Nobody will change the following 5 values in the VMCB so we can
3108 * safely return them on rdmsr. They will always be 0 until LBRV is
3109 * implemented.
3110 */
3111 case MSR_IA32_DEBUGCTLMSR:
3112 *data = svm->vmcb->save.dbgctl;
3113 break;
3114 case MSR_IA32_LASTBRANCHFROMIP:
3115 *data = svm->vmcb->save.br_from;
3116 break;
3117 case MSR_IA32_LASTBRANCHTOIP:
3118 *data = svm->vmcb->save.br_to;
3119 break;
3120 case MSR_IA32_LASTINTFROMIP:
3121 *data = svm->vmcb->save.last_excp_from;
3122 break;
3123 case MSR_IA32_LASTINTTOIP:
3124 *data = svm->vmcb->save.last_excp_to;
3125 break;
3126 case MSR_VM_HSAVE_PA:
3127 *data = svm->nested.hsave_msr;
3128 break;
3129 case MSR_VM_CR:
3130 *data = svm->nested.vm_cr_msr;
3131 break;
3132 case MSR_IA32_UCODE_REV:
3133 *data = 0x01000065;
3134 break;
3135 default:
3136 return kvm_get_msr_common(vcpu, ecx, data);
3137 }
3138 return 0;
3139 }
3140
rdmsr_interception(struct vcpu_svm * svm)3141 static int rdmsr_interception(struct vcpu_svm *svm)
3142 {
3143 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3144 u64 data;
3145
3146 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3147 trace_kvm_msr_read_ex(ecx);
3148 kvm_inject_gp(&svm->vcpu, 0);
3149 } else {
3150 trace_kvm_msr_read(ecx, data);
3151
3152 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3153 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3154 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3155 skip_emulated_instruction(&svm->vcpu);
3156 }
3157 return 1;
3158 }
3159
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)3160 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3161 {
3162 struct vcpu_svm *svm = to_svm(vcpu);
3163 int svm_dis, chg_mask;
3164
3165 if (data & ~SVM_VM_CR_VALID_MASK)
3166 return 1;
3167
3168 chg_mask = SVM_VM_CR_VALID_MASK;
3169
3170 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3171 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3172
3173 svm->nested.vm_cr_msr &= ~chg_mask;
3174 svm->nested.vm_cr_msr |= (data & chg_mask);
3175
3176 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3177
3178 /* check for svm_disable while efer.svme is set */
3179 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3180 return 1;
3181
3182 return 0;
3183 }
3184
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3185 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3186 {
3187 struct vcpu_svm *svm = to_svm(vcpu);
3188
3189 u32 ecx = msr->index;
3190 u64 data = msr->data;
3191 switch (ecx) {
3192 case MSR_IA32_CR_PAT:
3193 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3194 return 1;
3195 vcpu->arch.pat = data;
3196 svm->vmcb->save.g_pat = data;
3197 mark_dirty(svm->vmcb, VMCB_NPT);
3198 break;
3199 case MSR_IA32_TSC:
3200 kvm_write_tsc(vcpu, msr);
3201 break;
3202 case MSR_STAR:
3203 svm->vmcb->save.star = data;
3204 break;
3205 #ifdef CONFIG_X86_64
3206 case MSR_LSTAR:
3207 svm->vmcb->save.lstar = data;
3208 break;
3209 case MSR_CSTAR:
3210 svm->vmcb->save.cstar = data;
3211 break;
3212 case MSR_KERNEL_GS_BASE:
3213 svm->vmcb->save.kernel_gs_base = data;
3214 break;
3215 case MSR_SYSCALL_MASK:
3216 svm->vmcb->save.sfmask = data;
3217 break;
3218 #endif
3219 case MSR_IA32_SYSENTER_CS:
3220 svm->vmcb->save.sysenter_cs = data;
3221 break;
3222 case MSR_IA32_SYSENTER_EIP:
3223 svm->sysenter_eip = data;
3224 svm->vmcb->save.sysenter_eip = data;
3225 break;
3226 case MSR_IA32_SYSENTER_ESP:
3227 svm->sysenter_esp = data;
3228 svm->vmcb->save.sysenter_esp = data;
3229 break;
3230 case MSR_IA32_DEBUGCTLMSR:
3231 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3232 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3233 __func__, data);
3234 break;
3235 }
3236 if (data & DEBUGCTL_RESERVED_BITS)
3237 return 1;
3238
3239 svm->vmcb->save.dbgctl = data;
3240 mark_dirty(svm->vmcb, VMCB_LBR);
3241 if (data & (1ULL<<0))
3242 svm_enable_lbrv(svm);
3243 else
3244 svm_disable_lbrv(svm);
3245 break;
3246 case MSR_VM_HSAVE_PA:
3247 svm->nested.hsave_msr = data;
3248 break;
3249 case MSR_VM_CR:
3250 return svm_set_vm_cr(vcpu, data);
3251 case MSR_VM_IGNNE:
3252 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3253 break;
3254 default:
3255 return kvm_set_msr_common(vcpu, msr);
3256 }
3257 return 0;
3258 }
3259
wrmsr_interception(struct vcpu_svm * svm)3260 static int wrmsr_interception(struct vcpu_svm *svm)
3261 {
3262 struct msr_data msr;
3263 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3264 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3265 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3266
3267 msr.data = data;
3268 msr.index = ecx;
3269 msr.host_initiated = false;
3270
3271 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3272 if (kvm_set_msr(&svm->vcpu, &msr)) {
3273 trace_kvm_msr_write_ex(ecx, data);
3274 kvm_inject_gp(&svm->vcpu, 0);
3275 } else {
3276 trace_kvm_msr_write(ecx, data);
3277 skip_emulated_instruction(&svm->vcpu);
3278 }
3279 return 1;
3280 }
3281
msr_interception(struct vcpu_svm * svm)3282 static int msr_interception(struct vcpu_svm *svm)
3283 {
3284 if (svm->vmcb->control.exit_info_1)
3285 return wrmsr_interception(svm);
3286 else
3287 return rdmsr_interception(svm);
3288 }
3289
interrupt_window_interception(struct vcpu_svm * svm)3290 static int interrupt_window_interception(struct vcpu_svm *svm)
3291 {
3292 struct kvm_run *kvm_run = svm->vcpu.run;
3293
3294 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3295 svm_clear_vintr(svm);
3296 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3297 mark_dirty(svm->vmcb, VMCB_INTR);
3298 ++svm->vcpu.stat.irq_window_exits;
3299 /*
3300 * If the user space waits to inject interrupts, exit as soon as
3301 * possible
3302 */
3303 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3304 kvm_run->request_interrupt_window &&
3305 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3306 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3307 return 0;
3308 }
3309
3310 return 1;
3311 }
3312
pause_interception(struct vcpu_svm * svm)3313 static int pause_interception(struct vcpu_svm *svm)
3314 {
3315 kvm_vcpu_on_spin(&(svm->vcpu));
3316 return 1;
3317 }
3318
nop_interception(struct vcpu_svm * svm)3319 static int nop_interception(struct vcpu_svm *svm)
3320 {
3321 skip_emulated_instruction(&(svm->vcpu));
3322 return 1;
3323 }
3324
monitor_interception(struct vcpu_svm * svm)3325 static int monitor_interception(struct vcpu_svm *svm)
3326 {
3327 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3328 return nop_interception(svm);
3329 }
3330
mwait_interception(struct vcpu_svm * svm)3331 static int mwait_interception(struct vcpu_svm *svm)
3332 {
3333 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3334 return nop_interception(svm);
3335 }
3336
3337 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3338 [SVM_EXIT_READ_CR0] = cr_interception,
3339 [SVM_EXIT_READ_CR3] = cr_interception,
3340 [SVM_EXIT_READ_CR4] = cr_interception,
3341 [SVM_EXIT_READ_CR8] = cr_interception,
3342 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3343 [SVM_EXIT_WRITE_CR0] = cr_interception,
3344 [SVM_EXIT_WRITE_CR3] = cr_interception,
3345 [SVM_EXIT_WRITE_CR4] = cr_interception,
3346 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3347 [SVM_EXIT_READ_DR0] = dr_interception,
3348 [SVM_EXIT_READ_DR1] = dr_interception,
3349 [SVM_EXIT_READ_DR2] = dr_interception,
3350 [SVM_EXIT_READ_DR3] = dr_interception,
3351 [SVM_EXIT_READ_DR4] = dr_interception,
3352 [SVM_EXIT_READ_DR5] = dr_interception,
3353 [SVM_EXIT_READ_DR6] = dr_interception,
3354 [SVM_EXIT_READ_DR7] = dr_interception,
3355 [SVM_EXIT_WRITE_DR0] = dr_interception,
3356 [SVM_EXIT_WRITE_DR1] = dr_interception,
3357 [SVM_EXIT_WRITE_DR2] = dr_interception,
3358 [SVM_EXIT_WRITE_DR3] = dr_interception,
3359 [SVM_EXIT_WRITE_DR4] = dr_interception,
3360 [SVM_EXIT_WRITE_DR5] = dr_interception,
3361 [SVM_EXIT_WRITE_DR6] = dr_interception,
3362 [SVM_EXIT_WRITE_DR7] = dr_interception,
3363 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3364 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3365 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3366 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3367 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3368 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3369 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3370 [SVM_EXIT_INTR] = intr_interception,
3371 [SVM_EXIT_NMI] = nmi_interception,
3372 [SVM_EXIT_SMI] = nop_on_interception,
3373 [SVM_EXIT_INIT] = nop_on_interception,
3374 [SVM_EXIT_VINTR] = interrupt_window_interception,
3375 [SVM_EXIT_RDPMC] = rdpmc_interception,
3376 [SVM_EXIT_CPUID] = cpuid_interception,
3377 [SVM_EXIT_IRET] = iret_interception,
3378 [SVM_EXIT_INVD] = emulate_on_interception,
3379 [SVM_EXIT_PAUSE] = pause_interception,
3380 [SVM_EXIT_HLT] = halt_interception,
3381 [SVM_EXIT_INVLPG] = invlpg_interception,
3382 [SVM_EXIT_INVLPGA] = invlpga_interception,
3383 [SVM_EXIT_IOIO] = io_interception,
3384 [SVM_EXIT_MSR] = msr_interception,
3385 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3386 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3387 [SVM_EXIT_VMRUN] = vmrun_interception,
3388 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3389 [SVM_EXIT_VMLOAD] = vmload_interception,
3390 [SVM_EXIT_VMSAVE] = vmsave_interception,
3391 [SVM_EXIT_STGI] = stgi_interception,
3392 [SVM_EXIT_CLGI] = clgi_interception,
3393 [SVM_EXIT_SKINIT] = skinit_interception,
3394 [SVM_EXIT_WBINVD] = emulate_on_interception,
3395 [SVM_EXIT_MONITOR] = monitor_interception,
3396 [SVM_EXIT_MWAIT] = mwait_interception,
3397 [SVM_EXIT_XSETBV] = xsetbv_interception,
3398 [SVM_EXIT_NPF] = pf_interception,
3399 };
3400
dump_vmcb(struct kvm_vcpu * vcpu)3401 static void dump_vmcb(struct kvm_vcpu *vcpu)
3402 {
3403 struct vcpu_svm *svm = to_svm(vcpu);
3404 struct vmcb_control_area *control = &svm->vmcb->control;
3405 struct vmcb_save_area *save = &svm->vmcb->save;
3406
3407 pr_err("VMCB Control Area:\n");
3408 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3409 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3410 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3411 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3412 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3413 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3414 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3415 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3416 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3417 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3418 pr_err("%-20s%d\n", "asid:", control->asid);
3419 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3420 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3421 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3422 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3423 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3424 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3425 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3426 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3427 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3428 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3429 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3430 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3431 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3432 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3433 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3434 pr_err("VMCB State Save Area:\n");
3435 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3436 "es:",
3437 save->es.selector, save->es.attrib,
3438 save->es.limit, save->es.base);
3439 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3440 "cs:",
3441 save->cs.selector, save->cs.attrib,
3442 save->cs.limit, save->cs.base);
3443 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3444 "ss:",
3445 save->ss.selector, save->ss.attrib,
3446 save->ss.limit, save->ss.base);
3447 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3448 "ds:",
3449 save->ds.selector, save->ds.attrib,
3450 save->ds.limit, save->ds.base);
3451 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3452 "fs:",
3453 save->fs.selector, save->fs.attrib,
3454 save->fs.limit, save->fs.base);
3455 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3456 "gs:",
3457 save->gs.selector, save->gs.attrib,
3458 save->gs.limit, save->gs.base);
3459 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3460 "gdtr:",
3461 save->gdtr.selector, save->gdtr.attrib,
3462 save->gdtr.limit, save->gdtr.base);
3463 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3464 "ldtr:",
3465 save->ldtr.selector, save->ldtr.attrib,
3466 save->ldtr.limit, save->ldtr.base);
3467 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3468 "idtr:",
3469 save->idtr.selector, save->idtr.attrib,
3470 save->idtr.limit, save->idtr.base);
3471 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3472 "tr:",
3473 save->tr.selector, save->tr.attrib,
3474 save->tr.limit, save->tr.base);
3475 pr_err("cpl: %d efer: %016llx\n",
3476 save->cpl, save->efer);
3477 pr_err("%-15s %016llx %-13s %016llx\n",
3478 "cr0:", save->cr0, "cr2:", save->cr2);
3479 pr_err("%-15s %016llx %-13s %016llx\n",
3480 "cr3:", save->cr3, "cr4:", save->cr4);
3481 pr_err("%-15s %016llx %-13s %016llx\n",
3482 "dr6:", save->dr6, "dr7:", save->dr7);
3483 pr_err("%-15s %016llx %-13s %016llx\n",
3484 "rip:", save->rip, "rflags:", save->rflags);
3485 pr_err("%-15s %016llx %-13s %016llx\n",
3486 "rsp:", save->rsp, "rax:", save->rax);
3487 pr_err("%-15s %016llx %-13s %016llx\n",
3488 "star:", save->star, "lstar:", save->lstar);
3489 pr_err("%-15s %016llx %-13s %016llx\n",
3490 "cstar:", save->cstar, "sfmask:", save->sfmask);
3491 pr_err("%-15s %016llx %-13s %016llx\n",
3492 "kernel_gs_base:", save->kernel_gs_base,
3493 "sysenter_cs:", save->sysenter_cs);
3494 pr_err("%-15s %016llx %-13s %016llx\n",
3495 "sysenter_esp:", save->sysenter_esp,
3496 "sysenter_eip:", save->sysenter_eip);
3497 pr_err("%-15s %016llx %-13s %016llx\n",
3498 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3499 pr_err("%-15s %016llx %-13s %016llx\n",
3500 "br_from:", save->br_from, "br_to:", save->br_to);
3501 pr_err("%-15s %016llx %-13s %016llx\n",
3502 "excp_from:", save->last_excp_from,
3503 "excp_to:", save->last_excp_to);
3504 }
3505
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)3506 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3507 {
3508 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3509
3510 *info1 = control->exit_info_1;
3511 *info2 = control->exit_info_2;
3512 }
3513
handle_exit(struct kvm_vcpu * vcpu)3514 static int handle_exit(struct kvm_vcpu *vcpu)
3515 {
3516 struct vcpu_svm *svm = to_svm(vcpu);
3517 struct kvm_run *kvm_run = vcpu->run;
3518 u32 exit_code = svm->vmcb->control.exit_code;
3519
3520 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3521 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3522 if (npt_enabled)
3523 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3524
3525 if (unlikely(svm->nested.exit_required)) {
3526 nested_svm_vmexit(svm);
3527 svm->nested.exit_required = false;
3528
3529 return 1;
3530 }
3531
3532 if (is_guest_mode(vcpu)) {
3533 int vmexit;
3534
3535 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3536 svm->vmcb->control.exit_info_1,
3537 svm->vmcb->control.exit_info_2,
3538 svm->vmcb->control.exit_int_info,
3539 svm->vmcb->control.exit_int_info_err,
3540 KVM_ISA_SVM);
3541
3542 vmexit = nested_svm_exit_special(svm);
3543
3544 if (vmexit == NESTED_EXIT_CONTINUE)
3545 vmexit = nested_svm_exit_handled(svm);
3546
3547 if (vmexit == NESTED_EXIT_DONE)
3548 return 1;
3549 }
3550
3551 svm_complete_interrupts(svm);
3552
3553 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3554 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3555 kvm_run->fail_entry.hardware_entry_failure_reason
3556 = svm->vmcb->control.exit_code;
3557 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3558 dump_vmcb(vcpu);
3559 return 0;
3560 }
3561
3562 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3563 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3564 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3565 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3566 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3567 "exit_code 0x%x\n",
3568 __func__, svm->vmcb->control.exit_int_info,
3569 exit_code);
3570
3571 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3572 || !svm_exit_handlers[exit_code]) {
3573 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3574 kvm_queue_exception(vcpu, UD_VECTOR);
3575 return 1;
3576 }
3577
3578 return svm_exit_handlers[exit_code](svm);
3579 }
3580
reload_tss(struct kvm_vcpu * vcpu)3581 static void reload_tss(struct kvm_vcpu *vcpu)
3582 {
3583 int cpu = raw_smp_processor_id();
3584
3585 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3586 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3587 load_TR_desc();
3588 }
3589
pre_svm_run(struct vcpu_svm * svm)3590 static void pre_svm_run(struct vcpu_svm *svm)
3591 {
3592 int cpu = raw_smp_processor_id();
3593
3594 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3595
3596 /* FIXME: handle wraparound of asid_generation */
3597 if (svm->asid_generation != sd->asid_generation)
3598 new_asid(svm, sd);
3599 }
3600
svm_inject_nmi(struct kvm_vcpu * vcpu)3601 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3602 {
3603 struct vcpu_svm *svm = to_svm(vcpu);
3604
3605 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3606 vcpu->arch.hflags |= HF_NMI_MASK;
3607 set_intercept(svm, INTERCEPT_IRET);
3608 ++vcpu->stat.nmi_injections;
3609 }
3610
svm_inject_irq(struct vcpu_svm * svm,int irq)3611 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3612 {
3613 struct vmcb_control_area *control;
3614
3615 control = &svm->vmcb->control;
3616 control->int_vector = irq;
3617 control->int_ctl &= ~V_INTR_PRIO_MASK;
3618 control->int_ctl |= V_IRQ_MASK |
3619 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3620 mark_dirty(svm->vmcb, VMCB_INTR);
3621 }
3622
svm_set_irq(struct kvm_vcpu * vcpu)3623 static void svm_set_irq(struct kvm_vcpu *vcpu)
3624 {
3625 struct vcpu_svm *svm = to_svm(vcpu);
3626
3627 BUG_ON(!(gif_set(svm)));
3628
3629 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3630 ++vcpu->stat.irq_injections;
3631
3632 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3633 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3634 }
3635
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3636 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3637 {
3638 struct vcpu_svm *svm = to_svm(vcpu);
3639
3640 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3641 return;
3642
3643 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3644
3645 if (irr == -1)
3646 return;
3647
3648 if (tpr >= irr)
3649 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3650 }
3651
svm_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)3652 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3653 {
3654 return;
3655 }
3656
svm_vm_has_apicv(struct kvm * kvm)3657 static int svm_vm_has_apicv(struct kvm *kvm)
3658 {
3659 return 0;
3660 }
3661
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)3662 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3663 {
3664 return;
3665 }
3666
svm_hwapic_isr_update(struct kvm * kvm,int isr)3667 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3668 {
3669 return;
3670 }
3671
svm_sync_pir_to_irr(struct kvm_vcpu * vcpu)3672 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3673 {
3674 return;
3675 }
3676
svm_nmi_allowed(struct kvm_vcpu * vcpu)3677 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3678 {
3679 struct vcpu_svm *svm = to_svm(vcpu);
3680 struct vmcb *vmcb = svm->vmcb;
3681 int ret;
3682 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3683 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3684 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3685
3686 return ret;
3687 }
3688
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3689 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3690 {
3691 struct vcpu_svm *svm = to_svm(vcpu);
3692
3693 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3694 }
3695
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3696 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3697 {
3698 struct vcpu_svm *svm = to_svm(vcpu);
3699
3700 if (masked) {
3701 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3702 set_intercept(svm, INTERCEPT_IRET);
3703 } else {
3704 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3705 clr_intercept(svm, INTERCEPT_IRET);
3706 }
3707 }
3708
svm_interrupt_allowed(struct kvm_vcpu * vcpu)3709 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3710 {
3711 struct vcpu_svm *svm = to_svm(vcpu);
3712 struct vmcb *vmcb = svm->vmcb;
3713 int ret;
3714
3715 if (!gif_set(svm) ||
3716 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3717 return 0;
3718
3719 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3720
3721 if (is_guest_mode(vcpu))
3722 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3723
3724 return ret;
3725 }
3726
enable_irq_window(struct kvm_vcpu * vcpu)3727 static void enable_irq_window(struct kvm_vcpu *vcpu)
3728 {
3729 struct vcpu_svm *svm = to_svm(vcpu);
3730
3731 /*
3732 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3733 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3734 * get that intercept, this function will be called again though and
3735 * we'll get the vintr intercept.
3736 */
3737 if (gif_set(svm) && nested_svm_intr(svm)) {
3738 svm_set_vintr(svm);
3739 svm_inject_irq(svm, 0x0);
3740 }
3741 }
3742
enable_nmi_window(struct kvm_vcpu * vcpu)3743 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3744 {
3745 struct vcpu_svm *svm = to_svm(vcpu);
3746
3747 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3748 == HF_NMI_MASK)
3749 return; /* IRET will cause a vm exit */
3750
3751 /*
3752 * Something prevents NMI from been injected. Single step over possible
3753 * problem (IRET or exception injection or interrupt shadow)
3754 */
3755 svm->nmi_singlestep = true;
3756 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3757 update_db_bp_intercept(vcpu);
3758 }
3759
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3760 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3761 {
3762 return 0;
3763 }
3764
svm_flush_tlb(struct kvm_vcpu * vcpu)3765 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3766 {
3767 struct vcpu_svm *svm = to_svm(vcpu);
3768
3769 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3770 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3771 else
3772 svm->asid_generation--;
3773 }
3774
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3775 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3776 {
3777 }
3778
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3779 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3780 {
3781 struct vcpu_svm *svm = to_svm(vcpu);
3782
3783 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3784 return;
3785
3786 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3787 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3788 kvm_set_cr8(vcpu, cr8);
3789 }
3790 }
3791
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3792 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3793 {
3794 struct vcpu_svm *svm = to_svm(vcpu);
3795 u64 cr8;
3796
3797 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3798 return;
3799
3800 cr8 = kvm_get_cr8(vcpu);
3801 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3802 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3803 }
3804
svm_complete_interrupts(struct vcpu_svm * svm)3805 static void svm_complete_interrupts(struct vcpu_svm *svm)
3806 {
3807 u8 vector;
3808 int type;
3809 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3810 unsigned int3_injected = svm->int3_injected;
3811
3812 svm->int3_injected = 0;
3813
3814 /*
3815 * If we've made progress since setting HF_IRET_MASK, we've
3816 * executed an IRET and can allow NMI injection.
3817 */
3818 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3819 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3820 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3821 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3822 }
3823
3824 svm->vcpu.arch.nmi_injected = false;
3825 kvm_clear_exception_queue(&svm->vcpu);
3826 kvm_clear_interrupt_queue(&svm->vcpu);
3827
3828 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3829 return;
3830
3831 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3832
3833 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3834 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3835
3836 switch (type) {
3837 case SVM_EXITINTINFO_TYPE_NMI:
3838 svm->vcpu.arch.nmi_injected = true;
3839 break;
3840 case SVM_EXITINTINFO_TYPE_EXEPT:
3841 /*
3842 * In case of software exceptions, do not reinject the vector,
3843 * but re-execute the instruction instead. Rewind RIP first
3844 * if we emulated INT3 before.
3845 */
3846 if (kvm_exception_is_soft(vector)) {
3847 if (vector == BP_VECTOR && int3_injected &&
3848 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3849 kvm_rip_write(&svm->vcpu,
3850 kvm_rip_read(&svm->vcpu) -
3851 int3_injected);
3852 break;
3853 }
3854 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3855 u32 err = svm->vmcb->control.exit_int_info_err;
3856 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3857
3858 } else
3859 kvm_requeue_exception(&svm->vcpu, vector);
3860 break;
3861 case SVM_EXITINTINFO_TYPE_INTR:
3862 kvm_queue_interrupt(&svm->vcpu, vector, false);
3863 break;
3864 default:
3865 break;
3866 }
3867 }
3868
svm_cancel_injection(struct kvm_vcpu * vcpu)3869 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3870 {
3871 struct vcpu_svm *svm = to_svm(vcpu);
3872 struct vmcb_control_area *control = &svm->vmcb->control;
3873
3874 control->exit_int_info = control->event_inj;
3875 control->exit_int_info_err = control->event_inj_err;
3876 control->event_inj = 0;
3877 svm_complete_interrupts(svm);
3878 }
3879
svm_vcpu_run(struct kvm_vcpu * vcpu)3880 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3881 {
3882 struct vcpu_svm *svm = to_svm(vcpu);
3883
3884 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3885 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3886 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3887
3888 /*
3889 * A vmexit emulation is required before the vcpu can be executed
3890 * again.
3891 */
3892 if (unlikely(svm->nested.exit_required))
3893 return;
3894
3895 pre_svm_run(svm);
3896
3897 sync_lapic_to_cr8(vcpu);
3898
3899 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3900
3901 clgi();
3902
3903 local_irq_enable();
3904
3905 asm volatile (
3906 "push %%" _ASM_BP "; \n\t"
3907 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3908 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3909 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3910 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3911 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3912 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3913 #ifdef CONFIG_X86_64
3914 "mov %c[r8](%[svm]), %%r8 \n\t"
3915 "mov %c[r9](%[svm]), %%r9 \n\t"
3916 "mov %c[r10](%[svm]), %%r10 \n\t"
3917 "mov %c[r11](%[svm]), %%r11 \n\t"
3918 "mov %c[r12](%[svm]), %%r12 \n\t"
3919 "mov %c[r13](%[svm]), %%r13 \n\t"
3920 "mov %c[r14](%[svm]), %%r14 \n\t"
3921 "mov %c[r15](%[svm]), %%r15 \n\t"
3922 #endif
3923
3924 /* Enter guest mode */
3925 "push %%" _ASM_AX " \n\t"
3926 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3927 __ex(SVM_VMLOAD) "\n\t"
3928 __ex(SVM_VMRUN) "\n\t"
3929 __ex(SVM_VMSAVE) "\n\t"
3930 "pop %%" _ASM_AX " \n\t"
3931
3932 /* Save guest registers, load host registers */
3933 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3934 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3935 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3936 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3937 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3938 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3939 #ifdef CONFIG_X86_64
3940 "mov %%r8, %c[r8](%[svm]) \n\t"
3941 "mov %%r9, %c[r9](%[svm]) \n\t"
3942 "mov %%r10, %c[r10](%[svm]) \n\t"
3943 "mov %%r11, %c[r11](%[svm]) \n\t"
3944 "mov %%r12, %c[r12](%[svm]) \n\t"
3945 "mov %%r13, %c[r13](%[svm]) \n\t"
3946 "mov %%r14, %c[r14](%[svm]) \n\t"
3947 "mov %%r15, %c[r15](%[svm]) \n\t"
3948 #endif
3949 /*
3950 * Clear host registers marked as clobbered to prevent
3951 * speculative use.
3952 */
3953 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
3954 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
3955 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
3956 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
3957 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
3958 #ifdef CONFIG_X86_64
3959 "xor %%r8, %%r8 \n\t"
3960 "xor %%r9, %%r9 \n\t"
3961 "xor %%r10, %%r10 \n\t"
3962 "xor %%r11, %%r11 \n\t"
3963 "xor %%r12, %%r12 \n\t"
3964 "xor %%r13, %%r13 \n\t"
3965 "xor %%r14, %%r14 \n\t"
3966 "xor %%r15, %%r15 \n\t"
3967 #endif
3968 "pop %%" _ASM_BP
3969 :
3970 : [svm]"a"(svm),
3971 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3972 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3973 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3974 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3975 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3976 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3977 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3978 #ifdef CONFIG_X86_64
3979 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3980 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3981 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3982 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3983 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3984 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3985 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3986 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3987 #endif
3988 : "cc", "memory"
3989 #ifdef CONFIG_X86_64
3990 , "rbx", "rcx", "rdx", "rsi", "rdi"
3991 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3992 #else
3993 , "ebx", "ecx", "edx", "esi", "edi"
3994 #endif
3995 );
3996
3997 #ifdef CONFIG_X86_64
3998 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3999 #else
4000 loadsegment(fs, svm->host.fs);
4001 #ifndef CONFIG_X86_32_LAZY_GS
4002 loadsegment(gs, svm->host.gs);
4003 #endif
4004 #endif
4005
4006 reload_tss(vcpu);
4007
4008 local_irq_disable();
4009
4010 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4011 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4012 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4013 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4014
4015 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4016
4017 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4018 kvm_before_handle_nmi(&svm->vcpu);
4019
4020 stgi();
4021
4022 /* Any pending NMI will happen here */
4023
4024 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4025 kvm_after_handle_nmi(&svm->vcpu);
4026
4027 sync_cr8_to_lapic(vcpu);
4028
4029 svm->next_rip = 0;
4030
4031 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4032
4033 /* if exit due to PF check for async PF */
4034 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4035 svm->apf_reason = kvm_read_and_reset_pf_reason();
4036
4037 if (npt_enabled) {
4038 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4039 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4040 }
4041
4042 /*
4043 * We need to handle MC intercepts here before the vcpu has a chance to
4044 * change the physical cpu
4045 */
4046 if (unlikely(svm->vmcb->control.exit_code ==
4047 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4048 svm_handle_mce(svm);
4049
4050 mark_all_clean(svm->vmcb);
4051 }
4052
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)4053 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4054 {
4055 struct vcpu_svm *svm = to_svm(vcpu);
4056
4057 svm->vmcb->save.cr3 = root;
4058 mark_dirty(svm->vmcb, VMCB_CR);
4059 svm_flush_tlb(vcpu);
4060 }
4061
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)4062 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4063 {
4064 struct vcpu_svm *svm = to_svm(vcpu);
4065
4066 svm->vmcb->control.nested_cr3 = root;
4067 mark_dirty(svm->vmcb, VMCB_NPT);
4068
4069 /* Also sync guest cr3 here in case we live migrate */
4070 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4071 mark_dirty(svm->vmcb, VMCB_CR);
4072
4073 svm_flush_tlb(vcpu);
4074 }
4075
is_disabled(void)4076 static int is_disabled(void)
4077 {
4078 u64 vm_cr;
4079
4080 rdmsrl(MSR_VM_CR, vm_cr);
4081 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4082 return 1;
4083
4084 return 0;
4085 }
4086
4087 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4088 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4089 {
4090 /*
4091 * Patch in the VMMCALL instruction:
4092 */
4093 hypercall[0] = 0x0f;
4094 hypercall[1] = 0x01;
4095 hypercall[2] = 0xd9;
4096 }
4097
svm_check_processor_compat(void * rtn)4098 static void svm_check_processor_compat(void *rtn)
4099 {
4100 *(int *)rtn = 0;
4101 }
4102
svm_cpu_has_accelerated_tpr(void)4103 static bool svm_cpu_has_accelerated_tpr(void)
4104 {
4105 return false;
4106 }
4107
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)4108 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4109 {
4110 return 0;
4111 }
4112
svm_cpuid_update(struct kvm_vcpu * vcpu)4113 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4114 {
4115 }
4116
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)4117 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4118 {
4119 switch (func) {
4120 case 0x80000001:
4121 if (nested)
4122 entry->ecx |= (1 << 2); /* Set SVM bit */
4123 break;
4124 case 0x8000000A:
4125 entry->eax = 1; /* SVM revision 1 */
4126 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4127 ASID emulation to nested SVM */
4128 entry->ecx = 0; /* Reserved */
4129 entry->edx = 0; /* Per default do not support any
4130 additional features */
4131
4132 /* Support next_rip if host supports it */
4133 if (boot_cpu_has(X86_FEATURE_NRIPS))
4134 entry->edx |= SVM_FEATURE_NRIP;
4135
4136 /* Support NPT for the guest if enabled */
4137 if (npt_enabled)
4138 entry->edx |= SVM_FEATURE_NPT;
4139
4140 break;
4141 }
4142 }
4143
svm_get_lpage_level(void)4144 static int svm_get_lpage_level(void)
4145 {
4146 return PT_PDPE_LEVEL;
4147 }
4148
svm_rdtscp_supported(void)4149 static bool svm_rdtscp_supported(void)
4150 {
4151 return false;
4152 }
4153
svm_invpcid_supported(void)4154 static bool svm_invpcid_supported(void)
4155 {
4156 return false;
4157 }
4158
svm_mpx_supported(void)4159 static bool svm_mpx_supported(void)
4160 {
4161 return false;
4162 }
4163
svm_has_wbinvd_exit(void)4164 static bool svm_has_wbinvd_exit(void)
4165 {
4166 return true;
4167 }
4168
svm_fpu_deactivate(struct kvm_vcpu * vcpu)4169 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4170 {
4171 struct vcpu_svm *svm = to_svm(vcpu);
4172
4173 set_exception_intercept(svm, NM_VECTOR);
4174 update_cr0_intercept(svm);
4175 }
4176
4177 #define PRE_EX(exit) { .exit_code = (exit), \
4178 .stage = X86_ICPT_PRE_EXCEPT, }
4179 #define POST_EX(exit) { .exit_code = (exit), \
4180 .stage = X86_ICPT_POST_EXCEPT, }
4181 #define POST_MEM(exit) { .exit_code = (exit), \
4182 .stage = X86_ICPT_POST_MEMACCESS, }
4183
4184 static const struct __x86_intercept {
4185 u32 exit_code;
4186 enum x86_intercept_stage stage;
4187 } x86_intercept_map[] = {
4188 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4189 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4190 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4191 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4192 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4193 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4194 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4195 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4196 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4197 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4198 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4199 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4200 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4201 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4202 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4203 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4204 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4205 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4206 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4207 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4208 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4209 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4210 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4211 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4212 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4213 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4214 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4215 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4216 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4217 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4218 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4219 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4220 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4221 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4222 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4223 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4224 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4225 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4226 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4227 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4228 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4229 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4230 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4231 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4232 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4233 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4234 };
4235
4236 #undef PRE_EX
4237 #undef POST_EX
4238 #undef POST_MEM
4239
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)4240 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4241 struct x86_instruction_info *info,
4242 enum x86_intercept_stage stage)
4243 {
4244 struct vcpu_svm *svm = to_svm(vcpu);
4245 int vmexit, ret = X86EMUL_CONTINUE;
4246 struct __x86_intercept icpt_info;
4247 struct vmcb *vmcb = svm->vmcb;
4248
4249 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4250 goto out;
4251
4252 icpt_info = x86_intercept_map[info->intercept];
4253
4254 if (stage != icpt_info.stage)
4255 goto out;
4256
4257 switch (icpt_info.exit_code) {
4258 case SVM_EXIT_READ_CR0:
4259 if (info->intercept == x86_intercept_cr_read)
4260 icpt_info.exit_code += info->modrm_reg;
4261 break;
4262 case SVM_EXIT_WRITE_CR0: {
4263 unsigned long cr0, val;
4264 u64 intercept;
4265
4266 if (info->intercept == x86_intercept_cr_write)
4267 icpt_info.exit_code += info->modrm_reg;
4268
4269 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4270 info->intercept == x86_intercept_clts)
4271 break;
4272
4273 intercept = svm->nested.intercept;
4274
4275 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4276 break;
4277
4278 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4279 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4280
4281 if (info->intercept == x86_intercept_lmsw) {
4282 cr0 &= 0xfUL;
4283 val &= 0xfUL;
4284 /* lmsw can't clear PE - catch this here */
4285 if (cr0 & X86_CR0_PE)
4286 val |= X86_CR0_PE;
4287 }
4288
4289 if (cr0 ^ val)
4290 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4291
4292 break;
4293 }
4294 case SVM_EXIT_READ_DR0:
4295 case SVM_EXIT_WRITE_DR0:
4296 icpt_info.exit_code += info->modrm_reg;
4297 break;
4298 case SVM_EXIT_MSR:
4299 if (info->intercept == x86_intercept_wrmsr)
4300 vmcb->control.exit_info_1 = 1;
4301 else
4302 vmcb->control.exit_info_1 = 0;
4303 break;
4304 case SVM_EXIT_PAUSE:
4305 /*
4306 * We get this for NOP only, but pause
4307 * is rep not, check this here
4308 */
4309 if (info->rep_prefix != REPE_PREFIX)
4310 goto out;
4311 case SVM_EXIT_IOIO: {
4312 u64 exit_info;
4313 u32 bytes;
4314
4315 if (info->intercept == x86_intercept_in ||
4316 info->intercept == x86_intercept_ins) {
4317 exit_info = ((info->src_val & 0xffff) << 16) |
4318 SVM_IOIO_TYPE_MASK;
4319 bytes = info->dst_bytes;
4320 } else {
4321 exit_info = (info->dst_val & 0xffff) << 16;
4322 bytes = info->src_bytes;
4323 }
4324
4325 if (info->intercept == x86_intercept_outs ||
4326 info->intercept == x86_intercept_ins)
4327 exit_info |= SVM_IOIO_STR_MASK;
4328
4329 if (info->rep_prefix)
4330 exit_info |= SVM_IOIO_REP_MASK;
4331
4332 bytes = min(bytes, 4u);
4333
4334 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4335
4336 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4337
4338 vmcb->control.exit_info_1 = exit_info;
4339 vmcb->control.exit_info_2 = info->next_rip;
4340
4341 break;
4342 }
4343 default:
4344 break;
4345 }
4346
4347 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4348 if (static_cpu_has(X86_FEATURE_NRIPS))
4349 vmcb->control.next_rip = info->next_rip;
4350 vmcb->control.exit_code = icpt_info.exit_code;
4351 vmexit = nested_svm_exit_handled(svm);
4352
4353 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4354 : X86EMUL_CONTINUE;
4355
4356 out:
4357 return ret;
4358 }
4359
svm_handle_external_intr(struct kvm_vcpu * vcpu)4360 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4361 {
4362 local_irq_enable();
4363 }
4364
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)4365 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4366 {
4367 }
4368
4369 static struct kvm_x86_ops svm_x86_ops = {
4370 .cpu_has_kvm_support = has_svm,
4371 .disabled_by_bios = is_disabled,
4372 .hardware_setup = svm_hardware_setup,
4373 .hardware_unsetup = svm_hardware_unsetup,
4374 .check_processor_compatibility = svm_check_processor_compat,
4375 .hardware_enable = svm_hardware_enable,
4376 .hardware_disable = svm_hardware_disable,
4377 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4378
4379 .vcpu_create = svm_create_vcpu,
4380 .vcpu_free = svm_free_vcpu,
4381 .vcpu_reset = svm_vcpu_reset,
4382
4383 .prepare_guest_switch = svm_prepare_guest_switch,
4384 .vcpu_load = svm_vcpu_load,
4385 .vcpu_put = svm_vcpu_put,
4386
4387 .update_db_bp_intercept = update_db_bp_intercept,
4388 .get_msr = svm_get_msr,
4389 .set_msr = svm_set_msr,
4390 .get_segment_base = svm_get_segment_base,
4391 .get_segment = svm_get_segment,
4392 .set_segment = svm_set_segment,
4393 .get_cpl = svm_get_cpl,
4394 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4395 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4396 .decache_cr3 = svm_decache_cr3,
4397 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4398 .set_cr0 = svm_set_cr0,
4399 .set_cr3 = svm_set_cr3,
4400 .set_cr4 = svm_set_cr4,
4401 .set_efer = svm_set_efer,
4402 .get_idt = svm_get_idt,
4403 .set_idt = svm_set_idt,
4404 .get_gdt = svm_get_gdt,
4405 .set_gdt = svm_set_gdt,
4406 .get_dr6 = svm_get_dr6,
4407 .set_dr6 = svm_set_dr6,
4408 .set_dr7 = svm_set_dr7,
4409 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4410 .cache_reg = svm_cache_reg,
4411 .get_rflags = svm_get_rflags,
4412 .set_rflags = svm_set_rflags,
4413 .fpu_activate = svm_fpu_activate,
4414 .fpu_deactivate = svm_fpu_deactivate,
4415
4416 .tlb_flush = svm_flush_tlb,
4417
4418 .run = svm_vcpu_run,
4419 .handle_exit = handle_exit,
4420 .skip_emulated_instruction = skip_emulated_instruction,
4421 .set_interrupt_shadow = svm_set_interrupt_shadow,
4422 .get_interrupt_shadow = svm_get_interrupt_shadow,
4423 .patch_hypercall = svm_patch_hypercall,
4424 .set_irq = svm_set_irq,
4425 .set_nmi = svm_inject_nmi,
4426 .queue_exception = svm_queue_exception,
4427 .cancel_injection = svm_cancel_injection,
4428 .interrupt_allowed = svm_interrupt_allowed,
4429 .nmi_allowed = svm_nmi_allowed,
4430 .get_nmi_mask = svm_get_nmi_mask,
4431 .set_nmi_mask = svm_set_nmi_mask,
4432 .enable_nmi_window = enable_nmi_window,
4433 .enable_irq_window = enable_irq_window,
4434 .update_cr8_intercept = update_cr8_intercept,
4435 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4436 .vm_has_apicv = svm_vm_has_apicv,
4437 .load_eoi_exitmap = svm_load_eoi_exitmap,
4438 .hwapic_isr_update = svm_hwapic_isr_update,
4439 .sync_pir_to_irr = svm_sync_pir_to_irr,
4440
4441 .set_tss_addr = svm_set_tss_addr,
4442 .get_tdp_level = get_npt_level,
4443 .get_mt_mask = svm_get_mt_mask,
4444
4445 .get_exit_info = svm_get_exit_info,
4446
4447 .get_lpage_level = svm_get_lpage_level,
4448
4449 .cpuid_update = svm_cpuid_update,
4450
4451 .rdtscp_supported = svm_rdtscp_supported,
4452 .invpcid_supported = svm_invpcid_supported,
4453 .mpx_supported = svm_mpx_supported,
4454
4455 .set_supported_cpuid = svm_set_supported_cpuid,
4456
4457 .has_wbinvd_exit = svm_has_wbinvd_exit,
4458
4459 .set_tsc_khz = svm_set_tsc_khz,
4460 .read_tsc_offset = svm_read_tsc_offset,
4461 .write_tsc_offset = svm_write_tsc_offset,
4462 .adjust_tsc_offset = svm_adjust_tsc_offset,
4463 .compute_tsc_offset = svm_compute_tsc_offset,
4464 .read_l1_tsc = svm_read_l1_tsc,
4465
4466 .set_tdp_cr3 = set_tdp_cr3,
4467
4468 .check_intercept = svm_check_intercept,
4469 .handle_external_intr = svm_handle_external_intr,
4470
4471 .sched_in = svm_sched_in,
4472 };
4473
svm_init(void)4474 static int __init svm_init(void)
4475 {
4476 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4477 __alignof__(struct vcpu_svm), THIS_MODULE);
4478 }
4479
svm_exit(void)4480 static void __exit svm_exit(void)
4481 {
4482 kvm_exit();
4483 }
4484
4485 module_init(svm_init)
4486 module_exit(svm_exit)
4487