• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Twofish for CryptoAPI
3  *
4  * Originally Twofish for GPG
5  * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
6  * 256-bit key length added March 20, 1999
7  * Some modifications to reduce the text size by Werner Koch, April, 1998
8  * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
9  * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
10  *
11  * The original author has disclaimed all copyright interest in this
12  * code and thus put it in the public domain. The subsequent authors
13  * have put this under the GNU General Public License.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
28  * USA
29  *
30  * This code is a "clean room" implementation, written from the paper
31  * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32  * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33  * through http://www.counterpane.com/twofish.html
34  *
35  * For background information on multiplication in finite fields, used for
36  * the matrix operations in the key schedule, see the book _Contemporary
37  * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38  * Third Edition.
39  */
40 
41 #include <asm/byteorder.h>
42 #include <crypto/twofish.h>
43 #include <linux/module.h>
44 #include <linux/init.h>
45 #include <linux/types.h>
46 #include <linux/errno.h>
47 #include <linux/crypto.h>
48 #include <linux/bitops.h>
49 
50 /* Macros to compute the g() function in the encryption and decryption
51  * rounds.  G1 is the straight g() function; G2 includes the 8-bit
52  * rotation for the high 32-bit word. */
53 
54 #define G1(a) \
55      (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
56    ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
57 
58 #define G2(b) \
59      (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
60    ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
61 
62 /* Encryption and decryption Feistel rounds.  Each one calls the two g()
63  * macros, does the PHT, and performs the XOR and the appropriate bit
64  * rotations.  The parameters are the round number (used to select subkeys),
65  * and the four 32-bit chunks of the text. */
66 
67 #define ENCROUND(n, a, b, c, d) \
68    x = G1 (a); y = G2 (b); \
69    x += y; y += x + ctx->k[2 * (n) + 1]; \
70    (c) ^= x + ctx->k[2 * (n)]; \
71    (c) = ror32((c), 1); \
72    (d) = rol32((d), 1) ^ y
73 
74 #define DECROUND(n, a, b, c, d) \
75    x = G1 (a); y = G2 (b); \
76    x += y; y += x; \
77    (d) ^= y + ctx->k[2 * (n) + 1]; \
78    (d) = ror32((d), 1); \
79    (c) = rol32((c), 1); \
80    (c) ^= (x + ctx->k[2 * (n)])
81 
82 /* Encryption and decryption cycles; each one is simply two Feistel rounds
83  * with the 32-bit chunks re-ordered to simulate the "swap" */
84 
85 #define ENCCYCLE(n) \
86    ENCROUND (2 * (n), a, b, c, d); \
87    ENCROUND (2 * (n) + 1, c, d, a, b)
88 
89 #define DECCYCLE(n) \
90    DECROUND (2 * (n) + 1, c, d, a, b); \
91    DECROUND (2 * (n), a, b, c, d)
92 
93 /* Macros to convert the input and output bytes into 32-bit words,
94  * and simultaneously perform the whitening step.  INPACK packs word
95  * number n into the variable named by x, using whitening subkey number m.
96  * OUTUNPACK unpacks word number n from the variable named by x, using
97  * whitening subkey number m. */
98 
99 #define INPACK(n, x, m) \
100    x = le32_to_cpu(src[n]) ^ ctx->w[m]
101 
102 #define OUTUNPACK(n, x, m) \
103    x ^= ctx->w[m]; \
104    dst[n] = cpu_to_le32(x)
105 
106 
107 
108 /* Encrypt one block.  in and out may be the same. */
twofish_encrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)109 static void twofish_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
110 {
111 	struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
112 	const __le32 *src = (const __le32 *)in;
113 	__le32 *dst = (__le32 *)out;
114 
115 	/* The four 32-bit chunks of the text. */
116 	u32 a, b, c, d;
117 
118 	/* Temporaries used by the round function. */
119 	u32 x, y;
120 
121 	/* Input whitening and packing. */
122 	INPACK (0, a, 0);
123 	INPACK (1, b, 1);
124 	INPACK (2, c, 2);
125 	INPACK (3, d, 3);
126 
127 	/* Encryption Feistel cycles. */
128 	ENCCYCLE (0);
129 	ENCCYCLE (1);
130 	ENCCYCLE (2);
131 	ENCCYCLE (3);
132 	ENCCYCLE (4);
133 	ENCCYCLE (5);
134 	ENCCYCLE (6);
135 	ENCCYCLE (7);
136 
137 	/* Output whitening and unpacking. */
138 	OUTUNPACK (0, c, 4);
139 	OUTUNPACK (1, d, 5);
140 	OUTUNPACK (2, a, 6);
141 	OUTUNPACK (3, b, 7);
142 
143 }
144 
145 /* Decrypt one block.  in and out may be the same. */
twofish_decrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)146 static void twofish_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
147 {
148 	struct twofish_ctx *ctx = crypto_tfm_ctx(tfm);
149 	const __le32 *src = (const __le32 *)in;
150 	__le32 *dst = (__le32 *)out;
151 
152 	/* The four 32-bit chunks of the text. */
153 	u32 a, b, c, d;
154 
155 	/* Temporaries used by the round function. */
156 	u32 x, y;
157 
158 	/* Input whitening and packing. */
159 	INPACK (0, c, 4);
160 	INPACK (1, d, 5);
161 	INPACK (2, a, 6);
162 	INPACK (3, b, 7);
163 
164 	/* Encryption Feistel cycles. */
165 	DECCYCLE (7);
166 	DECCYCLE (6);
167 	DECCYCLE (5);
168 	DECCYCLE (4);
169 	DECCYCLE (3);
170 	DECCYCLE (2);
171 	DECCYCLE (1);
172 	DECCYCLE (0);
173 
174 	/* Output whitening and unpacking. */
175 	OUTUNPACK (0, a, 0);
176 	OUTUNPACK (1, b, 1);
177 	OUTUNPACK (2, c, 2);
178 	OUTUNPACK (3, d, 3);
179 
180 }
181 
182 static struct crypto_alg alg = {
183 	.cra_name           =   "twofish",
184 	.cra_driver_name    =   "twofish-generic",
185 	.cra_priority       =   100,
186 	.cra_flags          =   CRYPTO_ALG_TYPE_CIPHER,
187 	.cra_blocksize      =   TF_BLOCK_SIZE,
188 	.cra_ctxsize        =   sizeof(struct twofish_ctx),
189 	.cra_alignmask      =	3,
190 	.cra_module         =   THIS_MODULE,
191 	.cra_u              =   { .cipher = {
192 	.cia_min_keysize    =   TF_MIN_KEY_SIZE,
193 	.cia_max_keysize    =   TF_MAX_KEY_SIZE,
194 	.cia_setkey         =   twofish_setkey,
195 	.cia_encrypt        =   twofish_encrypt,
196 	.cia_decrypt        =   twofish_decrypt } }
197 };
198 
twofish_mod_init(void)199 static int __init twofish_mod_init(void)
200 {
201 	return crypto_register_alg(&alg);
202 }
203 
twofish_mod_fini(void)204 static void __exit twofish_mod_fini(void)
205 {
206 	crypto_unregister_alg(&alg);
207 }
208 
209 module_init(twofish_mod_init);
210 module_exit(twofish_mod_fini);
211 
212 MODULE_LICENSE("GPL");
213 MODULE_DESCRIPTION ("Twofish Cipher Algorithm");
214 MODULE_ALIAS_CRYPTO("twofish");
215 MODULE_ALIAS_CRYPTO("twofish-generic");
216