1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 27 depends on MODULE_SIG 28 help 29 This options enables the fips boot option which is 30 required if you want to system to operate in a FIPS 200 31 certification. You should say no unless you know what 32 this is. 33 34config CRYPTO_ALGAPI 35 tristate 36 select CRYPTO_ALGAPI2 37 help 38 This option provides the API for cryptographic algorithms. 39 40config CRYPTO_ALGAPI2 41 tristate 42 43config CRYPTO_AEAD 44 tristate 45 select CRYPTO_AEAD2 46 select CRYPTO_ALGAPI 47 48config CRYPTO_AEAD2 49 tristate 50 select CRYPTO_ALGAPI2 51 52config CRYPTO_BLKCIPHER 53 tristate 54 select CRYPTO_BLKCIPHER2 55 select CRYPTO_ALGAPI 56 57config CRYPTO_BLKCIPHER2 58 tristate 59 select CRYPTO_ALGAPI2 60 select CRYPTO_RNG2 61 select CRYPTO_WORKQUEUE 62 63config CRYPTO_HASH 64 tristate 65 select CRYPTO_HASH2 66 select CRYPTO_ALGAPI 67 68config CRYPTO_HASH2 69 tristate 70 select CRYPTO_ALGAPI2 71 72config CRYPTO_RNG 73 tristate 74 select CRYPTO_RNG2 75 select CRYPTO_ALGAPI 76 77config CRYPTO_RNG2 78 tristate 79 select CRYPTO_ALGAPI2 80 81config CRYPTO_PCOMP 82 tristate 83 select CRYPTO_PCOMP2 84 select CRYPTO_ALGAPI 85 86config CRYPTO_PCOMP2 87 tristate 88 select CRYPTO_ALGAPI2 89 90config CRYPTO_MANAGER 91 tristate "Cryptographic algorithm manager" 92 select CRYPTO_MANAGER2 93 help 94 Create default cryptographic template instantiations such as 95 cbc(aes). 96 97config CRYPTO_MANAGER2 98 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 99 select CRYPTO_AEAD2 100 select CRYPTO_HASH2 101 select CRYPTO_BLKCIPHER2 102 select CRYPTO_PCOMP2 103 104config CRYPTO_USER 105 tristate "Userspace cryptographic algorithm configuration" 106 depends on NET 107 select CRYPTO_MANAGER 108 help 109 Userspace configuration for cryptographic instantiations such as 110 cbc(aes). 111 112config CRYPTO_MANAGER_DISABLE_TESTS 113 bool "Disable run-time self tests" 114 default y 115 depends on CRYPTO_MANAGER2 116 help 117 Disable run-time self tests that normally take place at 118 algorithm registration. 119 120config CRYPTO_GF128MUL 121 tristate "GF(2^128) multiplication functions" 122 help 123 Efficient table driven implementation of multiplications in the 124 field GF(2^128). This is needed by some cypher modes. This 125 option will be selected automatically if you select such a 126 cipher mode. Only select this option by hand if you expect to load 127 an external module that requires these functions. 128 129config CRYPTO_NULL 130 tristate "Null algorithms" 131 select CRYPTO_ALGAPI 132 select CRYPTO_BLKCIPHER 133 select CRYPTO_HASH 134 help 135 These are 'Null' algorithms, used by IPsec, which do nothing. 136 137config CRYPTO_PCRYPT 138 tristate "Parallel crypto engine" 139 depends on SMP 140 select PADATA 141 select CRYPTO_MANAGER 142 select CRYPTO_AEAD 143 help 144 This converts an arbitrary crypto algorithm into a parallel 145 algorithm that executes in kernel threads. 146 147config CRYPTO_WORKQUEUE 148 tristate 149 150config CRYPTO_CRYPTD 151 tristate "Software async crypto daemon" 152 select CRYPTO_BLKCIPHER 153 select CRYPTO_HASH 154 select CRYPTO_MANAGER 155 select CRYPTO_WORKQUEUE 156 help 157 This is a generic software asynchronous crypto daemon that 158 converts an arbitrary synchronous software crypto algorithm 159 into an asynchronous algorithm that executes in a kernel thread. 160 161config CRYPTO_MCRYPTD 162 tristate "Software async multi-buffer crypto daemon" 163 select CRYPTO_BLKCIPHER 164 select CRYPTO_HASH 165 select CRYPTO_MANAGER 166 select CRYPTO_WORKQUEUE 167 help 168 This is a generic software asynchronous crypto daemon that 169 provides the kernel thread to assist multi-buffer crypto 170 algorithms for submitting jobs and flushing jobs in multi-buffer 171 crypto algorithms. Multi-buffer crypto algorithms are executed 172 in the context of this kernel thread and drivers can post 173 their crypto request asynchronously to be processed by this daemon. 174 175config CRYPTO_AUTHENC 176 tristate "Authenc support" 177 select CRYPTO_AEAD 178 select CRYPTO_BLKCIPHER 179 select CRYPTO_MANAGER 180 select CRYPTO_HASH 181 help 182 Authenc: Combined mode wrapper for IPsec. 183 This is required for IPSec. 184 185config CRYPTO_TEST 186 tristate "Testing module" 187 depends on m 188 select CRYPTO_MANAGER 189 help 190 Quick & dirty crypto test module. 191 192config CRYPTO_ABLK_HELPER 193 tristate 194 select CRYPTO_CRYPTD 195 196config CRYPTO_GLUE_HELPER_X86 197 tristate 198 depends on X86 199 select CRYPTO_ALGAPI 200 201comment "Authenticated Encryption with Associated Data" 202 203config CRYPTO_CCM 204 tristate "CCM support" 205 select CRYPTO_CTR 206 select CRYPTO_AEAD 207 help 208 Support for Counter with CBC MAC. Required for IPsec. 209 210config CRYPTO_GCM 211 tristate "GCM/GMAC support" 212 select CRYPTO_CTR 213 select CRYPTO_AEAD 214 select CRYPTO_GHASH 215 select CRYPTO_NULL 216 help 217 Support for Galois/Counter Mode (GCM) and Galois Message 218 Authentication Code (GMAC). Required for IPSec. 219 220config CRYPTO_SEQIV 221 tristate "Sequence Number IV Generator" 222 select CRYPTO_AEAD 223 select CRYPTO_BLKCIPHER 224 select CRYPTO_RNG 225 help 226 This IV generator generates an IV based on a sequence number by 227 xoring it with a salt. This algorithm is mainly useful for CTR 228 229comment "Block modes" 230 231config CRYPTO_CBC 232 tristate "CBC support" 233 select CRYPTO_BLKCIPHER 234 select CRYPTO_MANAGER 235 help 236 CBC: Cipher Block Chaining mode 237 This block cipher algorithm is required for IPSec. 238 239config CRYPTO_CTR 240 tristate "CTR support" 241 select CRYPTO_BLKCIPHER 242 select CRYPTO_SEQIV 243 select CRYPTO_MANAGER 244 help 245 CTR: Counter mode 246 This block cipher algorithm is required for IPSec. 247 248config CRYPTO_CTS 249 tristate "CTS support" 250 select CRYPTO_BLKCIPHER 251 help 252 CTS: Cipher Text Stealing 253 This is the Cipher Text Stealing mode as described by 254 Section 8 of rfc2040 and referenced by rfc3962. 255 (rfc3962 includes errata information in its Appendix A) 256 This mode is required for Kerberos gss mechanism support 257 for AES encryption. 258 259config CRYPTO_ECB 260 tristate "ECB support" 261 select CRYPTO_BLKCIPHER 262 select CRYPTO_MANAGER 263 help 264 ECB: Electronic CodeBook mode 265 This is the simplest block cipher algorithm. It simply encrypts 266 the input block by block. 267 268config CRYPTO_LRW 269 tristate "LRW support" 270 select CRYPTO_BLKCIPHER 271 select CRYPTO_MANAGER 272 select CRYPTO_GF128MUL 273 help 274 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 275 narrow block cipher mode for dm-crypt. Use it with cipher 276 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 277 The first 128, 192 or 256 bits in the key are used for AES and the 278 rest is used to tie each cipher block to its logical position. 279 280config CRYPTO_PCBC 281 tristate "PCBC support" 282 select CRYPTO_BLKCIPHER 283 select CRYPTO_MANAGER 284 help 285 PCBC: Propagating Cipher Block Chaining mode 286 This block cipher algorithm is required for RxRPC. 287 288config CRYPTO_XTS 289 tristate "XTS support" 290 select CRYPTO_BLKCIPHER 291 select CRYPTO_MANAGER 292 select CRYPTO_GF128MUL 293 help 294 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 295 key size 256, 384 or 512 bits. This implementation currently 296 can't handle a sectorsize which is not a multiple of 16 bytes. 297 298comment "Hash modes" 299 300config CRYPTO_CMAC 301 tristate "CMAC support" 302 select CRYPTO_HASH 303 select CRYPTO_MANAGER 304 help 305 Cipher-based Message Authentication Code (CMAC) specified by 306 The National Institute of Standards and Technology (NIST). 307 308 https://tools.ietf.org/html/rfc4493 309 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 310 311config CRYPTO_HMAC 312 tristate "HMAC support" 313 select CRYPTO_HASH 314 select CRYPTO_MANAGER 315 help 316 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 317 This is required for IPSec. 318 319config CRYPTO_XCBC 320 tristate "XCBC support" 321 select CRYPTO_HASH 322 select CRYPTO_MANAGER 323 help 324 XCBC: Keyed-Hashing with encryption algorithm 325 http://www.ietf.org/rfc/rfc3566.txt 326 http://csrc.nist.gov/encryption/modes/proposedmodes/ 327 xcbc-mac/xcbc-mac-spec.pdf 328 329config CRYPTO_VMAC 330 tristate "VMAC support" 331 select CRYPTO_HASH 332 select CRYPTO_MANAGER 333 help 334 VMAC is a message authentication algorithm designed for 335 very high speed on 64-bit architectures. 336 337 See also: 338 <http://fastcrypto.org/vmac> 339 340comment "Digest" 341 342config CRYPTO_CRC32C 343 tristate "CRC32c CRC algorithm" 344 select CRYPTO_HASH 345 select CRC32 346 help 347 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 348 by iSCSI for header and data digests and by others. 349 See Castagnoli93. Module will be crc32c. 350 351config CRYPTO_CRC32C_INTEL 352 tristate "CRC32c INTEL hardware acceleration" 353 depends on X86 354 select CRYPTO_HASH 355 help 356 In Intel processor with SSE4.2 supported, the processor will 357 support CRC32C implementation using hardware accelerated CRC32 358 instruction. This option will create 'crc32c-intel' module, 359 which will enable any routine to use the CRC32 instruction to 360 gain performance compared with software implementation. 361 Module will be crc32c-intel. 362 363config CRYPTO_CRC32C_SPARC64 364 tristate "CRC32c CRC algorithm (SPARC64)" 365 depends on SPARC64 366 select CRYPTO_HASH 367 select CRC32 368 help 369 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 370 when available. 371 372config CRYPTO_CRC32 373 tristate "CRC32 CRC algorithm" 374 select CRYPTO_HASH 375 select CRC32 376 help 377 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 378 Shash crypto api wrappers to crc32_le function. 379 380config CRYPTO_CRC32_PCLMUL 381 tristate "CRC32 PCLMULQDQ hardware acceleration" 382 depends on X86 383 select CRYPTO_HASH 384 select CRC32 385 help 386 From Intel Westmere and AMD Bulldozer processor with SSE4.2 387 and PCLMULQDQ supported, the processor will support 388 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 389 instruction. This option will create 'crc32-plcmul' module, 390 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 391 and gain better performance as compared with the table implementation. 392 393config CRYPTO_CRCT10DIF 394 tristate "CRCT10DIF algorithm" 395 select CRYPTO_HASH 396 help 397 CRC T10 Data Integrity Field computation is being cast as 398 a crypto transform. This allows for faster crc t10 diff 399 transforms to be used if they are available. 400 401config CRYPTO_CRCT10DIF_PCLMUL 402 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 403 depends on X86 && 64BIT && CRC_T10DIF 404 select CRYPTO_HASH 405 help 406 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 407 CRC T10 DIF PCLMULQDQ computation can be hardware 408 accelerated PCLMULQDQ instruction. This option will create 409 'crct10dif-plcmul' module, which is faster when computing the 410 crct10dif checksum as compared with the generic table implementation. 411 412config CRYPTO_GHASH 413 tristate "GHASH digest algorithm" 414 select CRYPTO_GF128MUL 415 help 416 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 417 418config CRYPTO_MD4 419 tristate "MD4 digest algorithm" 420 select CRYPTO_HASH 421 help 422 MD4 message digest algorithm (RFC1320). 423 424config CRYPTO_MD5 425 tristate "MD5 digest algorithm" 426 select CRYPTO_HASH 427 help 428 MD5 message digest algorithm (RFC1321). 429 430config CRYPTO_MD5_SPARC64 431 tristate "MD5 digest algorithm (SPARC64)" 432 depends on SPARC64 433 select CRYPTO_MD5 434 select CRYPTO_HASH 435 help 436 MD5 message digest algorithm (RFC1321) implemented 437 using sparc64 crypto instructions, when available. 438 439config CRYPTO_MICHAEL_MIC 440 tristate "Michael MIC keyed digest algorithm" 441 select CRYPTO_HASH 442 help 443 Michael MIC is used for message integrity protection in TKIP 444 (IEEE 802.11i). This algorithm is required for TKIP, but it 445 should not be used for other purposes because of the weakness 446 of the algorithm. 447 448config CRYPTO_RMD128 449 tristate "RIPEMD-128 digest algorithm" 450 select CRYPTO_HASH 451 help 452 RIPEMD-128 (ISO/IEC 10118-3:2004). 453 454 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 455 be used as a secure replacement for RIPEMD. For other use cases, 456 RIPEMD-160 should be used. 457 458 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 459 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 460 461config CRYPTO_RMD160 462 tristate "RIPEMD-160 digest algorithm" 463 select CRYPTO_HASH 464 help 465 RIPEMD-160 (ISO/IEC 10118-3:2004). 466 467 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 468 to be used as a secure replacement for the 128-bit hash functions 469 MD4, MD5 and it's predecessor RIPEMD 470 (not to be confused with RIPEMD-128). 471 472 It's speed is comparable to SHA1 and there are no known attacks 473 against RIPEMD-160. 474 475 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 476 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 477 478config CRYPTO_RMD256 479 tristate "RIPEMD-256 digest algorithm" 480 select CRYPTO_HASH 481 help 482 RIPEMD-256 is an optional extension of RIPEMD-128 with a 483 256 bit hash. It is intended for applications that require 484 longer hash-results, without needing a larger security level 485 (than RIPEMD-128). 486 487 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 488 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 489 490config CRYPTO_RMD320 491 tristate "RIPEMD-320 digest algorithm" 492 select CRYPTO_HASH 493 help 494 RIPEMD-320 is an optional extension of RIPEMD-160 with a 495 320 bit hash. It is intended for applications that require 496 longer hash-results, without needing a larger security level 497 (than RIPEMD-160). 498 499 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 500 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 501 502config CRYPTO_SHA1 503 tristate "SHA1 digest algorithm" 504 select CRYPTO_HASH 505 help 506 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 507 508config CRYPTO_SHA1_SSSE3 509 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)" 510 depends on X86 && 64BIT 511 select CRYPTO_SHA1 512 select CRYPTO_HASH 513 help 514 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 515 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 516 Extensions (AVX/AVX2), when available. 517 518config CRYPTO_SHA256_SSSE3 519 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" 520 depends on X86 && 64BIT 521 select CRYPTO_SHA256 522 select CRYPTO_HASH 523 help 524 SHA-256 secure hash standard (DFIPS 180-2) implemented 525 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 526 Extensions version 1 (AVX1), or Advanced Vector Extensions 527 version 2 (AVX2) instructions, when available. 528 529config CRYPTO_SHA512_SSSE3 530 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 531 depends on X86 && 64BIT 532 select CRYPTO_SHA512 533 select CRYPTO_HASH 534 help 535 SHA-512 secure hash standard (DFIPS 180-2) implemented 536 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 537 Extensions version 1 (AVX1), or Advanced Vector Extensions 538 version 2 (AVX2) instructions, when available. 539 540config CRYPTO_SHA1_SPARC64 541 tristate "SHA1 digest algorithm (SPARC64)" 542 depends on SPARC64 543 select CRYPTO_SHA1 544 select CRYPTO_HASH 545 help 546 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 547 using sparc64 crypto instructions, when available. 548 549config CRYPTO_SHA1_ARM 550 tristate "SHA1 digest algorithm (ARM-asm)" 551 depends on ARM 552 select CRYPTO_SHA1 553 select CRYPTO_HASH 554 help 555 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 556 using optimized ARM assembler. 557 558config CRYPTO_SHA1_ARM_NEON 559 tristate "SHA1 digest algorithm (ARM NEON)" 560 depends on ARM && KERNEL_MODE_NEON 561 select CRYPTO_SHA1_ARM 562 select CRYPTO_SHA1 563 select CRYPTO_HASH 564 help 565 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 566 using optimized ARM NEON assembly, when NEON instructions are 567 available. 568 569config CRYPTO_SHA1_PPC 570 tristate "SHA1 digest algorithm (powerpc)" 571 depends on PPC 572 help 573 This is the powerpc hardware accelerated implementation of the 574 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 575 576config CRYPTO_SHA1_MB 577 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 578 depends on X86 && 64BIT 579 select CRYPTO_SHA1 580 select CRYPTO_HASH 581 select CRYPTO_MCRYPTD 582 help 583 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 584 using multi-buffer technique. This algorithm computes on 585 multiple data lanes concurrently with SIMD instructions for 586 better throughput. It should not be enabled by default but 587 used when there is significant amount of work to keep the keep 588 the data lanes filled to get performance benefit. If the data 589 lanes remain unfilled, a flush operation will be initiated to 590 process the crypto jobs, adding a slight latency. 591 592config CRYPTO_SHA256 593 tristate "SHA224 and SHA256 digest algorithm" 594 select CRYPTO_HASH 595 help 596 SHA256 secure hash standard (DFIPS 180-2). 597 598 This version of SHA implements a 256 bit hash with 128 bits of 599 security against collision attacks. 600 601 This code also includes SHA-224, a 224 bit hash with 112 bits 602 of security against collision attacks. 603 604config CRYPTO_SHA256_SPARC64 605 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 606 depends on SPARC64 607 select CRYPTO_SHA256 608 select CRYPTO_HASH 609 help 610 SHA-256 secure hash standard (DFIPS 180-2) implemented 611 using sparc64 crypto instructions, when available. 612 613config CRYPTO_SHA2_ARM_CE 614 tristate "SHA-224/256 digest algorithm (ARM v8 Crypto Extensions)" 615 depends on ARM && KERNEL_MODE_NEON 616 select CRYPTO_SHA256 617 select CRYPTO_HASH 618 help 619 SHA-256 secure hash standard (DFIPS 180-2) implemented 620 using special ARMv8 Crypto Extensions. 621 622config CRYPTO_SHA512 623 tristate "SHA384 and SHA512 digest algorithms" 624 select CRYPTO_HASH 625 help 626 SHA512 secure hash standard (DFIPS 180-2). 627 628 This version of SHA implements a 512 bit hash with 256 bits of 629 security against collision attacks. 630 631 This code also includes SHA-384, a 384 bit hash with 192 bits 632 of security against collision attacks. 633 634config CRYPTO_SHA512_SPARC64 635 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 636 depends on SPARC64 637 select CRYPTO_SHA512 638 select CRYPTO_HASH 639 help 640 SHA-512 secure hash standard (DFIPS 180-2) implemented 641 using sparc64 crypto instructions, when available. 642 643config CRYPTO_SHA256_ARM 644 tristate "SHA-224/256 digest algorithm (ARM-asm and NEON)" 645 select CRYPTO_HASH 646 help 647 SHA-256 secure hash standard (DFIPS 180-2) implemented 648 using optimized ARM assembler and NEON, when available. 649 650 651config CRYPTO_SHA512_ARM_NEON 652 tristate "SHA384 and SHA512 digest algorithm (ARM NEON)" 653 depends on ARM && KERNEL_MODE_NEON 654 select CRYPTO_SHA512 655 select CRYPTO_HASH 656 help 657 SHA-512 secure hash standard (DFIPS 180-2) implemented 658 using ARM NEON instructions, when available. 659 660 This version of SHA implements a 512 bit hash with 256 bits of 661 security against collision attacks. 662 663 This code also includes SHA-384, a 384 bit hash with 192 bits 664 of security against collision attacks. 665 666config CRYPTO_TGR192 667 tristate "Tiger digest algorithms" 668 select CRYPTO_HASH 669 help 670 Tiger hash algorithm 192, 160 and 128-bit hashes 671 672 Tiger is a hash function optimized for 64-bit processors while 673 still having decent performance on 32-bit processors. 674 Tiger was developed by Ross Anderson and Eli Biham. 675 676 See also: 677 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 678 679config CRYPTO_WP512 680 tristate "Whirlpool digest algorithms" 681 select CRYPTO_HASH 682 help 683 Whirlpool hash algorithm 512, 384 and 256-bit hashes 684 685 Whirlpool-512 is part of the NESSIE cryptographic primitives. 686 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 687 688 See also: 689 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 690 691config CRYPTO_GHASH_CLMUL_NI_INTEL 692 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 693 depends on X86 && 64BIT 694 select CRYPTO_CRYPTD 695 help 696 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 697 The implementation is accelerated by CLMUL-NI of Intel. 698 699comment "Ciphers" 700 701config CRYPTO_AES 702 tristate "AES cipher algorithms" 703 select CRYPTO_ALGAPI 704 help 705 AES cipher algorithms (FIPS-197). AES uses the Rijndael 706 algorithm. 707 708 Rijndael appears to be consistently a very good performer in 709 both hardware and software across a wide range of computing 710 environments regardless of its use in feedback or non-feedback 711 modes. Its key setup time is excellent, and its key agility is 712 good. Rijndael's very low memory requirements make it very well 713 suited for restricted-space environments, in which it also 714 demonstrates excellent performance. Rijndael's operations are 715 among the easiest to defend against power and timing attacks. 716 717 The AES specifies three key sizes: 128, 192 and 256 bits 718 719 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 720 721config CRYPTO_AES_586 722 tristate "AES cipher algorithms (i586)" 723 depends on (X86 || UML_X86) && !64BIT 724 select CRYPTO_ALGAPI 725 select CRYPTO_AES 726 help 727 AES cipher algorithms (FIPS-197). AES uses the Rijndael 728 algorithm. 729 730 Rijndael appears to be consistently a very good performer in 731 both hardware and software across a wide range of computing 732 environments regardless of its use in feedback or non-feedback 733 modes. Its key setup time is excellent, and its key agility is 734 good. Rijndael's very low memory requirements make it very well 735 suited for restricted-space environments, in which it also 736 demonstrates excellent performance. Rijndael's operations are 737 among the easiest to defend against power and timing attacks. 738 739 The AES specifies three key sizes: 128, 192 and 256 bits 740 741 See <http://csrc.nist.gov/encryption/aes/> for more information. 742 743config CRYPTO_AES_X86_64 744 tristate "AES cipher algorithms (x86_64)" 745 depends on (X86 || UML_X86) && 64BIT 746 select CRYPTO_ALGAPI 747 select CRYPTO_AES 748 help 749 AES cipher algorithms (FIPS-197). AES uses the Rijndael 750 algorithm. 751 752 Rijndael appears to be consistently a very good performer in 753 both hardware and software across a wide range of computing 754 environments regardless of its use in feedback or non-feedback 755 modes. Its key setup time is excellent, and its key agility is 756 good. Rijndael's very low memory requirements make it very well 757 suited for restricted-space environments, in which it also 758 demonstrates excellent performance. Rijndael's operations are 759 among the easiest to defend against power and timing attacks. 760 761 The AES specifies three key sizes: 128, 192 and 256 bits 762 763 See <http://csrc.nist.gov/encryption/aes/> for more information. 764 765config CRYPTO_AES_NI_INTEL 766 tristate "AES cipher algorithms (AES-NI)" 767 depends on X86 768 select CRYPTO_AES_X86_64 if 64BIT 769 select CRYPTO_AES_586 if !64BIT 770 select CRYPTO_CRYPTD 771 select CRYPTO_ABLK_HELPER 772 select CRYPTO_ALGAPI 773 select CRYPTO_GLUE_HELPER_X86 if 64BIT 774 select CRYPTO_LRW 775 select CRYPTO_XTS 776 help 777 Use Intel AES-NI instructions for AES algorithm. 778 779 AES cipher algorithms (FIPS-197). AES uses the Rijndael 780 algorithm. 781 782 Rijndael appears to be consistently a very good performer in 783 both hardware and software across a wide range of computing 784 environments regardless of its use in feedback or non-feedback 785 modes. Its key setup time is excellent, and its key agility is 786 good. Rijndael's very low memory requirements make it very well 787 suited for restricted-space environments, in which it also 788 demonstrates excellent performance. Rijndael's operations are 789 among the easiest to defend against power and timing attacks. 790 791 The AES specifies three key sizes: 128, 192 and 256 bits 792 793 See <http://csrc.nist.gov/encryption/aes/> for more information. 794 795 In addition to AES cipher algorithm support, the acceleration 796 for some popular block cipher mode is supported too, including 797 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 798 acceleration for CTR. 799 800config CRYPTO_AES_SPARC64 801 tristate "AES cipher algorithms (SPARC64)" 802 depends on SPARC64 803 select CRYPTO_CRYPTD 804 select CRYPTO_ALGAPI 805 help 806 Use SPARC64 crypto opcodes for AES algorithm. 807 808 AES cipher algorithms (FIPS-197). AES uses the Rijndael 809 algorithm. 810 811 Rijndael appears to be consistently a very good performer in 812 both hardware and software across a wide range of computing 813 environments regardless of its use in feedback or non-feedback 814 modes. Its key setup time is excellent, and its key agility is 815 good. Rijndael's very low memory requirements make it very well 816 suited for restricted-space environments, in which it also 817 demonstrates excellent performance. Rijndael's operations are 818 among the easiest to defend against power and timing attacks. 819 820 The AES specifies three key sizes: 128, 192 and 256 bits 821 822 See <http://csrc.nist.gov/encryption/aes/> for more information. 823 824 In addition to AES cipher algorithm support, the acceleration 825 for some popular block cipher mode is supported too, including 826 ECB and CBC. 827 828config CRYPTO_AES_ARM 829 tristate "AES cipher algorithms (ARM-asm)" 830 depends on ARM 831 select CRYPTO_ALGAPI 832 select CRYPTO_AES 833 help 834 Use optimized AES assembler routines for ARM platforms. 835 836 AES cipher algorithms (FIPS-197). AES uses the Rijndael 837 algorithm. 838 839 Rijndael appears to be consistently a very good performer in 840 both hardware and software across a wide range of computing 841 environments regardless of its use in feedback or non-feedback 842 modes. Its key setup time is excellent, and its key agility is 843 good. Rijndael's very low memory requirements make it very well 844 suited for restricted-space environments, in which it also 845 demonstrates excellent performance. Rijndael's operations are 846 among the easiest to defend against power and timing attacks. 847 848 The AES specifies three key sizes: 128, 192 and 256 bits 849 850 See <http://csrc.nist.gov/encryption/aes/> for more information. 851 852config CRYPTO_AES_ARM_BS 853 tristate "Bit sliced AES using NEON instructions" 854 depends on ARM && KERNEL_MODE_NEON 855 select CRYPTO_ALGAPI 856 select CRYPTO_AES_ARM 857 select CRYPTO_ABLK_HELPER 858 help 859 Use a faster and more secure NEON based implementation of AES in CBC, 860 CTR and XTS modes 861 862 Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode 863 and for XTS mode encryption, CBC and XTS mode decryption speedup is 864 around 25%. (CBC encryption speed is not affected by this driver.) 865 This implementation does not rely on any lookup tables so it is 866 believed to be invulnerable to cache timing attacks. 867 868config CRYPTO_AES_ARM_CE 869 tristate "Accelerated AES using ARMv8 Crypto Extensions" 870 depends on ARM && KERNEL_MODE_NEON 871 select CRYPTO_ALGAPI 872 select CRYPTO_ABLK_HELPER 873 help 874 Use an implementation of AES in CBC, CTR and XTS modes that uses 875 ARMv8 Crypto Extensions 876 877config CRYPTO_ANUBIS 878 tristate "Anubis cipher algorithm" 879 select CRYPTO_ALGAPI 880 help 881 Anubis cipher algorithm. 882 883 Anubis is a variable key length cipher which can use keys from 884 128 bits to 320 bits in length. It was evaluated as a entrant 885 in the NESSIE competition. 886 887 See also: 888 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 889 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 890 891config CRYPTO_ARC4 892 tristate "ARC4 cipher algorithm" 893 select CRYPTO_BLKCIPHER 894 help 895 ARC4 cipher algorithm. 896 897 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 898 bits in length. This algorithm is required for driver-based 899 WEP, but it should not be for other purposes because of the 900 weakness of the algorithm. 901 902config CRYPTO_BLOWFISH 903 tristate "Blowfish cipher algorithm" 904 select CRYPTO_ALGAPI 905 select CRYPTO_BLOWFISH_COMMON 906 help 907 Blowfish cipher algorithm, by Bruce Schneier. 908 909 This is a variable key length cipher which can use keys from 32 910 bits to 448 bits in length. It's fast, simple and specifically 911 designed for use on "large microprocessors". 912 913 See also: 914 <http://www.schneier.com/blowfish.html> 915 916config CRYPTO_BLOWFISH_COMMON 917 tristate 918 help 919 Common parts of the Blowfish cipher algorithm shared by the 920 generic c and the assembler implementations. 921 922 See also: 923 <http://www.schneier.com/blowfish.html> 924 925config CRYPTO_BLOWFISH_X86_64 926 tristate "Blowfish cipher algorithm (x86_64)" 927 depends on X86 && 64BIT 928 select CRYPTO_ALGAPI 929 select CRYPTO_BLOWFISH_COMMON 930 help 931 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 932 933 This is a variable key length cipher which can use keys from 32 934 bits to 448 bits in length. It's fast, simple and specifically 935 designed for use on "large microprocessors". 936 937 See also: 938 <http://www.schneier.com/blowfish.html> 939 940config CRYPTO_CAMELLIA 941 tristate "Camellia cipher algorithms" 942 depends on CRYPTO 943 select CRYPTO_ALGAPI 944 help 945 Camellia cipher algorithms module. 946 947 Camellia is a symmetric key block cipher developed jointly 948 at NTT and Mitsubishi Electric Corporation. 949 950 The Camellia specifies three key sizes: 128, 192 and 256 bits. 951 952 See also: 953 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 954 955config CRYPTO_CAMELLIA_X86_64 956 tristate "Camellia cipher algorithm (x86_64)" 957 depends on X86 && 64BIT 958 depends on CRYPTO 959 select CRYPTO_ALGAPI 960 select CRYPTO_GLUE_HELPER_X86 961 select CRYPTO_LRW 962 select CRYPTO_XTS 963 help 964 Camellia cipher algorithm module (x86_64). 965 966 Camellia is a symmetric key block cipher developed jointly 967 at NTT and Mitsubishi Electric Corporation. 968 969 The Camellia specifies three key sizes: 128, 192 and 256 bits. 970 971 See also: 972 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 973 974config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 975 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 976 depends on X86 && 64BIT 977 depends on CRYPTO 978 select CRYPTO_ALGAPI 979 select CRYPTO_CRYPTD 980 select CRYPTO_ABLK_HELPER 981 select CRYPTO_GLUE_HELPER_X86 982 select CRYPTO_CAMELLIA_X86_64 983 select CRYPTO_LRW 984 select CRYPTO_XTS 985 help 986 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 987 988 Camellia is a symmetric key block cipher developed jointly 989 at NTT and Mitsubishi Electric Corporation. 990 991 The Camellia specifies three key sizes: 128, 192 and 256 bits. 992 993 See also: 994 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 995 996config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 997 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 998 depends on X86 && 64BIT 999 depends on CRYPTO 1000 select CRYPTO_ALGAPI 1001 select CRYPTO_CRYPTD 1002 select CRYPTO_ABLK_HELPER 1003 select CRYPTO_GLUE_HELPER_X86 1004 select CRYPTO_CAMELLIA_X86_64 1005 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1006 select CRYPTO_LRW 1007 select CRYPTO_XTS 1008 help 1009 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1010 1011 Camellia is a symmetric key block cipher developed jointly 1012 at NTT and Mitsubishi Electric Corporation. 1013 1014 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1015 1016 See also: 1017 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1018 1019config CRYPTO_CAMELLIA_SPARC64 1020 tristate "Camellia cipher algorithm (SPARC64)" 1021 depends on SPARC64 1022 depends on CRYPTO 1023 select CRYPTO_ALGAPI 1024 help 1025 Camellia cipher algorithm module (SPARC64). 1026 1027 Camellia is a symmetric key block cipher developed jointly 1028 at NTT and Mitsubishi Electric Corporation. 1029 1030 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1031 1032 See also: 1033 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1034 1035config CRYPTO_CAST_COMMON 1036 tristate 1037 help 1038 Common parts of the CAST cipher algorithms shared by the 1039 generic c and the assembler implementations. 1040 1041config CRYPTO_CAST5 1042 tristate "CAST5 (CAST-128) cipher algorithm" 1043 select CRYPTO_ALGAPI 1044 select CRYPTO_CAST_COMMON 1045 help 1046 The CAST5 encryption algorithm (synonymous with CAST-128) is 1047 described in RFC2144. 1048 1049config CRYPTO_CAST5_AVX_X86_64 1050 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1051 depends on X86 && 64BIT 1052 select CRYPTO_ALGAPI 1053 select CRYPTO_CRYPTD 1054 select CRYPTO_ABLK_HELPER 1055 select CRYPTO_CAST_COMMON 1056 select CRYPTO_CAST5 1057 help 1058 The CAST5 encryption algorithm (synonymous with CAST-128) is 1059 described in RFC2144. 1060 1061 This module provides the Cast5 cipher algorithm that processes 1062 sixteen blocks parallel using the AVX instruction set. 1063 1064config CRYPTO_CAST6 1065 tristate "CAST6 (CAST-256) cipher algorithm" 1066 select CRYPTO_ALGAPI 1067 select CRYPTO_CAST_COMMON 1068 help 1069 The CAST6 encryption algorithm (synonymous with CAST-256) is 1070 described in RFC2612. 1071 1072config CRYPTO_CAST6_AVX_X86_64 1073 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1074 depends on X86 && 64BIT 1075 select CRYPTO_ALGAPI 1076 select CRYPTO_CRYPTD 1077 select CRYPTO_ABLK_HELPER 1078 select CRYPTO_GLUE_HELPER_X86 1079 select CRYPTO_CAST_COMMON 1080 select CRYPTO_CAST6 1081 select CRYPTO_LRW 1082 select CRYPTO_XTS 1083 help 1084 The CAST6 encryption algorithm (synonymous with CAST-256) is 1085 described in RFC2612. 1086 1087 This module provides the Cast6 cipher algorithm that processes 1088 eight blocks parallel using the AVX instruction set. 1089 1090config CRYPTO_DES 1091 tristate "DES and Triple DES EDE cipher algorithms" 1092 select CRYPTO_ALGAPI 1093 help 1094 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1095 1096config CRYPTO_DES_SPARC64 1097 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1098 depends on SPARC64 1099 select CRYPTO_ALGAPI 1100 select CRYPTO_DES 1101 help 1102 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1103 optimized using SPARC64 crypto opcodes. 1104 1105config CRYPTO_DES3_EDE_X86_64 1106 tristate "Triple DES EDE cipher algorithm (x86-64)" 1107 depends on X86 && 64BIT 1108 select CRYPTO_ALGAPI 1109 select CRYPTO_DES 1110 help 1111 Triple DES EDE (FIPS 46-3) algorithm. 1112 1113 This module provides implementation of the Triple DES EDE cipher 1114 algorithm that is optimized for x86-64 processors. Two versions of 1115 algorithm are provided; regular processing one input block and 1116 one that processes three blocks parallel. 1117 1118config CRYPTO_FCRYPT 1119 tristate "FCrypt cipher algorithm" 1120 select CRYPTO_ALGAPI 1121 select CRYPTO_BLKCIPHER 1122 help 1123 FCrypt algorithm used by RxRPC. 1124 1125config CRYPTO_KHAZAD 1126 tristate "Khazad cipher algorithm" 1127 select CRYPTO_ALGAPI 1128 help 1129 Khazad cipher algorithm. 1130 1131 Khazad was a finalist in the initial NESSIE competition. It is 1132 an algorithm optimized for 64-bit processors with good performance 1133 on 32-bit processors. Khazad uses an 128 bit key size. 1134 1135 See also: 1136 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1137 1138config CRYPTO_SALSA20 1139 tristate "Salsa20 stream cipher algorithm" 1140 select CRYPTO_BLKCIPHER 1141 help 1142 Salsa20 stream cipher algorithm. 1143 1144 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1145 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1146 1147 The Salsa20 stream cipher algorithm is designed by Daniel J. 1148 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1149 1150config CRYPTO_SALSA20_586 1151 tristate "Salsa20 stream cipher algorithm (i586)" 1152 depends on (X86 || UML_X86) && !64BIT 1153 select CRYPTO_BLKCIPHER 1154 help 1155 Salsa20 stream cipher algorithm. 1156 1157 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1158 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1159 1160 The Salsa20 stream cipher algorithm is designed by Daniel J. 1161 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1162 1163config CRYPTO_SALSA20_X86_64 1164 tristate "Salsa20 stream cipher algorithm (x86_64)" 1165 depends on (X86 || UML_X86) && 64BIT 1166 select CRYPTO_BLKCIPHER 1167 help 1168 Salsa20 stream cipher algorithm. 1169 1170 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1171 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1172 1173 The Salsa20 stream cipher algorithm is designed by Daniel J. 1174 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1175 1176config CRYPTO_SEED 1177 tristate "SEED cipher algorithm" 1178 select CRYPTO_ALGAPI 1179 help 1180 SEED cipher algorithm (RFC4269). 1181 1182 SEED is a 128-bit symmetric key block cipher that has been 1183 developed by KISA (Korea Information Security Agency) as a 1184 national standard encryption algorithm of the Republic of Korea. 1185 It is a 16 round block cipher with the key size of 128 bit. 1186 1187 See also: 1188 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1189 1190config CRYPTO_SERPENT 1191 tristate "Serpent cipher algorithm" 1192 select CRYPTO_ALGAPI 1193 help 1194 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1195 1196 Keys are allowed to be from 0 to 256 bits in length, in steps 1197 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1198 variant of Serpent for compatibility with old kerneli.org code. 1199 1200 See also: 1201 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1202 1203config CRYPTO_SERPENT_SSE2_X86_64 1204 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1205 depends on X86 && 64BIT 1206 select CRYPTO_ALGAPI 1207 select CRYPTO_CRYPTD 1208 select CRYPTO_ABLK_HELPER 1209 select CRYPTO_GLUE_HELPER_X86 1210 select CRYPTO_SERPENT 1211 select CRYPTO_LRW 1212 select CRYPTO_XTS 1213 help 1214 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1215 1216 Keys are allowed to be from 0 to 256 bits in length, in steps 1217 of 8 bits. 1218 1219 This module provides Serpent cipher algorithm that processes eigth 1220 blocks parallel using SSE2 instruction set. 1221 1222 See also: 1223 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1224 1225config CRYPTO_SERPENT_SSE2_586 1226 tristate "Serpent cipher algorithm (i586/SSE2)" 1227 depends on X86 && !64BIT 1228 select CRYPTO_ALGAPI 1229 select CRYPTO_CRYPTD 1230 select CRYPTO_ABLK_HELPER 1231 select CRYPTO_GLUE_HELPER_X86 1232 select CRYPTO_SERPENT 1233 select CRYPTO_LRW 1234 select CRYPTO_XTS 1235 help 1236 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1237 1238 Keys are allowed to be from 0 to 256 bits in length, in steps 1239 of 8 bits. 1240 1241 This module provides Serpent cipher algorithm that processes four 1242 blocks parallel using SSE2 instruction set. 1243 1244 See also: 1245 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1246 1247config CRYPTO_SERPENT_AVX_X86_64 1248 tristate "Serpent cipher algorithm (x86_64/AVX)" 1249 depends on X86 && 64BIT 1250 select CRYPTO_ALGAPI 1251 select CRYPTO_CRYPTD 1252 select CRYPTO_ABLK_HELPER 1253 select CRYPTO_GLUE_HELPER_X86 1254 select CRYPTO_SERPENT 1255 select CRYPTO_LRW 1256 select CRYPTO_XTS 1257 help 1258 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1259 1260 Keys are allowed to be from 0 to 256 bits in length, in steps 1261 of 8 bits. 1262 1263 This module provides the Serpent cipher algorithm that processes 1264 eight blocks parallel using the AVX instruction set. 1265 1266 See also: 1267 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1268 1269config CRYPTO_SERPENT_AVX2_X86_64 1270 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1271 depends on X86 && 64BIT 1272 select CRYPTO_ALGAPI 1273 select CRYPTO_CRYPTD 1274 select CRYPTO_ABLK_HELPER 1275 select CRYPTO_GLUE_HELPER_X86 1276 select CRYPTO_SERPENT 1277 select CRYPTO_SERPENT_AVX_X86_64 1278 select CRYPTO_LRW 1279 select CRYPTO_XTS 1280 help 1281 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1282 1283 Keys are allowed to be from 0 to 256 bits in length, in steps 1284 of 8 bits. 1285 1286 This module provides Serpent cipher algorithm that processes 16 1287 blocks parallel using AVX2 instruction set. 1288 1289 See also: 1290 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1291 1292config CRYPTO_TEA 1293 tristate "TEA, XTEA and XETA cipher algorithms" 1294 select CRYPTO_ALGAPI 1295 help 1296 TEA cipher algorithm. 1297 1298 Tiny Encryption Algorithm is a simple cipher that uses 1299 many rounds for security. It is very fast and uses 1300 little memory. 1301 1302 Xtendend Tiny Encryption Algorithm is a modification to 1303 the TEA algorithm to address a potential key weakness 1304 in the TEA algorithm. 1305 1306 Xtendend Encryption Tiny Algorithm is a mis-implementation 1307 of the XTEA algorithm for compatibility purposes. 1308 1309config CRYPTO_TWOFISH 1310 tristate "Twofish cipher algorithm" 1311 select CRYPTO_ALGAPI 1312 select CRYPTO_TWOFISH_COMMON 1313 help 1314 Twofish cipher algorithm. 1315 1316 Twofish was submitted as an AES (Advanced Encryption Standard) 1317 candidate cipher by researchers at CounterPane Systems. It is a 1318 16 round block cipher supporting key sizes of 128, 192, and 256 1319 bits. 1320 1321 See also: 1322 <http://www.schneier.com/twofish.html> 1323 1324config CRYPTO_TWOFISH_COMMON 1325 tristate 1326 help 1327 Common parts of the Twofish cipher algorithm shared by the 1328 generic c and the assembler implementations. 1329 1330config CRYPTO_TWOFISH_586 1331 tristate "Twofish cipher algorithms (i586)" 1332 depends on (X86 || UML_X86) && !64BIT 1333 select CRYPTO_ALGAPI 1334 select CRYPTO_TWOFISH_COMMON 1335 help 1336 Twofish cipher algorithm. 1337 1338 Twofish was submitted as an AES (Advanced Encryption Standard) 1339 candidate cipher by researchers at CounterPane Systems. It is a 1340 16 round block cipher supporting key sizes of 128, 192, and 256 1341 bits. 1342 1343 See also: 1344 <http://www.schneier.com/twofish.html> 1345 1346config CRYPTO_TWOFISH_X86_64 1347 tristate "Twofish cipher algorithm (x86_64)" 1348 depends on (X86 || UML_X86) && 64BIT 1349 select CRYPTO_ALGAPI 1350 select CRYPTO_TWOFISH_COMMON 1351 help 1352 Twofish cipher algorithm (x86_64). 1353 1354 Twofish was submitted as an AES (Advanced Encryption Standard) 1355 candidate cipher by researchers at CounterPane Systems. It is a 1356 16 round block cipher supporting key sizes of 128, 192, and 256 1357 bits. 1358 1359 See also: 1360 <http://www.schneier.com/twofish.html> 1361 1362config CRYPTO_TWOFISH_X86_64_3WAY 1363 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1364 depends on X86 && 64BIT 1365 select CRYPTO_ALGAPI 1366 select CRYPTO_TWOFISH_COMMON 1367 select CRYPTO_TWOFISH_X86_64 1368 select CRYPTO_GLUE_HELPER_X86 1369 select CRYPTO_LRW 1370 select CRYPTO_XTS 1371 help 1372 Twofish cipher algorithm (x86_64, 3-way parallel). 1373 1374 Twofish was submitted as an AES (Advanced Encryption Standard) 1375 candidate cipher by researchers at CounterPane Systems. It is a 1376 16 round block cipher supporting key sizes of 128, 192, and 256 1377 bits. 1378 1379 This module provides Twofish cipher algorithm that processes three 1380 blocks parallel, utilizing resources of out-of-order CPUs better. 1381 1382 See also: 1383 <http://www.schneier.com/twofish.html> 1384 1385config CRYPTO_TWOFISH_AVX_X86_64 1386 tristate "Twofish cipher algorithm (x86_64/AVX)" 1387 depends on X86 && 64BIT 1388 select CRYPTO_ALGAPI 1389 select CRYPTO_CRYPTD 1390 select CRYPTO_ABLK_HELPER 1391 select CRYPTO_GLUE_HELPER_X86 1392 select CRYPTO_TWOFISH_COMMON 1393 select CRYPTO_TWOFISH_X86_64 1394 select CRYPTO_TWOFISH_X86_64_3WAY 1395 select CRYPTO_LRW 1396 select CRYPTO_XTS 1397 help 1398 Twofish cipher algorithm (x86_64/AVX). 1399 1400 Twofish was submitted as an AES (Advanced Encryption Standard) 1401 candidate cipher by researchers at CounterPane Systems. It is a 1402 16 round block cipher supporting key sizes of 128, 192, and 256 1403 bits. 1404 1405 This module provides the Twofish cipher algorithm that processes 1406 eight blocks parallel using the AVX Instruction Set. 1407 1408 See also: 1409 <http://www.schneier.com/twofish.html> 1410 1411comment "Compression" 1412 1413config CRYPTO_DEFLATE 1414 tristate "Deflate compression algorithm" 1415 select CRYPTO_ALGAPI 1416 select ZLIB_INFLATE 1417 select ZLIB_DEFLATE 1418 help 1419 This is the Deflate algorithm (RFC1951), specified for use in 1420 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1421 1422 You will most probably want this if using IPSec. 1423 1424config CRYPTO_ZLIB 1425 tristate "Zlib compression algorithm" 1426 select CRYPTO_PCOMP 1427 select ZLIB_INFLATE 1428 select ZLIB_DEFLATE 1429 select NLATTR 1430 help 1431 This is the zlib algorithm. 1432 1433config CRYPTO_LZO 1434 tristate "LZO compression algorithm" 1435 select CRYPTO_ALGAPI 1436 select LZO_COMPRESS 1437 select LZO_DECOMPRESS 1438 help 1439 This is the LZO algorithm. 1440 1441config CRYPTO_842 1442 tristate "842 compression algorithm" 1443 depends on CRYPTO_DEV_NX_COMPRESS 1444 # 842 uses lzo if the hardware becomes unavailable 1445 select LZO_COMPRESS 1446 select LZO_DECOMPRESS 1447 help 1448 This is the 842 algorithm. 1449 1450config CRYPTO_LZ4 1451 tristate "LZ4 compression algorithm" 1452 select CRYPTO_ALGAPI 1453 select LZ4_COMPRESS 1454 select LZ4_DECOMPRESS 1455 help 1456 This is the LZ4 algorithm. 1457 1458config CRYPTO_LZ4HC 1459 tristate "LZ4HC compression algorithm" 1460 select CRYPTO_ALGAPI 1461 select LZ4HC_COMPRESS 1462 select LZ4_DECOMPRESS 1463 help 1464 This is the LZ4 high compression mode algorithm. 1465 1466comment "Random Number Generation" 1467 1468config CRYPTO_ANSI_CPRNG 1469 tristate "Pseudo Random Number Generation for Cryptographic modules" 1470 default m 1471 select CRYPTO_AES 1472 select CRYPTO_RNG 1473 help 1474 This option enables the generic pseudo random number generator 1475 for cryptographic modules. Uses the Algorithm specified in 1476 ANSI X9.31 A.2.4. Note that this option must be enabled if 1477 CRYPTO_FIPS is selected 1478 1479menuconfig CRYPTO_DRBG_MENU 1480 tristate "NIST SP800-90A DRBG" 1481 help 1482 NIST SP800-90A compliant DRBG. In the following submenu, one or 1483 more of the DRBG types must be selected. 1484 1485if CRYPTO_DRBG_MENU 1486 1487config CRYPTO_DRBG_HMAC 1488 bool "Enable HMAC DRBG" 1489 default y 1490 select CRYPTO_HMAC 1491 help 1492 Enable the HMAC DRBG variant as defined in NIST SP800-90A. 1493 1494config CRYPTO_DRBG_HASH 1495 bool "Enable Hash DRBG" 1496 select CRYPTO_HASH 1497 help 1498 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1499 1500config CRYPTO_DRBG_CTR 1501 bool "Enable CTR DRBG" 1502 select CRYPTO_AES 1503 help 1504 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1505 1506config CRYPTO_DRBG 1507 tristate 1508 default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR) 1509 select CRYPTO_RNG 1510 1511endif # if CRYPTO_DRBG_MENU 1512 1513config CRYPTO_USER_API 1514 tristate 1515 1516config CRYPTO_USER_API_HASH 1517 tristate "User-space interface for hash algorithms" 1518 depends on NET 1519 select CRYPTO_HASH 1520 select CRYPTO_USER_API 1521 help 1522 This option enables the user-spaces interface for hash 1523 algorithms. 1524 1525config CRYPTO_USER_API_SKCIPHER 1526 tristate "User-space interface for symmetric key cipher algorithms" 1527 depends on NET 1528 select CRYPTO_BLKCIPHER 1529 select CRYPTO_USER_API 1530 help 1531 This option enables the user-spaces interface for symmetric 1532 key cipher algorithms. 1533 1534config CRYPTO_HASH_INFO 1535 bool 1536 1537source "drivers/crypto/Kconfig" 1538source crypto/asymmetric_keys/Kconfig 1539 1540endif # if CRYPTO 1541