1 /*
2 * Machine specific setup for xen
3 *
4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5 */
6
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include "xen-ops.h"
31 #include "vdso.h"
32 #include "p2m.h"
33
34 /* These are code, but not functions. Defined in entry.S */
35 extern const char xen_hypervisor_callback[];
36 extern const char xen_failsafe_callback[];
37 #ifdef CONFIG_X86_64
38 extern asmlinkage void nmi(void);
39 #endif
40 extern void xen_sysenter_target(void);
41 extern void xen_syscall_target(void);
42 extern void xen_syscall32_target(void);
43
44 /* Amount of extra memory space we add to the e820 ranges */
45 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
46
47 /* Number of pages released from the initial allocation. */
48 unsigned long xen_released_pages;
49
50 /* Buffer used to remap identity mapped pages */
51 unsigned long xen_remap_buf[P2M_PER_PAGE] __initdata;
52
53 /*
54 * The maximum amount of extra memory compared to the base size. The
55 * main scaling factor is the size of struct page. At extreme ratios
56 * of base:extra, all the base memory can be filled with page
57 * structures for the extra memory, leaving no space for anything
58 * else.
59 *
60 * 10x seems like a reasonable balance between scaling flexibility and
61 * leaving a practically usable system.
62 */
63 #define EXTRA_MEM_RATIO (10)
64
xen_add_extra_mem(u64 start,u64 size)65 static void __init xen_add_extra_mem(u64 start, u64 size)
66 {
67 unsigned long pfn;
68 int i;
69
70 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
71 /* Add new region. */
72 if (xen_extra_mem[i].size == 0) {
73 xen_extra_mem[i].start = start;
74 xen_extra_mem[i].size = size;
75 break;
76 }
77 /* Append to existing region. */
78 if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
79 xen_extra_mem[i].size += size;
80 break;
81 }
82 }
83 if (i == XEN_EXTRA_MEM_MAX_REGIONS)
84 printk(KERN_WARNING "Warning: not enough extra memory regions\n");
85
86 memblock_reserve(start, size);
87
88 xen_max_p2m_pfn = PFN_DOWN(start + size);
89 for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
90 unsigned long mfn = pfn_to_mfn(pfn);
91
92 if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
93 continue;
94 WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
95 pfn, mfn);
96
97 __set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
98 }
99 }
100
xen_do_chunk(unsigned long start,unsigned long end,bool release)101 static unsigned long __init xen_do_chunk(unsigned long start,
102 unsigned long end, bool release)
103 {
104 struct xen_memory_reservation reservation = {
105 .address_bits = 0,
106 .extent_order = 0,
107 .domid = DOMID_SELF
108 };
109 unsigned long len = 0;
110 unsigned long pfn;
111 int ret;
112
113 for (pfn = start; pfn < end; pfn++) {
114 unsigned long frame;
115 unsigned long mfn = pfn_to_mfn(pfn);
116
117 if (release) {
118 /* Make sure pfn exists to start with */
119 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
120 continue;
121 frame = mfn;
122 } else {
123 if (mfn != INVALID_P2M_ENTRY)
124 continue;
125 frame = pfn;
126 }
127 set_xen_guest_handle(reservation.extent_start, &frame);
128 reservation.nr_extents = 1;
129
130 ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
131 &reservation);
132 WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
133 release ? "release" : "populate", pfn, ret);
134
135 if (ret == 1) {
136 if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
137 if (release)
138 break;
139 set_xen_guest_handle(reservation.extent_start, &frame);
140 reservation.nr_extents = 1;
141 ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
142 &reservation);
143 break;
144 }
145 len++;
146 } else
147 break;
148 }
149 if (len)
150 printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
151 release ? "Freeing" : "Populating",
152 start, end, len,
153 release ? "freed" : "added");
154
155 return len;
156 }
157
158 /*
159 * Finds the next RAM pfn available in the E820 map after min_pfn.
160 * This function updates min_pfn with the pfn found and returns
161 * the size of that range or zero if not found.
162 */
xen_find_pfn_range(const struct e820entry * list,size_t map_size,unsigned long * min_pfn)163 static unsigned long __init xen_find_pfn_range(
164 const struct e820entry *list, size_t map_size,
165 unsigned long *min_pfn)
166 {
167 const struct e820entry *entry;
168 unsigned int i;
169 unsigned long done = 0;
170
171 for (i = 0, entry = list; i < map_size; i++, entry++) {
172 unsigned long s_pfn;
173 unsigned long e_pfn;
174
175 if (entry->type != E820_RAM)
176 continue;
177
178 e_pfn = PFN_DOWN(entry->addr + entry->size);
179
180 /* We only care about E820 after this */
181 if (e_pfn < *min_pfn)
182 continue;
183
184 s_pfn = PFN_UP(entry->addr);
185
186 /* If min_pfn falls within the E820 entry, we want to start
187 * at the min_pfn PFN.
188 */
189 if (s_pfn <= *min_pfn) {
190 done = e_pfn - *min_pfn;
191 } else {
192 done = e_pfn - s_pfn;
193 *min_pfn = s_pfn;
194 }
195 break;
196 }
197
198 return done;
199 }
200
201 /*
202 * This releases a chunk of memory and then does the identity map. It's used as
203 * as a fallback if the remapping fails.
204 */
xen_set_identity_and_release_chunk(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long * identity,unsigned long * released)205 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
206 unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
207 unsigned long *released)
208 {
209 WARN_ON(start_pfn > end_pfn);
210
211 /* Need to release pages first */
212 *released += xen_do_chunk(start_pfn, min(end_pfn, nr_pages), true);
213 *identity += set_phys_range_identity(start_pfn, end_pfn);
214 }
215
216 /*
217 * Helper function to update both the p2m and m2p tables.
218 */
xen_update_mem_tables(unsigned long pfn,unsigned long mfn)219 static unsigned long __init xen_update_mem_tables(unsigned long pfn,
220 unsigned long mfn)
221 {
222 struct mmu_update update = {
223 .ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
224 .val = pfn
225 };
226
227 /* Update p2m */
228 if (!early_set_phys_to_machine(pfn, mfn)) {
229 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
230 pfn, mfn);
231 return false;
232 }
233
234 /* Update m2p */
235 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
236 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
237 mfn, pfn);
238 return false;
239 }
240
241 return true;
242 }
243
244 /*
245 * This function updates the p2m and m2p tables with an identity map from
246 * start_pfn to start_pfn+size and remaps the underlying RAM of the original
247 * allocation at remap_pfn. It must do so carefully in P2M_PER_PAGE sized blocks
248 * to not exhaust the reserved brk space. Doing it in properly aligned blocks
249 * ensures we only allocate the minimum required leaf pages in the p2m table. It
250 * copies the existing mfns from the p2m table under the 1:1 map, overwrites
251 * them with the identity map and then updates the p2m and m2p tables with the
252 * remapped memory.
253 */
xen_do_set_identity_and_remap_chunk(unsigned long start_pfn,unsigned long size,unsigned long remap_pfn)254 static unsigned long __init xen_do_set_identity_and_remap_chunk(
255 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
256 {
257 unsigned long ident_pfn_iter, remap_pfn_iter;
258 unsigned long ident_start_pfn_align, remap_start_pfn_align;
259 unsigned long ident_end_pfn_align, remap_end_pfn_align;
260 unsigned long ident_boundary_pfn, remap_boundary_pfn;
261 unsigned long ident_cnt = 0;
262 unsigned long remap_cnt = 0;
263 unsigned long left = size;
264 unsigned long mod;
265 int i;
266
267 WARN_ON(size == 0);
268
269 BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
270
271 /*
272 * Determine the proper alignment to remap memory in P2M_PER_PAGE sized
273 * blocks. We need to keep track of both the existing pfn mapping and
274 * the new pfn remapping.
275 */
276 mod = start_pfn % P2M_PER_PAGE;
277 ident_start_pfn_align =
278 mod ? (start_pfn - mod + P2M_PER_PAGE) : start_pfn;
279 mod = remap_pfn % P2M_PER_PAGE;
280 remap_start_pfn_align =
281 mod ? (remap_pfn - mod + P2M_PER_PAGE) : remap_pfn;
282 mod = (start_pfn + size) % P2M_PER_PAGE;
283 ident_end_pfn_align = start_pfn + size - mod;
284 mod = (remap_pfn + size) % P2M_PER_PAGE;
285 remap_end_pfn_align = remap_pfn + size - mod;
286
287 /* Iterate over each p2m leaf node in each range */
288 for (ident_pfn_iter = ident_start_pfn_align, remap_pfn_iter = remap_start_pfn_align;
289 ident_pfn_iter < ident_end_pfn_align && remap_pfn_iter < remap_end_pfn_align;
290 ident_pfn_iter += P2M_PER_PAGE, remap_pfn_iter += P2M_PER_PAGE) {
291 /* Check we aren't past the end */
292 BUG_ON(ident_pfn_iter + P2M_PER_PAGE > start_pfn + size);
293 BUG_ON(remap_pfn_iter + P2M_PER_PAGE > remap_pfn + size);
294
295 /* Save p2m mappings */
296 for (i = 0; i < P2M_PER_PAGE; i++)
297 xen_remap_buf[i] = pfn_to_mfn(ident_pfn_iter + i);
298
299 /* Set identity map which will free a p2m leaf */
300 ident_cnt += set_phys_range_identity(ident_pfn_iter,
301 ident_pfn_iter + P2M_PER_PAGE);
302
303 #ifdef DEBUG
304 /* Helps verify a p2m leaf has been freed */
305 for (i = 0; i < P2M_PER_PAGE; i++) {
306 unsigned int pfn = ident_pfn_iter + i;
307 BUG_ON(pfn_to_mfn(pfn) != pfn);
308 }
309 #endif
310 /* Now remap memory */
311 for (i = 0; i < P2M_PER_PAGE; i++) {
312 unsigned long mfn = xen_remap_buf[i];
313
314 /* This will use the p2m leaf freed above */
315 if (!xen_update_mem_tables(remap_pfn_iter + i, mfn)) {
316 WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
317 remap_pfn_iter + i, mfn);
318 return 0;
319 }
320
321 remap_cnt++;
322 }
323
324 left -= P2M_PER_PAGE;
325 }
326
327 /* Max boundary space possible */
328 BUG_ON(left > (P2M_PER_PAGE - 1) * 2);
329
330 /* Now handle the boundary conditions */
331 ident_boundary_pfn = start_pfn;
332 remap_boundary_pfn = remap_pfn;
333 for (i = 0; i < left; i++) {
334 unsigned long mfn;
335
336 /* These two checks move from the start to end boundaries */
337 if (ident_boundary_pfn == ident_start_pfn_align)
338 ident_boundary_pfn = ident_pfn_iter;
339 if (remap_boundary_pfn == remap_start_pfn_align)
340 remap_boundary_pfn = remap_pfn_iter;
341
342 /* Check we aren't past the end */
343 BUG_ON(ident_boundary_pfn >= start_pfn + size);
344 BUG_ON(remap_boundary_pfn >= remap_pfn + size);
345
346 mfn = pfn_to_mfn(ident_boundary_pfn);
347
348 if (!xen_update_mem_tables(remap_boundary_pfn, mfn)) {
349 WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
350 remap_pfn_iter + i, mfn);
351 return 0;
352 }
353 remap_cnt++;
354
355 ident_boundary_pfn++;
356 remap_boundary_pfn++;
357 }
358
359 /* Finish up the identity map */
360 if (ident_start_pfn_align >= ident_end_pfn_align) {
361 /*
362 * In this case we have an identity range which does not span an
363 * aligned block so everything needs to be identity mapped here.
364 * If we didn't check this we might remap too many pages since
365 * the align boundaries are not meaningful in this case.
366 */
367 ident_cnt += set_phys_range_identity(start_pfn,
368 start_pfn + size);
369 } else {
370 /* Remapped above so check each end of the chunk */
371 if (start_pfn < ident_start_pfn_align)
372 ident_cnt += set_phys_range_identity(start_pfn,
373 ident_start_pfn_align);
374 if (start_pfn + size > ident_pfn_iter)
375 ident_cnt += set_phys_range_identity(ident_pfn_iter,
376 start_pfn + size);
377 }
378
379 BUG_ON(ident_cnt != size);
380 BUG_ON(remap_cnt != size);
381
382 return size;
383 }
384
385 /*
386 * This function takes a contiguous pfn range that needs to be identity mapped
387 * and:
388 *
389 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
390 * 2) Calls the do_ function to actually do the mapping/remapping work.
391 *
392 * The goal is to not allocate additional memory but to remap the existing
393 * pages. In the case of an error the underlying memory is simply released back
394 * to Xen and not remapped.
395 */
xen_set_identity_and_remap_chunk(const struct e820entry * list,size_t map_size,unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long remap_pfn,unsigned long * identity,unsigned long * remapped,unsigned long * released)396 static unsigned long __init xen_set_identity_and_remap_chunk(
397 const struct e820entry *list, size_t map_size, unsigned long start_pfn,
398 unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
399 unsigned long *identity, unsigned long *remapped,
400 unsigned long *released)
401 {
402 unsigned long pfn;
403 unsigned long i = 0;
404 unsigned long n = end_pfn - start_pfn;
405
406 while (i < n) {
407 unsigned long cur_pfn = start_pfn + i;
408 unsigned long left = n - i;
409 unsigned long size = left;
410 unsigned long remap_range_size;
411
412 /* Do not remap pages beyond the current allocation */
413 if (cur_pfn >= nr_pages) {
414 /* Identity map remaining pages */
415 *identity += set_phys_range_identity(cur_pfn,
416 cur_pfn + size);
417 break;
418 }
419 if (cur_pfn + size > nr_pages)
420 size = nr_pages - cur_pfn;
421
422 remap_range_size = xen_find_pfn_range(list, map_size,
423 &remap_pfn);
424 if (!remap_range_size) {
425 pr_warning("Unable to find available pfn range, not remapping identity pages\n");
426 xen_set_identity_and_release_chunk(cur_pfn,
427 cur_pfn + left, nr_pages, identity, released);
428 break;
429 }
430 /* Adjust size to fit in current e820 RAM region */
431 if (size > remap_range_size)
432 size = remap_range_size;
433
434 if (!xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn)) {
435 WARN(1, "Failed to remap 1:1 memory cur_pfn=%ld size=%ld remap_pfn=%ld\n",
436 cur_pfn, size, remap_pfn);
437 xen_set_identity_and_release_chunk(cur_pfn,
438 cur_pfn + left, nr_pages, identity, released);
439 break;
440 }
441
442 /* Update variables to reflect new mappings. */
443 i += size;
444 remap_pfn += size;
445 *identity += size;
446 *remapped += size;
447 }
448
449 /*
450 * If the PFNs are currently mapped, the VA mapping also needs
451 * to be updated to be 1:1.
452 */
453 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
454 (void)HYPERVISOR_update_va_mapping(
455 (unsigned long)__va(pfn << PAGE_SHIFT),
456 mfn_pte(pfn, PAGE_KERNEL_IO), 0);
457
458 return remap_pfn;
459 }
460
xen_set_identity_and_remap(const struct e820entry * list,size_t map_size,unsigned long nr_pages,unsigned long * released)461 static unsigned long __init xen_set_identity_and_remap(
462 const struct e820entry *list, size_t map_size, unsigned long nr_pages,
463 unsigned long *released)
464 {
465 phys_addr_t start = 0;
466 unsigned long identity = 0;
467 unsigned long remapped = 0;
468 unsigned long last_pfn = nr_pages;
469 const struct e820entry *entry;
470 unsigned long num_released = 0;
471 int i;
472
473 /*
474 * Combine non-RAM regions and gaps until a RAM region (or the
475 * end of the map) is reached, then set the 1:1 map and
476 * remap the memory in those non-RAM regions.
477 *
478 * The combined non-RAM regions are rounded to a whole number
479 * of pages so any partial pages are accessible via the 1:1
480 * mapping. This is needed for some BIOSes that put (for
481 * example) the DMI tables in a reserved region that begins on
482 * a non-page boundary.
483 */
484 for (i = 0, entry = list; i < map_size; i++, entry++) {
485 phys_addr_t end = entry->addr + entry->size;
486 if (entry->type == E820_RAM || i == map_size - 1) {
487 unsigned long start_pfn = PFN_DOWN(start);
488 unsigned long end_pfn = PFN_UP(end);
489
490 if (entry->type == E820_RAM)
491 end_pfn = PFN_UP(entry->addr);
492
493 if (start_pfn < end_pfn)
494 last_pfn = xen_set_identity_and_remap_chunk(
495 list, map_size, start_pfn,
496 end_pfn, nr_pages, last_pfn,
497 &identity, &remapped,
498 &num_released);
499 start = end;
500 }
501 }
502
503 *released = num_released;
504
505 pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
506 pr_info("Remapped %ld page(s), last_pfn=%ld\n", remapped,
507 last_pfn);
508 pr_info("Released %ld page(s)\n", num_released);
509
510 return last_pfn;
511 }
xen_get_max_pages(void)512 static unsigned long __init xen_get_max_pages(void)
513 {
514 unsigned long max_pages = MAX_DOMAIN_PAGES;
515 domid_t domid = DOMID_SELF;
516 int ret;
517
518 /*
519 * For the initial domain we use the maximum reservation as
520 * the maximum page.
521 *
522 * For guest domains the current maximum reservation reflects
523 * the current maximum rather than the static maximum. In this
524 * case the e820 map provided to us will cover the static
525 * maximum region.
526 */
527 if (xen_initial_domain()) {
528 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
529 if (ret > 0)
530 max_pages = ret;
531 }
532
533 return min(max_pages, MAX_DOMAIN_PAGES);
534 }
535
xen_align_and_add_e820_region(u64 start,u64 size,int type)536 static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
537 {
538 u64 end = start + size;
539
540 /* Align RAM regions to page boundaries. */
541 if (type == E820_RAM) {
542 start = PAGE_ALIGN(start);
543 end &= ~((u64)PAGE_SIZE - 1);
544 }
545
546 e820_add_region(start, end - start, type);
547 }
548
xen_ignore_unusable(struct e820entry * list,size_t map_size)549 void xen_ignore_unusable(struct e820entry *list, size_t map_size)
550 {
551 struct e820entry *entry;
552 unsigned int i;
553
554 for (i = 0, entry = list; i < map_size; i++, entry++) {
555 if (entry->type == E820_UNUSABLE)
556 entry->type = E820_RAM;
557 }
558 }
559
560 /**
561 * machine_specific_memory_setup - Hook for machine specific memory setup.
562 **/
xen_memory_setup(void)563 char * __init xen_memory_setup(void)
564 {
565 static struct e820entry map[E820MAX] __initdata;
566
567 unsigned long max_pfn = xen_start_info->nr_pages;
568 unsigned long long mem_end;
569 int rc;
570 struct xen_memory_map memmap;
571 unsigned long max_pages;
572 unsigned long last_pfn = 0;
573 unsigned long extra_pages = 0;
574 int i;
575 int op;
576
577 max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
578 mem_end = PFN_PHYS(max_pfn);
579
580 memmap.nr_entries = E820MAX;
581 set_xen_guest_handle(memmap.buffer, map);
582
583 op = xen_initial_domain() ?
584 XENMEM_machine_memory_map :
585 XENMEM_memory_map;
586 rc = HYPERVISOR_memory_op(op, &memmap);
587 if (rc == -ENOSYS) {
588 BUG_ON(xen_initial_domain());
589 memmap.nr_entries = 1;
590 map[0].addr = 0ULL;
591 map[0].size = mem_end;
592 /* 8MB slack (to balance backend allocations). */
593 map[0].size += 8ULL << 20;
594 map[0].type = E820_RAM;
595 rc = 0;
596 }
597 BUG_ON(rc);
598 BUG_ON(memmap.nr_entries == 0);
599
600 /*
601 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
602 * regions, so if we're using the machine memory map leave the
603 * region as RAM as it is in the pseudo-physical map.
604 *
605 * UNUSABLE regions in domUs are not handled and will need
606 * a patch in the future.
607 */
608 if (xen_initial_domain())
609 xen_ignore_unusable(map, memmap.nr_entries);
610
611 /* Make sure the Xen-supplied memory map is well-ordered. */
612 sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
613
614 max_pages = xen_get_max_pages();
615 if (max_pages > max_pfn)
616 extra_pages += max_pages - max_pfn;
617
618 /*
619 * Set identity map on non-RAM pages and remap the underlying RAM.
620 */
621 last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
622 &xen_released_pages);
623
624 extra_pages += xen_released_pages;
625
626 if (last_pfn > max_pfn) {
627 max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
628 mem_end = PFN_PHYS(max_pfn);
629 }
630 /*
631 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
632 * factor the base size. On non-highmem systems, the base
633 * size is the full initial memory allocation; on highmem it
634 * is limited to the max size of lowmem, so that it doesn't
635 * get completely filled.
636 *
637 * In principle there could be a problem in lowmem systems if
638 * the initial memory is also very large with respect to
639 * lowmem, but we won't try to deal with that here.
640 */
641 extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
642 extra_pages);
643 i = 0;
644 while (i < memmap.nr_entries) {
645 u64 addr = map[i].addr;
646 u64 size = map[i].size;
647 u32 type = map[i].type;
648
649 if (type == E820_RAM) {
650 if (addr < mem_end) {
651 size = min(size, mem_end - addr);
652 } else if (extra_pages) {
653 size = min(size, (u64)extra_pages * PAGE_SIZE);
654 extra_pages -= size / PAGE_SIZE;
655 xen_add_extra_mem(addr, size);
656 } else
657 type = E820_UNUSABLE;
658 }
659
660 xen_align_and_add_e820_region(addr, size, type);
661
662 map[i].addr += size;
663 map[i].size -= size;
664 if (map[i].size == 0)
665 i++;
666 }
667
668 /*
669 * Set the rest as identity mapped, in case PCI BARs are
670 * located here.
671 *
672 * PFNs above MAX_P2M_PFN are considered identity mapped as
673 * well.
674 */
675 set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
676
677 /*
678 * In domU, the ISA region is normal, usable memory, but we
679 * reserve ISA memory anyway because too many things poke
680 * about in there.
681 */
682 e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
683 E820_RESERVED);
684
685 /*
686 * Reserve Xen bits:
687 * - mfn_list
688 * - xen_start_info
689 * See comment above "struct start_info" in <xen/interface/xen.h>
690 * We tried to make the the memblock_reserve more selective so
691 * that it would be clear what region is reserved. Sadly we ran
692 * in the problem wherein on a 64-bit hypervisor with a 32-bit
693 * initial domain, the pt_base has the cr3 value which is not
694 * neccessarily where the pagetable starts! As Jan put it: "
695 * Actually, the adjustment turns out to be correct: The page
696 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
697 * "first L2", "first L3", so the offset to the page table base is
698 * indeed 2. When reading xen/include/public/xen.h's comment
699 * very strictly, this is not a violation (since there nothing is said
700 * that the first thing in the page table space is pointed to by
701 * pt_base; I admit that this seems to be implied though, namely
702 * do I think that it is implied that the page table space is the
703 * range [pt_base, pt_base + nt_pt_frames), whereas that
704 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
705 * which - without a priori knowledge - the kernel would have
706 * difficulty to figure out)." - so lets just fall back to the
707 * easy way and reserve the whole region.
708 */
709 memblock_reserve(__pa(xen_start_info->mfn_list),
710 xen_start_info->pt_base - xen_start_info->mfn_list);
711
712 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
713
714 return "Xen";
715 }
716
717 /*
718 * Machine specific memory setup for auto-translated guests.
719 */
xen_auto_xlated_memory_setup(void)720 char * __init xen_auto_xlated_memory_setup(void)
721 {
722 static struct e820entry map[E820MAX] __initdata;
723
724 struct xen_memory_map memmap;
725 int i;
726 int rc;
727
728 memmap.nr_entries = E820MAX;
729 set_xen_guest_handle(memmap.buffer, map);
730
731 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
732 if (rc < 0)
733 panic("No memory map (%d)\n", rc);
734
735 sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
736
737 for (i = 0; i < memmap.nr_entries; i++)
738 e820_add_region(map[i].addr, map[i].size, map[i].type);
739
740 memblock_reserve(__pa(xen_start_info->mfn_list),
741 xen_start_info->pt_base - xen_start_info->mfn_list);
742
743 return "Xen";
744 }
745
746 /*
747 * Set the bit indicating "nosegneg" library variants should be used.
748 * We only need to bother in pure 32-bit mode; compat 32-bit processes
749 * can have un-truncated segments, so wrapping around is allowed.
750 */
fiddle_vdso(void)751 static void __init fiddle_vdso(void)
752 {
753 #ifdef CONFIG_X86_32
754 /*
755 * This could be called before selected_vdso32 is initialized, so
756 * just fiddle with both possible images. vdso_image_32_syscall
757 * can't be selected, since it only exists on 64-bit systems.
758 */
759 u32 *mask;
760 mask = vdso_image_32_int80.data +
761 vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
762 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
763 mask = vdso_image_32_sysenter.data +
764 vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
765 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
766 #endif
767 }
768
register_callback(unsigned type,const void * func)769 static int register_callback(unsigned type, const void *func)
770 {
771 struct callback_register callback = {
772 .type = type,
773 .address = XEN_CALLBACK(__KERNEL_CS, func),
774 .flags = CALLBACKF_mask_events,
775 };
776
777 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
778 }
779
xen_enable_sysenter(void)780 void xen_enable_sysenter(void)
781 {
782 int ret;
783 unsigned sysenter_feature;
784
785 #ifdef CONFIG_X86_32
786 sysenter_feature = X86_FEATURE_SEP;
787 #else
788 sysenter_feature = X86_FEATURE_SYSENTER32;
789 #endif
790
791 if (!boot_cpu_has(sysenter_feature))
792 return;
793
794 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
795 if(ret != 0)
796 setup_clear_cpu_cap(sysenter_feature);
797 }
798
xen_enable_syscall(void)799 void xen_enable_syscall(void)
800 {
801 #ifdef CONFIG_X86_64
802 int ret;
803
804 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
805 if (ret != 0) {
806 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
807 /* Pretty fatal; 64-bit userspace has no other
808 mechanism for syscalls. */
809 }
810
811 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
812 ret = register_callback(CALLBACKTYPE_syscall32,
813 xen_syscall32_target);
814 if (ret != 0)
815 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
816 }
817 #endif /* CONFIG_X86_64 */
818 }
819
xen_pvmmu_arch_setup(void)820 void __init xen_pvmmu_arch_setup(void)
821 {
822 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
823 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
824
825 HYPERVISOR_vm_assist(VMASST_CMD_enable,
826 VMASST_TYPE_pae_extended_cr3);
827
828 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
829 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
830 BUG();
831
832 xen_enable_sysenter();
833 xen_enable_syscall();
834 }
835
836 /* This function is not called for HVM domains */
xen_arch_setup(void)837 void __init xen_arch_setup(void)
838 {
839 xen_panic_handler_init();
840 if (!xen_feature(XENFEAT_auto_translated_physmap))
841 xen_pvmmu_arch_setup();
842
843 #ifdef CONFIG_ACPI
844 if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
845 printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
846 disable_acpi();
847 }
848 #endif
849
850 memcpy(boot_command_line, xen_start_info->cmd_line,
851 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
852 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
853
854 /* Set up idle, making sure it calls safe_halt() pvop */
855 disable_cpuidle();
856 disable_cpufreq();
857 WARN_ON(xen_set_default_idle());
858 fiddle_vdso();
859 #ifdef CONFIG_NUMA
860 numa_off = 1;
861 #endif
862 }
863