• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #ifdef CONFIG_KEXEC_CORE
37 #include <linux/kexec.h>
38 #endif
39 
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/features.h>
49 #include <xen/page.h>
50 #include <xen/hvm.h>
51 #include <xen/hvc-console.h>
52 #include <xen/acpi.h>
53 
54 #include <asm/paravirt.h>
55 #include <asm/apic.h>
56 #include <asm/page.h>
57 #include <asm/xen/pci.h>
58 #include <asm/xen/hypercall.h>
59 #include <asm/xen/hypervisor.h>
60 #include <asm/fixmap.h>
61 #include <asm/processor.h>
62 #include <asm/proto.h>
63 #include <asm/msr-index.h>
64 #include <asm/traps.h>
65 #include <asm/setup.h>
66 #include <asm/desc.h>
67 #include <asm/pgalloc.h>
68 #include <asm/pgtable.h>
69 #include <asm/tlbflush.h>
70 #include <asm/reboot.h>
71 #include <asm/stackprotector.h>
72 #include <asm/hypervisor.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/pat.h>
76 
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84 
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 
90 EXPORT_SYMBOL_GPL(hypercall_page);
91 
92 /*
93  * Pointer to the xen_vcpu_info structure or
94  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
95  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
96  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
97  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
98  * acknowledge pending events.
99  * Also more subtly it is used by the patched version of irq enable/disable
100  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
101  *
102  * The desire to be able to do those mask/unmask operations as a single
103  * instruction by using the per-cpu offset held in %gs is the real reason
104  * vcpu info is in a per-cpu pointer and the original reason for this
105  * hypercall.
106  *
107  */
108 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
109 
110 /*
111  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
112  * hypercall. This can be used both in PV and PVHVM mode. The structure
113  * overrides the default per_cpu(xen_vcpu, cpu) value.
114  */
115 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
116 
117 enum xen_domain_type xen_domain_type = XEN_NATIVE;
118 EXPORT_SYMBOL_GPL(xen_domain_type);
119 
120 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
121 EXPORT_SYMBOL(machine_to_phys_mapping);
122 unsigned long  machine_to_phys_nr;
123 EXPORT_SYMBOL(machine_to_phys_nr);
124 
125 struct start_info *xen_start_info;
126 EXPORT_SYMBOL_GPL(xen_start_info);
127 
128 struct shared_info xen_dummy_shared_info;
129 
130 void *xen_initial_gdt;
131 
132 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
133 __read_mostly int xen_have_vector_callback;
134 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
135 
136 /*
137  * Point at some empty memory to start with. We map the real shared_info
138  * page as soon as fixmap is up and running.
139  */
140 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
141 
142 /*
143  * Flag to determine whether vcpu info placement is available on all
144  * VCPUs.  We assume it is to start with, and then set it to zero on
145  * the first failure.  This is because it can succeed on some VCPUs
146  * and not others, since it can involve hypervisor memory allocation,
147  * or because the guest failed to guarantee all the appropriate
148  * constraints on all VCPUs (ie buffer can't cross a page boundary).
149  *
150  * Note that any particular CPU may be using a placed vcpu structure,
151  * but we can only optimise if the all are.
152  *
153  * 0: not available, 1: available
154  */
155 static int have_vcpu_info_placement = 1;
156 
157 struct tls_descs {
158 	struct desc_struct desc[3];
159 };
160 
161 /*
162  * Updating the 3 TLS descriptors in the GDT on every task switch is
163  * surprisingly expensive so we avoid updating them if they haven't
164  * changed.  Since Xen writes different descriptors than the one
165  * passed in the update_descriptor hypercall we keep shadow copies to
166  * compare against.
167  */
168 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
169 
clamp_max_cpus(void)170 static void clamp_max_cpus(void)
171 {
172 #ifdef CONFIG_SMP
173 	if (setup_max_cpus > MAX_VIRT_CPUS)
174 		setup_max_cpus = MAX_VIRT_CPUS;
175 #endif
176 }
177 
xen_vcpu_setup(int cpu)178 static void xen_vcpu_setup(int cpu)
179 {
180 	struct vcpu_register_vcpu_info info;
181 	int err;
182 	struct vcpu_info *vcpup;
183 
184 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
185 
186 	/*
187 	 * This path is called twice on PVHVM - first during bootup via
188 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
189 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
190 	 * As we can only do the VCPUOP_register_vcpu_info once lets
191 	 * not over-write its result.
192 	 *
193 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
194 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
195 	 * use this function.
196 	 */
197 	if (xen_hvm_domain()) {
198 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
199 			return;
200 	}
201 	if (cpu < MAX_VIRT_CPUS)
202 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
203 
204 	if (!have_vcpu_info_placement) {
205 		if (cpu >= MAX_VIRT_CPUS)
206 			clamp_max_cpus();
207 		return;
208 	}
209 
210 	vcpup = &per_cpu(xen_vcpu_info, cpu);
211 	info.mfn = arbitrary_virt_to_mfn(vcpup);
212 	info.offset = offset_in_page(vcpup);
213 
214 	/* Check to see if the hypervisor will put the vcpu_info
215 	   structure where we want it, which allows direct access via
216 	   a percpu-variable.
217 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
218 	   calls will error out with -EINVAL. This is due to the fact that
219 	   hypervisor has no unregister variant and this hypercall does not
220 	   allow to over-write info.mfn and info.offset.
221 	 */
222 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
223 
224 	if (err) {
225 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
226 		have_vcpu_info_placement = 0;
227 		clamp_max_cpus();
228 	} else {
229 		/* This cpu is using the registered vcpu info, even if
230 		   later ones fail to. */
231 		per_cpu(xen_vcpu, cpu) = vcpup;
232 	}
233 }
234 
235 /*
236  * On restore, set the vcpu placement up again.
237  * If it fails, then we're in a bad state, since
238  * we can't back out from using it...
239  */
xen_vcpu_restore(void)240 void xen_vcpu_restore(void)
241 {
242 	int cpu;
243 
244 	for_each_possible_cpu(cpu) {
245 		bool other_cpu = (cpu != smp_processor_id());
246 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
247 
248 		if (other_cpu && is_up &&
249 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
250 			BUG();
251 
252 		xen_setup_runstate_info(cpu);
253 
254 		if (have_vcpu_info_placement)
255 			xen_vcpu_setup(cpu);
256 
257 		if (other_cpu && is_up &&
258 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
259 			BUG();
260 	}
261 }
262 
xen_banner(void)263 static void __init xen_banner(void)
264 {
265 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
266 	struct xen_extraversion extra;
267 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
268 
269 	pr_info("Booting paravirtualized kernel %son %s\n",
270 		xen_feature(XENFEAT_auto_translated_physmap) ?
271 			"with PVH extensions " : "", pv_info.name);
272 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
273 	       version >> 16, version & 0xffff, extra.extraversion,
274 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
275 }
276 /* Check if running on Xen version (major, minor) or later */
277 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)278 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
279 {
280 	unsigned int version;
281 
282 	if (!xen_domain())
283 		return false;
284 
285 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
286 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
287 		((version >> 16) > major))
288 		return true;
289 	return false;
290 }
291 
292 #define CPUID_THERM_POWER_LEAF 6
293 #define APERFMPERF_PRESENT 0
294 
295 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
296 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
297 
298 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
299 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
300 static __read_mostly unsigned int cpuid_leaf5_edx_val;
301 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)302 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
303 		      unsigned int *cx, unsigned int *dx)
304 {
305 	unsigned maskebx = ~0;
306 	unsigned maskecx = ~0;
307 	unsigned maskedx = ~0;
308 	unsigned setecx = 0;
309 	/*
310 	 * Mask out inconvenient features, to try and disable as many
311 	 * unsupported kernel subsystems as possible.
312 	 */
313 	switch (*ax) {
314 	case 1:
315 		maskecx = cpuid_leaf1_ecx_mask;
316 		setecx = cpuid_leaf1_ecx_set_mask;
317 		maskedx = cpuid_leaf1_edx_mask;
318 		break;
319 
320 	case CPUID_MWAIT_LEAF:
321 		/* Synthesize the values.. */
322 		*ax = 0;
323 		*bx = 0;
324 		*cx = cpuid_leaf5_ecx_val;
325 		*dx = cpuid_leaf5_edx_val;
326 		return;
327 
328 	case CPUID_THERM_POWER_LEAF:
329 		/* Disabling APERFMPERF for kernel usage */
330 		maskecx = ~(1 << APERFMPERF_PRESENT);
331 		break;
332 
333 	case 0xb:
334 		/* Suppress extended topology stuff */
335 		maskebx = 0;
336 		break;
337 	}
338 
339 	asm(XEN_EMULATE_PREFIX "cpuid"
340 		: "=a" (*ax),
341 		  "=b" (*bx),
342 		  "=c" (*cx),
343 		  "=d" (*dx)
344 		: "0" (*ax), "2" (*cx));
345 
346 	*bx &= maskebx;
347 	*cx &= maskecx;
348 	*cx |= setecx;
349 	*dx &= maskedx;
350 
351 }
352 
xen_check_mwait(void)353 static bool __init xen_check_mwait(void)
354 {
355 #ifdef CONFIG_ACPI
356 	struct xen_platform_op op = {
357 		.cmd			= XENPF_set_processor_pminfo,
358 		.u.set_pminfo.id	= -1,
359 		.u.set_pminfo.type	= XEN_PM_PDC,
360 	};
361 	uint32_t buf[3];
362 	unsigned int ax, bx, cx, dx;
363 	unsigned int mwait_mask;
364 
365 	/* We need to determine whether it is OK to expose the MWAIT
366 	 * capability to the kernel to harvest deeper than C3 states from ACPI
367 	 * _CST using the processor_harvest_xen.c module. For this to work, we
368 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
369 	 * checks against). The hypervisor won't expose the MWAIT flag because
370 	 * it would break backwards compatibility; so we will find out directly
371 	 * from the hardware and hypercall.
372 	 */
373 	if (!xen_initial_domain())
374 		return false;
375 
376 	/*
377 	 * When running under platform earlier than Xen4.2, do not expose
378 	 * mwait, to avoid the risk of loading native acpi pad driver
379 	 */
380 	if (!xen_running_on_version_or_later(4, 2))
381 		return false;
382 
383 	ax = 1;
384 	cx = 0;
385 
386 	native_cpuid(&ax, &bx, &cx, &dx);
387 
388 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
389 		     (1 << (X86_FEATURE_MWAIT % 32));
390 
391 	if ((cx & mwait_mask) != mwait_mask)
392 		return false;
393 
394 	/* We need to emulate the MWAIT_LEAF and for that we need both
395 	 * ecx and edx. The hypercall provides only partial information.
396 	 */
397 
398 	ax = CPUID_MWAIT_LEAF;
399 	bx = 0;
400 	cx = 0;
401 	dx = 0;
402 
403 	native_cpuid(&ax, &bx, &cx, &dx);
404 
405 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
406 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
407 	 */
408 	buf[0] = ACPI_PDC_REVISION_ID;
409 	buf[1] = 1;
410 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
411 
412 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
413 
414 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
415 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
416 		cpuid_leaf5_ecx_val = cx;
417 		cpuid_leaf5_edx_val = dx;
418 	}
419 	return true;
420 #else
421 	return false;
422 #endif
423 }
xen_init_cpuid_mask(void)424 static void __init xen_init_cpuid_mask(void)
425 {
426 	unsigned int ax, bx, cx, dx;
427 	unsigned int xsave_mask;
428 
429 	cpuid_leaf1_edx_mask =
430 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
431 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
432 
433 	if (!xen_initial_domain())
434 		cpuid_leaf1_edx_mask &=
435 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
436 
437 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
438 
439 	ax = 1;
440 	cx = 0;
441 	cpuid(1, &ax, &bx, &cx, &dx);
442 
443 	xsave_mask =
444 		(1 << (X86_FEATURE_XSAVE % 32)) |
445 		(1 << (X86_FEATURE_OSXSAVE % 32));
446 
447 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
448 	if ((cx & xsave_mask) != xsave_mask)
449 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
450 	if (xen_check_mwait())
451 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
452 }
453 
xen_set_debugreg(int reg,unsigned long val)454 static void xen_set_debugreg(int reg, unsigned long val)
455 {
456 	HYPERVISOR_set_debugreg(reg, val);
457 }
458 
xen_get_debugreg(int reg)459 static unsigned long xen_get_debugreg(int reg)
460 {
461 	return HYPERVISOR_get_debugreg(reg);
462 }
463 
xen_end_context_switch(struct task_struct * next)464 static void xen_end_context_switch(struct task_struct *next)
465 {
466 	xen_mc_flush();
467 	paravirt_end_context_switch(next);
468 }
469 
xen_store_tr(void)470 static unsigned long xen_store_tr(void)
471 {
472 	return 0;
473 }
474 
475 /*
476  * Set the page permissions for a particular virtual address.  If the
477  * address is a vmalloc mapping (or other non-linear mapping), then
478  * find the linear mapping of the page and also set its protections to
479  * match.
480  */
set_aliased_prot(void * v,pgprot_t prot)481 static void set_aliased_prot(void *v, pgprot_t prot)
482 {
483 	int level;
484 	pte_t *ptep;
485 	pte_t pte;
486 	unsigned long pfn;
487 	struct page *page;
488 	unsigned char dummy;
489 
490 	ptep = lookup_address((unsigned long)v, &level);
491 	BUG_ON(ptep == NULL);
492 
493 	pfn = pte_pfn(*ptep);
494 	page = pfn_to_page(pfn);
495 
496 	pte = pfn_pte(pfn, prot);
497 
498 	/*
499 	 * Careful: update_va_mapping() will fail if the virtual address
500 	 * we're poking isn't populated in the page tables.  We don't
501 	 * need to worry about the direct map (that's always in the page
502 	 * tables), but we need to be careful about vmap space.  In
503 	 * particular, the top level page table can lazily propagate
504 	 * entries between processes, so if we've switched mms since we
505 	 * vmapped the target in the first place, we might not have the
506 	 * top-level page table entry populated.
507 	 *
508 	 * We disable preemption because we want the same mm active when
509 	 * we probe the target and when we issue the hypercall.  We'll
510 	 * have the same nominal mm, but if we're a kernel thread, lazy
511 	 * mm dropping could change our pgd.
512 	 *
513 	 * Out of an abundance of caution, this uses __get_user() to fault
514 	 * in the target address just in case there's some obscure case
515 	 * in which the target address isn't readable.
516 	 */
517 
518 	preempt_disable();
519 
520 	pagefault_disable();	/* Avoid warnings due to being atomic. */
521 	__get_user(dummy, (unsigned char __user __force *)v);
522 	pagefault_enable();
523 
524 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
525 		BUG();
526 
527 	if (!PageHighMem(page)) {
528 		void *av = __va(PFN_PHYS(pfn));
529 
530 		if (av != v)
531 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
532 				BUG();
533 	} else
534 		kmap_flush_unused();
535 
536 	preempt_enable();
537 }
538 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)539 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
540 {
541 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
542 	int i;
543 
544 	/*
545 	 * We need to mark the all aliases of the LDT pages RO.  We
546 	 * don't need to call vm_flush_aliases(), though, since that's
547 	 * only responsible for flushing aliases out the TLBs, not the
548 	 * page tables, and Xen will flush the TLB for us if needed.
549 	 *
550 	 * To avoid confusing future readers: none of this is necessary
551 	 * to load the LDT.  The hypervisor only checks this when the
552 	 * LDT is faulted in due to subsequent descriptor access.
553 	 */
554 
555 	for(i = 0; i < entries; i += entries_per_page)
556 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
557 }
558 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)559 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
560 {
561 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
562 	int i;
563 
564 	for(i = 0; i < entries; i += entries_per_page)
565 		set_aliased_prot(ldt + i, PAGE_KERNEL);
566 }
567 
xen_set_ldt(const void * addr,unsigned entries)568 static void xen_set_ldt(const void *addr, unsigned entries)
569 {
570 	struct mmuext_op *op;
571 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
572 
573 	trace_xen_cpu_set_ldt(addr, entries);
574 
575 	op = mcs.args;
576 	op->cmd = MMUEXT_SET_LDT;
577 	op->arg1.linear_addr = (unsigned long)addr;
578 	op->arg2.nr_ents = entries;
579 
580 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
581 
582 	xen_mc_issue(PARAVIRT_LAZY_CPU);
583 }
584 
xen_load_gdt(const struct desc_ptr * dtr)585 static void xen_load_gdt(const struct desc_ptr *dtr)
586 {
587 	unsigned long va = dtr->address;
588 	unsigned int size = dtr->size + 1;
589 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
590 	unsigned long frames[pages];
591 	int f;
592 
593 	/*
594 	 * A GDT can be up to 64k in size, which corresponds to 8192
595 	 * 8-byte entries, or 16 4k pages..
596 	 */
597 
598 	BUG_ON(size > 65536);
599 	BUG_ON(va & ~PAGE_MASK);
600 
601 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
602 		int level;
603 		pte_t *ptep;
604 		unsigned long pfn, mfn;
605 		void *virt;
606 
607 		/*
608 		 * The GDT is per-cpu and is in the percpu data area.
609 		 * That can be virtually mapped, so we need to do a
610 		 * page-walk to get the underlying MFN for the
611 		 * hypercall.  The page can also be in the kernel's
612 		 * linear range, so we need to RO that mapping too.
613 		 */
614 		ptep = lookup_address(va, &level);
615 		BUG_ON(ptep == NULL);
616 
617 		pfn = pte_pfn(*ptep);
618 		mfn = pfn_to_mfn(pfn);
619 		virt = __va(PFN_PHYS(pfn));
620 
621 		frames[f] = mfn;
622 
623 		make_lowmem_page_readonly((void *)va);
624 		make_lowmem_page_readonly(virt);
625 	}
626 
627 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
628 		BUG();
629 }
630 
631 /*
632  * load_gdt for early boot, when the gdt is only mapped once
633  */
xen_load_gdt_boot(const struct desc_ptr * dtr)634 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
635 {
636 	unsigned long va = dtr->address;
637 	unsigned int size = dtr->size + 1;
638 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
639 	unsigned long frames[pages];
640 	int f;
641 
642 	/*
643 	 * A GDT can be up to 64k in size, which corresponds to 8192
644 	 * 8-byte entries, or 16 4k pages..
645 	 */
646 
647 	BUG_ON(size > 65536);
648 	BUG_ON(va & ~PAGE_MASK);
649 
650 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
651 		pte_t pte;
652 		unsigned long pfn, mfn;
653 
654 		pfn = virt_to_pfn(va);
655 		mfn = pfn_to_mfn(pfn);
656 
657 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
658 
659 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
660 			BUG();
661 
662 		frames[f] = mfn;
663 	}
664 
665 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
666 		BUG();
667 }
668 
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)669 static inline bool desc_equal(const struct desc_struct *d1,
670 			      const struct desc_struct *d2)
671 {
672 	return d1->a == d2->a && d1->b == d2->b;
673 }
674 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)675 static void load_TLS_descriptor(struct thread_struct *t,
676 				unsigned int cpu, unsigned int i)
677 {
678 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
679 	struct desc_struct *gdt;
680 	xmaddr_t maddr;
681 	struct multicall_space mc;
682 
683 	if (desc_equal(shadow, &t->tls_array[i]))
684 		return;
685 
686 	*shadow = t->tls_array[i];
687 
688 	gdt = get_cpu_gdt_table(cpu);
689 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
690 	mc = __xen_mc_entry(0);
691 
692 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
693 }
694 
xen_load_tls(struct thread_struct * t,unsigned int cpu)695 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
696 {
697 	/*
698 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
699 	 * and lazy gs handling is enabled, it means we're in a
700 	 * context switch, and %gs has just been saved.  This means we
701 	 * can zero it out to prevent faults on exit from the
702 	 * hypervisor if the next process has no %gs.  Either way, it
703 	 * has been saved, and the new value will get loaded properly.
704 	 * This will go away as soon as Xen has been modified to not
705 	 * save/restore %gs for normal hypercalls.
706 	 *
707 	 * On x86_64, this hack is not used for %gs, because gs points
708 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
709 	 * must not zero %gs on x86_64
710 	 *
711 	 * For x86_64, we need to zero %fs, otherwise we may get an
712 	 * exception between the new %fs descriptor being loaded and
713 	 * %fs being effectively cleared at __switch_to().
714 	 */
715 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
716 #ifdef CONFIG_X86_32
717 		lazy_load_gs(0);
718 #else
719 		loadsegment(fs, 0);
720 #endif
721 	}
722 
723 	xen_mc_batch();
724 
725 	load_TLS_descriptor(t, cpu, 0);
726 	load_TLS_descriptor(t, cpu, 1);
727 	load_TLS_descriptor(t, cpu, 2);
728 
729 	xen_mc_issue(PARAVIRT_LAZY_CPU);
730 }
731 
732 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)733 static void xen_load_gs_index(unsigned int idx)
734 {
735 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
736 		BUG();
737 }
738 #endif
739 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)740 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
741 				const void *ptr)
742 {
743 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
744 	u64 entry = *(u64 *)ptr;
745 
746 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
747 
748 	preempt_disable();
749 
750 	xen_mc_flush();
751 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
752 		BUG();
753 
754 	preempt_enable();
755 }
756 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)757 static int cvt_gate_to_trap(int vector, const gate_desc *val,
758 			    struct trap_info *info)
759 {
760 	unsigned long addr;
761 
762 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
763 		return 0;
764 
765 	info->vector = vector;
766 
767 	addr = gate_offset(*val);
768 #ifdef CONFIG_X86_64
769 	/*
770 	 * Look for known traps using IST, and substitute them
771 	 * appropriately.  The debugger ones are the only ones we care
772 	 * about.  Xen will handle faults like double_fault,
773 	 * so we should never see them.  Warn if
774 	 * there's an unexpected IST-using fault handler.
775 	 */
776 	if (addr == (unsigned long)debug)
777 		addr = (unsigned long)xen_debug;
778 	else if (addr == (unsigned long)int3)
779 		addr = (unsigned long)xen_int3;
780 	else if (addr == (unsigned long)stack_segment)
781 		addr = (unsigned long)xen_stack_segment;
782 	else if (addr == (unsigned long)double_fault) {
783 		/* Don't need to handle these */
784 		return 0;
785 #ifdef CONFIG_X86_MCE
786 	} else if (addr == (unsigned long)machine_check) {
787 		/*
788 		 * when xen hypervisor inject vMCE to guest,
789 		 * use native mce handler to handle it
790 		 */
791 		;
792 #endif
793 	} else if (addr == (unsigned long)nmi)
794 		/*
795 		 * Use the native version as well.
796 		 */
797 		;
798 	else {
799 		/* Some other trap using IST? */
800 		if (WARN_ON(val->ist != 0))
801 			return 0;
802 	}
803 #endif	/* CONFIG_X86_64 */
804 	info->address = addr;
805 
806 	info->cs = gate_segment(*val);
807 	info->flags = val->dpl;
808 	/* interrupt gates clear IF */
809 	if (val->type == GATE_INTERRUPT)
810 		info->flags |= 1 << 2;
811 
812 	return 1;
813 }
814 
815 /* Locations of each CPU's IDT */
816 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
817 
818 /* Set an IDT entry.  If the entry is part of the current IDT, then
819    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)820 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
821 {
822 	unsigned long p = (unsigned long)&dt[entrynum];
823 	unsigned long start, end;
824 
825 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
826 
827 	preempt_disable();
828 
829 	start = __this_cpu_read(idt_desc.address);
830 	end = start + __this_cpu_read(idt_desc.size) + 1;
831 
832 	xen_mc_flush();
833 
834 	native_write_idt_entry(dt, entrynum, g);
835 
836 	if (p >= start && (p + 8) <= end) {
837 		struct trap_info info[2];
838 
839 		info[1].address = 0;
840 
841 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
842 			if (HYPERVISOR_set_trap_table(info))
843 				BUG();
844 	}
845 
846 	preempt_enable();
847 }
848 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)849 static void xen_convert_trap_info(const struct desc_ptr *desc,
850 				  struct trap_info *traps)
851 {
852 	unsigned in, out, count;
853 
854 	count = (desc->size+1) / sizeof(gate_desc);
855 	BUG_ON(count > 256);
856 
857 	for (in = out = 0; in < count; in++) {
858 		gate_desc *entry = (gate_desc*)(desc->address) + in;
859 
860 		if (cvt_gate_to_trap(in, entry, &traps[out]))
861 			out++;
862 	}
863 	traps[out].address = 0;
864 }
865 
xen_copy_trap_info(struct trap_info * traps)866 void xen_copy_trap_info(struct trap_info *traps)
867 {
868 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
869 
870 	xen_convert_trap_info(desc, traps);
871 }
872 
873 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
874    hold a spinlock to protect the static traps[] array (static because
875    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)876 static void xen_load_idt(const struct desc_ptr *desc)
877 {
878 	static DEFINE_SPINLOCK(lock);
879 	static struct trap_info traps[257];
880 
881 	trace_xen_cpu_load_idt(desc);
882 
883 	spin_lock(&lock);
884 
885 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
886 
887 	xen_convert_trap_info(desc, traps);
888 
889 	xen_mc_flush();
890 	if (HYPERVISOR_set_trap_table(traps))
891 		BUG();
892 
893 	spin_unlock(&lock);
894 }
895 
896 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
897    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)898 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
899 				const void *desc, int type)
900 {
901 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
902 
903 	preempt_disable();
904 
905 	switch (type) {
906 	case DESC_LDT:
907 	case DESC_TSS:
908 		/* ignore */
909 		break;
910 
911 	default: {
912 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
913 
914 		xen_mc_flush();
915 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
916 			BUG();
917 	}
918 
919 	}
920 
921 	preempt_enable();
922 }
923 
924 /*
925  * Version of write_gdt_entry for use at early boot-time needed to
926  * update an entry as simply as possible.
927  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)928 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
929 					    const void *desc, int type)
930 {
931 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
932 
933 	switch (type) {
934 	case DESC_LDT:
935 	case DESC_TSS:
936 		/* ignore */
937 		break;
938 
939 	default: {
940 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
941 
942 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
943 			dt[entry] = *(struct desc_struct *)desc;
944 	}
945 
946 	}
947 }
948 
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)949 static void xen_load_sp0(struct tss_struct *tss,
950 			 struct thread_struct *thread)
951 {
952 	struct multicall_space mcs;
953 
954 	mcs = xen_mc_entry(0);
955 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
956 	xen_mc_issue(PARAVIRT_LAZY_CPU);
957 }
958 
xen_set_iopl_mask(unsigned mask)959 void xen_set_iopl_mask(unsigned mask)
960 {
961 	struct physdev_set_iopl set_iopl;
962 
963 	/* Force the change at ring 0. */
964 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
965 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
966 }
967 
xen_io_delay(void)968 static void xen_io_delay(void)
969 {
970 }
971 
972 #ifdef CONFIG_X86_LOCAL_APIC
xen_set_apic_id(unsigned int x)973 static unsigned long xen_set_apic_id(unsigned int x)
974 {
975 	WARN_ON(1);
976 	return x;
977 }
xen_get_apic_id(unsigned long x)978 static unsigned int xen_get_apic_id(unsigned long x)
979 {
980 	return ((x)>>24) & 0xFFu;
981 }
xen_apic_read(u32 reg)982 static u32 xen_apic_read(u32 reg)
983 {
984 	struct xen_platform_op op = {
985 		.cmd = XENPF_get_cpuinfo,
986 		.interface_version = XENPF_INTERFACE_VERSION,
987 		.u.pcpu_info.xen_cpuid = 0,
988 	};
989 	int ret = 0;
990 
991 	/* Shouldn't need this as APIC is turned off for PV, and we only
992 	 * get called on the bootup processor. But just in case. */
993 	if (!xen_initial_domain() || smp_processor_id())
994 		return 0;
995 
996 	if (reg == APIC_LVR)
997 		return 0x10;
998 
999 	if (reg != APIC_ID)
1000 		return 0;
1001 
1002 	ret = HYPERVISOR_dom0_op(&op);
1003 	if (ret)
1004 		return 0;
1005 
1006 	return op.u.pcpu_info.apic_id << 24;
1007 }
1008 
xen_apic_write(u32 reg,u32 val)1009 static void xen_apic_write(u32 reg, u32 val)
1010 {
1011 	/* Warn to see if there's any stray references */
1012 	WARN_ON(1);
1013 }
1014 
xen_apic_icr_read(void)1015 static u64 xen_apic_icr_read(void)
1016 {
1017 	return 0;
1018 }
1019 
xen_apic_icr_write(u32 low,u32 id)1020 static void xen_apic_icr_write(u32 low, u32 id)
1021 {
1022 	/* Warn to see if there's any stray references */
1023 	WARN_ON(1);
1024 }
1025 
xen_apic_wait_icr_idle(void)1026 static void xen_apic_wait_icr_idle(void)
1027 {
1028         return;
1029 }
1030 
xen_safe_apic_wait_icr_idle(void)1031 static u32 xen_safe_apic_wait_icr_idle(void)
1032 {
1033         return 0;
1034 }
1035 
set_xen_basic_apic_ops(void)1036 static void set_xen_basic_apic_ops(void)
1037 {
1038 	apic->read = xen_apic_read;
1039 	apic->write = xen_apic_write;
1040 	apic->icr_read = xen_apic_icr_read;
1041 	apic->icr_write = xen_apic_icr_write;
1042 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
1043 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
1044 	apic->set_apic_id = xen_set_apic_id;
1045 	apic->get_apic_id = xen_get_apic_id;
1046 
1047 #ifdef CONFIG_SMP
1048 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1049 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1050 	apic->send_IPI_mask = xen_send_IPI_mask;
1051 	apic->send_IPI_all = xen_send_IPI_all;
1052 	apic->send_IPI_self = xen_send_IPI_self;
1053 #endif
1054 }
1055 
1056 #endif
1057 
xen_clts(void)1058 static void xen_clts(void)
1059 {
1060 	struct multicall_space mcs;
1061 
1062 	mcs = xen_mc_entry(0);
1063 
1064 	MULTI_fpu_taskswitch(mcs.mc, 0);
1065 
1066 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1067 }
1068 
1069 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1070 
xen_read_cr0(void)1071 static unsigned long xen_read_cr0(void)
1072 {
1073 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1074 
1075 	if (unlikely(cr0 == 0)) {
1076 		cr0 = native_read_cr0();
1077 		this_cpu_write(xen_cr0_value, cr0);
1078 	}
1079 
1080 	return cr0;
1081 }
1082 
xen_write_cr0(unsigned long cr0)1083 static void xen_write_cr0(unsigned long cr0)
1084 {
1085 	struct multicall_space mcs;
1086 
1087 	this_cpu_write(xen_cr0_value, cr0);
1088 
1089 	/* Only pay attention to cr0.TS; everything else is
1090 	   ignored. */
1091 	mcs = xen_mc_entry(0);
1092 
1093 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1094 
1095 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1096 }
1097 
xen_write_cr4(unsigned long cr4)1098 static void xen_write_cr4(unsigned long cr4)
1099 {
1100 	cr4 &= ~X86_CR4_PGE;
1101 	cr4 &= ~X86_CR4_PSE;
1102 
1103 	native_write_cr4(cr4);
1104 }
1105 #ifdef CONFIG_X86_64
xen_read_cr8(void)1106 static inline unsigned long xen_read_cr8(void)
1107 {
1108 	return 0;
1109 }
xen_write_cr8(unsigned long val)1110 static inline void xen_write_cr8(unsigned long val)
1111 {
1112 	BUG_ON(val);
1113 }
1114 #endif
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)1115 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1116 {
1117 	int ret;
1118 
1119 	ret = 0;
1120 
1121 	switch (msr) {
1122 #ifdef CONFIG_X86_64
1123 		unsigned which;
1124 		u64 base;
1125 
1126 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1127 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1128 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1129 
1130 	set:
1131 		base = ((u64)high << 32) | low;
1132 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1133 			ret = -EIO;
1134 		break;
1135 #endif
1136 
1137 	case MSR_STAR:
1138 	case MSR_CSTAR:
1139 	case MSR_LSTAR:
1140 	case MSR_SYSCALL_MASK:
1141 	case MSR_IA32_SYSENTER_CS:
1142 	case MSR_IA32_SYSENTER_ESP:
1143 	case MSR_IA32_SYSENTER_EIP:
1144 		/* Fast syscall setup is all done in hypercalls, so
1145 		   these are all ignored.  Stub them out here to stop
1146 		   Xen console noise. */
1147 		break;
1148 
1149 	case MSR_IA32_CR_PAT:
1150 		if (smp_processor_id() == 0)
1151 			xen_set_pat(((u64)high << 32) | low);
1152 		break;
1153 
1154 	default:
1155 		ret = native_write_msr_safe(msr, low, high);
1156 	}
1157 
1158 	return ret;
1159 }
1160 
xen_setup_shared_info(void)1161 void xen_setup_shared_info(void)
1162 {
1163 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1164 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1165 			   xen_start_info->shared_info);
1166 
1167 		HYPERVISOR_shared_info =
1168 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1169 	} else
1170 		HYPERVISOR_shared_info =
1171 			(struct shared_info *)__va(xen_start_info->shared_info);
1172 
1173 #ifndef CONFIG_SMP
1174 	/* In UP this is as good a place as any to set up shared info */
1175 	xen_setup_vcpu_info_placement();
1176 #endif
1177 
1178 	xen_setup_mfn_list_list();
1179 }
1180 
1181 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1182 void xen_setup_vcpu_info_placement(void)
1183 {
1184 	int cpu;
1185 
1186 	for_each_possible_cpu(cpu)
1187 		xen_vcpu_setup(cpu);
1188 
1189 	/* xen_vcpu_setup managed to place the vcpu_info within the
1190 	 * percpu area for all cpus, so make use of it. Note that for
1191 	 * PVH we want to use native IRQ mechanism. */
1192 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1193 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1194 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1195 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1196 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1197 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1198 	}
1199 }
1200 
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1201 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1202 			  unsigned long addr, unsigned len)
1203 {
1204 	char *start, *end, *reloc;
1205 	unsigned ret;
1206 
1207 	start = end = reloc = NULL;
1208 
1209 #define SITE(op, x)							\
1210 	case PARAVIRT_PATCH(op.x):					\
1211 	if (have_vcpu_info_placement) {					\
1212 		start = (char *)xen_##x##_direct;			\
1213 		end = xen_##x##_direct_end;				\
1214 		reloc = xen_##x##_direct_reloc;				\
1215 	}								\
1216 	goto patch_site
1217 
1218 	switch (type) {
1219 		SITE(pv_irq_ops, irq_enable);
1220 		SITE(pv_irq_ops, irq_disable);
1221 		SITE(pv_irq_ops, save_fl);
1222 		SITE(pv_irq_ops, restore_fl);
1223 #undef SITE
1224 
1225 	patch_site:
1226 		if (start == NULL || (end-start) > len)
1227 			goto default_patch;
1228 
1229 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1230 
1231 		/* Note: because reloc is assigned from something that
1232 		   appears to be an array, gcc assumes it's non-null,
1233 		   but doesn't know its relationship with start and
1234 		   end. */
1235 		if (reloc > start && reloc < end) {
1236 			int reloc_off = reloc - start;
1237 			long *relocp = (long *)(insnbuf + reloc_off);
1238 			long delta = start - (char *)addr;
1239 
1240 			*relocp += delta;
1241 		}
1242 		break;
1243 
1244 	default_patch:
1245 	default:
1246 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1247 					     addr, len);
1248 		break;
1249 	}
1250 
1251 	return ret;
1252 }
1253 
1254 static const struct pv_info xen_info __initconst = {
1255 	.paravirt_enabled = 1,
1256 	.shared_kernel_pmd = 0,
1257 
1258 #ifdef CONFIG_X86_64
1259 	.extra_user_64bit_cs = FLAT_USER_CS64,
1260 #endif
1261 
1262 	.name = "Xen",
1263 };
1264 
1265 static const struct pv_init_ops xen_init_ops __initconst = {
1266 	.patch = xen_patch,
1267 };
1268 
1269 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1270 	.cpuid = xen_cpuid,
1271 
1272 	.set_debugreg = xen_set_debugreg,
1273 	.get_debugreg = xen_get_debugreg,
1274 
1275 	.clts = xen_clts,
1276 
1277 	.read_cr0 = xen_read_cr0,
1278 	.write_cr0 = xen_write_cr0,
1279 
1280 	.read_cr4 = native_read_cr4,
1281 	.read_cr4_safe = native_read_cr4_safe,
1282 	.write_cr4 = xen_write_cr4,
1283 
1284 #ifdef CONFIG_X86_64
1285 	.read_cr8 = xen_read_cr8,
1286 	.write_cr8 = xen_write_cr8,
1287 #endif
1288 
1289 	.wbinvd = native_wbinvd,
1290 
1291 	.read_msr = native_read_msr_safe,
1292 	.write_msr = xen_write_msr_safe,
1293 
1294 	.read_tsc = native_read_tsc,
1295 	.read_pmc = native_read_pmc,
1296 
1297 	.read_tscp = native_read_tscp,
1298 
1299 	.iret = xen_iret,
1300 	.irq_enable_sysexit = xen_sysexit,
1301 #ifdef CONFIG_X86_64
1302 	.usergs_sysret32 = xen_sysret32,
1303 	.usergs_sysret64 = xen_sysret64,
1304 #endif
1305 
1306 	.load_tr_desc = paravirt_nop,
1307 	.set_ldt = xen_set_ldt,
1308 	.load_gdt = xen_load_gdt,
1309 	.load_idt = xen_load_idt,
1310 	.load_tls = xen_load_tls,
1311 #ifdef CONFIG_X86_64
1312 	.load_gs_index = xen_load_gs_index,
1313 #endif
1314 
1315 	.alloc_ldt = xen_alloc_ldt,
1316 	.free_ldt = xen_free_ldt,
1317 
1318 	.store_idt = native_store_idt,
1319 	.store_tr = xen_store_tr,
1320 
1321 	.write_ldt_entry = xen_write_ldt_entry,
1322 	.write_gdt_entry = xen_write_gdt_entry,
1323 	.write_idt_entry = xen_write_idt_entry,
1324 	.load_sp0 = xen_load_sp0,
1325 
1326 	.set_iopl_mask = xen_set_iopl_mask,
1327 	.io_delay = xen_io_delay,
1328 
1329 	/* Xen takes care of %gs when switching to usermode for us */
1330 	.swapgs = paravirt_nop,
1331 
1332 	.start_context_switch = paravirt_start_context_switch,
1333 	.end_context_switch = xen_end_context_switch,
1334 };
1335 
1336 static const struct pv_apic_ops xen_apic_ops __initconst = {
1337 #ifdef CONFIG_X86_LOCAL_APIC
1338 	.startup_ipi_hook = paravirt_nop,
1339 #endif
1340 };
1341 
xen_reboot(int reason)1342 static void xen_reboot(int reason)
1343 {
1344 	struct sched_shutdown r = { .reason = reason };
1345 
1346 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1347 		BUG();
1348 }
1349 
xen_restart(char * msg)1350 static void xen_restart(char *msg)
1351 {
1352 	xen_reboot(SHUTDOWN_reboot);
1353 }
1354 
xen_emergency_restart(void)1355 static void xen_emergency_restart(void)
1356 {
1357 	xen_reboot(SHUTDOWN_reboot);
1358 }
1359 
xen_machine_halt(void)1360 static void xen_machine_halt(void)
1361 {
1362 	xen_reboot(SHUTDOWN_poweroff);
1363 }
1364 
xen_machine_power_off(void)1365 static void xen_machine_power_off(void)
1366 {
1367 	if (pm_power_off)
1368 		pm_power_off();
1369 	xen_reboot(SHUTDOWN_poweroff);
1370 }
1371 
xen_crash_shutdown(struct pt_regs * regs)1372 static void xen_crash_shutdown(struct pt_regs *regs)
1373 {
1374 	xen_reboot(SHUTDOWN_crash);
1375 }
1376 
1377 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1378 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1379 {
1380 	xen_reboot(SHUTDOWN_crash);
1381 	return NOTIFY_DONE;
1382 }
1383 
1384 static struct notifier_block xen_panic_block = {
1385 	.notifier_call= xen_panic_event,
1386 	.priority = INT_MIN
1387 };
1388 
xen_panic_handler_init(void)1389 int xen_panic_handler_init(void)
1390 {
1391 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1392 	return 0;
1393 }
1394 
1395 static const struct machine_ops xen_machine_ops __initconst = {
1396 	.restart = xen_restart,
1397 	.halt = xen_machine_halt,
1398 	.power_off = xen_machine_power_off,
1399 	.shutdown = xen_machine_halt,
1400 	.crash_shutdown = xen_crash_shutdown,
1401 	.emergency_restart = xen_emergency_restart,
1402 };
1403 
xen_boot_params_init_edd(void)1404 static void __init xen_boot_params_init_edd(void)
1405 {
1406 #if IS_ENABLED(CONFIG_EDD)
1407 	struct xen_platform_op op;
1408 	struct edd_info *edd_info;
1409 	u32 *mbr_signature;
1410 	unsigned nr;
1411 	int ret;
1412 
1413 	edd_info = boot_params.eddbuf;
1414 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1415 
1416 	op.cmd = XENPF_firmware_info;
1417 
1418 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1419 	for (nr = 0; nr < EDDMAXNR; nr++) {
1420 		struct edd_info *info = edd_info + nr;
1421 
1422 		op.u.firmware_info.index = nr;
1423 		info->params.length = sizeof(info->params);
1424 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1425 				     &info->params);
1426 		ret = HYPERVISOR_dom0_op(&op);
1427 		if (ret)
1428 			break;
1429 
1430 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1431 		C(device);
1432 		C(version);
1433 		C(interface_support);
1434 		C(legacy_max_cylinder);
1435 		C(legacy_max_head);
1436 		C(legacy_sectors_per_track);
1437 #undef C
1438 	}
1439 	boot_params.eddbuf_entries = nr;
1440 
1441 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1442 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1443 		op.u.firmware_info.index = nr;
1444 		ret = HYPERVISOR_dom0_op(&op);
1445 		if (ret)
1446 			break;
1447 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1448 	}
1449 	boot_params.edd_mbr_sig_buf_entries = nr;
1450 #endif
1451 }
1452 
1453 /*
1454  * Set up the GDT and segment registers for -fstack-protector.  Until
1455  * we do this, we have to be careful not to call any stack-protected
1456  * function, which is most of the kernel.
1457  *
1458  * Note, that it is __ref because the only caller of this after init
1459  * is PVH which is not going to use xen_load_gdt_boot or other
1460  * __init functions.
1461  */
xen_setup_gdt(int cpu)1462 static void __ref xen_setup_gdt(int cpu)
1463 {
1464 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1465 #ifdef CONFIG_X86_64
1466 		unsigned long dummy;
1467 
1468 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1469 		switch_to_new_gdt(cpu); /* GDT and GS set */
1470 
1471 		/* We are switching of the Xen provided GDT to our HVM mode
1472 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1473 		 * and we are jumping to reload it.
1474 		 */
1475 		asm volatile ("pushq %0\n"
1476 			      "leaq 1f(%%rip),%0\n"
1477 			      "pushq %0\n"
1478 			      "lretq\n"
1479 			      "1:\n"
1480 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1481 
1482 		/*
1483 		 * While not needed, we also set the %es, %ds, and %fs
1484 		 * to zero. We don't care about %ss as it is NULL.
1485 		 * Strictly speaking this is not needed as Xen zeros those
1486 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1487 		 *
1488 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1489 		 * (for BSP).
1490 		 */
1491 		loadsegment(es, 0);
1492 		loadsegment(ds, 0);
1493 		loadsegment(fs, 0);
1494 #else
1495 		/* PVH: TODO Implement. */
1496 		BUG();
1497 #endif
1498 		return; /* PVH does not need any PV GDT ops. */
1499 	}
1500 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1501 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1502 
1503 	setup_stack_canary_segment(0);
1504 	switch_to_new_gdt(0);
1505 
1506 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1507 	pv_cpu_ops.load_gdt = xen_load_gdt;
1508 }
1509 
1510 #ifdef CONFIG_XEN_PVH
1511 /*
1512  * A PV guest starts with default flags that are not set for PVH, set them
1513  * here asap.
1514  */
xen_pvh_set_cr_flags(int cpu)1515 static void xen_pvh_set_cr_flags(int cpu)
1516 {
1517 
1518 	/* Some of these are setup in 'secondary_startup_64'. The others:
1519 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1520 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1521 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1522 
1523 	if (!cpu)
1524 		return;
1525 	/*
1526 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1527 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1528 	*/
1529 	if (cpu_has_pse)
1530 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1531 
1532 	if (cpu_has_pge)
1533 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1534 }
1535 
1536 /*
1537  * Note, that it is ref - because the only caller of this after init
1538  * is PVH which is not going to use xen_load_gdt_boot or other
1539  * __init functions.
1540  */
xen_pvh_secondary_vcpu_init(int cpu)1541 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1542 {
1543 	xen_setup_gdt(cpu);
1544 	xen_pvh_set_cr_flags(cpu);
1545 }
1546 
xen_pvh_early_guest_init(void)1547 static void __init xen_pvh_early_guest_init(void)
1548 {
1549 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1550 		return;
1551 
1552 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1553 		return;
1554 
1555 	xen_have_vector_callback = 1;
1556 
1557 	xen_pvh_early_cpu_init(0, false);
1558 	xen_pvh_set_cr_flags(0);
1559 
1560 #ifdef CONFIG_X86_32
1561 	BUG(); /* PVH: Implement proper support. */
1562 #endif
1563 }
1564 #endif    /* CONFIG_XEN_PVH */
1565 
1566 /* First C function to be called on Xen boot */
xen_start_kernel(void)1567 asmlinkage __visible void __init xen_start_kernel(void)
1568 {
1569 	struct physdev_set_iopl set_iopl;
1570 	unsigned long initrd_start = 0;
1571 	int rc;
1572 
1573 	if (!xen_start_info)
1574 		return;
1575 
1576 	xen_domain_type = XEN_PV_DOMAIN;
1577 
1578 	xen_setup_features();
1579 #ifdef CONFIG_XEN_PVH
1580 	xen_pvh_early_guest_init();
1581 #endif
1582 	xen_setup_machphys_mapping();
1583 
1584 	/* Install Xen paravirt ops */
1585 	pv_info = xen_info;
1586 	pv_init_ops = xen_init_ops;
1587 	pv_apic_ops = xen_apic_ops;
1588 	if (!xen_pvh_domain())
1589 		pv_cpu_ops = xen_cpu_ops;
1590 
1591 	if (xen_feature(XENFEAT_auto_translated_physmap))
1592 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1593 	else
1594 		x86_init.resources.memory_setup = xen_memory_setup;
1595 	x86_init.oem.arch_setup = xen_arch_setup;
1596 	x86_init.oem.banner = xen_banner;
1597 
1598 	xen_init_time_ops();
1599 
1600 	/*
1601 	 * Set up some pagetable state before starting to set any ptes.
1602 	 */
1603 
1604 	xen_init_mmu_ops();
1605 
1606 	/* Prevent unwanted bits from being set in PTEs. */
1607 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1608 #if 0
1609 	if (!xen_initial_domain())
1610 #endif
1611 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1612 
1613 	/*
1614 	 * Prevent page tables from being allocated in highmem, even
1615 	 * if CONFIG_HIGHPTE is enabled.
1616 	 */
1617 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1618 
1619 	/* Work out if we support NX */
1620 	x86_configure_nx();
1621 
1622 	/* Get mfn list */
1623 	xen_build_dynamic_phys_to_machine();
1624 
1625 	/*
1626 	 * Set up kernel GDT and segment registers, mainly so that
1627 	 * -fstack-protector code can be executed.
1628 	 */
1629 	xen_setup_gdt(0);
1630 
1631 	xen_init_irq_ops();
1632 	xen_init_cpuid_mask();
1633 
1634 #ifdef CONFIG_X86_LOCAL_APIC
1635 	/*
1636 	 * set up the basic apic ops.
1637 	 */
1638 	set_xen_basic_apic_ops();
1639 #endif
1640 
1641 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1642 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1643 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1644 	}
1645 
1646 	machine_ops = xen_machine_ops;
1647 
1648 	/*
1649 	 * The only reliable way to retain the initial address of the
1650 	 * percpu gdt_page is to remember it here, so we can go and
1651 	 * mark it RW later, when the initial percpu area is freed.
1652 	 */
1653 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1654 
1655 	xen_smp_init();
1656 
1657 #ifdef CONFIG_ACPI_NUMA
1658 	/*
1659 	 * The pages we from Xen are not related to machine pages, so
1660 	 * any NUMA information the kernel tries to get from ACPI will
1661 	 * be meaningless.  Prevent it from trying.
1662 	 */
1663 	acpi_numa = -1;
1664 #endif
1665 #ifdef CONFIG_X86_PAT
1666 	/*
1667 	 * For right now disable the PAT. We should remove this once
1668 	 * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1669 	 * (xen/pat: Disable PAT support for now) is reverted.
1670 	 */
1671 	pat_enabled = 0;
1672 #endif
1673 	/* Don't do the full vcpu_info placement stuff until we have a
1674 	   possible map and a non-dummy shared_info. */
1675 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1676 
1677 	local_irq_disable();
1678 	early_boot_irqs_disabled = true;
1679 
1680 	xen_raw_console_write("mapping kernel into physical memory\n");
1681 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1682 
1683 	/* keep using Xen gdt for now; no urgent need to change it */
1684 
1685 #ifdef CONFIG_X86_32
1686 	pv_info.kernel_rpl = 1;
1687 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1688 		pv_info.kernel_rpl = 0;
1689 #else
1690 	pv_info.kernel_rpl = 0;
1691 #endif
1692 	/* set the limit of our address space */
1693 	xen_reserve_top();
1694 
1695 	/* PVH: runs at default kernel iopl of 0 */
1696 	if (!xen_pvh_domain()) {
1697 		/*
1698 		 * We used to do this in xen_arch_setup, but that is too late
1699 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1700 		 * early_amd_init which pokes 0xcf8 port.
1701 		 */
1702 		set_iopl.iopl = 1;
1703 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1704 		if (rc != 0)
1705 			xen_raw_printk("physdev_op failed %d\n", rc);
1706 	}
1707 
1708 #ifdef CONFIG_X86_32
1709 	/* set up basic CPUID stuff */
1710 	cpu_detect(&new_cpu_data);
1711 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1712 	new_cpu_data.wp_works_ok = 1;
1713 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1714 #endif
1715 
1716 	if (xen_start_info->mod_start) {
1717 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1718 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1719 	    else
1720 		initrd_start = __pa(xen_start_info->mod_start);
1721 	}
1722 
1723 	/* Poke various useful things into boot_params */
1724 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1725 	boot_params.hdr.ramdisk_image = initrd_start;
1726 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1727 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1728 
1729 	if (!xen_initial_domain()) {
1730 		add_preferred_console("xenboot", 0, NULL);
1731 		add_preferred_console("tty", 0, NULL);
1732 		add_preferred_console("hvc", 0, NULL);
1733 		if (pci_xen)
1734 			x86_init.pci.arch_init = pci_xen_init;
1735 	} else {
1736 		const struct dom0_vga_console_info *info =
1737 			(void *)((char *)xen_start_info +
1738 				 xen_start_info->console.dom0.info_off);
1739 		struct xen_platform_op op = {
1740 			.cmd = XENPF_firmware_info,
1741 			.interface_version = XENPF_INTERFACE_VERSION,
1742 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1743 		};
1744 
1745 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1746 		xen_start_info->console.domU.mfn = 0;
1747 		xen_start_info->console.domU.evtchn = 0;
1748 
1749 		if (HYPERVISOR_dom0_op(&op) == 0)
1750 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1751 
1752 		xen_init_apic();
1753 
1754 		/* Make sure ACS will be enabled */
1755 		pci_request_acs();
1756 
1757 		xen_acpi_sleep_register();
1758 
1759 		/* Avoid searching for BIOS MP tables */
1760 		x86_init.mpparse.find_smp_config = x86_init_noop;
1761 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1762 
1763 		xen_boot_params_init_edd();
1764 	}
1765 #ifdef CONFIG_PCI
1766 	/* PCI BIOS service won't work from a PV guest. */
1767 	pci_probe &= ~PCI_PROBE_BIOS;
1768 #endif
1769 	xen_raw_console_write("about to get started...\n");
1770 
1771 	xen_setup_runstate_info(0);
1772 
1773 	xen_efi_init();
1774 
1775 	/* Start the world */
1776 #ifdef CONFIG_X86_32
1777 	i386_start_kernel();
1778 #else
1779 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1780 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1781 #endif
1782 }
1783 
xen_hvm_init_shared_info(void)1784 void __ref xen_hvm_init_shared_info(void)
1785 {
1786 	int cpu;
1787 	struct xen_add_to_physmap xatp;
1788 	static struct shared_info *shared_info_page = 0;
1789 
1790 	if (!shared_info_page)
1791 		shared_info_page = (struct shared_info *)
1792 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1793 	xatp.domid = DOMID_SELF;
1794 	xatp.idx = 0;
1795 	xatp.space = XENMAPSPACE_shared_info;
1796 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1797 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1798 		BUG();
1799 
1800 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1801 
1802 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1803 	 * page, we use it in the event channel upcall and in some pvclock
1804 	 * related functions. We don't need the vcpu_info placement
1805 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1806 	 * HVM.
1807 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1808 	 * online but xen_hvm_init_shared_info is run at resume time too and
1809 	 * in that case multiple vcpus might be online. */
1810 	for_each_online_cpu(cpu) {
1811 		/* Leave it to be NULL. */
1812 		if (cpu >= MAX_VIRT_CPUS)
1813 			continue;
1814 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1815 	}
1816 }
1817 
1818 #ifdef CONFIG_XEN_PVHVM
init_hvm_pv_info(void)1819 static void __init init_hvm_pv_info(void)
1820 {
1821 	int major, minor;
1822 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1823 	u64 pfn;
1824 
1825 	base = xen_cpuid_base();
1826 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1827 
1828 	major = eax >> 16;
1829 	minor = eax & 0xffff;
1830 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1831 
1832 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1833 
1834 	pfn = __pa(hypercall_page);
1835 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1836 
1837 	xen_setup_features();
1838 
1839 	pv_info.name = "Xen HVM";
1840 
1841 	xen_domain_type = XEN_HVM_DOMAIN;
1842 }
1843 
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1844 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1845 			      void *hcpu)
1846 {
1847 	int cpu = (long)hcpu;
1848 	switch (action) {
1849 	case CPU_UP_PREPARE:
1850 		xen_vcpu_setup(cpu);
1851 		if (xen_have_vector_callback) {
1852 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1853 				xen_setup_timer(cpu);
1854 		}
1855 		break;
1856 	default:
1857 		break;
1858 	}
1859 	return NOTIFY_OK;
1860 }
1861 
1862 static struct notifier_block xen_hvm_cpu_notifier = {
1863 	.notifier_call	= xen_hvm_cpu_notify,
1864 };
1865 
1866 #ifdef CONFIG_KEXEC_CORE
xen_hvm_shutdown(void)1867 static void xen_hvm_shutdown(void)
1868 {
1869 	native_machine_shutdown();
1870 	if (kexec_in_progress)
1871 		xen_reboot(SHUTDOWN_soft_reset);
1872 }
1873 
xen_hvm_crash_shutdown(struct pt_regs * regs)1874 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1875 {
1876 	native_machine_crash_shutdown(regs);
1877 	xen_reboot(SHUTDOWN_soft_reset);
1878 }
1879 #endif
1880 
xen_hvm_guest_init(void)1881 static void __init xen_hvm_guest_init(void)
1882 {
1883 	init_hvm_pv_info();
1884 
1885 	xen_hvm_init_shared_info();
1886 
1887 	xen_panic_handler_init();
1888 
1889 	if (xen_feature(XENFEAT_hvm_callback_vector))
1890 		xen_have_vector_callback = 1;
1891 	xen_hvm_smp_init();
1892 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1893 	xen_unplug_emulated_devices();
1894 	x86_init.irqs.intr_init = xen_init_IRQ;
1895 	xen_hvm_init_time_ops();
1896 	xen_hvm_init_mmu_ops();
1897 #ifdef CONFIG_KEXEC_CORE
1898 	machine_ops.shutdown = xen_hvm_shutdown;
1899 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1900 #endif
1901 }
1902 
1903 static bool xen_nopv = false;
xen_parse_nopv(char * arg)1904 static __init int xen_parse_nopv(char *arg)
1905 {
1906        xen_nopv = true;
1907        return 0;
1908 }
1909 early_param("xen_nopv", xen_parse_nopv);
1910 
xen_hvm_platform(void)1911 static uint32_t __init xen_hvm_platform(void)
1912 {
1913 	if (xen_nopv)
1914 		return 0;
1915 
1916 	if (xen_pv_domain())
1917 		return 0;
1918 
1919 	return xen_cpuid_base();
1920 }
1921 
xen_hvm_need_lapic(void)1922 bool xen_hvm_need_lapic(void)
1923 {
1924 	if (xen_nopv)
1925 		return false;
1926 	if (xen_pv_domain())
1927 		return false;
1928 	if (!xen_hvm_domain())
1929 		return false;
1930 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1931 		return false;
1932 	return true;
1933 }
1934 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1935 
1936 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1937 	.name			= "Xen HVM",
1938 	.detect			= xen_hvm_platform,
1939 	.init_platform		= xen_hvm_guest_init,
1940 	.x2apic_available	= xen_x2apic_para_available,
1941 };
1942 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1943 #endif
1944