1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29 * The current flushing context - we pass it instead of 5 arguments:
30 */
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgd_t *pgd;
34 pgprot_t mask_set;
35 pgprot_t mask_clr;
36 unsigned long numpages;
37 int flags;
38 unsigned long pfn;
39 unsigned force_split : 1;
40 int curpage;
41 struct page **pages;
42 };
43
44 /*
45 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47 * entries change the page attribute in parallel to some other cpu
48 * splitting a large page entry along with changing the attribute.
49 */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
update_page_count(int level,unsigned long pages)59 void update_page_count(int level, unsigned long pages)
60 {
61 /* Protect against CPA */
62 spin_lock(&pgd_lock);
63 direct_pages_count[level] += pages;
64 spin_unlock(&pgd_lock);
65 }
66
split_page_count(int level)67 static void split_page_count(int level)
68 {
69 direct_pages_count[level]--;
70 direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
arch_report_meminfo(struct seq_file * m)73 void arch_report_meminfo(struct seq_file *m)
74 {
75 seq_printf(m, "DirectMap4k: %8lu kB\n",
76 direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 seq_printf(m, "DirectMap2M: %8lu kB\n",
79 direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 seq_printf(m, "DirectMap4M: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85 if (direct_gbpages)
86 seq_printf(m, "DirectMap1G: %8lu kB\n",
87 direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
split_page_count(int level)91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
highmap_start_pfn(void)96 static inline unsigned long highmap_start_pfn(void)
97 {
98 return __pa_symbol(_text) >> PAGE_SHIFT;
99 }
100
highmap_end_pfn(void)101 static inline unsigned long highmap_end_pfn(void)
102 {
103 return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117 return addr >= start && addr < end;
118 }
119
120 /*
121 * Flushing functions
122 */
123
124 /**
125 * clflush_cache_range - flush a cache range with clflush
126 * @vaddr: virtual start address
127 * @size: number of bytes to flush
128 *
129 * clflushopt is an unordered instruction which needs fencing with mfence or
130 * sfence to avoid ordering issues.
131 */
clflush_cache_range(void * vaddr,unsigned int size)132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134 void *vend = vaddr + size - 1;
135
136 mb();
137
138 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139 clflushopt(vaddr);
140 /*
141 * Flush any possible final partial cacheline:
142 */
143 clflushopt(vend);
144
145 mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
__cpa_flush_all(void * arg)149 static void __cpa_flush_all(void *arg)
150 {
151 unsigned long cache = (unsigned long)arg;
152
153 /*
154 * Flush all to work around Errata in early athlons regarding
155 * large page flushing.
156 */
157 __flush_tlb_all();
158
159 if (cache && boot_cpu_data.x86 >= 4)
160 wbinvd();
161 }
162
cpa_flush_all(unsigned long cache)163 static void cpa_flush_all(unsigned long cache)
164 {
165 BUG_ON(irqs_disabled());
166
167 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
__cpa_flush_range(void * arg)170 static void __cpa_flush_range(void *arg)
171 {
172 /*
173 * We could optimize that further and do individual per page
174 * tlb invalidates for a low number of pages. Caveat: we must
175 * flush the high aliases on 64bit as well.
176 */
177 __flush_tlb_all();
178 }
179
cpa_flush_range(unsigned long start,int numpages,int cache)180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182 unsigned int i, level;
183 unsigned long addr;
184
185 BUG_ON(irqs_disabled());
186 WARN_ON(PAGE_ALIGN(start) != start);
187
188 on_each_cpu(__cpa_flush_range, NULL, 1);
189
190 if (!cache)
191 return;
192
193 /*
194 * We only need to flush on one CPU,
195 * clflush is a MESI-coherent instruction that
196 * will cause all other CPUs to flush the same
197 * cachelines:
198 */
199 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200 pte_t *pte = lookup_address(addr, &level);
201
202 /*
203 * Only flush present addresses:
204 */
205 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206 clflush_cache_range((void *) addr, PAGE_SIZE);
207 }
208 }
209
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211 int in_flags, struct page **pages)
212 {
213 unsigned int i, level;
214 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216 BUG_ON(irqs_disabled());
217
218 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220 if (!cache || do_wbinvd)
221 return;
222
223 /*
224 * We only need to flush on one CPU,
225 * clflush is a MESI-coherent instruction that
226 * will cause all other CPUs to flush the same
227 * cachelines:
228 */
229 for (i = 0; i < numpages; i++) {
230 unsigned long addr;
231 pte_t *pte;
232
233 if (in_flags & CPA_PAGES_ARRAY)
234 addr = (unsigned long)page_address(pages[i]);
235 else
236 addr = start[i];
237
238 pte = lookup_address(addr, &level);
239
240 /*
241 * Only flush present addresses:
242 */
243 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244 clflush_cache_range((void *)addr, PAGE_SIZE);
245 }
246 }
247
248 /*
249 * Certain areas of memory on x86 require very specific protection flags,
250 * for example the BIOS area or kernel text. Callers don't always get this
251 * right (again, ioremap() on BIOS memory is not uncommon) so this function
252 * checks and fixes these known static required protection bits.
253 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255 unsigned long pfn)
256 {
257 pgprot_t forbidden = __pgprot(0);
258
259 /*
260 * The BIOS area between 640k and 1Mb needs to be executable for
261 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262 */
263 #ifdef CONFIG_PCI_BIOS
264 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
267
268 /*
269 * The kernel text needs to be executable for obvious reasons
270 * Does not cover __inittext since that is gone later on. On
271 * 64bit we do not enforce !NX on the low mapping
272 */
273 if (within(address, (unsigned long)_text, (unsigned long)_etext))
274 pgprot_val(forbidden) |= _PAGE_NX;
275
276 /*
277 * The .rodata section needs to be read-only. Using the pfn
278 * catches all aliases.
279 */
280 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282 pgprot_val(forbidden) |= _PAGE_RW;
283
284 #if defined(CONFIG_X86_64)
285 /*
286 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287 * kernel text mappings for the large page aligned text, rodata sections
288 * will be always read-only. For the kernel identity mappings covering
289 * the holes caused by this alignment can be anything that user asks.
290 *
291 * This will preserve the large page mappings for kernel text/data
292 * at no extra cost.
293 */
294 if (kernel_set_to_readonly &&
295 within(address, (unsigned long)_text,
296 (unsigned long)__end_rodata_hpage_align)) {
297 unsigned int level;
298
299 /*
300 * Don't enforce the !RW mapping for the kernel text mapping,
301 * if the current mapping is already using small page mapping.
302 * No need to work hard to preserve large page mappings in this
303 * case.
304 *
305 * This also fixes the Linux Xen paravirt guest boot failure
306 * (because of unexpected read-only mappings for kernel identity
307 * mappings). In this paravirt guest case, the kernel text
308 * mapping and the kernel identity mapping share the same
309 * page-table pages. Thus we can't really use different
310 * protections for the kernel text and identity mappings. Also,
311 * these shared mappings are made of small page mappings.
312 * Thus this don't enforce !RW mapping for small page kernel
313 * text mapping logic will help Linux Xen parvirt guest boot
314 * as well.
315 */
316 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317 pgprot_val(forbidden) |= _PAGE_RW;
318 }
319 #endif
320
321 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323 return prot;
324 }
325
326 /*
327 * Lookup the page table entry for a virtual address in a specific pgd.
328 * Return a pointer to the entry and the level of the mapping.
329 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)330 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
331 unsigned int *level)
332 {
333 pud_t *pud;
334 pmd_t *pmd;
335
336 *level = PG_LEVEL_NONE;
337
338 if (pgd_none(*pgd))
339 return NULL;
340
341 pud = pud_offset(pgd, address);
342 if (pud_none(*pud))
343 return NULL;
344
345 *level = PG_LEVEL_1G;
346 if (pud_large(*pud) || !pud_present(*pud))
347 return (pte_t *)pud;
348
349 pmd = pmd_offset(pud, address);
350 if (pmd_none(*pmd))
351 return NULL;
352
353 *level = PG_LEVEL_2M;
354 if (pmd_large(*pmd) || !pmd_present(*pmd))
355 return (pte_t *)pmd;
356
357 *level = PG_LEVEL_4K;
358
359 return pte_offset_kernel(pmd, address);
360 }
361
362 /*
363 * Lookup the page table entry for a virtual address. Return a pointer
364 * to the entry and the level of the mapping.
365 *
366 * Note: We return pud and pmd either when the entry is marked large
367 * or when the present bit is not set. Otherwise we would return a
368 * pointer to a nonexisting mapping.
369 */
lookup_address(unsigned long address,unsigned int * level)370 pte_t *lookup_address(unsigned long address, unsigned int *level)
371 {
372 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
373 }
374 EXPORT_SYMBOL_GPL(lookup_address);
375
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)376 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
377 unsigned int *level)
378 {
379 if (cpa->pgd)
380 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
381 address, level);
382
383 return lookup_address(address, level);
384 }
385
386 /*
387 * This is necessary because __pa() does not work on some
388 * kinds of memory, like vmalloc() or the alloc_remap()
389 * areas on 32-bit NUMA systems. The percpu areas can
390 * end up in this kind of memory, for instance.
391 *
392 * This could be optimized, but it is only intended to be
393 * used at inititalization time, and keeping it
394 * unoptimized should increase the testing coverage for
395 * the more obscure platforms.
396 */
slow_virt_to_phys(void * __virt_addr)397 phys_addr_t slow_virt_to_phys(void *__virt_addr)
398 {
399 unsigned long virt_addr = (unsigned long)__virt_addr;
400 phys_addr_t phys_addr;
401 unsigned long offset;
402 enum pg_level level;
403 unsigned long psize;
404 unsigned long pmask;
405 pte_t *pte;
406
407 pte = lookup_address(virt_addr, &level);
408 BUG_ON(!pte);
409 psize = page_level_size(level);
410 pmask = page_level_mask(level);
411 offset = virt_addr & ~pmask;
412 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
413 return (phys_addr | offset);
414 }
415 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
416
417 /*
418 * Set the new pmd in all the pgds we know about:
419 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)420 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
421 {
422 /* change init_mm */
423 set_pte_atomic(kpte, pte);
424 #ifdef CONFIG_X86_32
425 if (!SHARED_KERNEL_PMD) {
426 struct page *page;
427
428 list_for_each_entry(page, &pgd_list, lru) {
429 pgd_t *pgd;
430 pud_t *pud;
431 pmd_t *pmd;
432
433 pgd = (pgd_t *)page_address(page) + pgd_index(address);
434 pud = pud_offset(pgd, address);
435 pmd = pmd_offset(pud, address);
436 set_pte_atomic((pte_t *)pmd, pte);
437 }
438 }
439 #endif
440 }
441
442 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)443 try_preserve_large_page(pte_t *kpte, unsigned long address,
444 struct cpa_data *cpa)
445 {
446 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
447 pte_t new_pte, old_pte, *tmp;
448 pgprot_t old_prot, new_prot, req_prot;
449 int i, do_split = 1;
450 enum pg_level level;
451
452 if (cpa->force_split)
453 return 1;
454
455 spin_lock(&pgd_lock);
456 /*
457 * Check for races, another CPU might have split this page
458 * up already:
459 */
460 tmp = _lookup_address_cpa(cpa, address, &level);
461 if (tmp != kpte)
462 goto out_unlock;
463
464 switch (level) {
465 case PG_LEVEL_2M:
466 #ifdef CONFIG_X86_64
467 case PG_LEVEL_1G:
468 #endif
469 psize = page_level_size(level);
470 pmask = page_level_mask(level);
471 break;
472 default:
473 do_split = -EINVAL;
474 goto out_unlock;
475 }
476
477 /*
478 * Calculate the number of pages, which fit into this large
479 * page starting at address:
480 */
481 nextpage_addr = (address + psize) & pmask;
482 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
483 if (numpages < cpa->numpages)
484 cpa->numpages = numpages;
485
486 /*
487 * We are safe now. Check whether the new pgprot is the same:
488 */
489 old_pte = *kpte;
490 old_prot = req_prot = pte_pgprot(old_pte);
491
492 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
493 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
494
495 /*
496 * Set the PSE and GLOBAL flags only if the PRESENT flag is
497 * set otherwise pmd_present/pmd_huge will return true even on
498 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
499 * for the ancient hardware that doesn't support it.
500 */
501 if (pgprot_val(req_prot) & _PAGE_PRESENT)
502 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
503 else
504 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
505
506 req_prot = canon_pgprot(req_prot);
507
508 /*
509 * old_pte points to the large page base address. So we need
510 * to add the offset of the virtual address:
511 */
512 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
513 cpa->pfn = pfn;
514
515 new_prot = static_protections(req_prot, address, pfn);
516
517 /*
518 * We need to check the full range, whether
519 * static_protection() requires a different pgprot for one of
520 * the pages in the range we try to preserve:
521 */
522 addr = address & pmask;
523 pfn = pte_pfn(old_pte);
524 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
525 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
526
527 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
528 goto out_unlock;
529 }
530
531 /*
532 * If there are no changes, return. maxpages has been updated
533 * above:
534 */
535 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
536 do_split = 0;
537 goto out_unlock;
538 }
539
540 /*
541 * We need to change the attributes. Check, whether we can
542 * change the large page in one go. We request a split, when
543 * the address is not aligned and the number of pages is
544 * smaller than the number of pages in the large page. Note
545 * that we limited the number of possible pages already to
546 * the number of pages in the large page.
547 */
548 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
549 /*
550 * The address is aligned and the number of pages
551 * covers the full page.
552 */
553 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
554 __set_pmd_pte(kpte, address, new_pte);
555 cpa->flags |= CPA_FLUSHTLB;
556 do_split = 0;
557 }
558
559 out_unlock:
560 spin_unlock(&pgd_lock);
561
562 return do_split;
563 }
564
565 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)566 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
567 struct page *base)
568 {
569 pte_t *pbase = (pte_t *)page_address(base);
570 unsigned long pfn, pfninc = 1;
571 unsigned int i, level;
572 pte_t *tmp;
573 pgprot_t ref_prot;
574
575 spin_lock(&pgd_lock);
576 /*
577 * Check for races, another CPU might have split this page
578 * up for us already:
579 */
580 tmp = _lookup_address_cpa(cpa, address, &level);
581 if (tmp != kpte) {
582 spin_unlock(&pgd_lock);
583 return 1;
584 }
585
586 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
587 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
588 /*
589 * If we ever want to utilize the PAT bit, we need to
590 * update this function to make sure it's converted from
591 * bit 12 to bit 7 when we cross from the 2MB level to
592 * the 4K level:
593 */
594 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
595
596 #ifdef CONFIG_X86_64
597 if (level == PG_LEVEL_1G) {
598 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
599 /*
600 * Set the PSE flags only if the PRESENT flag is set
601 * otherwise pmd_present/pmd_huge will return true
602 * even on a non present pmd.
603 */
604 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
605 pgprot_val(ref_prot) |= _PAGE_PSE;
606 else
607 pgprot_val(ref_prot) &= ~_PAGE_PSE;
608 }
609 #endif
610
611 /*
612 * Set the GLOBAL flags only if the PRESENT flag is set
613 * otherwise pmd/pte_present will return true even on a non
614 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
615 * for the ancient hardware that doesn't support it.
616 */
617 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
618 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
619 else
620 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
621
622 /*
623 * Get the target pfn from the original entry:
624 */
625 pfn = pte_pfn(*kpte);
626 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
627 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
628
629 if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
630 PFN_DOWN(__pa(address)) + 1))
631 split_page_count(level);
632
633 /*
634 * Install the new, split up pagetable.
635 *
636 * We use the standard kernel pagetable protections for the new
637 * pagetable protections, the actual ptes set above control the
638 * primary protection behavior:
639 */
640 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
641
642 /*
643 * Intel Atom errata AAH41 workaround.
644 *
645 * The real fix should be in hw or in a microcode update, but
646 * we also probabilistically try to reduce the window of having
647 * a large TLB mixed with 4K TLBs while instruction fetches are
648 * going on.
649 */
650 __flush_tlb_all();
651 spin_unlock(&pgd_lock);
652
653 return 0;
654 }
655
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)656 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
657 unsigned long address)
658 {
659 struct page *base;
660
661 if (!debug_pagealloc)
662 spin_unlock(&cpa_lock);
663 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
664 if (!debug_pagealloc)
665 spin_lock(&cpa_lock);
666 if (!base)
667 return -ENOMEM;
668
669 if (__split_large_page(cpa, kpte, address, base))
670 __free_page(base);
671
672 return 0;
673 }
674
try_to_free_pte_page(pte_t * pte)675 static bool try_to_free_pte_page(pte_t *pte)
676 {
677 int i;
678
679 for (i = 0; i < PTRS_PER_PTE; i++)
680 if (!pte_none(pte[i]))
681 return false;
682
683 free_page((unsigned long)pte);
684 return true;
685 }
686
try_to_free_pmd_page(pmd_t * pmd)687 static bool try_to_free_pmd_page(pmd_t *pmd)
688 {
689 int i;
690
691 for (i = 0; i < PTRS_PER_PMD; i++)
692 if (!pmd_none(pmd[i]))
693 return false;
694
695 free_page((unsigned long)pmd);
696 return true;
697 }
698
try_to_free_pud_page(pud_t * pud)699 static bool try_to_free_pud_page(pud_t *pud)
700 {
701 int i;
702
703 for (i = 0; i < PTRS_PER_PUD; i++)
704 if (!pud_none(pud[i]))
705 return false;
706
707 free_page((unsigned long)pud);
708 return true;
709 }
710
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)711 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
712 {
713 pte_t *pte = pte_offset_kernel(pmd, start);
714
715 while (start < end) {
716 set_pte(pte, __pte(0));
717
718 start += PAGE_SIZE;
719 pte++;
720 }
721
722 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
723 pmd_clear(pmd);
724 return true;
725 }
726 return false;
727 }
728
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)729 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
730 unsigned long start, unsigned long end)
731 {
732 if (unmap_pte_range(pmd, start, end))
733 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
734 pud_clear(pud);
735 }
736
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)737 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
738 {
739 pmd_t *pmd = pmd_offset(pud, start);
740
741 /*
742 * Not on a 2MB page boundary?
743 */
744 if (start & (PMD_SIZE - 1)) {
745 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
746 unsigned long pre_end = min_t(unsigned long, end, next_page);
747
748 __unmap_pmd_range(pud, pmd, start, pre_end);
749
750 start = pre_end;
751 pmd++;
752 }
753
754 /*
755 * Try to unmap in 2M chunks.
756 */
757 while (end - start >= PMD_SIZE) {
758 if (pmd_large(*pmd))
759 pmd_clear(pmd);
760 else
761 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
762
763 start += PMD_SIZE;
764 pmd++;
765 }
766
767 /*
768 * 4K leftovers?
769 */
770 if (start < end)
771 return __unmap_pmd_range(pud, pmd, start, end);
772
773 /*
774 * Try again to free the PMD page if haven't succeeded above.
775 */
776 if (!pud_none(*pud))
777 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
778 pud_clear(pud);
779 }
780
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)781 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
782 {
783 pud_t *pud = pud_offset(pgd, start);
784
785 /*
786 * Not on a GB page boundary?
787 */
788 if (start & (PUD_SIZE - 1)) {
789 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
790 unsigned long pre_end = min_t(unsigned long, end, next_page);
791
792 unmap_pmd_range(pud, start, pre_end);
793
794 start = pre_end;
795 pud++;
796 }
797
798 /*
799 * Try to unmap in 1G chunks?
800 */
801 while (end - start >= PUD_SIZE) {
802
803 if (pud_large(*pud))
804 pud_clear(pud);
805 else
806 unmap_pmd_range(pud, start, start + PUD_SIZE);
807
808 start += PUD_SIZE;
809 pud++;
810 }
811
812 /*
813 * 2M leftovers?
814 */
815 if (start < end)
816 unmap_pmd_range(pud, start, end);
817
818 /*
819 * No need to try to free the PUD page because we'll free it in
820 * populate_pgd's error path
821 */
822 }
823
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)824 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
825 {
826 pgd_t *pgd_entry = root + pgd_index(addr);
827
828 unmap_pud_range(pgd_entry, addr, end);
829
830 if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
831 pgd_clear(pgd_entry);
832 }
833
alloc_pte_page(pmd_t * pmd)834 static int alloc_pte_page(pmd_t *pmd)
835 {
836 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
837 if (!pte)
838 return -1;
839
840 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
841 return 0;
842 }
843
alloc_pmd_page(pud_t * pud)844 static int alloc_pmd_page(pud_t *pud)
845 {
846 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
847 if (!pmd)
848 return -1;
849
850 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
851 return 0;
852 }
853
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)854 static void populate_pte(struct cpa_data *cpa,
855 unsigned long start, unsigned long end,
856 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
857 {
858 pte_t *pte;
859
860 pte = pte_offset_kernel(pmd, start);
861
862 while (num_pages-- && start < end) {
863
864 /* deal with the NX bit */
865 if (!(pgprot_val(pgprot) & _PAGE_NX))
866 cpa->pfn &= ~_PAGE_NX;
867
868 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
869
870 start += PAGE_SIZE;
871 cpa->pfn += PAGE_SIZE;
872 pte++;
873 }
874 }
875
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)876 static int populate_pmd(struct cpa_data *cpa,
877 unsigned long start, unsigned long end,
878 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
879 {
880 unsigned int cur_pages = 0;
881 pmd_t *pmd;
882
883 /*
884 * Not on a 2M boundary?
885 */
886 if (start & (PMD_SIZE - 1)) {
887 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
888 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
889
890 pre_end = min_t(unsigned long, pre_end, next_page);
891 cur_pages = (pre_end - start) >> PAGE_SHIFT;
892 cur_pages = min_t(unsigned int, num_pages, cur_pages);
893
894 /*
895 * Need a PTE page?
896 */
897 pmd = pmd_offset(pud, start);
898 if (pmd_none(*pmd))
899 if (alloc_pte_page(pmd))
900 return -1;
901
902 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
903
904 start = pre_end;
905 }
906
907 /*
908 * We mapped them all?
909 */
910 if (num_pages == cur_pages)
911 return cur_pages;
912
913 while (end - start >= PMD_SIZE) {
914
915 /*
916 * We cannot use a 1G page so allocate a PMD page if needed.
917 */
918 if (pud_none(*pud))
919 if (alloc_pmd_page(pud))
920 return -1;
921
922 pmd = pmd_offset(pud, start);
923
924 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
925
926 start += PMD_SIZE;
927 cpa->pfn += PMD_SIZE;
928 cur_pages += PMD_SIZE >> PAGE_SHIFT;
929 }
930
931 /*
932 * Map trailing 4K pages.
933 */
934 if (start < end) {
935 pmd = pmd_offset(pud, start);
936 if (pmd_none(*pmd))
937 if (alloc_pte_page(pmd))
938 return -1;
939
940 populate_pte(cpa, start, end, num_pages - cur_pages,
941 pmd, pgprot);
942 }
943 return num_pages;
944 }
945
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)946 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
947 pgprot_t pgprot)
948 {
949 pud_t *pud;
950 unsigned long end;
951 int cur_pages = 0;
952
953 end = start + (cpa->numpages << PAGE_SHIFT);
954
955 /*
956 * Not on a Gb page boundary? => map everything up to it with
957 * smaller pages.
958 */
959 if (start & (PUD_SIZE - 1)) {
960 unsigned long pre_end;
961 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
962
963 pre_end = min_t(unsigned long, end, next_page);
964 cur_pages = (pre_end - start) >> PAGE_SHIFT;
965 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
966
967 pud = pud_offset(pgd, start);
968
969 /*
970 * Need a PMD page?
971 */
972 if (pud_none(*pud))
973 if (alloc_pmd_page(pud))
974 return -1;
975
976 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
977 pud, pgprot);
978 if (cur_pages < 0)
979 return cur_pages;
980
981 start = pre_end;
982 }
983
984 /* We mapped them all? */
985 if (cpa->numpages == cur_pages)
986 return cur_pages;
987
988 pud = pud_offset(pgd, start);
989
990 /*
991 * Map everything starting from the Gb boundary, possibly with 1G pages
992 */
993 while (end - start >= PUD_SIZE) {
994 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
995
996 start += PUD_SIZE;
997 cpa->pfn += PUD_SIZE;
998 cur_pages += PUD_SIZE >> PAGE_SHIFT;
999 pud++;
1000 }
1001
1002 /* Map trailing leftover */
1003 if (start < end) {
1004 int tmp;
1005
1006 pud = pud_offset(pgd, start);
1007 if (pud_none(*pud))
1008 if (alloc_pmd_page(pud))
1009 return -1;
1010
1011 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1012 pud, pgprot);
1013 if (tmp < 0)
1014 return cur_pages;
1015
1016 cur_pages += tmp;
1017 }
1018 return cur_pages;
1019 }
1020
1021 /*
1022 * Restrictions for kernel page table do not necessarily apply when mapping in
1023 * an alternate PGD.
1024 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1025 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1026 {
1027 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1028 pud_t *pud = NULL; /* shut up gcc */
1029 pgd_t *pgd_entry;
1030 int ret;
1031
1032 pgd_entry = cpa->pgd + pgd_index(addr);
1033
1034 /*
1035 * Allocate a PUD page and hand it down for mapping.
1036 */
1037 if (pgd_none(*pgd_entry)) {
1038 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1039 if (!pud)
1040 return -1;
1041
1042 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1043 }
1044
1045 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1046 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1047
1048 ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1049 if (ret < 0) {
1050 unmap_pgd_range(cpa->pgd, addr,
1051 addr + (cpa->numpages << PAGE_SHIFT));
1052 return ret;
1053 }
1054
1055 cpa->numpages = ret;
1056 return 0;
1057 }
1058
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1059 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1060 int primary)
1061 {
1062 if (cpa->pgd)
1063 return populate_pgd(cpa, vaddr);
1064
1065 /*
1066 * Ignore all non primary paths.
1067 */
1068 if (!primary)
1069 return 0;
1070
1071 /*
1072 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1073 * to have holes.
1074 * Also set numpages to '1' indicating that we processed cpa req for
1075 * one virtual address page and its pfn. TBD: numpages can be set based
1076 * on the initial value and the level returned by lookup_address().
1077 */
1078 if (within(vaddr, PAGE_OFFSET,
1079 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1080 cpa->numpages = 1;
1081 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1082 return 0;
1083 } else {
1084 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1085 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1086 *cpa->vaddr);
1087
1088 return -EFAULT;
1089 }
1090 }
1091
__change_page_attr(struct cpa_data * cpa,int primary)1092 static int __change_page_attr(struct cpa_data *cpa, int primary)
1093 {
1094 unsigned long address;
1095 int do_split, err;
1096 unsigned int level;
1097 pte_t *kpte, old_pte;
1098
1099 if (cpa->flags & CPA_PAGES_ARRAY) {
1100 struct page *page = cpa->pages[cpa->curpage];
1101 if (unlikely(PageHighMem(page)))
1102 return 0;
1103 address = (unsigned long)page_address(page);
1104 } else if (cpa->flags & CPA_ARRAY)
1105 address = cpa->vaddr[cpa->curpage];
1106 else
1107 address = *cpa->vaddr;
1108 repeat:
1109 kpte = _lookup_address_cpa(cpa, address, &level);
1110 if (!kpte)
1111 return __cpa_process_fault(cpa, address, primary);
1112
1113 old_pte = *kpte;
1114 if (!pte_val(old_pte))
1115 return __cpa_process_fault(cpa, address, primary);
1116
1117 if (level == PG_LEVEL_4K) {
1118 pte_t new_pte;
1119 pgprot_t new_prot = pte_pgprot(old_pte);
1120 unsigned long pfn = pte_pfn(old_pte);
1121
1122 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1123 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1124
1125 new_prot = static_protections(new_prot, address, pfn);
1126
1127 /*
1128 * Set the GLOBAL flags only if the PRESENT flag is
1129 * set otherwise pte_present will return true even on
1130 * a non present pte. The canon_pgprot will clear
1131 * _PAGE_GLOBAL for the ancient hardware that doesn't
1132 * support it.
1133 */
1134 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1135 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1136 else
1137 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1138
1139 /*
1140 * We need to keep the pfn from the existing PTE,
1141 * after all we're only going to change it's attributes
1142 * not the memory it points to
1143 */
1144 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1145 cpa->pfn = pfn;
1146 /*
1147 * Do we really change anything ?
1148 */
1149 if (pte_val(old_pte) != pte_val(new_pte)) {
1150 set_pte_atomic(kpte, new_pte);
1151 cpa->flags |= CPA_FLUSHTLB;
1152 }
1153 cpa->numpages = 1;
1154 return 0;
1155 }
1156
1157 /*
1158 * Check, whether we can keep the large page intact
1159 * and just change the pte:
1160 */
1161 do_split = try_preserve_large_page(kpte, address, cpa);
1162 /*
1163 * When the range fits into the existing large page,
1164 * return. cp->numpages and cpa->tlbflush have been updated in
1165 * try_large_page:
1166 */
1167 if (do_split <= 0)
1168 return do_split;
1169
1170 /*
1171 * We have to split the large page:
1172 */
1173 err = split_large_page(cpa, kpte, address);
1174 if (!err) {
1175 /*
1176 * Do a global flush tlb after splitting the large page
1177 * and before we do the actual change page attribute in the PTE.
1178 *
1179 * With out this, we violate the TLB application note, that says
1180 * "The TLBs may contain both ordinary and large-page
1181 * translations for a 4-KByte range of linear addresses. This
1182 * may occur if software modifies the paging structures so that
1183 * the page size used for the address range changes. If the two
1184 * translations differ with respect to page frame or attributes
1185 * (e.g., permissions), processor behavior is undefined and may
1186 * be implementation-specific."
1187 *
1188 * We do this global tlb flush inside the cpa_lock, so that we
1189 * don't allow any other cpu, with stale tlb entries change the
1190 * page attribute in parallel, that also falls into the
1191 * just split large page entry.
1192 */
1193 flush_tlb_all();
1194 goto repeat;
1195 }
1196
1197 return err;
1198 }
1199
1200 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1201
cpa_process_alias(struct cpa_data * cpa)1202 static int cpa_process_alias(struct cpa_data *cpa)
1203 {
1204 struct cpa_data alias_cpa;
1205 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1206 unsigned long vaddr;
1207 int ret;
1208
1209 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1210 return 0;
1211
1212 /*
1213 * No need to redo, when the primary call touched the direct
1214 * mapping already:
1215 */
1216 if (cpa->flags & CPA_PAGES_ARRAY) {
1217 struct page *page = cpa->pages[cpa->curpage];
1218 if (unlikely(PageHighMem(page)))
1219 return 0;
1220 vaddr = (unsigned long)page_address(page);
1221 } else if (cpa->flags & CPA_ARRAY)
1222 vaddr = cpa->vaddr[cpa->curpage];
1223 else
1224 vaddr = *cpa->vaddr;
1225
1226 if (!(within(vaddr, PAGE_OFFSET,
1227 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1228
1229 alias_cpa = *cpa;
1230 alias_cpa.vaddr = &laddr;
1231 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1232
1233 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1234 if (ret)
1235 return ret;
1236 }
1237
1238 #ifdef CONFIG_X86_64
1239 /*
1240 * If the primary call didn't touch the high mapping already
1241 * and the physical address is inside the kernel map, we need
1242 * to touch the high mapped kernel as well:
1243 */
1244 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1245 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1246 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1247 __START_KERNEL_map - phys_base;
1248 alias_cpa = *cpa;
1249 alias_cpa.vaddr = &temp_cpa_vaddr;
1250 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1251
1252 /*
1253 * The high mapping range is imprecise, so ignore the
1254 * return value.
1255 */
1256 __change_page_attr_set_clr(&alias_cpa, 0);
1257 }
1258 #endif
1259
1260 return 0;
1261 }
1262
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1263 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1264 {
1265 int ret, numpages = cpa->numpages;
1266
1267 while (numpages) {
1268 /*
1269 * Store the remaining nr of pages for the large page
1270 * preservation check.
1271 */
1272 cpa->numpages = numpages;
1273 /* for array changes, we can't use large page */
1274 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1275 cpa->numpages = 1;
1276
1277 if (!debug_pagealloc)
1278 spin_lock(&cpa_lock);
1279 ret = __change_page_attr(cpa, checkalias);
1280 if (!debug_pagealloc)
1281 spin_unlock(&cpa_lock);
1282 if (ret)
1283 return ret;
1284
1285 if (checkalias) {
1286 ret = cpa_process_alias(cpa);
1287 if (ret)
1288 return ret;
1289 }
1290
1291 /*
1292 * Adjust the number of pages with the result of the
1293 * CPA operation. Either a large page has been
1294 * preserved or a single page update happened.
1295 */
1296 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1297 numpages -= cpa->numpages;
1298 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1299 cpa->curpage++;
1300 else
1301 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1302
1303 }
1304 return 0;
1305 }
1306
cache_attr(pgprot_t attr)1307 static inline int cache_attr(pgprot_t attr)
1308 {
1309 return pgprot_val(attr) &
1310 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
1311 }
1312
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1313 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1314 pgprot_t mask_set, pgprot_t mask_clr,
1315 int force_split, int in_flag,
1316 struct page **pages)
1317 {
1318 struct cpa_data cpa;
1319 int ret, cache, checkalias;
1320 unsigned long baddr = 0;
1321
1322 memset(&cpa, 0, sizeof(cpa));
1323
1324 /*
1325 * Check, if we are requested to change a not supported
1326 * feature:
1327 */
1328 mask_set = canon_pgprot(mask_set);
1329 mask_clr = canon_pgprot(mask_clr);
1330 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1331 return 0;
1332
1333 /* Ensure we are PAGE_SIZE aligned */
1334 if (in_flag & CPA_ARRAY) {
1335 int i;
1336 for (i = 0; i < numpages; i++) {
1337 if (addr[i] & ~PAGE_MASK) {
1338 addr[i] &= PAGE_MASK;
1339 WARN_ON_ONCE(1);
1340 }
1341 }
1342 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1343 /*
1344 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1345 * No need to cehck in that case
1346 */
1347 if (*addr & ~PAGE_MASK) {
1348 *addr &= PAGE_MASK;
1349 /*
1350 * People should not be passing in unaligned addresses:
1351 */
1352 WARN_ON_ONCE(1);
1353 }
1354 /*
1355 * Save address for cache flush. *addr is modified in the call
1356 * to __change_page_attr_set_clr() below.
1357 */
1358 baddr = *addr;
1359 }
1360
1361 /* Must avoid aliasing mappings in the highmem code */
1362 kmap_flush_unused();
1363
1364 vm_unmap_aliases();
1365
1366 cpa.vaddr = addr;
1367 cpa.pages = pages;
1368 cpa.numpages = numpages;
1369 cpa.mask_set = mask_set;
1370 cpa.mask_clr = mask_clr;
1371 cpa.flags = 0;
1372 cpa.curpage = 0;
1373 cpa.force_split = force_split;
1374
1375 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1376 cpa.flags |= in_flag;
1377
1378 /* No alias checking for _NX bit modifications */
1379 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1380
1381 ret = __change_page_attr_set_clr(&cpa, checkalias);
1382
1383 /*
1384 * Check whether we really changed something:
1385 */
1386 if (!(cpa.flags & CPA_FLUSHTLB))
1387 goto out;
1388
1389 /*
1390 * No need to flush, when we did not set any of the caching
1391 * attributes:
1392 */
1393 cache = cache_attr(mask_set);
1394
1395 /*
1396 * On success we use CLFLUSH, when the CPU supports it to
1397 * avoid the WBINVD. If the CPU does not support it and in the
1398 * error case we fall back to cpa_flush_all (which uses
1399 * WBINVD):
1400 */
1401 if (!ret && cpu_has_clflush) {
1402 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1403 cpa_flush_array(addr, numpages, cache,
1404 cpa.flags, pages);
1405 } else
1406 cpa_flush_range(baddr, numpages, cache);
1407 } else
1408 cpa_flush_all(cache);
1409
1410 out:
1411 return ret;
1412 }
1413
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1414 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1415 pgprot_t mask, int array)
1416 {
1417 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1418 (array ? CPA_ARRAY : 0), NULL);
1419 }
1420
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1421 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1422 pgprot_t mask, int array)
1423 {
1424 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1425 (array ? CPA_ARRAY : 0), NULL);
1426 }
1427
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1428 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1429 pgprot_t mask)
1430 {
1431 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1432 CPA_PAGES_ARRAY, pages);
1433 }
1434
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1435 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1436 pgprot_t mask)
1437 {
1438 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1439 CPA_PAGES_ARRAY, pages);
1440 }
1441
_set_memory_uc(unsigned long addr,int numpages)1442 int _set_memory_uc(unsigned long addr, int numpages)
1443 {
1444 /*
1445 * for now UC MINUS. see comments in ioremap_nocache()
1446 */
1447 return change_page_attr_set(&addr, numpages,
1448 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1449 }
1450
set_memory_uc(unsigned long addr,int numpages)1451 int set_memory_uc(unsigned long addr, int numpages)
1452 {
1453 int ret;
1454
1455 /*
1456 * for now UC MINUS. see comments in ioremap_nocache()
1457 */
1458 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1459 _PAGE_CACHE_UC_MINUS, NULL);
1460 if (ret)
1461 goto out_err;
1462
1463 ret = _set_memory_uc(addr, numpages);
1464 if (ret)
1465 goto out_free;
1466
1467 return 0;
1468
1469 out_free:
1470 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1471 out_err:
1472 return ret;
1473 }
1474 EXPORT_SYMBOL(set_memory_uc);
1475
_set_memory_array(unsigned long * addr,int addrinarray,unsigned long new_type)1476 static int _set_memory_array(unsigned long *addr, int addrinarray,
1477 unsigned long new_type)
1478 {
1479 int i, j;
1480 int ret;
1481
1482 /*
1483 * for now UC MINUS. see comments in ioremap_nocache()
1484 */
1485 for (i = 0; i < addrinarray; i++) {
1486 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1487 new_type, NULL);
1488 if (ret)
1489 goto out_free;
1490 }
1491
1492 ret = change_page_attr_set(addr, addrinarray,
1493 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1494
1495 if (!ret && new_type == _PAGE_CACHE_WC)
1496 ret = change_page_attr_set_clr(addr, addrinarray,
1497 __pgprot(_PAGE_CACHE_WC),
1498 __pgprot(_PAGE_CACHE_MASK),
1499 0, CPA_ARRAY, NULL);
1500 if (ret)
1501 goto out_free;
1502
1503 return 0;
1504
1505 out_free:
1506 for (j = 0; j < i; j++)
1507 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1508
1509 return ret;
1510 }
1511
set_memory_array_uc(unsigned long * addr,int addrinarray)1512 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1513 {
1514 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1515 }
1516 EXPORT_SYMBOL(set_memory_array_uc);
1517
set_memory_array_wc(unsigned long * addr,int addrinarray)1518 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1519 {
1520 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1521 }
1522 EXPORT_SYMBOL(set_memory_array_wc);
1523
_set_memory_wc(unsigned long addr,int numpages)1524 int _set_memory_wc(unsigned long addr, int numpages)
1525 {
1526 int ret;
1527 unsigned long addr_copy = addr;
1528
1529 ret = change_page_attr_set(&addr, numpages,
1530 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1531 if (!ret) {
1532 ret = change_page_attr_set_clr(&addr_copy, numpages,
1533 __pgprot(_PAGE_CACHE_WC),
1534 __pgprot(_PAGE_CACHE_MASK),
1535 0, 0, NULL);
1536 }
1537 return ret;
1538 }
1539
set_memory_wc(unsigned long addr,int numpages)1540 int set_memory_wc(unsigned long addr, int numpages)
1541 {
1542 int ret;
1543
1544 if (!pat_enabled)
1545 return set_memory_uc(addr, numpages);
1546
1547 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1548 _PAGE_CACHE_WC, NULL);
1549 if (ret)
1550 goto out_err;
1551
1552 ret = _set_memory_wc(addr, numpages);
1553 if (ret)
1554 goto out_free;
1555
1556 return 0;
1557
1558 out_free:
1559 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1560 out_err:
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(set_memory_wc);
1564
_set_memory_wb(unsigned long addr,int numpages)1565 int _set_memory_wb(unsigned long addr, int numpages)
1566 {
1567 return change_page_attr_clear(&addr, numpages,
1568 __pgprot(_PAGE_CACHE_MASK), 0);
1569 }
1570
set_memory_wb(unsigned long addr,int numpages)1571 int set_memory_wb(unsigned long addr, int numpages)
1572 {
1573 int ret;
1574
1575 ret = _set_memory_wb(addr, numpages);
1576 if (ret)
1577 return ret;
1578
1579 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1580 return 0;
1581 }
1582 EXPORT_SYMBOL(set_memory_wb);
1583
set_memory_array_wb(unsigned long * addr,int addrinarray)1584 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1585 {
1586 int i;
1587 int ret;
1588
1589 ret = change_page_attr_clear(addr, addrinarray,
1590 __pgprot(_PAGE_CACHE_MASK), 1);
1591 if (ret)
1592 return ret;
1593
1594 for (i = 0; i < addrinarray; i++)
1595 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1596
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(set_memory_array_wb);
1600
set_memory_x(unsigned long addr,int numpages)1601 int set_memory_x(unsigned long addr, int numpages)
1602 {
1603 if (!(__supported_pte_mask & _PAGE_NX))
1604 return 0;
1605
1606 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1607 }
1608 EXPORT_SYMBOL(set_memory_x);
1609
set_memory_nx(unsigned long addr,int numpages)1610 int set_memory_nx(unsigned long addr, int numpages)
1611 {
1612 if (!(__supported_pte_mask & _PAGE_NX))
1613 return 0;
1614
1615 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1616 }
1617 EXPORT_SYMBOL(set_memory_nx);
1618
set_memory_ro(unsigned long addr,int numpages)1619 int set_memory_ro(unsigned long addr, int numpages)
1620 {
1621 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1622 }
1623 EXPORT_SYMBOL_GPL(set_memory_ro);
1624
set_memory_rw(unsigned long addr,int numpages)1625 int set_memory_rw(unsigned long addr, int numpages)
1626 {
1627 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1628 }
1629 EXPORT_SYMBOL_GPL(set_memory_rw);
1630
set_memory_np(unsigned long addr,int numpages)1631 int set_memory_np(unsigned long addr, int numpages)
1632 {
1633 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1634 }
1635
set_memory_4k(unsigned long addr,int numpages)1636 int set_memory_4k(unsigned long addr, int numpages)
1637 {
1638 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1639 __pgprot(0), 1, 0, NULL);
1640 }
1641
set_pages_uc(struct page * page,int numpages)1642 int set_pages_uc(struct page *page, int numpages)
1643 {
1644 unsigned long addr = (unsigned long)page_address(page);
1645
1646 return set_memory_uc(addr, numpages);
1647 }
1648 EXPORT_SYMBOL(set_pages_uc);
1649
_set_pages_array(struct page ** pages,int addrinarray,unsigned long new_type)1650 static int _set_pages_array(struct page **pages, int addrinarray,
1651 unsigned long new_type)
1652 {
1653 unsigned long start;
1654 unsigned long end;
1655 int i;
1656 int free_idx;
1657 int ret;
1658
1659 for (i = 0; i < addrinarray; i++) {
1660 if (PageHighMem(pages[i]))
1661 continue;
1662 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1663 end = start + PAGE_SIZE;
1664 if (reserve_memtype(start, end, new_type, NULL))
1665 goto err_out;
1666 }
1667
1668 ret = cpa_set_pages_array(pages, addrinarray,
1669 __pgprot(_PAGE_CACHE_UC_MINUS));
1670 if (!ret && new_type == _PAGE_CACHE_WC)
1671 ret = change_page_attr_set_clr(NULL, addrinarray,
1672 __pgprot(_PAGE_CACHE_WC),
1673 __pgprot(_PAGE_CACHE_MASK),
1674 0, CPA_PAGES_ARRAY, pages);
1675 if (ret)
1676 goto err_out;
1677 return 0; /* Success */
1678 err_out:
1679 free_idx = i;
1680 for (i = 0; i < free_idx; i++) {
1681 if (PageHighMem(pages[i]))
1682 continue;
1683 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1684 end = start + PAGE_SIZE;
1685 free_memtype(start, end);
1686 }
1687 return -EINVAL;
1688 }
1689
set_pages_array_uc(struct page ** pages,int addrinarray)1690 int set_pages_array_uc(struct page **pages, int addrinarray)
1691 {
1692 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1693 }
1694 EXPORT_SYMBOL(set_pages_array_uc);
1695
set_pages_array_wc(struct page ** pages,int addrinarray)1696 int set_pages_array_wc(struct page **pages, int addrinarray)
1697 {
1698 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1699 }
1700 EXPORT_SYMBOL(set_pages_array_wc);
1701
set_pages_wb(struct page * page,int numpages)1702 int set_pages_wb(struct page *page, int numpages)
1703 {
1704 unsigned long addr = (unsigned long)page_address(page);
1705
1706 return set_memory_wb(addr, numpages);
1707 }
1708 EXPORT_SYMBOL(set_pages_wb);
1709
set_pages_array_wb(struct page ** pages,int addrinarray)1710 int set_pages_array_wb(struct page **pages, int addrinarray)
1711 {
1712 int retval;
1713 unsigned long start;
1714 unsigned long end;
1715 int i;
1716
1717 retval = cpa_clear_pages_array(pages, addrinarray,
1718 __pgprot(_PAGE_CACHE_MASK));
1719 if (retval)
1720 return retval;
1721
1722 for (i = 0; i < addrinarray; i++) {
1723 if (PageHighMem(pages[i]))
1724 continue;
1725 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1726 end = start + PAGE_SIZE;
1727 free_memtype(start, end);
1728 }
1729
1730 return 0;
1731 }
1732 EXPORT_SYMBOL(set_pages_array_wb);
1733
set_pages_x(struct page * page,int numpages)1734 int set_pages_x(struct page *page, int numpages)
1735 {
1736 unsigned long addr = (unsigned long)page_address(page);
1737
1738 return set_memory_x(addr, numpages);
1739 }
1740 EXPORT_SYMBOL(set_pages_x);
1741
set_pages_nx(struct page * page,int numpages)1742 int set_pages_nx(struct page *page, int numpages)
1743 {
1744 unsigned long addr = (unsigned long)page_address(page);
1745
1746 return set_memory_nx(addr, numpages);
1747 }
1748 EXPORT_SYMBOL(set_pages_nx);
1749
set_pages_ro(struct page * page,int numpages)1750 int set_pages_ro(struct page *page, int numpages)
1751 {
1752 unsigned long addr = (unsigned long)page_address(page);
1753
1754 return set_memory_ro(addr, numpages);
1755 }
1756
set_pages_rw(struct page * page,int numpages)1757 int set_pages_rw(struct page *page, int numpages)
1758 {
1759 unsigned long addr = (unsigned long)page_address(page);
1760
1761 return set_memory_rw(addr, numpages);
1762 }
1763
1764 #ifdef CONFIG_DEBUG_PAGEALLOC
1765
__set_pages_p(struct page * page,int numpages)1766 static int __set_pages_p(struct page *page, int numpages)
1767 {
1768 unsigned long tempaddr = (unsigned long) page_address(page);
1769 struct cpa_data cpa = { .vaddr = &tempaddr,
1770 .pgd = NULL,
1771 .numpages = numpages,
1772 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1773 .mask_clr = __pgprot(0),
1774 .flags = 0};
1775
1776 /*
1777 * No alias checking needed for setting present flag. otherwise,
1778 * we may need to break large pages for 64-bit kernel text
1779 * mappings (this adds to complexity if we want to do this from
1780 * atomic context especially). Let's keep it simple!
1781 */
1782 return __change_page_attr_set_clr(&cpa, 0);
1783 }
1784
__set_pages_np(struct page * page,int numpages)1785 static int __set_pages_np(struct page *page, int numpages)
1786 {
1787 unsigned long tempaddr = (unsigned long) page_address(page);
1788 struct cpa_data cpa = { .vaddr = &tempaddr,
1789 .pgd = NULL,
1790 .numpages = numpages,
1791 .mask_set = __pgprot(0),
1792 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1793 .flags = 0};
1794
1795 /*
1796 * No alias checking needed for setting not present flag. otherwise,
1797 * we may need to break large pages for 64-bit kernel text
1798 * mappings (this adds to complexity if we want to do this from
1799 * atomic context especially). Let's keep it simple!
1800 */
1801 return __change_page_attr_set_clr(&cpa, 0);
1802 }
1803
kernel_map_pages(struct page * page,int numpages,int enable)1804 void kernel_map_pages(struct page *page, int numpages, int enable)
1805 {
1806 if (PageHighMem(page))
1807 return;
1808 if (!enable) {
1809 debug_check_no_locks_freed(page_address(page),
1810 numpages * PAGE_SIZE);
1811 }
1812
1813 /*
1814 * The return value is ignored as the calls cannot fail.
1815 * Large pages for identity mappings are not used at boot time
1816 * and hence no memory allocations during large page split.
1817 */
1818 if (enable)
1819 __set_pages_p(page, numpages);
1820 else
1821 __set_pages_np(page, numpages);
1822
1823 /*
1824 * We should perform an IPI and flush all tlbs,
1825 * but that can deadlock->flush only current cpu:
1826 */
1827 __flush_tlb_all();
1828
1829 arch_flush_lazy_mmu_mode();
1830 }
1831
1832 #ifdef CONFIG_HIBERNATION
1833
kernel_page_present(struct page * page)1834 bool kernel_page_present(struct page *page)
1835 {
1836 unsigned int level;
1837 pte_t *pte;
1838
1839 if (PageHighMem(page))
1840 return false;
1841
1842 pte = lookup_address((unsigned long)page_address(page), &level);
1843 return (pte_val(*pte) & _PAGE_PRESENT);
1844 }
1845
1846 #endif /* CONFIG_HIBERNATION */
1847
1848 #endif /* CONFIG_DEBUG_PAGEALLOC */
1849
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1850 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1851 unsigned numpages, unsigned long page_flags)
1852 {
1853 int retval = -EINVAL;
1854
1855 struct cpa_data cpa = {
1856 .vaddr = &address,
1857 .pfn = pfn,
1858 .pgd = pgd,
1859 .numpages = numpages,
1860 .mask_set = __pgprot(0),
1861 .mask_clr = __pgprot(0),
1862 .flags = 0,
1863 };
1864
1865 if (!(__supported_pte_mask & _PAGE_NX))
1866 goto out;
1867
1868 if (!(page_flags & _PAGE_NX))
1869 cpa.mask_clr = __pgprot(_PAGE_NX);
1870
1871 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1872
1873 retval = __change_page_attr_set_clr(&cpa, 0);
1874 __flush_tlb_all();
1875
1876 out:
1877 return retval;
1878 }
1879
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)1880 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1881 unsigned numpages)
1882 {
1883 unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1884 }
1885
1886 /*
1887 * The testcases use internal knowledge of the implementation that shouldn't
1888 * be exposed to the rest of the kernel. Include these directly here.
1889 */
1890 #ifdef CONFIG_CPA_DEBUG
1891 #include "pageattr-test.c"
1892 #endif
1893