• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 #include <linux/wakeup_reason.h>
36 
37 #include "../base.h"
38 #include "power.h"
39 
40 typedef int (*pm_callback_t)(struct device *);
41 
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51 
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57 
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61 
62 static int async_error;
63 
pm_verb(int event)64 static char *pm_verb(int event)
65 {
66 	switch (event) {
67 	case PM_EVENT_SUSPEND:
68 		return "suspend";
69 	case PM_EVENT_RESUME:
70 		return "resume";
71 	case PM_EVENT_FREEZE:
72 		return "freeze";
73 	case PM_EVENT_QUIESCE:
74 		return "quiesce";
75 	case PM_EVENT_HIBERNATE:
76 		return "hibernate";
77 	case PM_EVENT_THAW:
78 		return "thaw";
79 	case PM_EVENT_RESTORE:
80 		return "restore";
81 	case PM_EVENT_RECOVER:
82 		return "recover";
83 	default:
84 		return "(unknown PM event)";
85 	}
86 }
87 
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
device_pm_sleep_init(struct device * dev)92 void device_pm_sleep_init(struct device *dev)
93 {
94 	dev->power.is_prepared = false;
95 	dev->power.is_suspended = false;
96 	dev->power.is_noirq_suspended = false;
97 	dev->power.is_late_suspended = false;
98 	init_completion(&dev->power.completion);
99 	complete_all(&dev->power.completion);
100 	dev->power.wakeup = NULL;
101 	INIT_LIST_HEAD(&dev->power.entry);
102 }
103 
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
device_pm_lock(void)107 void device_pm_lock(void)
108 {
109 	mutex_lock(&dpm_list_mtx);
110 }
111 
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
device_pm_unlock(void)115 void device_pm_unlock(void)
116 {
117 	mutex_unlock(&dpm_list_mtx);
118 }
119 
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
device_pm_add(struct device * dev)124 void device_pm_add(struct device *dev)
125 {
126 	pr_debug("PM: Adding info for %s:%s\n",
127 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 	mutex_lock(&dpm_list_mtx);
129 	if (dev->parent && dev->parent->power.is_prepared)
130 		dev_warn(dev, "parent %s should not be sleeping\n",
131 			dev_name(dev->parent));
132 	list_add_tail(&dev->power.entry, &dpm_list);
133 	mutex_unlock(&dpm_list_mtx);
134 }
135 
136 /**
137  * device_pm_remove - Remove a device from the PM core's list of active devices.
138  * @dev: Device to be removed from the list.
139  */
device_pm_remove(struct device * dev)140 void device_pm_remove(struct device *dev)
141 {
142 	pr_debug("PM: Removing info for %s:%s\n",
143 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
144 	complete_all(&dev->power.completion);
145 	mutex_lock(&dpm_list_mtx);
146 	list_del_init(&dev->power.entry);
147 	mutex_unlock(&dpm_list_mtx);
148 	device_wakeup_disable(dev);
149 	pm_runtime_remove(dev);
150 }
151 
152 /**
153  * device_pm_move_before - Move device in the PM core's list of active devices.
154  * @deva: Device to move in dpm_list.
155  * @devb: Device @deva should come before.
156  */
device_pm_move_before(struct device * deva,struct device * devb)157 void device_pm_move_before(struct device *deva, struct device *devb)
158 {
159 	pr_debug("PM: Moving %s:%s before %s:%s\n",
160 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
161 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
162 	/* Delete deva from dpm_list and reinsert before devb. */
163 	list_move_tail(&deva->power.entry, &devb->power.entry);
164 }
165 
166 /**
167  * device_pm_move_after - Move device in the PM core's list of active devices.
168  * @deva: Device to move in dpm_list.
169  * @devb: Device @deva should come after.
170  */
device_pm_move_after(struct device * deva,struct device * devb)171 void device_pm_move_after(struct device *deva, struct device *devb)
172 {
173 	pr_debug("PM: Moving %s:%s after %s:%s\n",
174 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
175 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
176 	/* Delete deva from dpm_list and reinsert after devb. */
177 	list_move(&deva->power.entry, &devb->power.entry);
178 }
179 
180 /**
181  * device_pm_move_last - Move device to end of the PM core's list of devices.
182  * @dev: Device to move in dpm_list.
183  */
device_pm_move_last(struct device * dev)184 void device_pm_move_last(struct device *dev)
185 {
186 	pr_debug("PM: Moving %s:%s to end of list\n",
187 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
188 	list_move_tail(&dev->power.entry, &dpm_list);
189 }
190 
initcall_debug_start(struct device * dev)191 static ktime_t initcall_debug_start(struct device *dev)
192 {
193 	ktime_t calltime = ktime_set(0, 0);
194 
195 	if (pm_print_times_enabled) {
196 		pr_info("calling  %s+ @ %i, parent: %s\n",
197 			dev_name(dev), task_pid_nr(current),
198 			dev->parent ? dev_name(dev->parent) : "none");
199 		calltime = ktime_get();
200 	}
201 
202 	return calltime;
203 }
204 
initcall_debug_report(struct device * dev,ktime_t calltime,int error,pm_message_t state,char * info)205 static void initcall_debug_report(struct device *dev, ktime_t calltime,
206 				  int error, pm_message_t state, char *info)
207 {
208 	ktime_t rettime;
209 	s64 nsecs;
210 
211 	rettime = ktime_get();
212 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
213 
214 	if (pm_print_times_enabled) {
215 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
216 			error, (unsigned long long)nsecs >> 10);
217 	}
218 }
219 
220 /**
221  * dpm_wait - Wait for a PM operation to complete.
222  * @dev: Device to wait for.
223  * @async: If unset, wait only if the device's power.async_suspend flag is set.
224  */
dpm_wait(struct device * dev,bool async)225 static void dpm_wait(struct device *dev, bool async)
226 {
227 	if (!dev)
228 		return;
229 
230 	if (async || (pm_async_enabled && dev->power.async_suspend))
231 		wait_for_completion(&dev->power.completion);
232 }
233 
dpm_wait_fn(struct device * dev,void * async_ptr)234 static int dpm_wait_fn(struct device *dev, void *async_ptr)
235 {
236 	dpm_wait(dev, *((bool *)async_ptr));
237 	return 0;
238 }
239 
dpm_wait_for_children(struct device * dev,bool async)240 static void dpm_wait_for_children(struct device *dev, bool async)
241 {
242        device_for_each_child(dev, &async, dpm_wait_fn);
243 }
244 
245 /**
246  * pm_op - Return the PM operation appropriate for given PM event.
247  * @ops: PM operations to choose from.
248  * @state: PM transition of the system being carried out.
249  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)250 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
251 {
252 	switch (state.event) {
253 #ifdef CONFIG_SUSPEND
254 	case PM_EVENT_SUSPEND:
255 		return ops->suspend;
256 	case PM_EVENT_RESUME:
257 		return ops->resume;
258 #endif /* CONFIG_SUSPEND */
259 #ifdef CONFIG_HIBERNATE_CALLBACKS
260 	case PM_EVENT_FREEZE:
261 	case PM_EVENT_QUIESCE:
262 		return ops->freeze;
263 	case PM_EVENT_HIBERNATE:
264 		return ops->poweroff;
265 	case PM_EVENT_THAW:
266 	case PM_EVENT_RECOVER:
267 		return ops->thaw;
268 		break;
269 	case PM_EVENT_RESTORE:
270 		return ops->restore;
271 #endif /* CONFIG_HIBERNATE_CALLBACKS */
272 	}
273 
274 	return NULL;
275 }
276 
277 /**
278  * pm_late_early_op - Return the PM operation appropriate for given PM event.
279  * @ops: PM operations to choose from.
280  * @state: PM transition of the system being carried out.
281  *
282  * Runtime PM is disabled for @dev while this function is being executed.
283  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)284 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
285 				      pm_message_t state)
286 {
287 	switch (state.event) {
288 #ifdef CONFIG_SUSPEND
289 	case PM_EVENT_SUSPEND:
290 		return ops->suspend_late;
291 	case PM_EVENT_RESUME:
292 		return ops->resume_early;
293 #endif /* CONFIG_SUSPEND */
294 #ifdef CONFIG_HIBERNATE_CALLBACKS
295 	case PM_EVENT_FREEZE:
296 	case PM_EVENT_QUIESCE:
297 		return ops->freeze_late;
298 	case PM_EVENT_HIBERNATE:
299 		return ops->poweroff_late;
300 	case PM_EVENT_THAW:
301 	case PM_EVENT_RECOVER:
302 		return ops->thaw_early;
303 	case PM_EVENT_RESTORE:
304 		return ops->restore_early;
305 #endif /* CONFIG_HIBERNATE_CALLBACKS */
306 	}
307 
308 	return NULL;
309 }
310 
311 /**
312  * pm_noirq_op - Return the PM operation appropriate for given PM event.
313  * @ops: PM operations to choose from.
314  * @state: PM transition of the system being carried out.
315  *
316  * The driver of @dev will not receive interrupts while this function is being
317  * executed.
318  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)319 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
320 {
321 	switch (state.event) {
322 #ifdef CONFIG_SUSPEND
323 	case PM_EVENT_SUSPEND:
324 		return ops->suspend_noirq;
325 	case PM_EVENT_RESUME:
326 		return ops->resume_noirq;
327 #endif /* CONFIG_SUSPEND */
328 #ifdef CONFIG_HIBERNATE_CALLBACKS
329 	case PM_EVENT_FREEZE:
330 	case PM_EVENT_QUIESCE:
331 		return ops->freeze_noirq;
332 	case PM_EVENT_HIBERNATE:
333 		return ops->poweroff_noirq;
334 	case PM_EVENT_THAW:
335 	case PM_EVENT_RECOVER:
336 		return ops->thaw_noirq;
337 	case PM_EVENT_RESTORE:
338 		return ops->restore_noirq;
339 #endif /* CONFIG_HIBERNATE_CALLBACKS */
340 	}
341 
342 	return NULL;
343 }
344 
pm_dev_dbg(struct device * dev,pm_message_t state,char * info)345 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
346 {
347 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
348 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
349 		", may wakeup" : "");
350 }
351 
pm_dev_err(struct device * dev,pm_message_t state,char * info,int error)352 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
353 			int error)
354 {
355 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
356 		dev_name(dev), pm_verb(state.event), info, error);
357 }
358 
dpm_show_time(ktime_t starttime,pm_message_t state,char * info)359 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
360 {
361 	ktime_t calltime;
362 	u64 usecs64;
363 	int usecs;
364 
365 	calltime = ktime_get();
366 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
367 	do_div(usecs64, NSEC_PER_USEC);
368 	usecs = usecs64;
369 	if (usecs == 0)
370 		usecs = 1;
371 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
372 		info ?: "", info ? " " : "", pm_verb(state.event),
373 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
374 }
375 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,char * info)376 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
377 			    pm_message_t state, char *info)
378 {
379 	ktime_t calltime;
380 	int error;
381 
382 	if (!cb)
383 		return 0;
384 
385 	calltime = initcall_debug_start(dev);
386 
387 	pm_dev_dbg(dev, state, info);
388 	trace_device_pm_callback_start(dev, info, state.event);
389 	error = cb(dev);
390 	trace_device_pm_callback_end(dev, error);
391 	suspend_report_result(cb, error);
392 
393 	initcall_debug_report(dev, calltime, error, state, info);
394 
395 	return error;
396 }
397 
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 	struct device		*dev;
401 	struct task_struct	*tsk;
402 	struct timer_list	timer;
403 };
404 
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 	struct dpm_watchdog wd
407 
408 /**
409  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410  * @data: Watchdog object address.
411  *
412  * Called when a driver has timed out suspending or resuming.
413  * There's not much we can do here to recover so panic() to
414  * capture a crash-dump in pstore.
415  */
dpm_watchdog_handler(unsigned long data)416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 	struct dpm_watchdog *wd = (void *)data;
419 
420 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 	show_stack(wd->tsk, NULL);
422 	panic("%s %s: unrecoverable failure\n",
423 		dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425 
426 /**
427  * dpm_watchdog_set - Enable pm watchdog for given device.
428  * @wd: Watchdog. Must be allocated on the stack.
429  * @dev: Device to handle.
430  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 	struct timer_list *timer = &wd->timer;
434 
435 	wd->dev = dev;
436 	wd->tsk = current;
437 
438 	init_timer_on_stack(timer);
439 	/* use same timeout value for both suspend and resume */
440 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 	timer->function = dpm_watchdog_handler;
442 	timer->data = (unsigned long)wd;
443 	add_timer(timer);
444 }
445 
446 /**
447  * dpm_watchdog_clear - Disable suspend/resume watchdog.
448  * @wd: Watchdog to disable.
449  */
dpm_watchdog_clear(struct dpm_watchdog * wd)450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 	struct timer_list *timer = &wd->timer;
453 
454 	del_timer_sync(timer);
455 	destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462 
463 /*------------------------- Resume routines -------------------------*/
464 
465 /**
466  * device_resume_noirq - Execute an "early resume" callback for given device.
467  * @dev: Device to handle.
468  * @state: PM transition of the system being carried out.
469  * @async: If true, the device is being resumed asynchronously.
470  *
471  * The driver of @dev will not receive interrupts while this function is being
472  * executed.
473  */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)474 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
475 {
476 	pm_callback_t callback = NULL;
477 	char *info = NULL;
478 	int error = 0;
479 
480 	TRACE_DEVICE(dev);
481 	TRACE_RESUME(0);
482 
483 	if (dev->power.syscore || dev->power.direct_complete)
484 		goto Out;
485 
486 	if (!dev->power.is_noirq_suspended)
487 		goto Out;
488 
489 	dpm_wait(dev->parent, async);
490 
491 	if (dev->pm_domain) {
492 		info = "noirq power domain ";
493 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
494 	} else if (dev->type && dev->type->pm) {
495 		info = "noirq type ";
496 		callback = pm_noirq_op(dev->type->pm, state);
497 	} else if (dev->class && dev->class->pm) {
498 		info = "noirq class ";
499 		callback = pm_noirq_op(dev->class->pm, state);
500 	} else if (dev->bus && dev->bus->pm) {
501 		info = "noirq bus ";
502 		callback = pm_noirq_op(dev->bus->pm, state);
503 	}
504 
505 	if (!callback && dev->driver && dev->driver->pm) {
506 		info = "noirq driver ";
507 		callback = pm_noirq_op(dev->driver->pm, state);
508 	}
509 
510 	error = dpm_run_callback(callback, dev, state, info);
511 	dev->power.is_noirq_suspended = false;
512 
513  Out:
514 	complete_all(&dev->power.completion);
515 	TRACE_RESUME(error);
516 	return error;
517 }
518 
is_async(struct device * dev)519 static bool is_async(struct device *dev)
520 {
521 	return dev->power.async_suspend && pm_async_enabled
522 		&& !pm_trace_is_enabled();
523 }
524 
async_resume_noirq(void * data,async_cookie_t cookie)525 static void async_resume_noirq(void *data, async_cookie_t cookie)
526 {
527 	struct device *dev = (struct device *)data;
528 	int error;
529 
530 	error = device_resume_noirq(dev, pm_transition, true);
531 	if (error)
532 		pm_dev_err(dev, pm_transition, " async", error);
533 
534 	put_device(dev);
535 }
536 
537 /**
538  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
539  * @state: PM transition of the system being carried out.
540  *
541  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
542  * enable device drivers to receive interrupts.
543  */
dpm_resume_noirq(pm_message_t state)544 void dpm_resume_noirq(pm_message_t state)
545 {
546 	struct device *dev;
547 	ktime_t starttime = ktime_get();
548 
549 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
550 	mutex_lock(&dpm_list_mtx);
551 	pm_transition = state;
552 
553 	/*
554 	 * Advanced the async threads upfront,
555 	 * in case the starting of async threads is
556 	 * delayed by non-async resuming devices.
557 	 */
558 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
559 		reinit_completion(&dev->power.completion);
560 		if (is_async(dev)) {
561 			get_device(dev);
562 			async_schedule(async_resume_noirq, dev);
563 		}
564 	}
565 
566 	while (!list_empty(&dpm_noirq_list)) {
567 		dev = to_device(dpm_noirq_list.next);
568 		get_device(dev);
569 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
570 		mutex_unlock(&dpm_list_mtx);
571 
572 		if (!is_async(dev)) {
573 			int error;
574 
575 			error = device_resume_noirq(dev, state, false);
576 			if (error) {
577 				suspend_stats.failed_resume_noirq++;
578 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
579 				dpm_save_failed_dev(dev_name(dev));
580 				pm_dev_err(dev, state, " noirq", error);
581 			}
582 		}
583 
584 		mutex_lock(&dpm_list_mtx);
585 		put_device(dev);
586 	}
587 	mutex_unlock(&dpm_list_mtx);
588 	async_synchronize_full();
589 	dpm_show_time(starttime, state, "noirq");
590 	resume_device_irqs();
591 	cpuidle_resume();
592 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
593 }
594 
595 /**
596  * device_resume_early - Execute an "early resume" callback for given device.
597  * @dev: Device to handle.
598  * @state: PM transition of the system being carried out.
599  * @async: If true, the device is being resumed asynchronously.
600  *
601  * Runtime PM is disabled for @dev while this function is being executed.
602  */
device_resume_early(struct device * dev,pm_message_t state,bool async)603 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
604 {
605 	pm_callback_t callback = NULL;
606 	char *info = NULL;
607 	int error = 0;
608 
609 	TRACE_DEVICE(dev);
610 	TRACE_RESUME(0);
611 
612 	if (dev->power.syscore || dev->power.direct_complete)
613 		goto Out;
614 
615 	if (!dev->power.is_late_suspended)
616 		goto Out;
617 
618 	dpm_wait(dev->parent, async);
619 
620 	if (dev->pm_domain) {
621 		info = "early power domain ";
622 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
623 	} else if (dev->type && dev->type->pm) {
624 		info = "early type ";
625 		callback = pm_late_early_op(dev->type->pm, state);
626 	} else if (dev->class && dev->class->pm) {
627 		info = "early class ";
628 		callback = pm_late_early_op(dev->class->pm, state);
629 	} else if (dev->bus && dev->bus->pm) {
630 		info = "early bus ";
631 		callback = pm_late_early_op(dev->bus->pm, state);
632 	}
633 
634 	if (!callback && dev->driver && dev->driver->pm) {
635 		info = "early driver ";
636 		callback = pm_late_early_op(dev->driver->pm, state);
637 	}
638 
639 	error = dpm_run_callback(callback, dev, state, info);
640 	dev->power.is_late_suspended = false;
641 
642  Out:
643 	TRACE_RESUME(error);
644 
645 	pm_runtime_enable(dev);
646 	complete_all(&dev->power.completion);
647 	return error;
648 }
649 
async_resume_early(void * data,async_cookie_t cookie)650 static void async_resume_early(void *data, async_cookie_t cookie)
651 {
652 	struct device *dev = (struct device *)data;
653 	int error;
654 
655 	error = device_resume_early(dev, pm_transition, true);
656 	if (error)
657 		pm_dev_err(dev, pm_transition, " async", error);
658 
659 	put_device(dev);
660 }
661 
662 /**
663  * dpm_resume_early - Execute "early resume" callbacks for all devices.
664  * @state: PM transition of the system being carried out.
665  */
dpm_resume_early(pm_message_t state)666 void dpm_resume_early(pm_message_t state)
667 {
668 	struct device *dev;
669 	ktime_t starttime = ktime_get();
670 
671 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
672 	mutex_lock(&dpm_list_mtx);
673 	pm_transition = state;
674 
675 	/*
676 	 * Advanced the async threads upfront,
677 	 * in case the starting of async threads is
678 	 * delayed by non-async resuming devices.
679 	 */
680 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
681 		reinit_completion(&dev->power.completion);
682 		if (is_async(dev)) {
683 			get_device(dev);
684 			async_schedule(async_resume_early, dev);
685 		}
686 	}
687 
688 	while (!list_empty(&dpm_late_early_list)) {
689 		dev = to_device(dpm_late_early_list.next);
690 		get_device(dev);
691 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
692 		mutex_unlock(&dpm_list_mtx);
693 
694 		if (!is_async(dev)) {
695 			int error;
696 
697 			error = device_resume_early(dev, state, false);
698 			if (error) {
699 				suspend_stats.failed_resume_early++;
700 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
701 				dpm_save_failed_dev(dev_name(dev));
702 				pm_dev_err(dev, state, " early", error);
703 			}
704 		}
705 		mutex_lock(&dpm_list_mtx);
706 		put_device(dev);
707 	}
708 	mutex_unlock(&dpm_list_mtx);
709 	async_synchronize_full();
710 	dpm_show_time(starttime, state, "early");
711 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
712 }
713 
714 /**
715  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
716  * @state: PM transition of the system being carried out.
717  */
dpm_resume_start(pm_message_t state)718 void dpm_resume_start(pm_message_t state)
719 {
720 	dpm_resume_noirq(state);
721 	dpm_resume_early(state);
722 }
723 EXPORT_SYMBOL_GPL(dpm_resume_start);
724 
725 /**
726  * device_resume - Execute "resume" callbacks for given device.
727  * @dev: Device to handle.
728  * @state: PM transition of the system being carried out.
729  * @async: If true, the device is being resumed asynchronously.
730  */
device_resume(struct device * dev,pm_message_t state,bool async)731 static int device_resume(struct device *dev, pm_message_t state, bool async)
732 {
733 	pm_callback_t callback = NULL;
734 	char *info = NULL;
735 	int error = 0;
736 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
737 
738 	TRACE_DEVICE(dev);
739 	TRACE_RESUME(0);
740 
741 	if (dev->power.syscore)
742 		goto Complete;
743 
744 	if (dev->power.direct_complete) {
745 		/* Match the pm_runtime_disable() in __device_suspend(). */
746 		pm_runtime_enable(dev);
747 		goto Complete;
748 	}
749 
750 	dpm_wait(dev->parent, async);
751 	dpm_watchdog_set(&wd, dev);
752 	device_lock(dev);
753 
754 	/*
755 	 * This is a fib.  But we'll allow new children to be added below
756 	 * a resumed device, even if the device hasn't been completed yet.
757 	 */
758 	dev->power.is_prepared = false;
759 
760 	if (!dev->power.is_suspended)
761 		goto Unlock;
762 
763 	if (dev->pm_domain) {
764 		info = "power domain ";
765 		callback = pm_op(&dev->pm_domain->ops, state);
766 		goto Driver;
767 	}
768 
769 	if (dev->type && dev->type->pm) {
770 		info = "type ";
771 		callback = pm_op(dev->type->pm, state);
772 		goto Driver;
773 	}
774 
775 	if (dev->class) {
776 		if (dev->class->pm) {
777 			info = "class ";
778 			callback = pm_op(dev->class->pm, state);
779 			goto Driver;
780 		} else if (dev->class->resume) {
781 			info = "legacy class ";
782 			callback = dev->class->resume;
783 			goto End;
784 		}
785 	}
786 
787 	if (dev->bus) {
788 		if (dev->bus->pm) {
789 			info = "bus ";
790 			callback = pm_op(dev->bus->pm, state);
791 		} else if (dev->bus->resume) {
792 			info = "legacy bus ";
793 			callback = dev->bus->resume;
794 			goto End;
795 		}
796 	}
797 
798  Driver:
799 	if (!callback && dev->driver && dev->driver->pm) {
800 		info = "driver ";
801 		callback = pm_op(dev->driver->pm, state);
802 	}
803 
804  End:
805 	error = dpm_run_callback(callback, dev, state, info);
806 	dev->power.is_suspended = false;
807 
808  Unlock:
809 	device_unlock(dev);
810 	dpm_watchdog_clear(&wd);
811 
812  Complete:
813 	complete_all(&dev->power.completion);
814 
815 	TRACE_RESUME(error);
816 
817 	return error;
818 }
819 
async_resume(void * data,async_cookie_t cookie)820 static void async_resume(void *data, async_cookie_t cookie)
821 {
822 	struct device *dev = (struct device *)data;
823 	int error;
824 
825 	error = device_resume(dev, pm_transition, true);
826 	if (error)
827 		pm_dev_err(dev, pm_transition, " async", error);
828 	put_device(dev);
829 }
830 
831 /**
832  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
833  * @state: PM transition of the system being carried out.
834  *
835  * Execute the appropriate "resume" callback for all devices whose status
836  * indicates that they are suspended.
837  */
dpm_resume(pm_message_t state)838 void dpm_resume(pm_message_t state)
839 {
840 	struct device *dev;
841 	ktime_t starttime = ktime_get();
842 
843 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
844 	might_sleep();
845 
846 	mutex_lock(&dpm_list_mtx);
847 	pm_transition = state;
848 	async_error = 0;
849 
850 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
851 		reinit_completion(&dev->power.completion);
852 		if (is_async(dev)) {
853 			get_device(dev);
854 			async_schedule(async_resume, dev);
855 		}
856 	}
857 
858 	while (!list_empty(&dpm_suspended_list)) {
859 		dev = to_device(dpm_suspended_list.next);
860 		get_device(dev);
861 		if (!is_async(dev)) {
862 			int error;
863 
864 			mutex_unlock(&dpm_list_mtx);
865 
866 			error = device_resume(dev, state, false);
867 			if (error) {
868 				suspend_stats.failed_resume++;
869 				dpm_save_failed_step(SUSPEND_RESUME);
870 				dpm_save_failed_dev(dev_name(dev));
871 				pm_dev_err(dev, state, "", error);
872 			}
873 
874 			mutex_lock(&dpm_list_mtx);
875 		}
876 		if (!list_empty(&dev->power.entry))
877 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
878 		put_device(dev);
879 	}
880 	mutex_unlock(&dpm_list_mtx);
881 	async_synchronize_full();
882 	dpm_show_time(starttime, state, NULL);
883 
884 	cpufreq_resume();
885 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
886 }
887 
888 /**
889  * device_complete - Complete a PM transition for given device.
890  * @dev: Device to handle.
891  * @state: PM transition of the system being carried out.
892  */
device_complete(struct device * dev,pm_message_t state)893 static void device_complete(struct device *dev, pm_message_t state)
894 {
895 	void (*callback)(struct device *) = NULL;
896 	char *info = NULL;
897 
898 	if (dev->power.syscore)
899 		return;
900 
901 	device_lock(dev);
902 
903 	if (dev->pm_domain) {
904 		info = "completing power domain ";
905 		callback = dev->pm_domain->ops.complete;
906 	} else if (dev->type && dev->type->pm) {
907 		info = "completing type ";
908 		callback = dev->type->pm->complete;
909 	} else if (dev->class && dev->class->pm) {
910 		info = "completing class ";
911 		callback = dev->class->pm->complete;
912 	} else if (dev->bus && dev->bus->pm) {
913 		info = "completing bus ";
914 		callback = dev->bus->pm->complete;
915 	}
916 
917 	if (!callback && dev->driver && dev->driver->pm) {
918 		info = "completing driver ";
919 		callback = dev->driver->pm->complete;
920 	}
921 
922 	if (callback) {
923 		pm_dev_dbg(dev, state, info);
924 		trace_device_pm_callback_start(dev, info, state.event);
925 		callback(dev);
926 		trace_device_pm_callback_end(dev, 0);
927 	}
928 
929 	device_unlock(dev);
930 
931 	pm_runtime_put(dev);
932 }
933 
934 /**
935  * dpm_complete - Complete a PM transition for all non-sysdev devices.
936  * @state: PM transition of the system being carried out.
937  *
938  * Execute the ->complete() callbacks for all devices whose PM status is not
939  * DPM_ON (this allows new devices to be registered).
940  */
dpm_complete(pm_message_t state)941 void dpm_complete(pm_message_t state)
942 {
943 	struct list_head list;
944 
945 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
946 	might_sleep();
947 
948 	INIT_LIST_HEAD(&list);
949 	mutex_lock(&dpm_list_mtx);
950 	while (!list_empty(&dpm_prepared_list)) {
951 		struct device *dev = to_device(dpm_prepared_list.prev);
952 
953 		get_device(dev);
954 		dev->power.is_prepared = false;
955 		list_move(&dev->power.entry, &list);
956 		mutex_unlock(&dpm_list_mtx);
957 
958 		device_complete(dev, state);
959 
960 		mutex_lock(&dpm_list_mtx);
961 		put_device(dev);
962 	}
963 	list_splice(&list, &dpm_list);
964 	mutex_unlock(&dpm_list_mtx);
965 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
966 }
967 
968 /**
969  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
970  * @state: PM transition of the system being carried out.
971  *
972  * Execute "resume" callbacks for all devices and complete the PM transition of
973  * the system.
974  */
dpm_resume_end(pm_message_t state)975 void dpm_resume_end(pm_message_t state)
976 {
977 	dpm_resume(state);
978 	dpm_complete(state);
979 }
980 EXPORT_SYMBOL_GPL(dpm_resume_end);
981 
982 
983 /*------------------------- Suspend routines -------------------------*/
984 
985 /**
986  * resume_event - Return a "resume" message for given "suspend" sleep state.
987  * @sleep_state: PM message representing a sleep state.
988  *
989  * Return a PM message representing the resume event corresponding to given
990  * sleep state.
991  */
resume_event(pm_message_t sleep_state)992 static pm_message_t resume_event(pm_message_t sleep_state)
993 {
994 	switch (sleep_state.event) {
995 	case PM_EVENT_SUSPEND:
996 		return PMSG_RESUME;
997 	case PM_EVENT_FREEZE:
998 	case PM_EVENT_QUIESCE:
999 		return PMSG_RECOVER;
1000 	case PM_EVENT_HIBERNATE:
1001 		return PMSG_RESTORE;
1002 	}
1003 	return PMSG_ON;
1004 }
1005 
1006 /**
1007  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1008  * @dev: Device to handle.
1009  * @state: PM transition of the system being carried out.
1010  * @async: If true, the device is being suspended asynchronously.
1011  *
1012  * The driver of @dev will not receive interrupts while this function is being
1013  * executed.
1014  */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1015 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1016 {
1017 	pm_callback_t callback = NULL;
1018 	char *info = NULL;
1019 	int error = 0;
1020 
1021 	if (async_error)
1022 		goto Complete;
1023 
1024 	if (pm_wakeup_pending()) {
1025 		async_error = -EBUSY;
1026 		goto Complete;
1027 	}
1028 
1029 	if (dev->power.syscore || dev->power.direct_complete)
1030 		goto Complete;
1031 
1032 	dpm_wait_for_children(dev, async);
1033 
1034 	if (dev->pm_domain) {
1035 		info = "noirq power domain ";
1036 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1037 	} else if (dev->type && dev->type->pm) {
1038 		info = "noirq type ";
1039 		callback = pm_noirq_op(dev->type->pm, state);
1040 	} else if (dev->class && dev->class->pm) {
1041 		info = "noirq class ";
1042 		callback = pm_noirq_op(dev->class->pm, state);
1043 	} else if (dev->bus && dev->bus->pm) {
1044 		info = "noirq bus ";
1045 		callback = pm_noirq_op(dev->bus->pm, state);
1046 	}
1047 
1048 	if (!callback && dev->driver && dev->driver->pm) {
1049 		info = "noirq driver ";
1050 		callback = pm_noirq_op(dev->driver->pm, state);
1051 	}
1052 
1053 	error = dpm_run_callback(callback, dev, state, info);
1054 	if (!error)
1055 		dev->power.is_noirq_suspended = true;
1056 	else
1057 		async_error = error;
1058 
1059 Complete:
1060 	complete_all(&dev->power.completion);
1061 	return error;
1062 }
1063 
async_suspend_noirq(void * data,async_cookie_t cookie)1064 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1065 {
1066 	struct device *dev = (struct device *)data;
1067 	int error;
1068 
1069 	error = __device_suspend_noirq(dev, pm_transition, true);
1070 	if (error) {
1071 		dpm_save_failed_dev(dev_name(dev));
1072 		pm_dev_err(dev, pm_transition, " async", error);
1073 	}
1074 
1075 	put_device(dev);
1076 }
1077 
device_suspend_noirq(struct device * dev)1078 static int device_suspend_noirq(struct device *dev)
1079 {
1080 	reinit_completion(&dev->power.completion);
1081 
1082 	if (pm_async_enabled && dev->power.async_suspend) {
1083 		get_device(dev);
1084 		async_schedule(async_suspend_noirq, dev);
1085 		return 0;
1086 	}
1087 	return __device_suspend_noirq(dev, pm_transition, false);
1088 }
1089 
1090 /**
1091  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1092  * @state: PM transition of the system being carried out.
1093  *
1094  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1095  * handlers for all non-sysdev devices.
1096  */
dpm_suspend_noirq(pm_message_t state)1097 int dpm_suspend_noirq(pm_message_t state)
1098 {
1099 	ktime_t starttime = ktime_get();
1100 	int error = 0;
1101 
1102 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1103 	cpuidle_pause();
1104 	suspend_device_irqs();
1105 	mutex_lock(&dpm_list_mtx);
1106 	pm_transition = state;
1107 	async_error = 0;
1108 
1109 	while (!list_empty(&dpm_late_early_list)) {
1110 		struct device *dev = to_device(dpm_late_early_list.prev);
1111 
1112 		get_device(dev);
1113 		mutex_unlock(&dpm_list_mtx);
1114 
1115 		error = device_suspend_noirq(dev);
1116 
1117 		mutex_lock(&dpm_list_mtx);
1118 		if (error) {
1119 			pm_dev_err(dev, state, " noirq", error);
1120 			dpm_save_failed_dev(dev_name(dev));
1121 			put_device(dev);
1122 			break;
1123 		}
1124 		if (!list_empty(&dev->power.entry))
1125 			list_move(&dev->power.entry, &dpm_noirq_list);
1126 		put_device(dev);
1127 
1128 		if (async_error)
1129 			break;
1130 	}
1131 	mutex_unlock(&dpm_list_mtx);
1132 	async_synchronize_full();
1133 	if (!error)
1134 		error = async_error;
1135 
1136 	if (error) {
1137 		suspend_stats.failed_suspend_noirq++;
1138 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1139 		dpm_resume_noirq(resume_event(state));
1140 	} else {
1141 		dpm_show_time(starttime, state, "noirq");
1142 	}
1143 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1144 	return error;
1145 }
1146 
1147 /**
1148  * device_suspend_late - Execute a "late suspend" callback for given device.
1149  * @dev: Device to handle.
1150  * @state: PM transition of the system being carried out.
1151  * @async: If true, the device is being suspended asynchronously.
1152  *
1153  * Runtime PM is disabled for @dev while this function is being executed.
1154  */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1155 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1156 {
1157 	pm_callback_t callback = NULL;
1158 	char *info = NULL;
1159 	int error = 0;
1160 
1161 	__pm_runtime_disable(dev, false);
1162 
1163 	if (async_error)
1164 		goto Complete;
1165 
1166 	if (pm_wakeup_pending()) {
1167 		async_error = -EBUSY;
1168 		goto Complete;
1169 	}
1170 
1171 	if (dev->power.syscore || dev->power.direct_complete)
1172 		goto Complete;
1173 
1174 	dpm_wait_for_children(dev, async);
1175 
1176 	if (dev->pm_domain) {
1177 		info = "late power domain ";
1178 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1179 	} else if (dev->type && dev->type->pm) {
1180 		info = "late type ";
1181 		callback = pm_late_early_op(dev->type->pm, state);
1182 	} else if (dev->class && dev->class->pm) {
1183 		info = "late class ";
1184 		callback = pm_late_early_op(dev->class->pm, state);
1185 	} else if (dev->bus && dev->bus->pm) {
1186 		info = "late bus ";
1187 		callback = pm_late_early_op(dev->bus->pm, state);
1188 	}
1189 
1190 	if (!callback && dev->driver && dev->driver->pm) {
1191 		info = "late driver ";
1192 		callback = pm_late_early_op(dev->driver->pm, state);
1193 	}
1194 
1195 	error = dpm_run_callback(callback, dev, state, info);
1196 	if (!error)
1197 		dev->power.is_late_suspended = true;
1198 	else
1199 		async_error = error;
1200 
1201 Complete:
1202 	complete_all(&dev->power.completion);
1203 	return error;
1204 }
1205 
async_suspend_late(void * data,async_cookie_t cookie)1206 static void async_suspend_late(void *data, async_cookie_t cookie)
1207 {
1208 	struct device *dev = (struct device *)data;
1209 	int error;
1210 
1211 	error = __device_suspend_late(dev, pm_transition, true);
1212 	if (error) {
1213 		dpm_save_failed_dev(dev_name(dev));
1214 		pm_dev_err(dev, pm_transition, " async", error);
1215 	}
1216 	put_device(dev);
1217 }
1218 
device_suspend_late(struct device * dev)1219 static int device_suspend_late(struct device *dev)
1220 {
1221 	reinit_completion(&dev->power.completion);
1222 
1223 	if (pm_async_enabled && dev->power.async_suspend) {
1224 		get_device(dev);
1225 		async_schedule(async_suspend_late, dev);
1226 		return 0;
1227 	}
1228 
1229 	return __device_suspend_late(dev, pm_transition, false);
1230 }
1231 
1232 /**
1233  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1234  * @state: PM transition of the system being carried out.
1235  */
dpm_suspend_late(pm_message_t state)1236 int dpm_suspend_late(pm_message_t state)
1237 {
1238 	ktime_t starttime = ktime_get();
1239 	int error = 0;
1240 
1241 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1242 	mutex_lock(&dpm_list_mtx);
1243 	pm_transition = state;
1244 	async_error = 0;
1245 
1246 	while (!list_empty(&dpm_suspended_list)) {
1247 		struct device *dev = to_device(dpm_suspended_list.prev);
1248 
1249 		get_device(dev);
1250 		mutex_unlock(&dpm_list_mtx);
1251 
1252 		error = device_suspend_late(dev);
1253 
1254 		mutex_lock(&dpm_list_mtx);
1255 		if (!list_empty(&dev->power.entry))
1256 			list_move(&dev->power.entry, &dpm_late_early_list);
1257 
1258 		if (error) {
1259 			pm_dev_err(dev, state, " late", error);
1260 			dpm_save_failed_dev(dev_name(dev));
1261 			put_device(dev);
1262 			break;
1263 		}
1264 		put_device(dev);
1265 
1266 		if (async_error)
1267 			break;
1268 	}
1269 	mutex_unlock(&dpm_list_mtx);
1270 	async_synchronize_full();
1271 	if (!error)
1272 		error = async_error;
1273 	if (error) {
1274 		suspend_stats.failed_suspend_late++;
1275 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1276 		dpm_resume_early(resume_event(state));
1277 	} else {
1278 		dpm_show_time(starttime, state, "late");
1279 	}
1280 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1281 	return error;
1282 }
1283 
1284 /**
1285  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1286  * @state: PM transition of the system being carried out.
1287  */
dpm_suspend_end(pm_message_t state)1288 int dpm_suspend_end(pm_message_t state)
1289 {
1290 	int error = dpm_suspend_late(state);
1291 	if (error)
1292 		return error;
1293 
1294 	error = dpm_suspend_noirq(state);
1295 	if (error) {
1296 		dpm_resume_early(resume_event(state));
1297 		return error;
1298 	}
1299 
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1303 
1304 /**
1305  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1306  * @dev: Device to suspend.
1307  * @state: PM transition of the system being carried out.
1308  * @cb: Suspend callback to execute.
1309  * @info: string description of caller.
1310  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),char * info)1311 static int legacy_suspend(struct device *dev, pm_message_t state,
1312 			  int (*cb)(struct device *dev, pm_message_t state),
1313 			  char *info)
1314 {
1315 	int error;
1316 	ktime_t calltime;
1317 
1318 	calltime = initcall_debug_start(dev);
1319 
1320 	trace_device_pm_callback_start(dev, info, state.event);
1321 	error = cb(dev, state);
1322 	trace_device_pm_callback_end(dev, error);
1323 	suspend_report_result(cb, error);
1324 
1325 	initcall_debug_report(dev, calltime, error, state, info);
1326 
1327 	return error;
1328 }
1329 
1330 /**
1331  * device_suspend - Execute "suspend" callbacks for given device.
1332  * @dev: Device to handle.
1333  * @state: PM transition of the system being carried out.
1334  * @async: If true, the device is being suspended asynchronously.
1335  */
__device_suspend(struct device * dev,pm_message_t state,bool async)1336 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1337 {
1338 	pm_callback_t callback = NULL;
1339 	char *info = NULL;
1340 	int error = 0;
1341 	char suspend_abort[MAX_SUSPEND_ABORT_LEN];
1342 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1343 
1344 	dpm_wait_for_children(dev, async);
1345 
1346 	if (async_error)
1347 		goto Complete;
1348 
1349 	/*
1350 	 * If a device configured to wake up the system from sleep states
1351 	 * has been suspended at run time and there's a resume request pending
1352 	 * for it, this is equivalent to the device signaling wakeup, so the
1353 	 * system suspend operation should be aborted.
1354 	 */
1355 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1356 		pm_wakeup_event(dev, 0);
1357 
1358 	if (pm_wakeup_pending()) {
1359 		pm_get_active_wakeup_sources(suspend_abort,
1360 			MAX_SUSPEND_ABORT_LEN);
1361 		log_suspend_abort_reason(suspend_abort);
1362 		async_error = -EBUSY;
1363 		goto Complete;
1364 	}
1365 
1366 	if (dev->power.syscore)
1367 		goto Complete;
1368 
1369 	if (dev->power.direct_complete) {
1370 		if (pm_runtime_status_suspended(dev)) {
1371 			pm_runtime_disable(dev);
1372 			if (pm_runtime_suspended_if_enabled(dev))
1373 				goto Complete;
1374 
1375 			pm_runtime_enable(dev);
1376 		}
1377 		dev->power.direct_complete = false;
1378 	}
1379 
1380 	dpm_watchdog_set(&wd, dev);
1381 	device_lock(dev);
1382 
1383 	if (dev->pm_domain) {
1384 		info = "power domain ";
1385 		callback = pm_op(&dev->pm_domain->ops, state);
1386 		goto Run;
1387 	}
1388 
1389 	if (dev->type && dev->type->pm) {
1390 		info = "type ";
1391 		callback = pm_op(dev->type->pm, state);
1392 		goto Run;
1393 	}
1394 
1395 	if (dev->class) {
1396 		if (dev->class->pm) {
1397 			info = "class ";
1398 			callback = pm_op(dev->class->pm, state);
1399 			goto Run;
1400 		} else if (dev->class->suspend) {
1401 			pm_dev_dbg(dev, state, "legacy class ");
1402 			error = legacy_suspend(dev, state, dev->class->suspend,
1403 						"legacy class ");
1404 			goto End;
1405 		}
1406 	}
1407 
1408 	if (dev->bus) {
1409 		if (dev->bus->pm) {
1410 			info = "bus ";
1411 			callback = pm_op(dev->bus->pm, state);
1412 		} else if (dev->bus->suspend) {
1413 			pm_dev_dbg(dev, state, "legacy bus ");
1414 			error = legacy_suspend(dev, state, dev->bus->suspend,
1415 						"legacy bus ");
1416 			goto End;
1417 		}
1418 	}
1419 
1420  Run:
1421 	if (!callback && dev->driver && dev->driver->pm) {
1422 		info = "driver ";
1423 		callback = pm_op(dev->driver->pm, state);
1424 	}
1425 
1426 	error = dpm_run_callback(callback, dev, state, info);
1427 
1428  End:
1429 	if (!error) {
1430 		struct device *parent = dev->parent;
1431 
1432 		dev->power.is_suspended = true;
1433 		if (parent) {
1434 			spin_lock_irq(&parent->power.lock);
1435 
1436 			dev->parent->power.direct_complete = false;
1437 			if (dev->power.wakeup_path
1438 			    && !dev->parent->power.ignore_children)
1439 				dev->parent->power.wakeup_path = true;
1440 
1441 			spin_unlock_irq(&parent->power.lock);
1442 		}
1443 	}
1444 
1445 	device_unlock(dev);
1446 	dpm_watchdog_clear(&wd);
1447 
1448  Complete:
1449 	complete_all(&dev->power.completion);
1450 	if (error)
1451 		async_error = error;
1452 
1453 	return error;
1454 }
1455 
async_suspend(void * data,async_cookie_t cookie)1456 static void async_suspend(void *data, async_cookie_t cookie)
1457 {
1458 	struct device *dev = (struct device *)data;
1459 	int error;
1460 
1461 	error = __device_suspend(dev, pm_transition, true);
1462 	if (error) {
1463 		dpm_save_failed_dev(dev_name(dev));
1464 		pm_dev_err(dev, pm_transition, " async", error);
1465 	}
1466 
1467 	put_device(dev);
1468 }
1469 
device_suspend(struct device * dev)1470 static int device_suspend(struct device *dev)
1471 {
1472 	reinit_completion(&dev->power.completion);
1473 
1474 	if (pm_async_enabled && dev->power.async_suspend) {
1475 		get_device(dev);
1476 		async_schedule(async_suspend, dev);
1477 		return 0;
1478 	}
1479 
1480 	return __device_suspend(dev, pm_transition, false);
1481 }
1482 
1483 /**
1484  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1485  * @state: PM transition of the system being carried out.
1486  */
dpm_suspend(pm_message_t state)1487 int dpm_suspend(pm_message_t state)
1488 {
1489 	ktime_t starttime = ktime_get();
1490 	int error = 0;
1491 
1492 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1493 	might_sleep();
1494 
1495 	cpufreq_suspend();
1496 
1497 	mutex_lock(&dpm_list_mtx);
1498 	pm_transition = state;
1499 	async_error = 0;
1500 	while (!list_empty(&dpm_prepared_list)) {
1501 		struct device *dev = to_device(dpm_prepared_list.prev);
1502 
1503 		get_device(dev);
1504 		mutex_unlock(&dpm_list_mtx);
1505 
1506 		error = device_suspend(dev);
1507 
1508 		mutex_lock(&dpm_list_mtx);
1509 		if (error) {
1510 			pm_dev_err(dev, state, "", error);
1511 			dpm_save_failed_dev(dev_name(dev));
1512 			put_device(dev);
1513 			break;
1514 		}
1515 		if (!list_empty(&dev->power.entry))
1516 			list_move(&dev->power.entry, &dpm_suspended_list);
1517 		put_device(dev);
1518 		if (async_error)
1519 			break;
1520 	}
1521 	mutex_unlock(&dpm_list_mtx);
1522 	async_synchronize_full();
1523 	if (!error)
1524 		error = async_error;
1525 	if (error) {
1526 		suspend_stats.failed_suspend++;
1527 		dpm_save_failed_step(SUSPEND_SUSPEND);
1528 	} else
1529 		dpm_show_time(starttime, state, NULL);
1530 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1531 	return error;
1532 }
1533 
1534 /**
1535  * device_prepare - Prepare a device for system power transition.
1536  * @dev: Device to handle.
1537  * @state: PM transition of the system being carried out.
1538  *
1539  * Execute the ->prepare() callback(s) for given device.  No new children of the
1540  * device may be registered after this function has returned.
1541  */
device_prepare(struct device * dev,pm_message_t state)1542 static int device_prepare(struct device *dev, pm_message_t state)
1543 {
1544 	int (*callback)(struct device *) = NULL;
1545 	char *info = NULL;
1546 	int ret = 0;
1547 
1548 	if (dev->power.syscore)
1549 		return 0;
1550 
1551 	/*
1552 	 * If a device's parent goes into runtime suspend at the wrong time,
1553 	 * it won't be possible to resume the device.  To prevent this we
1554 	 * block runtime suspend here, during the prepare phase, and allow
1555 	 * it again during the complete phase.
1556 	 */
1557 	pm_runtime_get_noresume(dev);
1558 
1559 	device_lock(dev);
1560 
1561 	dev->power.wakeup_path = device_may_wakeup(dev);
1562 
1563 	if (dev->pm_domain) {
1564 		info = "preparing power domain ";
1565 		callback = dev->pm_domain->ops.prepare;
1566 	} else if (dev->type && dev->type->pm) {
1567 		info = "preparing type ";
1568 		callback = dev->type->pm->prepare;
1569 	} else if (dev->class && dev->class->pm) {
1570 		info = "preparing class ";
1571 		callback = dev->class->pm->prepare;
1572 	} else if (dev->bus && dev->bus->pm) {
1573 		info = "preparing bus ";
1574 		callback = dev->bus->pm->prepare;
1575 	}
1576 
1577 	if (!callback && dev->driver && dev->driver->pm) {
1578 		info = "preparing driver ";
1579 		callback = dev->driver->pm->prepare;
1580 	}
1581 
1582 	if (callback) {
1583 		trace_device_pm_callback_start(dev, info, state.event);
1584 		ret = callback(dev);
1585 		trace_device_pm_callback_end(dev, ret);
1586 	}
1587 
1588 	device_unlock(dev);
1589 
1590 	if (ret < 0) {
1591 		suspend_report_result(callback, ret);
1592 		pm_runtime_put(dev);
1593 		return ret;
1594 	}
1595 	/*
1596 	 * A positive return value from ->prepare() means "this device appears
1597 	 * to be runtime-suspended and its state is fine, so if it really is
1598 	 * runtime-suspended, you can leave it in that state provided that you
1599 	 * will do the same thing with all of its descendants".  This only
1600 	 * applies to suspend transitions, however.
1601 	 */
1602 	spin_lock_irq(&dev->power.lock);
1603 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1604 	spin_unlock_irq(&dev->power.lock);
1605 	return 0;
1606 }
1607 
1608 /**
1609  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1610  * @state: PM transition of the system being carried out.
1611  *
1612  * Execute the ->prepare() callback(s) for all devices.
1613  */
dpm_prepare(pm_message_t state)1614 int dpm_prepare(pm_message_t state)
1615 {
1616 	int error = 0;
1617 
1618 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1619 	might_sleep();
1620 
1621 	mutex_lock(&dpm_list_mtx);
1622 	while (!list_empty(&dpm_list)) {
1623 		struct device *dev = to_device(dpm_list.next);
1624 
1625 		get_device(dev);
1626 		mutex_unlock(&dpm_list_mtx);
1627 
1628 		error = device_prepare(dev, state);
1629 
1630 		mutex_lock(&dpm_list_mtx);
1631 		if (error) {
1632 			if (error == -EAGAIN) {
1633 				put_device(dev);
1634 				error = 0;
1635 				continue;
1636 			}
1637 			printk(KERN_INFO "PM: Device %s not prepared "
1638 				"for power transition: code %d\n",
1639 				dev_name(dev), error);
1640 			put_device(dev);
1641 			break;
1642 		}
1643 		dev->power.is_prepared = true;
1644 		if (!list_empty(&dev->power.entry))
1645 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1646 		put_device(dev);
1647 	}
1648 	mutex_unlock(&dpm_list_mtx);
1649 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1650 	return error;
1651 }
1652 
1653 /**
1654  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1655  * @state: PM transition of the system being carried out.
1656  *
1657  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1658  * callbacks for them.
1659  */
dpm_suspend_start(pm_message_t state)1660 int dpm_suspend_start(pm_message_t state)
1661 {
1662 	int error;
1663 
1664 	error = dpm_prepare(state);
1665 	if (error) {
1666 		suspend_stats.failed_prepare++;
1667 		dpm_save_failed_step(SUSPEND_PREPARE);
1668 	} else
1669 		error = dpm_suspend(state);
1670 	return error;
1671 }
1672 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1673 
__suspend_report_result(const char * function,void * fn,int ret)1674 void __suspend_report_result(const char *function, void *fn, int ret)
1675 {
1676 	if (ret)
1677 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1678 }
1679 EXPORT_SYMBOL_GPL(__suspend_report_result);
1680 
1681 /**
1682  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1683  * @dev: Device to wait for.
1684  * @subordinate: Device that needs to wait for @dev.
1685  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1686 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1687 {
1688 	dpm_wait(dev, subordinate->power.async_suspend);
1689 	return async_error;
1690 }
1691 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1692 
1693 /**
1694  * dpm_for_each_dev - device iterator.
1695  * @data: data for the callback.
1696  * @fn: function to be called for each device.
1697  *
1698  * Iterate over devices in dpm_list, and call @fn for each device,
1699  * passing it @data.
1700  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1701 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1702 {
1703 	struct device *dev;
1704 
1705 	if (!fn)
1706 		return;
1707 
1708 	device_pm_lock();
1709 	list_for_each_entry(dev, &dpm_list, power.entry)
1710 		fn(dev, data);
1711 	device_pm_unlock();
1712 }
1713 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1714