1 /*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24
25 #include <linux/atomic.h>
26 #include <asm/uaccess.h>
27
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29
30 #define MEMORY_CLASS_NAME "memory"
31
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33
34 static int sections_per_block;
35
base_memory_block_id(int section_nr)36 static inline int base_memory_block_id(int section_nr)
37 {
38 return section_nr / sections_per_block;
39 }
40
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43
44 static struct bus_type memory_subsys = {
45 .name = MEMORY_CLASS_NAME,
46 .dev_name = MEMORY_CLASS_NAME,
47 .online = memory_subsys_online,
48 .offline = memory_subsys_offline,
49 };
50
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52
register_memory_notifier(struct notifier_block * nb)53 int register_memory_notifier(struct notifier_block *nb)
54 {
55 return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58
unregister_memory_notifier(struct notifier_block * nb)59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61 blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66
register_memory_isolate_notifier(struct notifier_block * nb)67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72
unregister_memory_isolate_notifier(struct notifier_block * nb)73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78
memory_block_release(struct device * dev)79 static void memory_block_release(struct device *dev)
80 {
81 struct memory_block *mem = to_memory_block(dev);
82
83 kfree(mem);
84 }
85
memory_block_size_bytes(void)86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 return MIN_MEMORY_BLOCK_SIZE;
89 }
90
get_memory_block_size(void)91 static unsigned long get_memory_block_size(void)
92 {
93 unsigned long block_sz;
94
95 block_sz = memory_block_size_bytes();
96
97 /* Validate blk_sz is a power of 2 and not less than section size */
98 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 WARN_ON(1);
100 block_sz = MIN_MEMORY_BLOCK_SIZE;
101 }
102
103 return block_sz;
104 }
105
106 /*
107 * use this as the physical section index that this memsection
108 * uses.
109 */
110
show_mem_start_phys_index(struct device * dev,struct device_attribute * attr,char * buf)111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct memory_block *mem = to_memory_block(dev);
115 unsigned long phys_index;
116
117 phys_index = mem->start_section_nr / sections_per_block;
118 return sprintf(buf, "%08lx\n", phys_index);
119 }
120
121 /*
122 * Show whether the section of memory is likely to be hot-removable
123 */
show_mem_removable(struct device * dev,struct device_attribute * attr,char * buf)124 static ssize_t show_mem_removable(struct device *dev,
125 struct device_attribute *attr, char *buf)
126 {
127 unsigned long i, pfn;
128 int ret = 1;
129 struct memory_block *mem = to_memory_block(dev);
130
131 for (i = 0; i < sections_per_block; i++) {
132 if (!present_section_nr(mem->start_section_nr + i))
133 continue;
134 pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
136 }
137
138 return sprintf(buf, "%d\n", ret);
139 }
140
141 /*
142 * online, offline, going offline, etc.
143 */
show_mem_state(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t show_mem_state(struct device *dev,
145 struct device_attribute *attr, char *buf)
146 {
147 struct memory_block *mem = to_memory_block(dev);
148 ssize_t len = 0;
149
150 /*
151 * We can probably put these states in a nice little array
152 * so that they're not open-coded
153 */
154 switch (mem->state) {
155 case MEM_ONLINE:
156 len = sprintf(buf, "online\n");
157 break;
158 case MEM_OFFLINE:
159 len = sprintf(buf, "offline\n");
160 break;
161 case MEM_GOING_OFFLINE:
162 len = sprintf(buf, "going-offline\n");
163 break;
164 default:
165 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
166 mem->state);
167 WARN_ON(1);
168 break;
169 }
170
171 return len;
172 }
173
memory_notify(unsigned long val,void * v)174 int memory_notify(unsigned long val, void *v)
175 {
176 return blocking_notifier_call_chain(&memory_chain, val, v);
177 }
178
memory_isolate_notify(unsigned long val,void * v)179 int memory_isolate_notify(unsigned long val, void *v)
180 {
181 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
182 }
183
184 /*
185 * The probe routines leave the pages reserved, just as the bootmem code does.
186 * Make sure they're still that way.
187 */
pages_correctly_reserved(unsigned long start_pfn)188 static bool pages_correctly_reserved(unsigned long start_pfn)
189 {
190 int i, j;
191 struct page *page;
192 unsigned long pfn = start_pfn;
193
194 /*
195 * memmap between sections is not contiguous except with
196 * SPARSEMEM_VMEMMAP. We lookup the page once per section
197 * and assume memmap is contiguous within each section
198 */
199 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
200 if (WARN_ON_ONCE(!pfn_valid(pfn)))
201 return false;
202 page = pfn_to_page(pfn);
203
204 for (j = 0; j < PAGES_PER_SECTION; j++) {
205 if (PageReserved(page + j))
206 continue;
207
208 printk(KERN_WARNING "section number %ld page number %d "
209 "not reserved, was it already online?\n",
210 pfn_to_section_nr(pfn), j);
211
212 return false;
213 }
214 }
215
216 return true;
217 }
218
219 /*
220 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
221 * OK to have direct references to sparsemem variables in here.
222 */
223 static int
memory_block_action(unsigned long phys_index,unsigned long action,int online_type)224 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
225 {
226 unsigned long start_pfn;
227 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228 struct page *first_page;
229 int ret;
230
231 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
232 start_pfn = page_to_pfn(first_page);
233
234 switch (action) {
235 case MEM_ONLINE:
236 if (!pages_correctly_reserved(start_pfn))
237 return -EBUSY;
238
239 ret = online_pages(start_pfn, nr_pages, online_type);
240 break;
241 case MEM_OFFLINE:
242 ret = offline_pages(start_pfn, nr_pages);
243 break;
244 default:
245 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
246 "%ld\n", __func__, phys_index, action, action);
247 ret = -EINVAL;
248 }
249
250 return ret;
251 }
252
memory_block_change_state(struct memory_block * mem,unsigned long to_state,unsigned long from_state_req)253 static int memory_block_change_state(struct memory_block *mem,
254 unsigned long to_state, unsigned long from_state_req)
255 {
256 int ret = 0;
257
258 if (mem->state != from_state_req)
259 return -EINVAL;
260
261 if (to_state == MEM_OFFLINE)
262 mem->state = MEM_GOING_OFFLINE;
263
264 ret = memory_block_action(mem->start_section_nr, to_state,
265 mem->online_type);
266
267 mem->state = ret ? from_state_req : to_state;
268
269 return ret;
270 }
271
272 /* The device lock serializes operations on memory_subsys_[online|offline] */
memory_subsys_online(struct device * dev)273 static int memory_subsys_online(struct device *dev)
274 {
275 struct memory_block *mem = to_memory_block(dev);
276 int ret;
277
278 if (mem->state == MEM_ONLINE)
279 return 0;
280
281 /*
282 * If we are called from store_mem_state(), online_type will be
283 * set >= 0 Otherwise we were called from the device online
284 * attribute and need to set the online_type.
285 */
286 if (mem->online_type < 0)
287 mem->online_type = MMOP_ONLINE_KEEP;
288
289 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290
291 /* clear online_type */
292 mem->online_type = -1;
293
294 return ret;
295 }
296
memory_subsys_offline(struct device * dev)297 static int memory_subsys_offline(struct device *dev)
298 {
299 struct memory_block *mem = to_memory_block(dev);
300
301 if (mem->state == MEM_OFFLINE)
302 return 0;
303
304 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
305 }
306
307 static ssize_t
store_mem_state(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)308 store_mem_state(struct device *dev,
309 struct device_attribute *attr, const char *buf, size_t count)
310 {
311 struct memory_block *mem = to_memory_block(dev);
312 int ret, online_type;
313
314 ret = lock_device_hotplug_sysfs();
315 if (ret)
316 return ret;
317
318 if (sysfs_streq(buf, "online_kernel"))
319 online_type = MMOP_ONLINE_KERNEL;
320 else if (sysfs_streq(buf, "online_movable"))
321 online_type = MMOP_ONLINE_MOVABLE;
322 else if (sysfs_streq(buf, "online"))
323 online_type = MMOP_ONLINE_KEEP;
324 else if (sysfs_streq(buf, "offline"))
325 online_type = MMOP_OFFLINE;
326 else {
327 ret = -EINVAL;
328 goto err;
329 }
330
331 switch (online_type) {
332 case MMOP_ONLINE_KERNEL:
333 case MMOP_ONLINE_MOVABLE:
334 case MMOP_ONLINE_KEEP:
335 /*
336 * mem->online_type is not protected so there can be a
337 * race here. However, when racing online, the first
338 * will succeed and the second will just return as the
339 * block will already be online. The online type
340 * could be either one, but that is expected.
341 */
342 mem->online_type = online_type;
343 ret = device_online(&mem->dev);
344 break;
345 case MMOP_OFFLINE:
346 ret = device_offline(&mem->dev);
347 break;
348 default:
349 ret = -EINVAL; /* should never happen */
350 }
351
352 err:
353 unlock_device_hotplug();
354
355 if (ret)
356 return ret;
357 return count;
358 }
359
360 /*
361 * phys_device is a bad name for this. What I really want
362 * is a way to differentiate between memory ranges that
363 * are part of physical devices that constitute
364 * a complete removable unit or fru.
365 * i.e. do these ranges belong to the same physical device,
366 * s.t. if I offline all of these sections I can then
367 * remove the physical device?
368 */
show_phys_device(struct device * dev,struct device_attribute * attr,char * buf)369 static ssize_t show_phys_device(struct device *dev,
370 struct device_attribute *attr, char *buf)
371 {
372 struct memory_block *mem = to_memory_block(dev);
373 return sprintf(buf, "%d\n", mem->phys_device);
374 }
375
376 #ifdef CONFIG_MEMORY_HOTREMOVE
show_valid_zones(struct device * dev,struct device_attribute * attr,char * buf)377 static ssize_t show_valid_zones(struct device *dev,
378 struct device_attribute *attr, char *buf)
379 {
380 struct memory_block *mem = to_memory_block(dev);
381 unsigned long start_pfn, end_pfn;
382 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
383 struct page *first_page;
384 struct zone *zone;
385
386 start_pfn = section_nr_to_pfn(mem->start_section_nr);
387 end_pfn = start_pfn + nr_pages;
388 first_page = pfn_to_page(start_pfn);
389
390 /* The block contains more than one zone can not be offlined. */
391 if (!test_pages_in_a_zone(start_pfn, end_pfn))
392 return sprintf(buf, "none\n");
393
394 zone = page_zone(first_page);
395
396 if (zone_idx(zone) == ZONE_MOVABLE - 1) {
397 /*The mem block is the last memoryblock of this zone.*/
398 if (end_pfn == zone_end_pfn(zone))
399 return sprintf(buf, "%s %s\n",
400 zone->name, (zone + 1)->name);
401 }
402
403 if (zone_idx(zone) == ZONE_MOVABLE) {
404 /*The mem block is the first memoryblock of ZONE_MOVABLE.*/
405 if (start_pfn == zone->zone_start_pfn)
406 return sprintf(buf, "%s %s\n",
407 zone->name, (zone - 1)->name);
408 }
409
410 return sprintf(buf, "%s\n", zone->name);
411 }
412 static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
413 #endif
414
415 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
416 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
417 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
418 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
419
420 /*
421 * Block size attribute stuff
422 */
423 static ssize_t
print_block_size(struct device * dev,struct device_attribute * attr,char * buf)424 print_block_size(struct device *dev, struct device_attribute *attr,
425 char *buf)
426 {
427 return sprintf(buf, "%lx\n", get_memory_block_size());
428 }
429
430 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
431
432 /*
433 * Some architectures will have custom drivers to do this, and
434 * will not need to do it from userspace. The fake hot-add code
435 * as well as ppc64 will do all of their discovery in userspace
436 * and will require this interface.
437 */
438 #ifdef CONFIG_ARCH_MEMORY_PROBE
439 static ssize_t
memory_probe_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)440 memory_probe_store(struct device *dev, struct device_attribute *attr,
441 const char *buf, size_t count)
442 {
443 u64 phys_addr;
444 int nid;
445 int i, ret;
446 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
447
448 ret = kstrtoull(buf, 0, &phys_addr);
449 if (ret)
450 return ret;
451
452 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
453 return -EINVAL;
454
455 for (i = 0; i < sections_per_block; i++) {
456 nid = memory_add_physaddr_to_nid(phys_addr);
457 ret = add_memory(nid, phys_addr,
458 PAGES_PER_SECTION << PAGE_SHIFT);
459 if (ret)
460 goto out;
461
462 phys_addr += MIN_MEMORY_BLOCK_SIZE;
463 }
464
465 ret = count;
466 out:
467 return ret;
468 }
469
470 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
471 #endif
472
473 #ifdef CONFIG_MEMORY_FAILURE
474 /*
475 * Support for offlining pages of memory
476 */
477
478 /* Soft offline a page */
479 static ssize_t
store_soft_offline_page(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)480 store_soft_offline_page(struct device *dev,
481 struct device_attribute *attr,
482 const char *buf, size_t count)
483 {
484 int ret;
485 u64 pfn;
486 if (!capable(CAP_SYS_ADMIN))
487 return -EPERM;
488 if (kstrtoull(buf, 0, &pfn) < 0)
489 return -EINVAL;
490 pfn >>= PAGE_SHIFT;
491 if (!pfn_valid(pfn))
492 return -ENXIO;
493 ret = soft_offline_page(pfn_to_page(pfn), 0);
494 return ret == 0 ? count : ret;
495 }
496
497 /* Forcibly offline a page, including killing processes. */
498 static ssize_t
store_hard_offline_page(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 store_hard_offline_page(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
502 {
503 int ret;
504 u64 pfn;
505 if (!capable(CAP_SYS_ADMIN))
506 return -EPERM;
507 if (kstrtoull(buf, 0, &pfn) < 0)
508 return -EINVAL;
509 pfn >>= PAGE_SHIFT;
510 ret = memory_failure(pfn, 0, 0);
511 return ret ? ret : count;
512 }
513
514 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
515 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
516 #endif
517
518 /*
519 * Note that phys_device is optional. It is here to allow for
520 * differentiation between which *physical* devices each
521 * section belongs to...
522 */
arch_get_memory_phys_device(unsigned long start_pfn)523 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
524 {
525 return 0;
526 }
527
528 /*
529 * A reference for the returned object is held and the reference for the
530 * hinted object is released.
531 */
find_memory_block_hinted(struct mem_section * section,struct memory_block * hint)532 struct memory_block *find_memory_block_hinted(struct mem_section *section,
533 struct memory_block *hint)
534 {
535 int block_id = base_memory_block_id(__section_nr(section));
536 struct device *hintdev = hint ? &hint->dev : NULL;
537 struct device *dev;
538
539 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
540 if (hint)
541 put_device(&hint->dev);
542 if (!dev)
543 return NULL;
544 return to_memory_block(dev);
545 }
546
547 /*
548 * For now, we have a linear search to go find the appropriate
549 * memory_block corresponding to a particular phys_index. If
550 * this gets to be a real problem, we can always use a radix
551 * tree or something here.
552 *
553 * This could be made generic for all device subsystems.
554 */
find_memory_block(struct mem_section * section)555 struct memory_block *find_memory_block(struct mem_section *section)
556 {
557 return find_memory_block_hinted(section, NULL);
558 }
559
560 static struct attribute *memory_memblk_attrs[] = {
561 &dev_attr_phys_index.attr,
562 &dev_attr_state.attr,
563 &dev_attr_phys_device.attr,
564 &dev_attr_removable.attr,
565 #ifdef CONFIG_MEMORY_HOTREMOVE
566 &dev_attr_valid_zones.attr,
567 #endif
568 NULL
569 };
570
571 static struct attribute_group memory_memblk_attr_group = {
572 .attrs = memory_memblk_attrs,
573 };
574
575 static const struct attribute_group *memory_memblk_attr_groups[] = {
576 &memory_memblk_attr_group,
577 NULL,
578 };
579
580 /*
581 * register_memory - Setup a sysfs device for a memory block
582 */
583 static
register_memory(struct memory_block * memory)584 int register_memory(struct memory_block *memory)
585 {
586 memory->dev.bus = &memory_subsys;
587 memory->dev.id = memory->start_section_nr / sections_per_block;
588 memory->dev.release = memory_block_release;
589 memory->dev.groups = memory_memblk_attr_groups;
590 memory->dev.offline = memory->state == MEM_OFFLINE;
591
592 return device_register(&memory->dev);
593 }
594
init_memory_block(struct memory_block ** memory,struct mem_section * section,unsigned long state)595 static int init_memory_block(struct memory_block **memory,
596 struct mem_section *section, unsigned long state)
597 {
598 struct memory_block *mem;
599 unsigned long start_pfn;
600 int scn_nr;
601 int ret = 0;
602
603 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
604 if (!mem)
605 return -ENOMEM;
606
607 scn_nr = __section_nr(section);
608 mem->start_section_nr =
609 base_memory_block_id(scn_nr) * sections_per_block;
610 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
611 mem->state = state;
612 mem->section_count++;
613 start_pfn = section_nr_to_pfn(mem->start_section_nr);
614 mem->phys_device = arch_get_memory_phys_device(start_pfn);
615
616 ret = register_memory(mem);
617
618 *memory = mem;
619 return ret;
620 }
621
add_memory_block(int base_section_nr)622 static int add_memory_block(int base_section_nr)
623 {
624 struct memory_block *mem;
625 int i, ret, section_count = 0, section_nr;
626
627 for (i = base_section_nr;
628 (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
629 i++) {
630 if (!present_section_nr(i))
631 continue;
632 if (section_count == 0)
633 section_nr = i;
634 section_count++;
635 }
636
637 if (section_count == 0)
638 return 0;
639 ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
640 if (ret)
641 return ret;
642 mem->section_count = section_count;
643 return 0;
644 }
645
646
647 /*
648 * need an interface for the VM to add new memory regions,
649 * but without onlining it.
650 */
register_new_memory(int nid,struct mem_section * section)651 int register_new_memory(int nid, struct mem_section *section)
652 {
653 int ret = 0;
654 struct memory_block *mem;
655
656 mutex_lock(&mem_sysfs_mutex);
657
658 mem = find_memory_block(section);
659 if (mem) {
660 mem->section_count++;
661 put_device(&mem->dev);
662 } else {
663 ret = init_memory_block(&mem, section, MEM_OFFLINE);
664 if (ret)
665 goto out;
666 }
667
668 if (mem->section_count == sections_per_block)
669 ret = register_mem_sect_under_node(mem, nid);
670 out:
671 mutex_unlock(&mem_sysfs_mutex);
672 return ret;
673 }
674
675 #ifdef CONFIG_MEMORY_HOTREMOVE
676 static void
unregister_memory(struct memory_block * memory)677 unregister_memory(struct memory_block *memory)
678 {
679 BUG_ON(memory->dev.bus != &memory_subsys);
680
681 /* drop the ref. we got in remove_memory_block() */
682 put_device(&memory->dev);
683 device_unregister(&memory->dev);
684 }
685
remove_memory_block(unsigned long node_id,struct mem_section * section,int phys_device)686 static int remove_memory_block(unsigned long node_id,
687 struct mem_section *section, int phys_device)
688 {
689 struct memory_block *mem;
690
691 mutex_lock(&mem_sysfs_mutex);
692 mem = find_memory_block(section);
693 unregister_mem_sect_under_nodes(mem, __section_nr(section));
694
695 mem->section_count--;
696 if (mem->section_count == 0)
697 unregister_memory(mem);
698 else
699 put_device(&mem->dev);
700
701 mutex_unlock(&mem_sysfs_mutex);
702 return 0;
703 }
704
unregister_memory_section(struct mem_section * section)705 int unregister_memory_section(struct mem_section *section)
706 {
707 if (!present_section(section))
708 return -EINVAL;
709
710 return remove_memory_block(0, section, 0);
711 }
712 #endif /* CONFIG_MEMORY_HOTREMOVE */
713
714 /* return true if the memory block is offlined, otherwise, return false */
is_memblock_offlined(struct memory_block * mem)715 bool is_memblock_offlined(struct memory_block *mem)
716 {
717 return mem->state == MEM_OFFLINE;
718 }
719
720 static struct attribute *memory_root_attrs[] = {
721 #ifdef CONFIG_ARCH_MEMORY_PROBE
722 &dev_attr_probe.attr,
723 #endif
724
725 #ifdef CONFIG_MEMORY_FAILURE
726 &dev_attr_soft_offline_page.attr,
727 &dev_attr_hard_offline_page.attr,
728 #endif
729
730 &dev_attr_block_size_bytes.attr,
731 NULL
732 };
733
734 static struct attribute_group memory_root_attr_group = {
735 .attrs = memory_root_attrs,
736 };
737
738 static const struct attribute_group *memory_root_attr_groups[] = {
739 &memory_root_attr_group,
740 NULL,
741 };
742
743 /*
744 * Initialize the sysfs support for memory devices...
745 */
memory_dev_init(void)746 int __init memory_dev_init(void)
747 {
748 unsigned int i;
749 int ret;
750 int err;
751 unsigned long block_sz;
752
753 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
754 if (ret)
755 goto out;
756
757 block_sz = get_memory_block_size();
758 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
759
760 /*
761 * Create entries for memory sections that were found
762 * during boot and have been initialized
763 */
764 mutex_lock(&mem_sysfs_mutex);
765 for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
766 err = add_memory_block(i);
767 if (!ret)
768 ret = err;
769 }
770 mutex_unlock(&mem_sysfs_mutex);
771
772 out:
773 if (ret)
774 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
775 return ret;
776 }
777