1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 #include <linux/wakeup_reason.h>
36
37 #include "../base.h"
38 #include "power.h"
39
40 typedef int (*pm_callback_t)(struct device *);
41
42 /*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61
62 static int async_error;
63
pm_verb(int event)64 static char *pm_verb(int event)
65 {
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86 }
87
88 /**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
device_pm_sleep_init(struct device * dev)92 void device_pm_sleep_init(struct device *dev)
93 {
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102 }
103
104 /**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
device_pm_lock(void)107 void device_pm_lock(void)
108 {
109 mutex_lock(&dpm_list_mtx);
110 }
111
112 /**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
device_pm_unlock(void)115 void device_pm_unlock(void)
116 {
117 mutex_unlock(&dpm_list_mtx);
118 }
119
120 /**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
device_pm_add(struct device * dev)124 void device_pm_add(struct device *dev)
125 {
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 mutex_lock(&dpm_list_mtx);
129 if (dev->parent && dev->parent->power.is_prepared)
130 dev_warn(dev, "parent %s should not be sleeping\n",
131 dev_name(dev->parent));
132 list_add_tail(&dev->power.entry, &dpm_list);
133 mutex_unlock(&dpm_list_mtx);
134 }
135
136 /**
137 * device_pm_remove - Remove a device from the PM core's list of active devices.
138 * @dev: Device to be removed from the list.
139 */
device_pm_remove(struct device * dev)140 void device_pm_remove(struct device *dev)
141 {
142 pr_debug("PM: Removing info for %s:%s\n",
143 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
144 complete_all(&dev->power.completion);
145 mutex_lock(&dpm_list_mtx);
146 list_del_init(&dev->power.entry);
147 mutex_unlock(&dpm_list_mtx);
148 device_wakeup_disable(dev);
149 pm_runtime_remove(dev);
150 }
151
152 /**
153 * device_pm_move_before - Move device in the PM core's list of active devices.
154 * @deva: Device to move in dpm_list.
155 * @devb: Device @deva should come before.
156 */
device_pm_move_before(struct device * deva,struct device * devb)157 void device_pm_move_before(struct device *deva, struct device *devb)
158 {
159 pr_debug("PM: Moving %s:%s before %s:%s\n",
160 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
161 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
162 /* Delete deva from dpm_list and reinsert before devb. */
163 list_move_tail(&deva->power.entry, &devb->power.entry);
164 }
165
166 /**
167 * device_pm_move_after - Move device in the PM core's list of active devices.
168 * @deva: Device to move in dpm_list.
169 * @devb: Device @deva should come after.
170 */
device_pm_move_after(struct device * deva,struct device * devb)171 void device_pm_move_after(struct device *deva, struct device *devb)
172 {
173 pr_debug("PM: Moving %s:%s after %s:%s\n",
174 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
175 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
176 /* Delete deva from dpm_list and reinsert after devb. */
177 list_move(&deva->power.entry, &devb->power.entry);
178 }
179
180 /**
181 * device_pm_move_last - Move device to end of the PM core's list of devices.
182 * @dev: Device to move in dpm_list.
183 */
device_pm_move_last(struct device * dev)184 void device_pm_move_last(struct device *dev)
185 {
186 pr_debug("PM: Moving %s:%s to end of list\n",
187 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
188 list_move_tail(&dev->power.entry, &dpm_list);
189 }
190
initcall_debug_start(struct device * dev)191 static ktime_t initcall_debug_start(struct device *dev)
192 {
193 ktime_t calltime = ktime_set(0, 0);
194
195 if (pm_print_times_enabled) {
196 pr_info("calling %s+ @ %i, parent: %s\n",
197 dev_name(dev), task_pid_nr(current),
198 dev->parent ? dev_name(dev->parent) : "none");
199 calltime = ktime_get();
200 }
201
202 return calltime;
203 }
204
initcall_debug_report(struct device * dev,ktime_t calltime,int error,pm_message_t state,char * info)205 static void initcall_debug_report(struct device *dev, ktime_t calltime,
206 int error, pm_message_t state, char *info)
207 {
208 ktime_t rettime;
209 s64 nsecs;
210
211 rettime = ktime_get();
212 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
213
214 if (pm_print_times_enabled) {
215 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
216 error, (unsigned long long)nsecs >> 10);
217 }
218 }
219
220 /**
221 * dpm_wait - Wait for a PM operation to complete.
222 * @dev: Device to wait for.
223 * @async: If unset, wait only if the device's power.async_suspend flag is set.
224 */
dpm_wait(struct device * dev,bool async)225 static void dpm_wait(struct device *dev, bool async)
226 {
227 if (!dev)
228 return;
229
230 if (async || (pm_async_enabled && dev->power.async_suspend))
231 wait_for_completion(&dev->power.completion);
232 }
233
dpm_wait_fn(struct device * dev,void * async_ptr)234 static int dpm_wait_fn(struct device *dev, void *async_ptr)
235 {
236 dpm_wait(dev, *((bool *)async_ptr));
237 return 0;
238 }
239
dpm_wait_for_children(struct device * dev,bool async)240 static void dpm_wait_for_children(struct device *dev, bool async)
241 {
242 device_for_each_child(dev, &async, dpm_wait_fn);
243 }
244
245 /**
246 * pm_op - Return the PM operation appropriate for given PM event.
247 * @ops: PM operations to choose from.
248 * @state: PM transition of the system being carried out.
249 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)250 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
251 {
252 switch (state.event) {
253 #ifdef CONFIG_SUSPEND
254 case PM_EVENT_SUSPEND:
255 return ops->suspend;
256 case PM_EVENT_RESUME:
257 return ops->resume;
258 #endif /* CONFIG_SUSPEND */
259 #ifdef CONFIG_HIBERNATE_CALLBACKS
260 case PM_EVENT_FREEZE:
261 case PM_EVENT_QUIESCE:
262 return ops->freeze;
263 case PM_EVENT_HIBERNATE:
264 return ops->poweroff;
265 case PM_EVENT_THAW:
266 case PM_EVENT_RECOVER:
267 return ops->thaw;
268 break;
269 case PM_EVENT_RESTORE:
270 return ops->restore;
271 #endif /* CONFIG_HIBERNATE_CALLBACKS */
272 }
273
274 return NULL;
275 }
276
277 /**
278 * pm_late_early_op - Return the PM operation appropriate for given PM event.
279 * @ops: PM operations to choose from.
280 * @state: PM transition of the system being carried out.
281 *
282 * Runtime PM is disabled for @dev while this function is being executed.
283 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)284 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
285 pm_message_t state)
286 {
287 switch (state.event) {
288 #ifdef CONFIG_SUSPEND
289 case PM_EVENT_SUSPEND:
290 return ops->suspend_late;
291 case PM_EVENT_RESUME:
292 return ops->resume_early;
293 #endif /* CONFIG_SUSPEND */
294 #ifdef CONFIG_HIBERNATE_CALLBACKS
295 case PM_EVENT_FREEZE:
296 case PM_EVENT_QUIESCE:
297 return ops->freeze_late;
298 case PM_EVENT_HIBERNATE:
299 return ops->poweroff_late;
300 case PM_EVENT_THAW:
301 case PM_EVENT_RECOVER:
302 return ops->thaw_early;
303 case PM_EVENT_RESTORE:
304 return ops->restore_early;
305 #endif /* CONFIG_HIBERNATE_CALLBACKS */
306 }
307
308 return NULL;
309 }
310
311 /**
312 * pm_noirq_op - Return the PM operation appropriate for given PM event.
313 * @ops: PM operations to choose from.
314 * @state: PM transition of the system being carried out.
315 *
316 * The driver of @dev will not receive interrupts while this function is being
317 * executed.
318 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)319 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
320 {
321 switch (state.event) {
322 #ifdef CONFIG_SUSPEND
323 case PM_EVENT_SUSPEND:
324 return ops->suspend_noirq;
325 case PM_EVENT_RESUME:
326 return ops->resume_noirq;
327 #endif /* CONFIG_SUSPEND */
328 #ifdef CONFIG_HIBERNATE_CALLBACKS
329 case PM_EVENT_FREEZE:
330 case PM_EVENT_QUIESCE:
331 return ops->freeze_noirq;
332 case PM_EVENT_HIBERNATE:
333 return ops->poweroff_noirq;
334 case PM_EVENT_THAW:
335 case PM_EVENT_RECOVER:
336 return ops->thaw_noirq;
337 case PM_EVENT_RESTORE:
338 return ops->restore_noirq;
339 #endif /* CONFIG_HIBERNATE_CALLBACKS */
340 }
341
342 return NULL;
343 }
344
pm_dev_dbg(struct device * dev,pm_message_t state,char * info)345 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
346 {
347 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
348 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
349 ", may wakeup" : "");
350 }
351
pm_dev_err(struct device * dev,pm_message_t state,char * info,int error)352 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
353 int error)
354 {
355 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
356 dev_name(dev), pm_verb(state.event), info, error);
357 }
358
dpm_show_time(ktime_t starttime,pm_message_t state,char * info)359 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
360 {
361 ktime_t calltime;
362 u64 usecs64;
363 int usecs;
364
365 calltime = ktime_get();
366 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
367 do_div(usecs64, NSEC_PER_USEC);
368 usecs = usecs64;
369 if (usecs == 0)
370 usecs = 1;
371 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
372 info ?: "", info ? " " : "", pm_verb(state.event),
373 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
374 }
375
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,char * info)376 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
377 pm_message_t state, char *info)
378 {
379 ktime_t calltime;
380 int error;
381
382 if (!cb)
383 return 0;
384
385 calltime = initcall_debug_start(dev);
386
387 pm_dev_dbg(dev, state, info);
388 trace_device_pm_callback_start(dev, info, state.event);
389 error = cb(dev);
390 trace_device_pm_callback_end(dev, error);
391 suspend_report_result(cb, error);
392
393 initcall_debug_report(dev, calltime, error, state, info);
394
395 return error;
396 }
397
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 struct device *dev;
401 struct task_struct *tsk;
402 struct timer_list timer;
403 };
404
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 struct dpm_watchdog wd
407
408 /**
409 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410 * @data: Watchdog object address.
411 *
412 * Called when a driver has timed out suspending or resuming.
413 * There's not much we can do here to recover so panic() to
414 * capture a crash-dump in pstore.
415 */
dpm_watchdog_handler(unsigned long data)416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 struct dpm_watchdog *wd = (void *)data;
419
420 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 show_stack(wd->tsk, NULL);
422 panic("%s %s: unrecoverable failure\n",
423 dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425
426 /**
427 * dpm_watchdog_set - Enable pm watchdog for given device.
428 * @wd: Watchdog. Must be allocated on the stack.
429 * @dev: Device to handle.
430 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 struct timer_list *timer = &wd->timer;
434
435 wd->dev = dev;
436 wd->tsk = current;
437
438 init_timer_on_stack(timer);
439 /* use same timeout value for both suspend and resume */
440 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 timer->function = dpm_watchdog_handler;
442 timer->data = (unsigned long)wd;
443 add_timer(timer);
444 }
445
446 /**
447 * dpm_watchdog_clear - Disable suspend/resume watchdog.
448 * @wd: Watchdog to disable.
449 */
dpm_watchdog_clear(struct dpm_watchdog * wd)450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 struct timer_list *timer = &wd->timer;
453
454 del_timer_sync(timer);
455 destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462
463 /*------------------------- Resume routines -------------------------*/
464
465 /**
466 * device_resume_noirq - Execute an "early resume" callback for given device.
467 * @dev: Device to handle.
468 * @state: PM transition of the system being carried out.
469 * @async: If true, the device is being resumed asynchronously.
470 *
471 * The driver of @dev will not receive interrupts while this function is being
472 * executed.
473 */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)474 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
475 {
476 pm_callback_t callback = NULL;
477 char *info = NULL;
478 int error = 0;
479
480 TRACE_DEVICE(dev);
481 TRACE_RESUME(0);
482
483 if (dev->power.syscore || dev->power.direct_complete)
484 goto Out;
485
486 if (!dev->power.is_noirq_suspended)
487 goto Out;
488
489 dpm_wait(dev->parent, async);
490
491 if (dev->pm_domain) {
492 info = "noirq power domain ";
493 callback = pm_noirq_op(&dev->pm_domain->ops, state);
494 } else if (dev->type && dev->type->pm) {
495 info = "noirq type ";
496 callback = pm_noirq_op(dev->type->pm, state);
497 } else if (dev->class && dev->class->pm) {
498 info = "noirq class ";
499 callback = pm_noirq_op(dev->class->pm, state);
500 } else if (dev->bus && dev->bus->pm) {
501 info = "noirq bus ";
502 callback = pm_noirq_op(dev->bus->pm, state);
503 }
504
505 if (!callback && dev->driver && dev->driver->pm) {
506 info = "noirq driver ";
507 callback = pm_noirq_op(dev->driver->pm, state);
508 }
509
510 error = dpm_run_callback(callback, dev, state, info);
511 dev->power.is_noirq_suspended = false;
512
513 Out:
514 complete_all(&dev->power.completion);
515 TRACE_RESUME(error);
516 return error;
517 }
518
is_async(struct device * dev)519 static bool is_async(struct device *dev)
520 {
521 return dev->power.async_suspend && pm_async_enabled
522 && !pm_trace_is_enabled();
523 }
524
async_resume_noirq(void * data,async_cookie_t cookie)525 static void async_resume_noirq(void *data, async_cookie_t cookie)
526 {
527 struct device *dev = (struct device *)data;
528 int error;
529
530 error = device_resume_noirq(dev, pm_transition, true);
531 if (error)
532 pm_dev_err(dev, pm_transition, " async", error);
533
534 put_device(dev);
535 }
536
537 /**
538 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
539 * @state: PM transition of the system being carried out.
540 *
541 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
542 * enable device drivers to receive interrupts.
543 */
dpm_resume_noirq(pm_message_t state)544 void dpm_resume_noirq(pm_message_t state)
545 {
546 struct device *dev;
547 ktime_t starttime = ktime_get();
548
549 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
550 mutex_lock(&dpm_list_mtx);
551 pm_transition = state;
552
553 /*
554 * Advanced the async threads upfront,
555 * in case the starting of async threads is
556 * delayed by non-async resuming devices.
557 */
558 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
559 reinit_completion(&dev->power.completion);
560 if (is_async(dev)) {
561 get_device(dev);
562 async_schedule(async_resume_noirq, dev);
563 }
564 }
565
566 while (!list_empty(&dpm_noirq_list)) {
567 dev = to_device(dpm_noirq_list.next);
568 get_device(dev);
569 list_move_tail(&dev->power.entry, &dpm_late_early_list);
570 mutex_unlock(&dpm_list_mtx);
571
572 if (!is_async(dev)) {
573 int error;
574
575 error = device_resume_noirq(dev, state, false);
576 if (error) {
577 suspend_stats.failed_resume_noirq++;
578 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
579 dpm_save_failed_dev(dev_name(dev));
580 pm_dev_err(dev, state, " noirq", error);
581 }
582 }
583
584 mutex_lock(&dpm_list_mtx);
585 put_device(dev);
586 }
587 mutex_unlock(&dpm_list_mtx);
588 async_synchronize_full();
589 dpm_show_time(starttime, state, "noirq");
590 resume_device_irqs();
591 cpuidle_resume();
592 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
593 }
594
595 /**
596 * device_resume_early - Execute an "early resume" callback for given device.
597 * @dev: Device to handle.
598 * @state: PM transition of the system being carried out.
599 * @async: If true, the device is being resumed asynchronously.
600 *
601 * Runtime PM is disabled for @dev while this function is being executed.
602 */
device_resume_early(struct device * dev,pm_message_t state,bool async)603 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
604 {
605 pm_callback_t callback = NULL;
606 char *info = NULL;
607 int error = 0;
608
609 TRACE_DEVICE(dev);
610 TRACE_RESUME(0);
611
612 if (dev->power.syscore || dev->power.direct_complete)
613 goto Out;
614
615 if (!dev->power.is_late_suspended)
616 goto Out;
617
618 dpm_wait(dev->parent, async);
619
620 if (dev->pm_domain) {
621 info = "early power domain ";
622 callback = pm_late_early_op(&dev->pm_domain->ops, state);
623 } else if (dev->type && dev->type->pm) {
624 info = "early type ";
625 callback = pm_late_early_op(dev->type->pm, state);
626 } else if (dev->class && dev->class->pm) {
627 info = "early class ";
628 callback = pm_late_early_op(dev->class->pm, state);
629 } else if (dev->bus && dev->bus->pm) {
630 info = "early bus ";
631 callback = pm_late_early_op(dev->bus->pm, state);
632 }
633
634 if (!callback && dev->driver && dev->driver->pm) {
635 info = "early driver ";
636 callback = pm_late_early_op(dev->driver->pm, state);
637 }
638
639 error = dpm_run_callback(callback, dev, state, info);
640 dev->power.is_late_suspended = false;
641
642 Out:
643 TRACE_RESUME(error);
644
645 pm_runtime_enable(dev);
646 complete_all(&dev->power.completion);
647 return error;
648 }
649
async_resume_early(void * data,async_cookie_t cookie)650 static void async_resume_early(void *data, async_cookie_t cookie)
651 {
652 struct device *dev = (struct device *)data;
653 int error;
654
655 error = device_resume_early(dev, pm_transition, true);
656 if (error)
657 pm_dev_err(dev, pm_transition, " async", error);
658
659 put_device(dev);
660 }
661
662 /**
663 * dpm_resume_early - Execute "early resume" callbacks for all devices.
664 * @state: PM transition of the system being carried out.
665 */
dpm_resume_early(pm_message_t state)666 void dpm_resume_early(pm_message_t state)
667 {
668 struct device *dev;
669 ktime_t starttime = ktime_get();
670
671 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
672 mutex_lock(&dpm_list_mtx);
673 pm_transition = state;
674
675 /*
676 * Advanced the async threads upfront,
677 * in case the starting of async threads is
678 * delayed by non-async resuming devices.
679 */
680 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
681 reinit_completion(&dev->power.completion);
682 if (is_async(dev)) {
683 get_device(dev);
684 async_schedule(async_resume_early, dev);
685 }
686 }
687
688 while (!list_empty(&dpm_late_early_list)) {
689 dev = to_device(dpm_late_early_list.next);
690 get_device(dev);
691 list_move_tail(&dev->power.entry, &dpm_suspended_list);
692 mutex_unlock(&dpm_list_mtx);
693
694 if (!is_async(dev)) {
695 int error;
696
697 error = device_resume_early(dev, state, false);
698 if (error) {
699 suspend_stats.failed_resume_early++;
700 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
701 dpm_save_failed_dev(dev_name(dev));
702 pm_dev_err(dev, state, " early", error);
703 }
704 }
705 mutex_lock(&dpm_list_mtx);
706 put_device(dev);
707 }
708 mutex_unlock(&dpm_list_mtx);
709 async_synchronize_full();
710 dpm_show_time(starttime, state, "early");
711 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
712 }
713
714 /**
715 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
716 * @state: PM transition of the system being carried out.
717 */
dpm_resume_start(pm_message_t state)718 void dpm_resume_start(pm_message_t state)
719 {
720 dpm_resume_noirq(state);
721 dpm_resume_early(state);
722 }
723 EXPORT_SYMBOL_GPL(dpm_resume_start);
724
725 /**
726 * device_resume - Execute "resume" callbacks for given device.
727 * @dev: Device to handle.
728 * @state: PM transition of the system being carried out.
729 * @async: If true, the device is being resumed asynchronously.
730 */
device_resume(struct device * dev,pm_message_t state,bool async)731 static int device_resume(struct device *dev, pm_message_t state, bool async)
732 {
733 pm_callback_t callback = NULL;
734 char *info = NULL;
735 int error = 0;
736 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
737
738 TRACE_DEVICE(dev);
739 TRACE_RESUME(0);
740
741 if (dev->power.syscore)
742 goto Complete;
743
744 if (dev->power.direct_complete) {
745 /* Match the pm_runtime_disable() in __device_suspend(). */
746 pm_runtime_enable(dev);
747 goto Complete;
748 }
749
750 dpm_wait(dev->parent, async);
751 dpm_watchdog_set(&wd, dev);
752 device_lock(dev);
753
754 /*
755 * This is a fib. But we'll allow new children to be added below
756 * a resumed device, even if the device hasn't been completed yet.
757 */
758 dev->power.is_prepared = false;
759
760 if (!dev->power.is_suspended)
761 goto Unlock;
762
763 if (dev->pm_domain) {
764 info = "power domain ";
765 callback = pm_op(&dev->pm_domain->ops, state);
766 goto Driver;
767 }
768
769 if (dev->type && dev->type->pm) {
770 info = "type ";
771 callback = pm_op(dev->type->pm, state);
772 goto Driver;
773 }
774
775 if (dev->class) {
776 if (dev->class->pm) {
777 info = "class ";
778 callback = pm_op(dev->class->pm, state);
779 goto Driver;
780 } else if (dev->class->resume) {
781 info = "legacy class ";
782 callback = dev->class->resume;
783 goto End;
784 }
785 }
786
787 if (dev->bus) {
788 if (dev->bus->pm) {
789 info = "bus ";
790 callback = pm_op(dev->bus->pm, state);
791 } else if (dev->bus->resume) {
792 info = "legacy bus ";
793 callback = dev->bus->resume;
794 goto End;
795 }
796 }
797
798 Driver:
799 if (!callback && dev->driver && dev->driver->pm) {
800 info = "driver ";
801 callback = pm_op(dev->driver->pm, state);
802 }
803
804 End:
805 error = dpm_run_callback(callback, dev, state, info);
806 dev->power.is_suspended = false;
807
808 Unlock:
809 device_unlock(dev);
810 dpm_watchdog_clear(&wd);
811
812 Complete:
813 complete_all(&dev->power.completion);
814
815 TRACE_RESUME(error);
816
817 return error;
818 }
819
async_resume(void * data,async_cookie_t cookie)820 static void async_resume(void *data, async_cookie_t cookie)
821 {
822 struct device *dev = (struct device *)data;
823 int error;
824
825 error = device_resume(dev, pm_transition, true);
826 if (error)
827 pm_dev_err(dev, pm_transition, " async", error);
828 put_device(dev);
829 }
830
831 /**
832 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
833 * @state: PM transition of the system being carried out.
834 *
835 * Execute the appropriate "resume" callback for all devices whose status
836 * indicates that they are suspended.
837 */
dpm_resume(pm_message_t state)838 void dpm_resume(pm_message_t state)
839 {
840 struct device *dev;
841 ktime_t starttime = ktime_get();
842
843 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
844 might_sleep();
845
846 mutex_lock(&dpm_list_mtx);
847 pm_transition = state;
848 async_error = 0;
849
850 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
851 reinit_completion(&dev->power.completion);
852 if (is_async(dev)) {
853 get_device(dev);
854 async_schedule(async_resume, dev);
855 }
856 }
857
858 while (!list_empty(&dpm_suspended_list)) {
859 dev = to_device(dpm_suspended_list.next);
860 get_device(dev);
861 if (!is_async(dev)) {
862 int error;
863
864 mutex_unlock(&dpm_list_mtx);
865
866 error = device_resume(dev, state, false);
867 if (error) {
868 suspend_stats.failed_resume++;
869 dpm_save_failed_step(SUSPEND_RESUME);
870 dpm_save_failed_dev(dev_name(dev));
871 pm_dev_err(dev, state, "", error);
872 }
873
874 mutex_lock(&dpm_list_mtx);
875 }
876 if (!list_empty(&dev->power.entry))
877 list_move_tail(&dev->power.entry, &dpm_prepared_list);
878 put_device(dev);
879 }
880 mutex_unlock(&dpm_list_mtx);
881 async_synchronize_full();
882 dpm_show_time(starttime, state, NULL);
883
884 cpufreq_resume();
885 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
886 }
887
888 /**
889 * device_complete - Complete a PM transition for given device.
890 * @dev: Device to handle.
891 * @state: PM transition of the system being carried out.
892 */
device_complete(struct device * dev,pm_message_t state)893 static void device_complete(struct device *dev, pm_message_t state)
894 {
895 void (*callback)(struct device *) = NULL;
896 char *info = NULL;
897
898 if (dev->power.syscore)
899 return;
900
901 device_lock(dev);
902
903 if (dev->pm_domain) {
904 info = "completing power domain ";
905 callback = dev->pm_domain->ops.complete;
906 } else if (dev->type && dev->type->pm) {
907 info = "completing type ";
908 callback = dev->type->pm->complete;
909 } else if (dev->class && dev->class->pm) {
910 info = "completing class ";
911 callback = dev->class->pm->complete;
912 } else if (dev->bus && dev->bus->pm) {
913 info = "completing bus ";
914 callback = dev->bus->pm->complete;
915 }
916
917 if (!callback && dev->driver && dev->driver->pm) {
918 info = "completing driver ";
919 callback = dev->driver->pm->complete;
920 }
921
922 if (callback) {
923 pm_dev_dbg(dev, state, info);
924 trace_device_pm_callback_start(dev, info, state.event);
925 callback(dev);
926 trace_device_pm_callback_end(dev, 0);
927 }
928
929 device_unlock(dev);
930
931 pm_runtime_put(dev);
932 }
933
934 /**
935 * dpm_complete - Complete a PM transition for all non-sysdev devices.
936 * @state: PM transition of the system being carried out.
937 *
938 * Execute the ->complete() callbacks for all devices whose PM status is not
939 * DPM_ON (this allows new devices to be registered).
940 */
dpm_complete(pm_message_t state)941 void dpm_complete(pm_message_t state)
942 {
943 struct list_head list;
944
945 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
946 might_sleep();
947
948 INIT_LIST_HEAD(&list);
949 mutex_lock(&dpm_list_mtx);
950 while (!list_empty(&dpm_prepared_list)) {
951 struct device *dev = to_device(dpm_prepared_list.prev);
952
953 get_device(dev);
954 dev->power.is_prepared = false;
955 list_move(&dev->power.entry, &list);
956 mutex_unlock(&dpm_list_mtx);
957
958 device_complete(dev, state);
959
960 mutex_lock(&dpm_list_mtx);
961 put_device(dev);
962 }
963 list_splice(&list, &dpm_list);
964 mutex_unlock(&dpm_list_mtx);
965 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
966 }
967
968 /**
969 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
970 * @state: PM transition of the system being carried out.
971 *
972 * Execute "resume" callbacks for all devices and complete the PM transition of
973 * the system.
974 */
dpm_resume_end(pm_message_t state)975 void dpm_resume_end(pm_message_t state)
976 {
977 dpm_resume(state);
978 dpm_complete(state);
979 }
980 EXPORT_SYMBOL_GPL(dpm_resume_end);
981
982
983 /*------------------------- Suspend routines -------------------------*/
984
985 /**
986 * resume_event - Return a "resume" message for given "suspend" sleep state.
987 * @sleep_state: PM message representing a sleep state.
988 *
989 * Return a PM message representing the resume event corresponding to given
990 * sleep state.
991 */
resume_event(pm_message_t sleep_state)992 static pm_message_t resume_event(pm_message_t sleep_state)
993 {
994 switch (sleep_state.event) {
995 case PM_EVENT_SUSPEND:
996 return PMSG_RESUME;
997 case PM_EVENT_FREEZE:
998 case PM_EVENT_QUIESCE:
999 return PMSG_RECOVER;
1000 case PM_EVENT_HIBERNATE:
1001 return PMSG_RESTORE;
1002 }
1003 return PMSG_ON;
1004 }
1005
1006 /**
1007 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1008 * @dev: Device to handle.
1009 * @state: PM transition of the system being carried out.
1010 * @async: If true, the device is being suspended asynchronously.
1011 *
1012 * The driver of @dev will not receive interrupts while this function is being
1013 * executed.
1014 */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1015 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1016 {
1017 pm_callback_t callback = NULL;
1018 char *info = NULL;
1019 int error = 0;
1020
1021 if (async_error)
1022 goto Complete;
1023
1024 if (pm_wakeup_pending()) {
1025 async_error = -EBUSY;
1026 goto Complete;
1027 }
1028
1029 if (dev->power.syscore || dev->power.direct_complete)
1030 goto Complete;
1031
1032 dpm_wait_for_children(dev, async);
1033
1034 if (dev->pm_domain) {
1035 info = "noirq power domain ";
1036 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1037 } else if (dev->type && dev->type->pm) {
1038 info = "noirq type ";
1039 callback = pm_noirq_op(dev->type->pm, state);
1040 } else if (dev->class && dev->class->pm) {
1041 info = "noirq class ";
1042 callback = pm_noirq_op(dev->class->pm, state);
1043 } else if (dev->bus && dev->bus->pm) {
1044 info = "noirq bus ";
1045 callback = pm_noirq_op(dev->bus->pm, state);
1046 }
1047
1048 if (!callback && dev->driver && dev->driver->pm) {
1049 info = "noirq driver ";
1050 callback = pm_noirq_op(dev->driver->pm, state);
1051 }
1052
1053 error = dpm_run_callback(callback, dev, state, info);
1054 if (!error)
1055 dev->power.is_noirq_suspended = true;
1056 else
1057 async_error = error;
1058
1059 Complete:
1060 complete_all(&dev->power.completion);
1061 return error;
1062 }
1063
async_suspend_noirq(void * data,async_cookie_t cookie)1064 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1065 {
1066 struct device *dev = (struct device *)data;
1067 int error;
1068
1069 error = __device_suspend_noirq(dev, pm_transition, true);
1070 if (error) {
1071 dpm_save_failed_dev(dev_name(dev));
1072 pm_dev_err(dev, pm_transition, " async", error);
1073 }
1074
1075 put_device(dev);
1076 }
1077
device_suspend_noirq(struct device * dev)1078 static int device_suspend_noirq(struct device *dev)
1079 {
1080 reinit_completion(&dev->power.completion);
1081
1082 if (pm_async_enabled && dev->power.async_suspend) {
1083 get_device(dev);
1084 async_schedule(async_suspend_noirq, dev);
1085 return 0;
1086 }
1087 return __device_suspend_noirq(dev, pm_transition, false);
1088 }
1089
1090 /**
1091 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1092 * @state: PM transition of the system being carried out.
1093 *
1094 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1095 * handlers for all non-sysdev devices.
1096 */
dpm_suspend_noirq(pm_message_t state)1097 int dpm_suspend_noirq(pm_message_t state)
1098 {
1099 ktime_t starttime = ktime_get();
1100 int error = 0;
1101
1102 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1103 cpuidle_pause();
1104 suspend_device_irqs();
1105 mutex_lock(&dpm_list_mtx);
1106 pm_transition = state;
1107 async_error = 0;
1108
1109 while (!list_empty(&dpm_late_early_list)) {
1110 struct device *dev = to_device(dpm_late_early_list.prev);
1111
1112 get_device(dev);
1113 mutex_unlock(&dpm_list_mtx);
1114
1115 error = device_suspend_noirq(dev);
1116
1117 mutex_lock(&dpm_list_mtx);
1118 if (error) {
1119 pm_dev_err(dev, state, " noirq", error);
1120 dpm_save_failed_dev(dev_name(dev));
1121 put_device(dev);
1122 break;
1123 }
1124 if (!list_empty(&dev->power.entry))
1125 list_move(&dev->power.entry, &dpm_noirq_list);
1126 put_device(dev);
1127
1128 if (async_error)
1129 break;
1130 }
1131 mutex_unlock(&dpm_list_mtx);
1132 async_synchronize_full();
1133 if (!error)
1134 error = async_error;
1135
1136 if (error) {
1137 suspend_stats.failed_suspend_noirq++;
1138 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1139 dpm_resume_noirq(resume_event(state));
1140 } else {
1141 dpm_show_time(starttime, state, "noirq");
1142 }
1143 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1144 return error;
1145 }
1146
1147 /**
1148 * device_suspend_late - Execute a "late suspend" callback for given device.
1149 * @dev: Device to handle.
1150 * @state: PM transition of the system being carried out.
1151 * @async: If true, the device is being suspended asynchronously.
1152 *
1153 * Runtime PM is disabled for @dev while this function is being executed.
1154 */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1155 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1156 {
1157 pm_callback_t callback = NULL;
1158 char *info = NULL;
1159 int error = 0;
1160
1161 __pm_runtime_disable(dev, false);
1162
1163 if (async_error)
1164 goto Complete;
1165
1166 if (pm_wakeup_pending()) {
1167 async_error = -EBUSY;
1168 goto Complete;
1169 }
1170
1171 if (dev->power.syscore || dev->power.direct_complete)
1172 goto Complete;
1173
1174 dpm_wait_for_children(dev, async);
1175
1176 if (dev->pm_domain) {
1177 info = "late power domain ";
1178 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1179 } else if (dev->type && dev->type->pm) {
1180 info = "late type ";
1181 callback = pm_late_early_op(dev->type->pm, state);
1182 } else if (dev->class && dev->class->pm) {
1183 info = "late class ";
1184 callback = pm_late_early_op(dev->class->pm, state);
1185 } else if (dev->bus && dev->bus->pm) {
1186 info = "late bus ";
1187 callback = pm_late_early_op(dev->bus->pm, state);
1188 }
1189
1190 if (!callback && dev->driver && dev->driver->pm) {
1191 info = "late driver ";
1192 callback = pm_late_early_op(dev->driver->pm, state);
1193 }
1194
1195 error = dpm_run_callback(callback, dev, state, info);
1196 if (!error)
1197 dev->power.is_late_suspended = true;
1198 else
1199 async_error = error;
1200
1201 Complete:
1202 complete_all(&dev->power.completion);
1203 return error;
1204 }
1205
async_suspend_late(void * data,async_cookie_t cookie)1206 static void async_suspend_late(void *data, async_cookie_t cookie)
1207 {
1208 struct device *dev = (struct device *)data;
1209 int error;
1210
1211 error = __device_suspend_late(dev, pm_transition, true);
1212 if (error) {
1213 dpm_save_failed_dev(dev_name(dev));
1214 pm_dev_err(dev, pm_transition, " async", error);
1215 }
1216 put_device(dev);
1217 }
1218
device_suspend_late(struct device * dev)1219 static int device_suspend_late(struct device *dev)
1220 {
1221 reinit_completion(&dev->power.completion);
1222
1223 if (pm_async_enabled && dev->power.async_suspend) {
1224 get_device(dev);
1225 async_schedule(async_suspend_late, dev);
1226 return 0;
1227 }
1228
1229 return __device_suspend_late(dev, pm_transition, false);
1230 }
1231
1232 /**
1233 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1234 * @state: PM transition of the system being carried out.
1235 */
dpm_suspend_late(pm_message_t state)1236 int dpm_suspend_late(pm_message_t state)
1237 {
1238 ktime_t starttime = ktime_get();
1239 int error = 0;
1240
1241 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1242 mutex_lock(&dpm_list_mtx);
1243 pm_transition = state;
1244 async_error = 0;
1245
1246 while (!list_empty(&dpm_suspended_list)) {
1247 struct device *dev = to_device(dpm_suspended_list.prev);
1248
1249 get_device(dev);
1250 mutex_unlock(&dpm_list_mtx);
1251
1252 error = device_suspend_late(dev);
1253
1254 mutex_lock(&dpm_list_mtx);
1255 if (!list_empty(&dev->power.entry))
1256 list_move(&dev->power.entry, &dpm_late_early_list);
1257
1258 if (error) {
1259 pm_dev_err(dev, state, " late", error);
1260 dpm_save_failed_dev(dev_name(dev));
1261 put_device(dev);
1262 break;
1263 }
1264 put_device(dev);
1265
1266 if (async_error)
1267 break;
1268 }
1269 mutex_unlock(&dpm_list_mtx);
1270 async_synchronize_full();
1271 if (!error)
1272 error = async_error;
1273 if (error) {
1274 suspend_stats.failed_suspend_late++;
1275 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1276 dpm_resume_early(resume_event(state));
1277 } else {
1278 dpm_show_time(starttime, state, "late");
1279 }
1280 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1281 return error;
1282 }
1283
1284 /**
1285 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1286 * @state: PM transition of the system being carried out.
1287 */
dpm_suspend_end(pm_message_t state)1288 int dpm_suspend_end(pm_message_t state)
1289 {
1290 int error = dpm_suspend_late(state);
1291 if (error)
1292 return error;
1293
1294 error = dpm_suspend_noirq(state);
1295 if (error) {
1296 dpm_resume_early(resume_event(state));
1297 return error;
1298 }
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1303
1304 /**
1305 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1306 * @dev: Device to suspend.
1307 * @state: PM transition of the system being carried out.
1308 * @cb: Suspend callback to execute.
1309 * @info: string description of caller.
1310 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),char * info)1311 static int legacy_suspend(struct device *dev, pm_message_t state,
1312 int (*cb)(struct device *dev, pm_message_t state),
1313 char *info)
1314 {
1315 int error;
1316 ktime_t calltime;
1317
1318 calltime = initcall_debug_start(dev);
1319
1320 trace_device_pm_callback_start(dev, info, state.event);
1321 error = cb(dev, state);
1322 trace_device_pm_callback_end(dev, error);
1323 suspend_report_result(cb, error);
1324
1325 initcall_debug_report(dev, calltime, error, state, info);
1326
1327 return error;
1328 }
1329
1330 /**
1331 * device_suspend - Execute "suspend" callbacks for given device.
1332 * @dev: Device to handle.
1333 * @state: PM transition of the system being carried out.
1334 * @async: If true, the device is being suspended asynchronously.
1335 */
__device_suspend(struct device * dev,pm_message_t state,bool async)1336 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1337 {
1338 pm_callback_t callback = NULL;
1339 char *info = NULL;
1340 int error = 0;
1341 char suspend_abort[MAX_SUSPEND_ABORT_LEN];
1342 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1343
1344 dpm_wait_for_children(dev, async);
1345
1346 if (async_error)
1347 goto Complete;
1348
1349 /*
1350 * If a device configured to wake up the system from sleep states
1351 * has been suspended at run time and there's a resume request pending
1352 * for it, this is equivalent to the device signaling wakeup, so the
1353 * system suspend operation should be aborted.
1354 */
1355 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1356 pm_wakeup_event(dev, 0);
1357
1358 if (pm_wakeup_pending()) {
1359 pm_get_active_wakeup_sources(suspend_abort,
1360 MAX_SUSPEND_ABORT_LEN);
1361 log_suspend_abort_reason(suspend_abort);
1362 async_error = -EBUSY;
1363 goto Complete;
1364 }
1365
1366 if (dev->power.syscore)
1367 goto Complete;
1368
1369 if (dev->power.direct_complete) {
1370 if (pm_runtime_status_suspended(dev)) {
1371 pm_runtime_disable(dev);
1372 if (pm_runtime_suspended_if_enabled(dev))
1373 goto Complete;
1374
1375 pm_runtime_enable(dev);
1376 }
1377 dev->power.direct_complete = false;
1378 }
1379
1380 dpm_watchdog_set(&wd, dev);
1381 device_lock(dev);
1382
1383 if (dev->pm_domain) {
1384 info = "power domain ";
1385 callback = pm_op(&dev->pm_domain->ops, state);
1386 goto Run;
1387 }
1388
1389 if (dev->type && dev->type->pm) {
1390 info = "type ";
1391 callback = pm_op(dev->type->pm, state);
1392 goto Run;
1393 }
1394
1395 if (dev->class) {
1396 if (dev->class->pm) {
1397 info = "class ";
1398 callback = pm_op(dev->class->pm, state);
1399 goto Run;
1400 } else if (dev->class->suspend) {
1401 pm_dev_dbg(dev, state, "legacy class ");
1402 error = legacy_suspend(dev, state, dev->class->suspend,
1403 "legacy class ");
1404 goto End;
1405 }
1406 }
1407
1408 if (dev->bus) {
1409 if (dev->bus->pm) {
1410 info = "bus ";
1411 callback = pm_op(dev->bus->pm, state);
1412 } else if (dev->bus->suspend) {
1413 pm_dev_dbg(dev, state, "legacy bus ");
1414 error = legacy_suspend(dev, state, dev->bus->suspend,
1415 "legacy bus ");
1416 goto End;
1417 }
1418 }
1419
1420 Run:
1421 if (!callback && dev->driver && dev->driver->pm) {
1422 info = "driver ";
1423 callback = pm_op(dev->driver->pm, state);
1424 }
1425
1426 error = dpm_run_callback(callback, dev, state, info);
1427
1428 End:
1429 if (!error) {
1430 struct device *parent = dev->parent;
1431
1432 dev->power.is_suspended = true;
1433 if (parent) {
1434 spin_lock_irq(&parent->power.lock);
1435
1436 dev->parent->power.direct_complete = false;
1437 if (dev->power.wakeup_path
1438 && !dev->parent->power.ignore_children)
1439 dev->parent->power.wakeup_path = true;
1440
1441 spin_unlock_irq(&parent->power.lock);
1442 }
1443 }
1444
1445 device_unlock(dev);
1446 dpm_watchdog_clear(&wd);
1447
1448 Complete:
1449 complete_all(&dev->power.completion);
1450 if (error)
1451 async_error = error;
1452
1453 return error;
1454 }
1455
async_suspend(void * data,async_cookie_t cookie)1456 static void async_suspend(void *data, async_cookie_t cookie)
1457 {
1458 struct device *dev = (struct device *)data;
1459 int error;
1460
1461 error = __device_suspend(dev, pm_transition, true);
1462 if (error) {
1463 dpm_save_failed_dev(dev_name(dev));
1464 pm_dev_err(dev, pm_transition, " async", error);
1465 }
1466
1467 put_device(dev);
1468 }
1469
device_suspend(struct device * dev)1470 static int device_suspend(struct device *dev)
1471 {
1472 reinit_completion(&dev->power.completion);
1473
1474 if (pm_async_enabled && dev->power.async_suspend) {
1475 get_device(dev);
1476 async_schedule(async_suspend, dev);
1477 return 0;
1478 }
1479
1480 return __device_suspend(dev, pm_transition, false);
1481 }
1482
1483 /**
1484 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1485 * @state: PM transition of the system being carried out.
1486 */
dpm_suspend(pm_message_t state)1487 int dpm_suspend(pm_message_t state)
1488 {
1489 ktime_t starttime = ktime_get();
1490 int error = 0;
1491
1492 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1493 might_sleep();
1494
1495 cpufreq_suspend();
1496
1497 mutex_lock(&dpm_list_mtx);
1498 pm_transition = state;
1499 async_error = 0;
1500 while (!list_empty(&dpm_prepared_list)) {
1501 struct device *dev = to_device(dpm_prepared_list.prev);
1502
1503 get_device(dev);
1504 mutex_unlock(&dpm_list_mtx);
1505
1506 error = device_suspend(dev);
1507
1508 mutex_lock(&dpm_list_mtx);
1509 if (error) {
1510 pm_dev_err(dev, state, "", error);
1511 dpm_save_failed_dev(dev_name(dev));
1512 put_device(dev);
1513 break;
1514 }
1515 if (!list_empty(&dev->power.entry))
1516 list_move(&dev->power.entry, &dpm_suspended_list);
1517 put_device(dev);
1518 if (async_error)
1519 break;
1520 }
1521 mutex_unlock(&dpm_list_mtx);
1522 async_synchronize_full();
1523 if (!error)
1524 error = async_error;
1525 if (error) {
1526 suspend_stats.failed_suspend++;
1527 dpm_save_failed_step(SUSPEND_SUSPEND);
1528 } else
1529 dpm_show_time(starttime, state, NULL);
1530 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1531 return error;
1532 }
1533
1534 /**
1535 * device_prepare - Prepare a device for system power transition.
1536 * @dev: Device to handle.
1537 * @state: PM transition of the system being carried out.
1538 *
1539 * Execute the ->prepare() callback(s) for given device. No new children of the
1540 * device may be registered after this function has returned.
1541 */
device_prepare(struct device * dev,pm_message_t state)1542 static int device_prepare(struct device *dev, pm_message_t state)
1543 {
1544 int (*callback)(struct device *) = NULL;
1545 char *info = NULL;
1546 int ret = 0;
1547
1548 if (dev->power.syscore)
1549 return 0;
1550
1551 /*
1552 * If a device's parent goes into runtime suspend at the wrong time,
1553 * it won't be possible to resume the device. To prevent this we
1554 * block runtime suspend here, during the prepare phase, and allow
1555 * it again during the complete phase.
1556 */
1557 pm_runtime_get_noresume(dev);
1558
1559 device_lock(dev);
1560
1561 dev->power.wakeup_path = device_may_wakeup(dev);
1562
1563 if (dev->pm_domain) {
1564 info = "preparing power domain ";
1565 callback = dev->pm_domain->ops.prepare;
1566 } else if (dev->type && dev->type->pm) {
1567 info = "preparing type ";
1568 callback = dev->type->pm->prepare;
1569 } else if (dev->class && dev->class->pm) {
1570 info = "preparing class ";
1571 callback = dev->class->pm->prepare;
1572 } else if (dev->bus && dev->bus->pm) {
1573 info = "preparing bus ";
1574 callback = dev->bus->pm->prepare;
1575 }
1576
1577 if (!callback && dev->driver && dev->driver->pm) {
1578 info = "preparing driver ";
1579 callback = dev->driver->pm->prepare;
1580 }
1581
1582 if (callback) {
1583 trace_device_pm_callback_start(dev, info, state.event);
1584 ret = callback(dev);
1585 trace_device_pm_callback_end(dev, ret);
1586 }
1587
1588 device_unlock(dev);
1589
1590 if (ret < 0) {
1591 suspend_report_result(callback, ret);
1592 pm_runtime_put(dev);
1593 return ret;
1594 }
1595 /*
1596 * A positive return value from ->prepare() means "this device appears
1597 * to be runtime-suspended and its state is fine, so if it really is
1598 * runtime-suspended, you can leave it in that state provided that you
1599 * will do the same thing with all of its descendants". This only
1600 * applies to suspend transitions, however.
1601 */
1602 spin_lock_irq(&dev->power.lock);
1603 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1604 spin_unlock_irq(&dev->power.lock);
1605 return 0;
1606 }
1607
1608 /**
1609 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1610 * @state: PM transition of the system being carried out.
1611 *
1612 * Execute the ->prepare() callback(s) for all devices.
1613 */
dpm_prepare(pm_message_t state)1614 int dpm_prepare(pm_message_t state)
1615 {
1616 int error = 0;
1617
1618 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1619 might_sleep();
1620
1621 mutex_lock(&dpm_list_mtx);
1622 while (!list_empty(&dpm_list)) {
1623 struct device *dev = to_device(dpm_list.next);
1624
1625 get_device(dev);
1626 mutex_unlock(&dpm_list_mtx);
1627
1628 error = device_prepare(dev, state);
1629
1630 mutex_lock(&dpm_list_mtx);
1631 if (error) {
1632 if (error == -EAGAIN) {
1633 put_device(dev);
1634 error = 0;
1635 continue;
1636 }
1637 printk(KERN_INFO "PM: Device %s not prepared "
1638 "for power transition: code %d\n",
1639 dev_name(dev), error);
1640 put_device(dev);
1641 break;
1642 }
1643 dev->power.is_prepared = true;
1644 if (!list_empty(&dev->power.entry))
1645 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1646 put_device(dev);
1647 }
1648 mutex_unlock(&dpm_list_mtx);
1649 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1650 return error;
1651 }
1652
1653 /**
1654 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1655 * @state: PM transition of the system being carried out.
1656 *
1657 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1658 * callbacks for them.
1659 */
dpm_suspend_start(pm_message_t state)1660 int dpm_suspend_start(pm_message_t state)
1661 {
1662 int error;
1663
1664 error = dpm_prepare(state);
1665 if (error) {
1666 suspend_stats.failed_prepare++;
1667 dpm_save_failed_step(SUSPEND_PREPARE);
1668 } else
1669 error = dpm_suspend(state);
1670 return error;
1671 }
1672 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1673
__suspend_report_result(const char * function,void * fn,int ret)1674 void __suspend_report_result(const char *function, void *fn, int ret)
1675 {
1676 if (ret)
1677 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1678 }
1679 EXPORT_SYMBOL_GPL(__suspend_report_result);
1680
1681 /**
1682 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1683 * @dev: Device to wait for.
1684 * @subordinate: Device that needs to wait for @dev.
1685 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1686 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1687 {
1688 dpm_wait(dev, subordinate->power.async_suspend);
1689 return async_error;
1690 }
1691 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1692
1693 /**
1694 * dpm_for_each_dev - device iterator.
1695 * @data: data for the callback.
1696 * @fn: function to be called for each device.
1697 *
1698 * Iterate over devices in dpm_list, and call @fn for each device,
1699 * passing it @data.
1700 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1701 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1702 {
1703 struct device *dev;
1704
1705 if (!fn)
1706 return;
1707
1708 device_pm_lock();
1709 list_for_each_entry(dev, &dpm_list, power.entry)
1710 fn(dev, data);
1711 device_pm_unlock();
1712 }
1713 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1714