• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
blk_queue_merge_bvec(struct request_queue * q,merge_bvec_fn * mbfn)72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
blk_set_default_limits(struct queue_limits * lim)109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->chunk_sectors = 0;
117 	lim->max_write_same_sectors = 0;
118 	lim->max_discard_sectors = 0;
119 	lim->discard_granularity = 0;
120 	lim->discard_alignment = 0;
121 	lim->discard_misaligned = 0;
122 	lim->discard_zeroes_data = 0;
123 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125 	lim->alignment_offset = 0;
126 	lim->io_opt = 0;
127 	lim->misaligned = 0;
128 	lim->cluster = 1;
129 }
130 EXPORT_SYMBOL(blk_set_default_limits);
131 
132 /**
133  * blk_set_stacking_limits - set default limits for stacking devices
134  * @lim:  the queue_limits structure to reset
135  *
136  * Description:
137  *   Returns a queue_limit struct to its default state. Should be used
138  *   by stacking drivers like DM that have no internal limits.
139  */
blk_set_stacking_limits(struct queue_limits * lim)140 void blk_set_stacking_limits(struct queue_limits *lim)
141 {
142 	blk_set_default_limits(lim);
143 
144 	/* Inherit limits from component devices */
145 	lim->discard_zeroes_data = 1;
146 	lim->max_segments = USHRT_MAX;
147 	lim->max_hw_sectors = UINT_MAX;
148 	lim->max_segment_size = UINT_MAX;
149 	lim->max_sectors = UINT_MAX;
150 	lim->max_write_same_sectors = UINT_MAX;
151 }
152 EXPORT_SYMBOL(blk_set_stacking_limits);
153 
154 /**
155  * blk_queue_make_request - define an alternate make_request function for a device
156  * @q:  the request queue for the device to be affected
157  * @mfn: the alternate make_request function
158  *
159  * Description:
160  *    The normal way for &struct bios to be passed to a device
161  *    driver is for them to be collected into requests on a request
162  *    queue, and then to allow the device driver to select requests
163  *    off that queue when it is ready.  This works well for many block
164  *    devices. However some block devices (typically virtual devices
165  *    such as md or lvm) do not benefit from the processing on the
166  *    request queue, and are served best by having the requests passed
167  *    directly to them.  This can be achieved by providing a function
168  *    to blk_queue_make_request().
169  *
170  * Caveat:
171  *    The driver that does this *must* be able to deal appropriately
172  *    with buffers in "highmemory". This can be accomplished by either calling
173  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174  *    blk_queue_bounce() to create a buffer in normal memory.
175  **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)176 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
177 {
178 	/*
179 	 * set defaults
180 	 */
181 	q->nr_requests = BLKDEV_MAX_RQ;
182 
183 	q->make_request_fn = mfn;
184 	blk_queue_dma_alignment(q, 511);
185 	blk_queue_congestion_threshold(q);
186 	q->nr_batching = BLK_BATCH_REQ;
187 
188 	blk_set_default_limits(&q->limits);
189 
190 	/*
191 	 * by default assume old behaviour and bounce for any highmem page
192 	 */
193 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194 }
195 EXPORT_SYMBOL(blk_queue_make_request);
196 
197 /**
198  * blk_queue_bounce_limit - set bounce buffer limit for queue
199  * @q: the request queue for the device
200  * @max_addr: the maximum address the device can handle
201  *
202  * Description:
203  *    Different hardware can have different requirements as to what pages
204  *    it can do I/O directly to. A low level driver can call
205  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
206  *    buffers for doing I/O to pages residing above @max_addr.
207  **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)208 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
209 {
210 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
211 	int dma = 0;
212 
213 	q->bounce_gfp = GFP_NOIO;
214 #if BITS_PER_LONG == 64
215 	/*
216 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
217 	 * some IOMMUs can handle everything, but I don't know of a
218 	 * way to test this here.
219 	 */
220 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
221 		dma = 1;
222 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
223 #else
224 	if (b_pfn < blk_max_low_pfn)
225 		dma = 1;
226 	q->limits.bounce_pfn = b_pfn;
227 #endif
228 	if (dma) {
229 		init_emergency_isa_pool();
230 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
231 		q->limits.bounce_pfn = b_pfn;
232 	}
233 }
234 EXPORT_SYMBOL(blk_queue_bounce_limit);
235 
236 /**
237  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238  * @limits: the queue limits
239  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
240  *
241  * Description:
242  *    Enables a low level driver to set a hard upper limit,
243  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
244  *    the device driver based upon the capabilities of the I/O
245  *    controller.
246  *
247  *    max_sectors is a soft limit imposed by the block layer for
248  *    filesystem type requests.  This value can be overridden on a
249  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250  *    The soft limit can not exceed max_hw_sectors.
251  **/
blk_limits_max_hw_sectors(struct queue_limits * limits,unsigned int max_hw_sectors)252 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
253 {
254 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256 		printk(KERN_INFO "%s: set to minimum %d\n",
257 		       __func__, max_hw_sectors);
258 	}
259 
260 	limits->max_hw_sectors = max_hw_sectors;
261 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
262 				    BLK_DEF_MAX_SECTORS);
263 }
264 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
265 
266 /**
267  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
268  * @q:  the request queue for the device
269  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
270  *
271  * Description:
272  *    See description for blk_limits_max_hw_sectors().
273  **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)274 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
275 {
276 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
277 }
278 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
279 
280 /**
281  * blk_queue_chunk_sectors - set size of the chunk for this queue
282  * @q:  the request queue for the device
283  * @chunk_sectors:  chunk sectors in the usual 512b unit
284  *
285  * Description:
286  *    If a driver doesn't want IOs to cross a given chunk size, it can set
287  *    this limit and prevent merging across chunks. Note that the chunk size
288  *    must currently be a power-of-2 in sectors. Also note that the block
289  *    layer must accept a page worth of data at any offset. So if the
290  *    crossing of chunks is a hard limitation in the driver, it must still be
291  *    prepared to split single page bios.
292  **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)293 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
294 {
295 	BUG_ON(!is_power_of_2(chunk_sectors));
296 	q->limits.chunk_sectors = chunk_sectors;
297 }
298 EXPORT_SYMBOL(blk_queue_chunk_sectors);
299 
300 /**
301  * blk_queue_max_discard_sectors - set max sectors for a single discard
302  * @q:  the request queue for the device
303  * @max_discard_sectors: maximum number of sectors to discard
304  **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)305 void blk_queue_max_discard_sectors(struct request_queue *q,
306 		unsigned int max_discard_sectors)
307 {
308 	q->limits.max_discard_sectors = max_discard_sectors;
309 }
310 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
311 
312 /**
313  * blk_queue_max_write_same_sectors - set max sectors for a single write same
314  * @q:  the request queue for the device
315  * @max_write_same_sectors: maximum number of sectors to write per command
316  **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)317 void blk_queue_max_write_same_sectors(struct request_queue *q,
318 				      unsigned int max_write_same_sectors)
319 {
320 	q->limits.max_write_same_sectors = max_write_same_sectors;
321 }
322 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
323 
324 /**
325  * blk_queue_max_segments - set max hw segments for a request for this queue
326  * @q:  the request queue for the device
327  * @max_segments:  max number of segments
328  *
329  * Description:
330  *    Enables a low level driver to set an upper limit on the number of
331  *    hw data segments in a request.
332  **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)333 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
334 {
335 	if (!max_segments) {
336 		max_segments = 1;
337 		printk(KERN_INFO "%s: set to minimum %d\n",
338 		       __func__, max_segments);
339 	}
340 
341 	q->limits.max_segments = max_segments;
342 }
343 EXPORT_SYMBOL(blk_queue_max_segments);
344 
345 /**
346  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
347  * @q:  the request queue for the device
348  * @max_size:  max size of segment in bytes
349  *
350  * Description:
351  *    Enables a low level driver to set an upper limit on the size of a
352  *    coalesced segment
353  **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)354 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
355 {
356 	if (max_size < PAGE_CACHE_SIZE) {
357 		max_size = PAGE_CACHE_SIZE;
358 		printk(KERN_INFO "%s: set to minimum %d\n",
359 		       __func__, max_size);
360 	}
361 
362 	q->limits.max_segment_size = max_size;
363 }
364 EXPORT_SYMBOL(blk_queue_max_segment_size);
365 
366 /**
367  * blk_queue_logical_block_size - set logical block size for the queue
368  * @q:  the request queue for the device
369  * @size:  the logical block size, in bytes
370  *
371  * Description:
372  *   This should be set to the lowest possible block size that the
373  *   storage device can address.  The default of 512 covers most
374  *   hardware.
375  **/
blk_queue_logical_block_size(struct request_queue * q,unsigned short size)376 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
377 {
378 	q->limits.logical_block_size = size;
379 
380 	if (q->limits.physical_block_size < size)
381 		q->limits.physical_block_size = size;
382 
383 	if (q->limits.io_min < q->limits.physical_block_size)
384 		q->limits.io_min = q->limits.physical_block_size;
385 }
386 EXPORT_SYMBOL(blk_queue_logical_block_size);
387 
388 /**
389  * blk_queue_physical_block_size - set physical block size for the queue
390  * @q:  the request queue for the device
391  * @size:  the physical block size, in bytes
392  *
393  * Description:
394  *   This should be set to the lowest possible sector size that the
395  *   hardware can operate on without reverting to read-modify-write
396  *   operations.
397  */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)398 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
399 {
400 	q->limits.physical_block_size = size;
401 
402 	if (q->limits.physical_block_size < q->limits.logical_block_size)
403 		q->limits.physical_block_size = q->limits.logical_block_size;
404 
405 	if (q->limits.io_min < q->limits.physical_block_size)
406 		q->limits.io_min = q->limits.physical_block_size;
407 }
408 EXPORT_SYMBOL(blk_queue_physical_block_size);
409 
410 /**
411  * blk_queue_alignment_offset - set physical block alignment offset
412  * @q:	the request queue for the device
413  * @offset: alignment offset in bytes
414  *
415  * Description:
416  *   Some devices are naturally misaligned to compensate for things like
417  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
418  *   should call this function for devices whose first sector is not
419  *   naturally aligned.
420  */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)421 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
422 {
423 	q->limits.alignment_offset =
424 		offset & (q->limits.physical_block_size - 1);
425 	q->limits.misaligned = 0;
426 }
427 EXPORT_SYMBOL(blk_queue_alignment_offset);
428 
429 /**
430  * blk_limits_io_min - set minimum request size for a device
431  * @limits: the queue limits
432  * @min:  smallest I/O size in bytes
433  *
434  * Description:
435  *   Some devices have an internal block size bigger than the reported
436  *   hardware sector size.  This function can be used to signal the
437  *   smallest I/O the device can perform without incurring a performance
438  *   penalty.
439  */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)440 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
441 {
442 	limits->io_min = min;
443 
444 	if (limits->io_min < limits->logical_block_size)
445 		limits->io_min = limits->logical_block_size;
446 
447 	if (limits->io_min < limits->physical_block_size)
448 		limits->io_min = limits->physical_block_size;
449 }
450 EXPORT_SYMBOL(blk_limits_io_min);
451 
452 /**
453  * blk_queue_io_min - set minimum request size for the queue
454  * @q:	the request queue for the device
455  * @min:  smallest I/O size in bytes
456  *
457  * Description:
458  *   Storage devices may report a granularity or preferred minimum I/O
459  *   size which is the smallest request the device can perform without
460  *   incurring a performance penalty.  For disk drives this is often the
461  *   physical block size.  For RAID arrays it is often the stripe chunk
462  *   size.  A properly aligned multiple of minimum_io_size is the
463  *   preferred request size for workloads where a high number of I/O
464  *   operations is desired.
465  */
blk_queue_io_min(struct request_queue * q,unsigned int min)466 void blk_queue_io_min(struct request_queue *q, unsigned int min)
467 {
468 	blk_limits_io_min(&q->limits, min);
469 }
470 EXPORT_SYMBOL(blk_queue_io_min);
471 
472 /**
473  * blk_limits_io_opt - set optimal request size for a device
474  * @limits: the queue limits
475  * @opt:  smallest I/O size in bytes
476  *
477  * Description:
478  *   Storage devices may report an optimal I/O size, which is the
479  *   device's preferred unit for sustained I/O.  This is rarely reported
480  *   for disk drives.  For RAID arrays it is usually the stripe width or
481  *   the internal track size.  A properly aligned multiple of
482  *   optimal_io_size is the preferred request size for workloads where
483  *   sustained throughput is desired.
484  */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)485 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
486 {
487 	limits->io_opt = opt;
488 }
489 EXPORT_SYMBOL(blk_limits_io_opt);
490 
491 /**
492  * blk_queue_io_opt - set optimal request size for the queue
493  * @q:	the request queue for the device
494  * @opt:  optimal request size in bytes
495  *
496  * Description:
497  *   Storage devices may report an optimal I/O size, which is the
498  *   device's preferred unit for sustained I/O.  This is rarely reported
499  *   for disk drives.  For RAID arrays it is usually the stripe width or
500  *   the internal track size.  A properly aligned multiple of
501  *   optimal_io_size is the preferred request size for workloads where
502  *   sustained throughput is desired.
503  */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)504 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
505 {
506 	blk_limits_io_opt(&q->limits, opt);
507 }
508 EXPORT_SYMBOL(blk_queue_io_opt);
509 
510 /**
511  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
512  * @t:	the stacking driver (top)
513  * @b:  the underlying device (bottom)
514  **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)515 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
516 {
517 	blk_stack_limits(&t->limits, &b->limits, 0);
518 }
519 EXPORT_SYMBOL(blk_queue_stack_limits);
520 
521 /**
522  * blk_stack_limits - adjust queue_limits for stacked devices
523  * @t:	the stacking driver limits (top device)
524  * @b:  the underlying queue limits (bottom, component device)
525  * @start:  first data sector within component device
526  *
527  * Description:
528  *    This function is used by stacking drivers like MD and DM to ensure
529  *    that all component devices have compatible block sizes and
530  *    alignments.  The stacking driver must provide a queue_limits
531  *    struct (top) and then iteratively call the stacking function for
532  *    all component (bottom) devices.  The stacking function will
533  *    attempt to combine the values and ensure proper alignment.
534  *
535  *    Returns 0 if the top and bottom queue_limits are compatible.  The
536  *    top device's block sizes and alignment offsets may be adjusted to
537  *    ensure alignment with the bottom device. If no compatible sizes
538  *    and alignments exist, -1 is returned and the resulting top
539  *    queue_limits will have the misaligned flag set to indicate that
540  *    the alignment_offset is undefined.
541  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)542 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
543 		     sector_t start)
544 {
545 	unsigned int top, bottom, alignment, ret = 0;
546 
547 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
548 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
549 	t->max_write_same_sectors = min(t->max_write_same_sectors,
550 					b->max_write_same_sectors);
551 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
552 
553 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
554 					    b->seg_boundary_mask);
555 
556 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
557 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
558 						 b->max_integrity_segments);
559 
560 	t->max_segment_size = min_not_zero(t->max_segment_size,
561 					   b->max_segment_size);
562 
563 	t->misaligned |= b->misaligned;
564 
565 	alignment = queue_limit_alignment_offset(b, start);
566 
567 	/* Bottom device has different alignment.  Check that it is
568 	 * compatible with the current top alignment.
569 	 */
570 	if (t->alignment_offset != alignment) {
571 
572 		top = max(t->physical_block_size, t->io_min)
573 			+ t->alignment_offset;
574 		bottom = max(b->physical_block_size, b->io_min) + alignment;
575 
576 		/* Verify that top and bottom intervals line up */
577 		if (max(top, bottom) % min(top, bottom)) {
578 			t->misaligned = 1;
579 			ret = -1;
580 		}
581 	}
582 
583 	t->logical_block_size = max(t->logical_block_size,
584 				    b->logical_block_size);
585 
586 	t->physical_block_size = max(t->physical_block_size,
587 				     b->physical_block_size);
588 
589 	t->io_min = max(t->io_min, b->io_min);
590 	t->io_opt = lcm(t->io_opt, b->io_opt);
591 
592 	t->cluster &= b->cluster;
593 	t->discard_zeroes_data &= b->discard_zeroes_data;
594 
595 	/* Physical block size a multiple of the logical block size? */
596 	if (t->physical_block_size & (t->logical_block_size - 1)) {
597 		t->physical_block_size = t->logical_block_size;
598 		t->misaligned = 1;
599 		ret = -1;
600 	}
601 
602 	/* Minimum I/O a multiple of the physical block size? */
603 	if (t->io_min & (t->physical_block_size - 1)) {
604 		t->io_min = t->physical_block_size;
605 		t->misaligned = 1;
606 		ret = -1;
607 	}
608 
609 	/* Optimal I/O a multiple of the physical block size? */
610 	if (t->io_opt & (t->physical_block_size - 1)) {
611 		t->io_opt = 0;
612 		t->misaligned = 1;
613 		ret = -1;
614 	}
615 
616 	t->raid_partial_stripes_expensive =
617 		max(t->raid_partial_stripes_expensive,
618 		    b->raid_partial_stripes_expensive);
619 
620 	/* Find lowest common alignment_offset */
621 	t->alignment_offset = lcm(t->alignment_offset, alignment)
622 		% max(t->physical_block_size, t->io_min);
623 
624 	/* Verify that new alignment_offset is on a logical block boundary */
625 	if (t->alignment_offset & (t->logical_block_size - 1)) {
626 		t->misaligned = 1;
627 		ret = -1;
628 	}
629 
630 	/* Discard alignment and granularity */
631 	if (b->discard_granularity) {
632 		alignment = queue_limit_discard_alignment(b, start);
633 
634 		if (t->discard_granularity != 0 &&
635 		    t->discard_alignment != alignment) {
636 			top = t->discard_granularity + t->discard_alignment;
637 			bottom = b->discard_granularity + alignment;
638 
639 			/* Verify that top and bottom intervals line up */
640 			if ((max(top, bottom) % min(top, bottom)) != 0)
641 				t->discard_misaligned = 1;
642 		}
643 
644 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
645 						      b->max_discard_sectors);
646 		t->discard_granularity = max(t->discard_granularity,
647 					     b->discard_granularity);
648 		t->discard_alignment = lcm(t->discard_alignment, alignment) %
649 			t->discard_granularity;
650 	}
651 
652 	return ret;
653 }
654 EXPORT_SYMBOL(blk_stack_limits);
655 
656 /**
657  * bdev_stack_limits - adjust queue limits for stacked drivers
658  * @t:	the stacking driver limits (top device)
659  * @bdev:  the component block_device (bottom)
660  * @start:  first data sector within component device
661  *
662  * Description:
663  *    Merges queue limits for a top device and a block_device.  Returns
664  *    0 if alignment didn't change.  Returns -1 if adding the bottom
665  *    device caused misalignment.
666  */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)667 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
668 		      sector_t start)
669 {
670 	struct request_queue *bq = bdev_get_queue(bdev);
671 
672 	start += get_start_sect(bdev);
673 
674 	return blk_stack_limits(t, &bq->limits, start);
675 }
676 EXPORT_SYMBOL(bdev_stack_limits);
677 
678 /**
679  * disk_stack_limits - adjust queue limits for stacked drivers
680  * @disk:  MD/DM gendisk (top)
681  * @bdev:  the underlying block device (bottom)
682  * @offset:  offset to beginning of data within component device
683  *
684  * Description:
685  *    Merges the limits for a top level gendisk and a bottom level
686  *    block_device.
687  */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)688 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
689 		       sector_t offset)
690 {
691 	struct request_queue *t = disk->queue;
692 
693 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
694 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
695 
696 		disk_name(disk, 0, top);
697 		bdevname(bdev, bottom);
698 
699 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
700 		       top, bottom);
701 	}
702 }
703 EXPORT_SYMBOL(disk_stack_limits);
704 
705 /**
706  * blk_queue_dma_pad - set pad mask
707  * @q:     the request queue for the device
708  * @mask:  pad mask
709  *
710  * Set dma pad mask.
711  *
712  * Appending pad buffer to a request modifies the last entry of a
713  * scatter list such that it includes the pad buffer.
714  **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)715 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
716 {
717 	q->dma_pad_mask = mask;
718 }
719 EXPORT_SYMBOL(blk_queue_dma_pad);
720 
721 /**
722  * blk_queue_update_dma_pad - update pad mask
723  * @q:     the request queue for the device
724  * @mask:  pad mask
725  *
726  * Update dma pad mask.
727  *
728  * Appending pad buffer to a request modifies the last entry of a
729  * scatter list such that it includes the pad buffer.
730  **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)731 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
732 {
733 	if (mask > q->dma_pad_mask)
734 		q->dma_pad_mask = mask;
735 }
736 EXPORT_SYMBOL(blk_queue_update_dma_pad);
737 
738 /**
739  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
740  * @q:  the request queue for the device
741  * @dma_drain_needed: fn which returns non-zero if drain is necessary
742  * @buf:	physically contiguous buffer
743  * @size:	size of the buffer in bytes
744  *
745  * Some devices have excess DMA problems and can't simply discard (or
746  * zero fill) the unwanted piece of the transfer.  They have to have a
747  * real area of memory to transfer it into.  The use case for this is
748  * ATAPI devices in DMA mode.  If the packet command causes a transfer
749  * bigger than the transfer size some HBAs will lock up if there
750  * aren't DMA elements to contain the excess transfer.  What this API
751  * does is adjust the queue so that the buf is always appended
752  * silently to the scatterlist.
753  *
754  * Note: This routine adjusts max_hw_segments to make room for appending
755  * the drain buffer.  If you call blk_queue_max_segments() after calling
756  * this routine, you must set the limit to one fewer than your device
757  * can support otherwise there won't be room for the drain buffer.
758  */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)759 int blk_queue_dma_drain(struct request_queue *q,
760 			       dma_drain_needed_fn *dma_drain_needed,
761 			       void *buf, unsigned int size)
762 {
763 	if (queue_max_segments(q) < 2)
764 		return -EINVAL;
765 	/* make room for appending the drain */
766 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
767 	q->dma_drain_needed = dma_drain_needed;
768 	q->dma_drain_buffer = buf;
769 	q->dma_drain_size = size;
770 
771 	return 0;
772 }
773 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
774 
775 /**
776  * blk_queue_segment_boundary - set boundary rules for segment merging
777  * @q:  the request queue for the device
778  * @mask:  the memory boundary mask
779  **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)780 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
781 {
782 	if (mask < PAGE_CACHE_SIZE - 1) {
783 		mask = PAGE_CACHE_SIZE - 1;
784 		printk(KERN_INFO "%s: set to minimum %lx\n",
785 		       __func__, mask);
786 	}
787 
788 	q->limits.seg_boundary_mask = mask;
789 }
790 EXPORT_SYMBOL(blk_queue_segment_boundary);
791 
792 /**
793  * blk_queue_dma_alignment - set dma length and memory alignment
794  * @q:     the request queue for the device
795  * @mask:  alignment mask
796  *
797  * description:
798  *    set required memory and length alignment for direct dma transactions.
799  *    this is used when building direct io requests for the queue.
800  *
801  **/
blk_queue_dma_alignment(struct request_queue * q,int mask)802 void blk_queue_dma_alignment(struct request_queue *q, int mask)
803 {
804 	q->dma_alignment = mask;
805 }
806 EXPORT_SYMBOL(blk_queue_dma_alignment);
807 
808 /**
809  * blk_queue_update_dma_alignment - update dma length and memory alignment
810  * @q:     the request queue for the device
811  * @mask:  alignment mask
812  *
813  * description:
814  *    update required memory and length alignment for direct dma transactions.
815  *    If the requested alignment is larger than the current alignment, then
816  *    the current queue alignment is updated to the new value, otherwise it
817  *    is left alone.  The design of this is to allow multiple objects
818  *    (driver, device, transport etc) to set their respective
819  *    alignments without having them interfere.
820  *
821  **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)822 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
823 {
824 	BUG_ON(mask > PAGE_SIZE);
825 
826 	if (mask > q->dma_alignment)
827 		q->dma_alignment = mask;
828 }
829 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
830 
831 /**
832  * blk_queue_flush - configure queue's cache flush capability
833  * @q:		the request queue for the device
834  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
835  *
836  * Tell block layer cache flush capability of @q.  If it supports
837  * flushing, REQ_FLUSH should be set.  If it supports bypassing
838  * write cache for individual writes, REQ_FUA should be set.
839  */
blk_queue_flush(struct request_queue * q,unsigned int flush)840 void blk_queue_flush(struct request_queue *q, unsigned int flush)
841 {
842 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
843 
844 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
845 		flush &= ~REQ_FUA;
846 
847 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
848 }
849 EXPORT_SYMBOL_GPL(blk_queue_flush);
850 
blk_queue_flush_queueable(struct request_queue * q,bool queueable)851 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
852 {
853 	q->flush_not_queueable = !queueable;
854 }
855 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
856 
blk_settings_init(void)857 static int __init blk_settings_init(void)
858 {
859 	blk_max_low_pfn = max_low_pfn - 1;
860 	blk_max_pfn = max_pfn - 1;
861 	return 0;
862 }
863 subsys_initcall(blk_settings_init);
864