• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46 
47 #include "rbd_types.h"
48 
49 #define RBD_DEBUG	/* Activate rbd_assert() calls */
50 
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define	SECTOR_SHIFT	9
58 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
59 
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
atomic_inc_return_safe(atomic_t * v)66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68 	unsigned int counter;
69 
70 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71 	if (counter <= (unsigned int)INT_MAX)
72 		return (int)counter;
73 
74 	atomic_dec(v);
75 
76 	return -EINVAL;
77 }
78 
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82 	int counter;
83 
84 	counter = atomic_dec_return(v);
85 	if (counter >= 0)
86 		return counter;
87 
88 	atomic_inc(v);
89 
90 	return -EINVAL;
91 }
92 
93 #define RBD_DRV_NAME "rbd"
94 
95 #define RBD_MINORS_PER_MAJOR		256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
97 
98 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
99 #define RBD_MAX_SNAP_NAME_LEN	\
100 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 
102 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
103 
104 #define RBD_SNAP_HEAD_NAME	"-"
105 
106 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
107 
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX	64
111 
112 #define RBD_OBJ_PREFIX_LEN_MAX	64
113 
114 /* Feature bits */
115 
116 #define RBD_FEATURE_LAYERING	(1<<0)
117 #define RBD_FEATURE_STRIPINGV2	(1<<1)
118 #define RBD_FEATURES_ALL \
119 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 
121 /* Features supported by this (client software) implementation. */
122 
123 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
124 
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN		32
132 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
133 
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138 	/* These six fields never change for a given rbd image */
139 	char *object_prefix;
140 	__u8 obj_order;
141 	__u8 crypt_type;
142 	__u8 comp_type;
143 	u64 stripe_unit;
144 	u64 stripe_count;
145 	u64 features;		/* Might be changeable someday? */
146 
147 	/* The remaining fields need to be updated occasionally */
148 	u64 image_size;
149 	struct ceph_snap_context *snapc;
150 	char *snap_names;	/* format 1 only */
151 	u64 *snap_sizes;	/* format 1 only */
152 };
153 
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180 	u64		pool_id;
181 	const char	*pool_name;
182 
183 	const char	*image_id;
184 	const char	*image_name;
185 
186 	u64		snap_id;
187 	const char	*snap_name;
188 
189 	struct kref	kref;
190 };
191 
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196 	struct ceph_client	*client;
197 	struct kref		kref;
198 	struct list_head	node;
199 };
200 
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 
204 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
205 
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 
209 enum obj_request_type {
210 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212 
213 enum obj_operation_type {
214 	OBJ_OP_WRITE,
215 	OBJ_OP_READ,
216 	OBJ_OP_DISCARD,
217 };
218 
219 enum obj_req_flags {
220 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
221 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
222 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
223 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
224 };
225 
226 struct rbd_obj_request {
227 	const char		*object_name;
228 	u64			offset;		/* object start byte */
229 	u64			length;		/* bytes from offset */
230 	unsigned long		flags;
231 
232 	/*
233 	 * An object request associated with an image will have its
234 	 * img_data flag set; a standalone object request will not.
235 	 *
236 	 * A standalone object request will have which == BAD_WHICH
237 	 * and a null obj_request pointer.
238 	 *
239 	 * An object request initiated in support of a layered image
240 	 * object (to check for its existence before a write) will
241 	 * have which == BAD_WHICH and a non-null obj_request pointer.
242 	 *
243 	 * Finally, an object request for rbd image data will have
244 	 * which != BAD_WHICH, and will have a non-null img_request
245 	 * pointer.  The value of which will be in the range
246 	 * 0..(img_request->obj_request_count-1).
247 	 */
248 	union {
249 		struct rbd_obj_request	*obj_request;	/* STAT op */
250 		struct {
251 			struct rbd_img_request	*img_request;
252 			u64			img_offset;
253 			/* links for img_request->obj_requests list */
254 			struct list_head	links;
255 		};
256 	};
257 	u32			which;		/* posn image request list */
258 
259 	enum obj_request_type	type;
260 	union {
261 		struct bio	*bio_list;
262 		struct {
263 			struct page	**pages;
264 			u32		page_count;
265 		};
266 	};
267 	struct page		**copyup_pages;
268 	u32			copyup_page_count;
269 
270 	struct ceph_osd_request	*osd_req;
271 
272 	u64			xferred;	/* bytes transferred */
273 	int			result;
274 
275 	rbd_obj_callback_t	callback;
276 	struct completion	completion;
277 
278 	struct kref		kref;
279 };
280 
281 enum img_req_flags {
282 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
283 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
284 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
285 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
286 };
287 
288 struct rbd_img_request {
289 	struct rbd_device	*rbd_dev;
290 	u64			offset;	/* starting image byte offset */
291 	u64			length;	/* byte count from offset */
292 	unsigned long		flags;
293 	union {
294 		u64			snap_id;	/* for reads */
295 		struct ceph_snap_context *snapc;	/* for writes */
296 	};
297 	union {
298 		struct request		*rq;		/* block request */
299 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
300 	};
301 	struct page		**copyup_pages;
302 	u32			copyup_page_count;
303 	spinlock_t		completion_lock;/* protects next_completion */
304 	u32			next_completion;
305 	rbd_img_callback_t	callback;
306 	u64			xferred;/* aggregate bytes transferred */
307 	int			result;	/* first nonzero obj_request result */
308 
309 	u32			obj_request_count;
310 	struct list_head	obj_requests;	/* rbd_obj_request structs */
311 
312 	struct kref		kref;
313 };
314 
315 #define for_each_obj_request(ireq, oreq) \
316 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321 
322 struct rbd_mapping {
323 	u64                     size;
324 	u64                     features;
325 	bool			read_only;
326 };
327 
328 /*
329  * a single device
330  */
331 struct rbd_device {
332 	int			dev_id;		/* blkdev unique id */
333 
334 	int			major;		/* blkdev assigned major */
335 	int			minor;
336 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
337 
338 	u32			image_format;	/* Either 1 or 2 */
339 	struct rbd_client	*rbd_client;
340 
341 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342 
343 	struct list_head	rq_queue;	/* incoming rq queue */
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 	struct work_struct	rq_work;
346 
347 	struct rbd_image_header	header;
348 	unsigned long		flags;		/* possibly lock protected */
349 	struct rbd_spec		*spec;
350 
351 	char			*header_name;
352 
353 	struct ceph_file_layout	layout;
354 
355 	struct ceph_osd_event   *watch_event;
356 	struct rbd_obj_request	*watch_request;
357 
358 	struct rbd_spec		*parent_spec;
359 	u64			parent_overlap;
360 	atomic_t		parent_ref;
361 	struct rbd_device	*parent;
362 
363 	/* protects updating the header */
364 	struct rw_semaphore     header_rwsem;
365 
366 	struct rbd_mapping	mapping;
367 
368 	struct list_head	node;
369 
370 	/* sysfs related */
371 	struct device		dev;
372 	unsigned long		open_count;	/* protected by lock */
373 };
374 
375 /*
376  * Flag bits for rbd_dev->flags.  If atomicity is required,
377  * rbd_dev->lock is used to protect access.
378  *
379  * Currently, only the "removing" flag (which is coupled with the
380  * "open_count" field) requires atomic access.
381  */
382 enum rbd_dev_flags {
383 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
384 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
385 };
386 
387 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
388 
389 static LIST_HEAD(rbd_dev_list);    /* devices */
390 static DEFINE_SPINLOCK(rbd_dev_list_lock);
391 
392 static LIST_HEAD(rbd_client_list);		/* clients */
393 static DEFINE_SPINLOCK(rbd_client_list_lock);
394 
395 /* Slab caches for frequently-allocated structures */
396 
397 static struct kmem_cache	*rbd_img_request_cache;
398 static struct kmem_cache	*rbd_obj_request_cache;
399 static struct kmem_cache	*rbd_segment_name_cache;
400 
401 static int rbd_major;
402 static DEFINE_IDA(rbd_dev_id_ida);
403 
404 static struct workqueue_struct *rbd_wq;
405 
406 /*
407  * Default to false for now, as single-major requires >= 0.75 version of
408  * userspace rbd utility.
409  */
410 static bool single_major = false;
411 module_param(single_major, bool, S_IRUGO);
412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
413 
414 static int rbd_img_request_submit(struct rbd_img_request *img_request);
415 
416 static void rbd_dev_device_release(struct device *dev);
417 
418 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
419 		       size_t count);
420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
421 			  size_t count);
422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
423 				    size_t count);
424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
425 				       size_t count);
426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
427 static void rbd_spec_put(struct rbd_spec *spec);
428 
rbd_dev_id_to_minor(int dev_id)429 static int rbd_dev_id_to_minor(int dev_id)
430 {
431 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
432 }
433 
minor_to_rbd_dev_id(int minor)434 static int minor_to_rbd_dev_id(int minor)
435 {
436 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438 
439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
443 
444 static struct attribute *rbd_bus_attrs[] = {
445 	&bus_attr_add.attr,
446 	&bus_attr_remove.attr,
447 	&bus_attr_add_single_major.attr,
448 	&bus_attr_remove_single_major.attr,
449 	NULL,
450 };
451 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)452 static umode_t rbd_bus_is_visible(struct kobject *kobj,
453 				  struct attribute *attr, int index)
454 {
455 	if (!single_major &&
456 	    (attr == &bus_attr_add_single_major.attr ||
457 	     attr == &bus_attr_remove_single_major.attr))
458 		return 0;
459 
460 	return attr->mode;
461 }
462 
463 static const struct attribute_group rbd_bus_group = {
464 	.attrs = rbd_bus_attrs,
465 	.is_visible = rbd_bus_is_visible,
466 };
467 __ATTRIBUTE_GROUPS(rbd_bus);
468 
469 static struct bus_type rbd_bus_type = {
470 	.name		= "rbd",
471 	.bus_groups	= rbd_bus_groups,
472 };
473 
rbd_root_dev_release(struct device * dev)474 static void rbd_root_dev_release(struct device *dev)
475 {
476 }
477 
478 static struct device rbd_root_dev = {
479 	.init_name =    "rbd",
480 	.release =      rbd_root_dev_release,
481 };
482 
483 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
485 {
486 	struct va_format vaf;
487 	va_list args;
488 
489 	va_start(args, fmt);
490 	vaf.fmt = fmt;
491 	vaf.va = &args;
492 
493 	if (!rbd_dev)
494 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
495 	else if (rbd_dev->disk)
496 		printk(KERN_WARNING "%s: %s: %pV\n",
497 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
498 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
499 		printk(KERN_WARNING "%s: image %s: %pV\n",
500 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
501 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
502 		printk(KERN_WARNING "%s: id %s: %pV\n",
503 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
504 	else	/* punt */
505 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
506 			RBD_DRV_NAME, rbd_dev, &vaf);
507 	va_end(args);
508 }
509 
510 #ifdef RBD_DEBUG
511 #define rbd_assert(expr)						\
512 		if (unlikely(!(expr))) {				\
513 			printk(KERN_ERR "\nAssertion failure in %s() "	\
514 						"at line %d:\n\n"	\
515 					"\trbd_assert(%s);\n\n",	\
516 					__func__, __LINE__, #expr);	\
517 			BUG();						\
518 		}
519 #else /* !RBD_DEBUG */
520 #  define rbd_assert(expr)	((void) 0)
521 #endif /* !RBD_DEBUG */
522 
523 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
524 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
525 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
526 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
527 
528 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
530 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
531 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
532 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
533 					u64 snap_id);
534 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
535 				u8 *order, u64 *snap_size);
536 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
537 		u64 *snap_features);
538 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
539 
rbd_open(struct block_device * bdev,fmode_t mode)540 static int rbd_open(struct block_device *bdev, fmode_t mode)
541 {
542 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
543 	bool removing = false;
544 
545 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
546 		return -EROFS;
547 
548 	spin_lock_irq(&rbd_dev->lock);
549 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
550 		removing = true;
551 	else
552 		rbd_dev->open_count++;
553 	spin_unlock_irq(&rbd_dev->lock);
554 	if (removing)
555 		return -ENOENT;
556 
557 	(void) get_device(&rbd_dev->dev);
558 
559 	return 0;
560 }
561 
rbd_release(struct gendisk * disk,fmode_t mode)562 static void rbd_release(struct gendisk *disk, fmode_t mode)
563 {
564 	struct rbd_device *rbd_dev = disk->private_data;
565 	unsigned long open_count_before;
566 
567 	spin_lock_irq(&rbd_dev->lock);
568 	open_count_before = rbd_dev->open_count--;
569 	spin_unlock_irq(&rbd_dev->lock);
570 	rbd_assert(open_count_before > 0);
571 
572 	put_device(&rbd_dev->dev);
573 }
574 
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)575 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
576 {
577 	int ret = 0;
578 	int val;
579 	bool ro;
580 	bool ro_changed = false;
581 
582 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
583 	if (get_user(val, (int __user *)(arg)))
584 		return -EFAULT;
585 
586 	ro = val ? true : false;
587 	/* Snapshot doesn't allow to write*/
588 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
589 		return -EROFS;
590 
591 	spin_lock_irq(&rbd_dev->lock);
592 	/* prevent others open this device */
593 	if (rbd_dev->open_count > 1) {
594 		ret = -EBUSY;
595 		goto out;
596 	}
597 
598 	if (rbd_dev->mapping.read_only != ro) {
599 		rbd_dev->mapping.read_only = ro;
600 		ro_changed = true;
601 	}
602 
603 out:
604 	spin_unlock_irq(&rbd_dev->lock);
605 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
606 	if (ret == 0 && ro_changed)
607 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
608 
609 	return ret;
610 }
611 
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)612 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
613 			unsigned int cmd, unsigned long arg)
614 {
615 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
616 	int ret = 0;
617 
618 	switch (cmd) {
619 	case BLKROSET:
620 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
621 		break;
622 	default:
623 		ret = -ENOTTY;
624 	}
625 
626 	return ret;
627 }
628 
629 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)630 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
631 				unsigned int cmd, unsigned long arg)
632 {
633 	return rbd_ioctl(bdev, mode, cmd, arg);
634 }
635 #endif /* CONFIG_COMPAT */
636 
637 static const struct block_device_operations rbd_bd_ops = {
638 	.owner			= THIS_MODULE,
639 	.open			= rbd_open,
640 	.release		= rbd_release,
641 	.ioctl			= rbd_ioctl,
642 #ifdef CONFIG_COMPAT
643 	.compat_ioctl		= rbd_compat_ioctl,
644 #endif
645 };
646 
647 /*
648  * Initialize an rbd client instance.  Success or not, this function
649  * consumes ceph_opts.  Caller holds client_mutex.
650  */
rbd_client_create(struct ceph_options * ceph_opts)651 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
652 {
653 	struct rbd_client *rbdc;
654 	int ret = -ENOMEM;
655 
656 	dout("%s:\n", __func__);
657 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
658 	if (!rbdc)
659 		goto out_opt;
660 
661 	kref_init(&rbdc->kref);
662 	INIT_LIST_HEAD(&rbdc->node);
663 
664 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
665 	if (IS_ERR(rbdc->client))
666 		goto out_rbdc;
667 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
668 
669 	ret = ceph_open_session(rbdc->client);
670 	if (ret < 0)
671 		goto out_client;
672 
673 	spin_lock(&rbd_client_list_lock);
674 	list_add_tail(&rbdc->node, &rbd_client_list);
675 	spin_unlock(&rbd_client_list_lock);
676 
677 	dout("%s: rbdc %p\n", __func__, rbdc);
678 
679 	return rbdc;
680 out_client:
681 	ceph_destroy_client(rbdc->client);
682 out_rbdc:
683 	kfree(rbdc);
684 out_opt:
685 	if (ceph_opts)
686 		ceph_destroy_options(ceph_opts);
687 	dout("%s: error %d\n", __func__, ret);
688 
689 	return ERR_PTR(ret);
690 }
691 
__rbd_get_client(struct rbd_client * rbdc)692 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
693 {
694 	kref_get(&rbdc->kref);
695 
696 	return rbdc;
697 }
698 
699 /*
700  * Find a ceph client with specific addr and configuration.  If
701  * found, bump its reference count.
702  */
rbd_client_find(struct ceph_options * ceph_opts)703 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
704 {
705 	struct rbd_client *client_node;
706 	bool found = false;
707 
708 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
709 		return NULL;
710 
711 	spin_lock(&rbd_client_list_lock);
712 	list_for_each_entry(client_node, &rbd_client_list, node) {
713 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
714 			__rbd_get_client(client_node);
715 
716 			found = true;
717 			break;
718 		}
719 	}
720 	spin_unlock(&rbd_client_list_lock);
721 
722 	return found ? client_node : NULL;
723 }
724 
725 /*
726  * mount options
727  */
728 enum {
729 	Opt_last_int,
730 	/* int args above */
731 	Opt_last_string,
732 	/* string args above */
733 	Opt_read_only,
734 	Opt_read_write,
735 	/* Boolean args above */
736 	Opt_last_bool,
737 };
738 
739 static match_table_t rbd_opts_tokens = {
740 	/* int args above */
741 	/* string args above */
742 	{Opt_read_only, "read_only"},
743 	{Opt_read_only, "ro"},		/* Alternate spelling */
744 	{Opt_read_write, "read_write"},
745 	{Opt_read_write, "rw"},		/* Alternate spelling */
746 	/* Boolean args above */
747 	{-1, NULL}
748 };
749 
750 struct rbd_options {
751 	bool	read_only;
752 };
753 
754 #define RBD_READ_ONLY_DEFAULT	false
755 
parse_rbd_opts_token(char * c,void * private)756 static int parse_rbd_opts_token(char *c, void *private)
757 {
758 	struct rbd_options *rbd_opts = private;
759 	substring_t argstr[MAX_OPT_ARGS];
760 	int token, intval, ret;
761 
762 	token = match_token(c, rbd_opts_tokens, argstr);
763 	if (token < 0)
764 		return -EINVAL;
765 
766 	if (token < Opt_last_int) {
767 		ret = match_int(&argstr[0], &intval);
768 		if (ret < 0) {
769 			pr_err("bad mount option arg (not int) "
770 			       "at '%s'\n", c);
771 			return ret;
772 		}
773 		dout("got int token %d val %d\n", token, intval);
774 	} else if (token > Opt_last_int && token < Opt_last_string) {
775 		dout("got string token %d val %s\n", token,
776 		     argstr[0].from);
777 	} else if (token > Opt_last_string && token < Opt_last_bool) {
778 		dout("got Boolean token %d\n", token);
779 	} else {
780 		dout("got token %d\n", token);
781 	}
782 
783 	switch (token) {
784 	case Opt_read_only:
785 		rbd_opts->read_only = true;
786 		break;
787 	case Opt_read_write:
788 		rbd_opts->read_only = false;
789 		break;
790 	default:
791 		rbd_assert(false);
792 		break;
793 	}
794 	return 0;
795 }
796 
obj_op_name(enum obj_operation_type op_type)797 static char* obj_op_name(enum obj_operation_type op_type)
798 {
799 	switch (op_type) {
800 	case OBJ_OP_READ:
801 		return "read";
802 	case OBJ_OP_WRITE:
803 		return "write";
804 	case OBJ_OP_DISCARD:
805 		return "discard";
806 	default:
807 		return "???";
808 	}
809 }
810 
811 /*
812  * Get a ceph client with specific addr and configuration, if one does
813  * not exist create it.  Either way, ceph_opts is consumed by this
814  * function.
815  */
rbd_get_client(struct ceph_options * ceph_opts)816 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
817 {
818 	struct rbd_client *rbdc;
819 
820 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
821 	rbdc = rbd_client_find(ceph_opts);
822 	if (rbdc)	/* using an existing client */
823 		ceph_destroy_options(ceph_opts);
824 	else
825 		rbdc = rbd_client_create(ceph_opts);
826 	mutex_unlock(&client_mutex);
827 
828 	return rbdc;
829 }
830 
831 /*
832  * Destroy ceph client
833  *
834  * Caller must hold rbd_client_list_lock.
835  */
rbd_client_release(struct kref * kref)836 static void rbd_client_release(struct kref *kref)
837 {
838 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
839 
840 	dout("%s: rbdc %p\n", __func__, rbdc);
841 	spin_lock(&rbd_client_list_lock);
842 	list_del(&rbdc->node);
843 	spin_unlock(&rbd_client_list_lock);
844 
845 	ceph_destroy_client(rbdc->client);
846 	kfree(rbdc);
847 }
848 
849 /*
850  * Drop reference to ceph client node. If it's not referenced anymore, release
851  * it.
852  */
rbd_put_client(struct rbd_client * rbdc)853 static void rbd_put_client(struct rbd_client *rbdc)
854 {
855 	if (rbdc)
856 		kref_put(&rbdc->kref, rbd_client_release);
857 }
858 
rbd_image_format_valid(u32 image_format)859 static bool rbd_image_format_valid(u32 image_format)
860 {
861 	return image_format == 1 || image_format == 2;
862 }
863 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)864 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
865 {
866 	size_t size;
867 	u32 snap_count;
868 
869 	/* The header has to start with the magic rbd header text */
870 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
871 		return false;
872 
873 	/* The bio layer requires at least sector-sized I/O */
874 
875 	if (ondisk->options.order < SECTOR_SHIFT)
876 		return false;
877 
878 	/* If we use u64 in a few spots we may be able to loosen this */
879 
880 	if (ondisk->options.order > 8 * sizeof (int) - 1)
881 		return false;
882 
883 	/*
884 	 * The size of a snapshot header has to fit in a size_t, and
885 	 * that limits the number of snapshots.
886 	 */
887 	snap_count = le32_to_cpu(ondisk->snap_count);
888 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
889 	if (snap_count > size / sizeof (__le64))
890 		return false;
891 
892 	/*
893 	 * Not only that, but the size of the entire the snapshot
894 	 * header must also be representable in a size_t.
895 	 */
896 	size -= snap_count * sizeof (__le64);
897 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
898 		return false;
899 
900 	return true;
901 }
902 
903 /*
904  * Fill an rbd image header with information from the given format 1
905  * on-disk header.
906  */
rbd_header_from_disk(struct rbd_device * rbd_dev,struct rbd_image_header_ondisk * ondisk)907 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
908 				 struct rbd_image_header_ondisk *ondisk)
909 {
910 	struct rbd_image_header *header = &rbd_dev->header;
911 	bool first_time = header->object_prefix == NULL;
912 	struct ceph_snap_context *snapc;
913 	char *object_prefix = NULL;
914 	char *snap_names = NULL;
915 	u64 *snap_sizes = NULL;
916 	u32 snap_count;
917 	size_t size;
918 	int ret = -ENOMEM;
919 	u32 i;
920 
921 	/* Allocate this now to avoid having to handle failure below */
922 
923 	if (first_time) {
924 		size_t len;
925 
926 		len = strnlen(ondisk->object_prefix,
927 				sizeof (ondisk->object_prefix));
928 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
929 		if (!object_prefix)
930 			return -ENOMEM;
931 		memcpy(object_prefix, ondisk->object_prefix, len);
932 		object_prefix[len] = '\0';
933 	}
934 
935 	/* Allocate the snapshot context and fill it in */
936 
937 	snap_count = le32_to_cpu(ondisk->snap_count);
938 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
939 	if (!snapc)
940 		goto out_err;
941 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
942 	if (snap_count) {
943 		struct rbd_image_snap_ondisk *snaps;
944 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
945 
946 		/* We'll keep a copy of the snapshot names... */
947 
948 		if (snap_names_len > (u64)SIZE_MAX)
949 			goto out_2big;
950 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
951 		if (!snap_names)
952 			goto out_err;
953 
954 		/* ...as well as the array of their sizes. */
955 
956 		size = snap_count * sizeof (*header->snap_sizes);
957 		snap_sizes = kmalloc(size, GFP_KERNEL);
958 		if (!snap_sizes)
959 			goto out_err;
960 
961 		/*
962 		 * Copy the names, and fill in each snapshot's id
963 		 * and size.
964 		 *
965 		 * Note that rbd_dev_v1_header_info() guarantees the
966 		 * ondisk buffer we're working with has
967 		 * snap_names_len bytes beyond the end of the
968 		 * snapshot id array, this memcpy() is safe.
969 		 */
970 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
971 		snaps = ondisk->snaps;
972 		for (i = 0; i < snap_count; i++) {
973 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
974 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
975 		}
976 	}
977 
978 	/* We won't fail any more, fill in the header */
979 
980 	if (first_time) {
981 		header->object_prefix = object_prefix;
982 		header->obj_order = ondisk->options.order;
983 		header->crypt_type = ondisk->options.crypt_type;
984 		header->comp_type = ondisk->options.comp_type;
985 		/* The rest aren't used for format 1 images */
986 		header->stripe_unit = 0;
987 		header->stripe_count = 0;
988 		header->features = 0;
989 	} else {
990 		ceph_put_snap_context(header->snapc);
991 		kfree(header->snap_names);
992 		kfree(header->snap_sizes);
993 	}
994 
995 	/* The remaining fields always get updated (when we refresh) */
996 
997 	header->image_size = le64_to_cpu(ondisk->image_size);
998 	header->snapc = snapc;
999 	header->snap_names = snap_names;
1000 	header->snap_sizes = snap_sizes;
1001 
1002 	return 0;
1003 out_2big:
1004 	ret = -EIO;
1005 out_err:
1006 	kfree(snap_sizes);
1007 	kfree(snap_names);
1008 	ceph_put_snap_context(snapc);
1009 	kfree(object_prefix);
1010 
1011 	return ret;
1012 }
1013 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1014 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1015 {
1016 	const char *snap_name;
1017 
1018 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1019 
1020 	/* Skip over names until we find the one we are looking for */
1021 
1022 	snap_name = rbd_dev->header.snap_names;
1023 	while (which--)
1024 		snap_name += strlen(snap_name) + 1;
1025 
1026 	return kstrdup(snap_name, GFP_KERNEL);
1027 }
1028 
1029 /*
1030  * Snapshot id comparison function for use with qsort()/bsearch().
1031  * Note that result is for snapshots in *descending* order.
1032  */
snapid_compare_reverse(const void * s1,const void * s2)1033 static int snapid_compare_reverse(const void *s1, const void *s2)
1034 {
1035 	u64 snap_id1 = *(u64 *)s1;
1036 	u64 snap_id2 = *(u64 *)s2;
1037 
1038 	if (snap_id1 < snap_id2)
1039 		return 1;
1040 	return snap_id1 == snap_id2 ? 0 : -1;
1041 }
1042 
1043 /*
1044  * Search a snapshot context to see if the given snapshot id is
1045  * present.
1046  *
1047  * Returns the position of the snapshot id in the array if it's found,
1048  * or BAD_SNAP_INDEX otherwise.
1049  *
1050  * Note: The snapshot array is in kept sorted (by the osd) in
1051  * reverse order, highest snapshot id first.
1052  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1053 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1054 {
1055 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1056 	u64 *found;
1057 
1058 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1059 				sizeof (snap_id), snapid_compare_reverse);
1060 
1061 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1062 }
1063 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1064 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1065 					u64 snap_id)
1066 {
1067 	u32 which;
1068 	const char *snap_name;
1069 
1070 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1071 	if (which == BAD_SNAP_INDEX)
1072 		return ERR_PTR(-ENOENT);
1073 
1074 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1075 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1076 }
1077 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1078 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1079 {
1080 	if (snap_id == CEPH_NOSNAP)
1081 		return RBD_SNAP_HEAD_NAME;
1082 
1083 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1084 	if (rbd_dev->image_format == 1)
1085 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1086 
1087 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1088 }
1089 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1090 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1091 				u64 *snap_size)
1092 {
1093 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1094 	if (snap_id == CEPH_NOSNAP) {
1095 		*snap_size = rbd_dev->header.image_size;
1096 	} else if (rbd_dev->image_format == 1) {
1097 		u32 which;
1098 
1099 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1100 		if (which == BAD_SNAP_INDEX)
1101 			return -ENOENT;
1102 
1103 		*snap_size = rbd_dev->header.snap_sizes[which];
1104 	} else {
1105 		u64 size = 0;
1106 		int ret;
1107 
1108 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1109 		if (ret)
1110 			return ret;
1111 
1112 		*snap_size = size;
1113 	}
1114 	return 0;
1115 }
1116 
rbd_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)1117 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1118 			u64 *snap_features)
1119 {
1120 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1121 	if (snap_id == CEPH_NOSNAP) {
1122 		*snap_features = rbd_dev->header.features;
1123 	} else if (rbd_dev->image_format == 1) {
1124 		*snap_features = 0;	/* No features for format 1 */
1125 	} else {
1126 		u64 features = 0;
1127 		int ret;
1128 
1129 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1130 		if (ret)
1131 			return ret;
1132 
1133 		*snap_features = features;
1134 	}
1135 	return 0;
1136 }
1137 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1138 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1139 {
1140 	u64 snap_id = rbd_dev->spec->snap_id;
1141 	u64 size = 0;
1142 	u64 features = 0;
1143 	int ret;
1144 
1145 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1146 	if (ret)
1147 		return ret;
1148 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1149 	if (ret)
1150 		return ret;
1151 
1152 	rbd_dev->mapping.size = size;
1153 	rbd_dev->mapping.features = features;
1154 
1155 	return 0;
1156 }
1157 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1158 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1159 {
1160 	rbd_dev->mapping.size = 0;
1161 	rbd_dev->mapping.features = 0;
1162 }
1163 
rbd_segment_name_free(const char * name)1164 static void rbd_segment_name_free(const char *name)
1165 {
1166 	/* The explicit cast here is needed to drop the const qualifier */
1167 
1168 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1169 }
1170 
rbd_segment_name(struct rbd_device * rbd_dev,u64 offset)1171 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1172 {
1173 	char *name;
1174 	u64 segment;
1175 	int ret;
1176 	char *name_format;
1177 
1178 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1179 	if (!name)
1180 		return NULL;
1181 	segment = offset >> rbd_dev->header.obj_order;
1182 	name_format = "%s.%012llx";
1183 	if (rbd_dev->image_format == 2)
1184 		name_format = "%s.%016llx";
1185 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1186 			rbd_dev->header.object_prefix, segment);
1187 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1188 		pr_err("error formatting segment name for #%llu (%d)\n",
1189 			segment, ret);
1190 		rbd_segment_name_free(name);
1191 		name = NULL;
1192 	}
1193 
1194 	return name;
1195 }
1196 
rbd_segment_offset(struct rbd_device * rbd_dev,u64 offset)1197 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1198 {
1199 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1200 
1201 	return offset & (segment_size - 1);
1202 }
1203 
rbd_segment_length(struct rbd_device * rbd_dev,u64 offset,u64 length)1204 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1205 				u64 offset, u64 length)
1206 {
1207 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1208 
1209 	offset &= segment_size - 1;
1210 
1211 	rbd_assert(length <= U64_MAX - offset);
1212 	if (offset + length > segment_size)
1213 		length = segment_size - offset;
1214 
1215 	return length;
1216 }
1217 
1218 /*
1219  * returns the size of an object in the image
1220  */
rbd_obj_bytes(struct rbd_image_header * header)1221 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1222 {
1223 	return 1 << header->obj_order;
1224 }
1225 
1226 /*
1227  * bio helpers
1228  */
1229 
bio_chain_put(struct bio * chain)1230 static void bio_chain_put(struct bio *chain)
1231 {
1232 	struct bio *tmp;
1233 
1234 	while (chain) {
1235 		tmp = chain;
1236 		chain = chain->bi_next;
1237 		bio_put(tmp);
1238 	}
1239 }
1240 
1241 /*
1242  * zeros a bio chain, starting at specific offset
1243  */
zero_bio_chain(struct bio * chain,int start_ofs)1244 static void zero_bio_chain(struct bio *chain, int start_ofs)
1245 {
1246 	struct bio_vec bv;
1247 	struct bvec_iter iter;
1248 	unsigned long flags;
1249 	void *buf;
1250 	int pos = 0;
1251 
1252 	while (chain) {
1253 		bio_for_each_segment(bv, chain, iter) {
1254 			if (pos + bv.bv_len > start_ofs) {
1255 				int remainder = max(start_ofs - pos, 0);
1256 				buf = bvec_kmap_irq(&bv, &flags);
1257 				memset(buf + remainder, 0,
1258 				       bv.bv_len - remainder);
1259 				flush_dcache_page(bv.bv_page);
1260 				bvec_kunmap_irq(buf, &flags);
1261 			}
1262 			pos += bv.bv_len;
1263 		}
1264 
1265 		chain = chain->bi_next;
1266 	}
1267 }
1268 
1269 /*
1270  * similar to zero_bio_chain(), zeros data defined by a page array,
1271  * starting at the given byte offset from the start of the array and
1272  * continuing up to the given end offset.  The pages array is
1273  * assumed to be big enough to hold all bytes up to the end.
1274  */
zero_pages(struct page ** pages,u64 offset,u64 end)1275 static void zero_pages(struct page **pages, u64 offset, u64 end)
1276 {
1277 	struct page **page = &pages[offset >> PAGE_SHIFT];
1278 
1279 	rbd_assert(end > offset);
1280 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1281 	while (offset < end) {
1282 		size_t page_offset;
1283 		size_t length;
1284 		unsigned long flags;
1285 		void *kaddr;
1286 
1287 		page_offset = offset & ~PAGE_MASK;
1288 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1289 		local_irq_save(flags);
1290 		kaddr = kmap_atomic(*page);
1291 		memset(kaddr + page_offset, 0, length);
1292 		flush_dcache_page(*page);
1293 		kunmap_atomic(kaddr);
1294 		local_irq_restore(flags);
1295 
1296 		offset += length;
1297 		page++;
1298 	}
1299 }
1300 
1301 /*
1302  * Clone a portion of a bio, starting at the given byte offset
1303  * and continuing for the number of bytes indicated.
1304  */
bio_clone_range(struct bio * bio_src,unsigned int offset,unsigned int len,gfp_t gfpmask)1305 static struct bio *bio_clone_range(struct bio *bio_src,
1306 					unsigned int offset,
1307 					unsigned int len,
1308 					gfp_t gfpmask)
1309 {
1310 	struct bio *bio;
1311 
1312 	bio = bio_clone(bio_src, gfpmask);
1313 	if (!bio)
1314 		return NULL;	/* ENOMEM */
1315 
1316 	bio_advance(bio, offset);
1317 	bio->bi_iter.bi_size = len;
1318 
1319 	return bio;
1320 }
1321 
1322 /*
1323  * Clone a portion of a bio chain, starting at the given byte offset
1324  * into the first bio in the source chain and continuing for the
1325  * number of bytes indicated.  The result is another bio chain of
1326  * exactly the given length, or a null pointer on error.
1327  *
1328  * The bio_src and offset parameters are both in-out.  On entry they
1329  * refer to the first source bio and the offset into that bio where
1330  * the start of data to be cloned is located.
1331  *
1332  * On return, bio_src is updated to refer to the bio in the source
1333  * chain that contains first un-cloned byte, and *offset will
1334  * contain the offset of that byte within that bio.
1335  */
bio_chain_clone_range(struct bio ** bio_src,unsigned int * offset,unsigned int len,gfp_t gfpmask)1336 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1337 					unsigned int *offset,
1338 					unsigned int len,
1339 					gfp_t gfpmask)
1340 {
1341 	struct bio *bi = *bio_src;
1342 	unsigned int off = *offset;
1343 	struct bio *chain = NULL;
1344 	struct bio **end;
1345 
1346 	/* Build up a chain of clone bios up to the limit */
1347 
1348 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1349 		return NULL;		/* Nothing to clone */
1350 
1351 	end = &chain;
1352 	while (len) {
1353 		unsigned int bi_size;
1354 		struct bio *bio;
1355 
1356 		if (!bi) {
1357 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1358 			goto out_err;	/* EINVAL; ran out of bio's */
1359 		}
1360 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1361 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1362 		if (!bio)
1363 			goto out_err;	/* ENOMEM */
1364 
1365 		*end = bio;
1366 		end = &bio->bi_next;
1367 
1368 		off += bi_size;
1369 		if (off == bi->bi_iter.bi_size) {
1370 			bi = bi->bi_next;
1371 			off = 0;
1372 		}
1373 		len -= bi_size;
1374 	}
1375 	*bio_src = bi;
1376 	*offset = off;
1377 
1378 	return chain;
1379 out_err:
1380 	bio_chain_put(chain);
1381 
1382 	return NULL;
1383 }
1384 
1385 /*
1386  * The default/initial value for all object request flags is 0.  For
1387  * each flag, once its value is set to 1 it is never reset to 0
1388  * again.
1389  */
obj_request_img_data_set(struct rbd_obj_request * obj_request)1390 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1391 {
1392 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1393 		struct rbd_device *rbd_dev;
1394 
1395 		rbd_dev = obj_request->img_request->rbd_dev;
1396 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1397 			obj_request);
1398 	}
1399 }
1400 
obj_request_img_data_test(struct rbd_obj_request * obj_request)1401 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1402 {
1403 	smp_mb();
1404 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1405 }
1406 
obj_request_done_set(struct rbd_obj_request * obj_request)1407 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1408 {
1409 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1410 		struct rbd_device *rbd_dev = NULL;
1411 
1412 		if (obj_request_img_data_test(obj_request))
1413 			rbd_dev = obj_request->img_request->rbd_dev;
1414 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1415 			obj_request);
1416 	}
1417 }
1418 
obj_request_done_test(struct rbd_obj_request * obj_request)1419 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1420 {
1421 	smp_mb();
1422 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1423 }
1424 
1425 /*
1426  * This sets the KNOWN flag after (possibly) setting the EXISTS
1427  * flag.  The latter is set based on the "exists" value provided.
1428  *
1429  * Note that for our purposes once an object exists it never goes
1430  * away again.  It's possible that the response from two existence
1431  * checks are separated by the creation of the target object, and
1432  * the first ("doesn't exist") response arrives *after* the second
1433  * ("does exist").  In that case we ignore the second one.
1434  */
obj_request_existence_set(struct rbd_obj_request * obj_request,bool exists)1435 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1436 				bool exists)
1437 {
1438 	if (exists)
1439 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1440 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1441 	smp_mb();
1442 }
1443 
obj_request_known_test(struct rbd_obj_request * obj_request)1444 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1445 {
1446 	smp_mb();
1447 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1448 }
1449 
obj_request_exists_test(struct rbd_obj_request * obj_request)1450 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1451 {
1452 	smp_mb();
1453 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1454 }
1455 
obj_request_overlaps_parent(struct rbd_obj_request * obj_request)1456 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1457 {
1458 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1459 
1460 	return obj_request->img_offset <
1461 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1462 }
1463 
rbd_obj_request_get(struct rbd_obj_request * obj_request)1464 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1465 {
1466 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1467 		atomic_read(&obj_request->kref.refcount));
1468 	kref_get(&obj_request->kref);
1469 }
1470 
1471 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1472 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1473 {
1474 	rbd_assert(obj_request != NULL);
1475 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1476 		atomic_read(&obj_request->kref.refcount));
1477 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1478 }
1479 
rbd_img_request_get(struct rbd_img_request * img_request)1480 static void rbd_img_request_get(struct rbd_img_request *img_request)
1481 {
1482 	dout("%s: img %p (was %d)\n", __func__, img_request,
1483 	     atomic_read(&img_request->kref.refcount));
1484 	kref_get(&img_request->kref);
1485 }
1486 
1487 static bool img_request_child_test(struct rbd_img_request *img_request);
1488 static void rbd_parent_request_destroy(struct kref *kref);
1489 static void rbd_img_request_destroy(struct kref *kref);
rbd_img_request_put(struct rbd_img_request * img_request)1490 static void rbd_img_request_put(struct rbd_img_request *img_request)
1491 {
1492 	rbd_assert(img_request != NULL);
1493 	dout("%s: img %p (was %d)\n", __func__, img_request,
1494 		atomic_read(&img_request->kref.refcount));
1495 	if (img_request_child_test(img_request))
1496 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1497 	else
1498 		kref_put(&img_request->kref, rbd_img_request_destroy);
1499 }
1500 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1501 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1502 					struct rbd_obj_request *obj_request)
1503 {
1504 	rbd_assert(obj_request->img_request == NULL);
1505 
1506 	/* Image request now owns object's original reference */
1507 	obj_request->img_request = img_request;
1508 	obj_request->which = img_request->obj_request_count;
1509 	rbd_assert(!obj_request_img_data_test(obj_request));
1510 	obj_request_img_data_set(obj_request);
1511 	rbd_assert(obj_request->which != BAD_WHICH);
1512 	img_request->obj_request_count++;
1513 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1514 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1515 		obj_request->which);
1516 }
1517 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1518 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1519 					struct rbd_obj_request *obj_request)
1520 {
1521 	rbd_assert(obj_request->which != BAD_WHICH);
1522 
1523 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1524 		obj_request->which);
1525 	list_del(&obj_request->links);
1526 	rbd_assert(img_request->obj_request_count > 0);
1527 	img_request->obj_request_count--;
1528 	rbd_assert(obj_request->which == img_request->obj_request_count);
1529 	obj_request->which = BAD_WHICH;
1530 	rbd_assert(obj_request_img_data_test(obj_request));
1531 	rbd_assert(obj_request->img_request == img_request);
1532 	obj_request->img_request = NULL;
1533 	obj_request->callback = NULL;
1534 	rbd_obj_request_put(obj_request);
1535 }
1536 
obj_request_type_valid(enum obj_request_type type)1537 static bool obj_request_type_valid(enum obj_request_type type)
1538 {
1539 	switch (type) {
1540 	case OBJ_REQUEST_NODATA:
1541 	case OBJ_REQUEST_BIO:
1542 	case OBJ_REQUEST_PAGES:
1543 		return true;
1544 	default:
1545 		return false;
1546 	}
1547 }
1548 
rbd_obj_request_submit(struct ceph_osd_client * osdc,struct rbd_obj_request * obj_request)1549 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1550 				struct rbd_obj_request *obj_request)
1551 {
1552 	dout("%s %p\n", __func__, obj_request);
1553 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1554 }
1555 
rbd_obj_request_end(struct rbd_obj_request * obj_request)1556 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1557 {
1558 	dout("%s %p\n", __func__, obj_request);
1559 	ceph_osdc_cancel_request(obj_request->osd_req);
1560 }
1561 
1562 /*
1563  * Wait for an object request to complete.  If interrupted, cancel the
1564  * underlying osd request.
1565  */
rbd_obj_request_wait(struct rbd_obj_request * obj_request)1566 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1567 {
1568 	int ret;
1569 
1570 	dout("%s %p\n", __func__, obj_request);
1571 
1572 	ret = wait_for_completion_interruptible(&obj_request->completion);
1573 	if (ret < 0) {
1574 		dout("%s %p interrupted\n", __func__, obj_request);
1575 		rbd_obj_request_end(obj_request);
1576 		return ret;
1577 	}
1578 
1579 	dout("%s %p done\n", __func__, obj_request);
1580 	return 0;
1581 }
1582 
rbd_img_request_complete(struct rbd_img_request * img_request)1583 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1584 {
1585 
1586 	dout("%s: img %p\n", __func__, img_request);
1587 
1588 	/*
1589 	 * If no error occurred, compute the aggregate transfer
1590 	 * count for the image request.  We could instead use
1591 	 * atomic64_cmpxchg() to update it as each object request
1592 	 * completes; not clear which way is better off hand.
1593 	 */
1594 	if (!img_request->result) {
1595 		struct rbd_obj_request *obj_request;
1596 		u64 xferred = 0;
1597 
1598 		for_each_obj_request(img_request, obj_request)
1599 			xferred += obj_request->xferred;
1600 		img_request->xferred = xferred;
1601 	}
1602 
1603 	if (img_request->callback)
1604 		img_request->callback(img_request);
1605 	else
1606 		rbd_img_request_put(img_request);
1607 }
1608 
1609 /*
1610  * The default/initial value for all image request flags is 0.  Each
1611  * is conditionally set to 1 at image request initialization time
1612  * and currently never change thereafter.
1613  */
img_request_write_set(struct rbd_img_request * img_request)1614 static void img_request_write_set(struct rbd_img_request *img_request)
1615 {
1616 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1617 	smp_mb();
1618 }
1619 
img_request_write_test(struct rbd_img_request * img_request)1620 static bool img_request_write_test(struct rbd_img_request *img_request)
1621 {
1622 	smp_mb();
1623 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1624 }
1625 
1626 /*
1627  * Set the discard flag when the img_request is an discard request
1628  */
img_request_discard_set(struct rbd_img_request * img_request)1629 static void img_request_discard_set(struct rbd_img_request *img_request)
1630 {
1631 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1632 	smp_mb();
1633 }
1634 
img_request_discard_test(struct rbd_img_request * img_request)1635 static bool img_request_discard_test(struct rbd_img_request *img_request)
1636 {
1637 	smp_mb();
1638 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1639 }
1640 
img_request_child_set(struct rbd_img_request * img_request)1641 static void img_request_child_set(struct rbd_img_request *img_request)
1642 {
1643 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1644 	smp_mb();
1645 }
1646 
img_request_child_clear(struct rbd_img_request * img_request)1647 static void img_request_child_clear(struct rbd_img_request *img_request)
1648 {
1649 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1650 	smp_mb();
1651 }
1652 
img_request_child_test(struct rbd_img_request * img_request)1653 static bool img_request_child_test(struct rbd_img_request *img_request)
1654 {
1655 	smp_mb();
1656 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1657 }
1658 
img_request_layered_set(struct rbd_img_request * img_request)1659 static void img_request_layered_set(struct rbd_img_request *img_request)
1660 {
1661 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1662 	smp_mb();
1663 }
1664 
img_request_layered_clear(struct rbd_img_request * img_request)1665 static void img_request_layered_clear(struct rbd_img_request *img_request)
1666 {
1667 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1668 	smp_mb();
1669 }
1670 
img_request_layered_test(struct rbd_img_request * img_request)1671 static bool img_request_layered_test(struct rbd_img_request *img_request)
1672 {
1673 	smp_mb();
1674 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1675 }
1676 
1677 static enum obj_operation_type
rbd_img_request_op_type(struct rbd_img_request * img_request)1678 rbd_img_request_op_type(struct rbd_img_request *img_request)
1679 {
1680 	if (img_request_write_test(img_request))
1681 		return OBJ_OP_WRITE;
1682 	else if (img_request_discard_test(img_request))
1683 		return OBJ_OP_DISCARD;
1684 	else
1685 		return OBJ_OP_READ;
1686 }
1687 
1688 static void
rbd_img_obj_request_read_callback(struct rbd_obj_request * obj_request)1689 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1690 {
1691 	u64 xferred = obj_request->xferred;
1692 	u64 length = obj_request->length;
1693 
1694 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1695 		obj_request, obj_request->img_request, obj_request->result,
1696 		xferred, length);
1697 	/*
1698 	 * ENOENT means a hole in the image.  We zero-fill the entire
1699 	 * length of the request.  A short read also implies zero-fill
1700 	 * to the end of the request.  An error requires the whole
1701 	 * length of the request to be reported finished with an error
1702 	 * to the block layer.  In each case we update the xferred
1703 	 * count to indicate the whole request was satisfied.
1704 	 */
1705 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1706 	if (obj_request->result == -ENOENT) {
1707 		if (obj_request->type == OBJ_REQUEST_BIO)
1708 			zero_bio_chain(obj_request->bio_list, 0);
1709 		else
1710 			zero_pages(obj_request->pages, 0, length);
1711 		obj_request->result = 0;
1712 	} else if (xferred < length && !obj_request->result) {
1713 		if (obj_request->type == OBJ_REQUEST_BIO)
1714 			zero_bio_chain(obj_request->bio_list, xferred);
1715 		else
1716 			zero_pages(obj_request->pages, xferred, length);
1717 	}
1718 	obj_request->xferred = length;
1719 	obj_request_done_set(obj_request);
1720 }
1721 
rbd_obj_request_complete(struct rbd_obj_request * obj_request)1722 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1723 {
1724 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1725 		obj_request->callback);
1726 	if (obj_request->callback)
1727 		obj_request->callback(obj_request);
1728 	else
1729 		complete_all(&obj_request->completion);
1730 }
1731 
rbd_osd_trivial_callback(struct rbd_obj_request * obj_request)1732 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1733 {
1734 	dout("%s: obj %p\n", __func__, obj_request);
1735 	obj_request_done_set(obj_request);
1736 }
1737 
rbd_osd_read_callback(struct rbd_obj_request * obj_request)1738 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1739 {
1740 	struct rbd_img_request *img_request = NULL;
1741 	struct rbd_device *rbd_dev = NULL;
1742 	bool layered = false;
1743 
1744 	if (obj_request_img_data_test(obj_request)) {
1745 		img_request = obj_request->img_request;
1746 		layered = img_request && img_request_layered_test(img_request);
1747 		rbd_dev = img_request->rbd_dev;
1748 	}
1749 
1750 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1751 		obj_request, img_request, obj_request->result,
1752 		obj_request->xferred, obj_request->length);
1753 	if (layered && obj_request->result == -ENOENT &&
1754 			obj_request->img_offset < rbd_dev->parent_overlap)
1755 		rbd_img_parent_read(obj_request);
1756 	else if (img_request)
1757 		rbd_img_obj_request_read_callback(obj_request);
1758 	else
1759 		obj_request_done_set(obj_request);
1760 }
1761 
rbd_osd_write_callback(struct rbd_obj_request * obj_request)1762 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1763 {
1764 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1765 		obj_request->result, obj_request->length);
1766 	/*
1767 	 * There is no such thing as a successful short write.  Set
1768 	 * it to our originally-requested length.
1769 	 */
1770 	obj_request->xferred = obj_request->length;
1771 	obj_request_done_set(obj_request);
1772 }
1773 
rbd_osd_discard_callback(struct rbd_obj_request * obj_request)1774 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1775 {
1776 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1777 		obj_request->result, obj_request->length);
1778 	/*
1779 	 * There is no such thing as a successful short discard.  Set
1780 	 * it to our originally-requested length.
1781 	 */
1782 	obj_request->xferred = obj_request->length;
1783 	/* discarding a non-existent object is not a problem */
1784 	if (obj_request->result == -ENOENT)
1785 		obj_request->result = 0;
1786 	obj_request_done_set(obj_request);
1787 }
1788 
1789 /*
1790  * For a simple stat call there's nothing to do.  We'll do more if
1791  * this is part of a write sequence for a layered image.
1792  */
rbd_osd_stat_callback(struct rbd_obj_request * obj_request)1793 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1794 {
1795 	dout("%s: obj %p\n", __func__, obj_request);
1796 	obj_request_done_set(obj_request);
1797 }
1798 
rbd_osd_call_callback(struct rbd_obj_request * obj_request)1799 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1800 {
1801 	dout("%s: obj %p\n", __func__, obj_request);
1802 
1803 	if (obj_request_img_data_test(obj_request))
1804 		rbd_osd_copyup_callback(obj_request);
1805 	else
1806 		obj_request_done_set(obj_request);
1807 }
1808 
rbd_osd_req_callback(struct ceph_osd_request * osd_req,struct ceph_msg * msg)1809 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1810 				struct ceph_msg *msg)
1811 {
1812 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1813 	u16 opcode;
1814 
1815 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1816 	rbd_assert(osd_req == obj_request->osd_req);
1817 	if (obj_request_img_data_test(obj_request)) {
1818 		rbd_assert(obj_request->img_request);
1819 		rbd_assert(obj_request->which != BAD_WHICH);
1820 	} else {
1821 		rbd_assert(obj_request->which == BAD_WHICH);
1822 	}
1823 
1824 	if (osd_req->r_result < 0)
1825 		obj_request->result = osd_req->r_result;
1826 
1827 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1828 
1829 	/*
1830 	 * We support a 64-bit length, but ultimately it has to be
1831 	 * passed to blk_end_request(), which takes an unsigned int.
1832 	 */
1833 	obj_request->xferred = osd_req->r_reply_op_len[0];
1834 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1835 
1836 	opcode = osd_req->r_ops[0].op;
1837 	switch (opcode) {
1838 	case CEPH_OSD_OP_READ:
1839 		rbd_osd_read_callback(obj_request);
1840 		break;
1841 	case CEPH_OSD_OP_SETALLOCHINT:
1842 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1843 		/* fall through */
1844 	case CEPH_OSD_OP_WRITE:
1845 		rbd_osd_write_callback(obj_request);
1846 		break;
1847 	case CEPH_OSD_OP_STAT:
1848 		rbd_osd_stat_callback(obj_request);
1849 		break;
1850 	case CEPH_OSD_OP_DELETE:
1851 	case CEPH_OSD_OP_TRUNCATE:
1852 	case CEPH_OSD_OP_ZERO:
1853 		rbd_osd_discard_callback(obj_request);
1854 		break;
1855 	case CEPH_OSD_OP_CALL:
1856 		rbd_osd_call_callback(obj_request);
1857 		break;
1858 	case CEPH_OSD_OP_NOTIFY_ACK:
1859 	case CEPH_OSD_OP_WATCH:
1860 		rbd_osd_trivial_callback(obj_request);
1861 		break;
1862 	default:
1863 		rbd_warn(NULL, "%s: unsupported op %hu",
1864 			obj_request->object_name, (unsigned short) opcode);
1865 		break;
1866 	}
1867 
1868 	if (obj_request_done_test(obj_request))
1869 		rbd_obj_request_complete(obj_request);
1870 }
1871 
rbd_osd_req_format_read(struct rbd_obj_request * obj_request)1872 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1873 {
1874 	struct rbd_img_request *img_request = obj_request->img_request;
1875 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1876 	u64 snap_id;
1877 
1878 	rbd_assert(osd_req != NULL);
1879 
1880 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1881 	ceph_osdc_build_request(osd_req, obj_request->offset,
1882 			NULL, snap_id, NULL);
1883 }
1884 
rbd_osd_req_format_write(struct rbd_obj_request * obj_request)1885 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1886 {
1887 	struct rbd_img_request *img_request = obj_request->img_request;
1888 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1889 	struct ceph_snap_context *snapc;
1890 	struct timespec mtime = CURRENT_TIME;
1891 
1892 	rbd_assert(osd_req != NULL);
1893 
1894 	snapc = img_request ? img_request->snapc : NULL;
1895 	ceph_osdc_build_request(osd_req, obj_request->offset,
1896 			snapc, CEPH_NOSNAP, &mtime);
1897 }
1898 
1899 /*
1900  * Create an osd request.  A read request has one osd op (read).
1901  * A write request has either one (watch) or two (hint+write) osd ops.
1902  * (All rbd data writes are prefixed with an allocation hint op, but
1903  * technically osd watch is a write request, hence this distinction.)
1904  */
rbd_osd_req_create(struct rbd_device * rbd_dev,enum obj_operation_type op_type,unsigned int num_ops,struct rbd_obj_request * obj_request)1905 static struct ceph_osd_request *rbd_osd_req_create(
1906 					struct rbd_device *rbd_dev,
1907 					enum obj_operation_type op_type,
1908 					unsigned int num_ops,
1909 					struct rbd_obj_request *obj_request)
1910 {
1911 	struct ceph_snap_context *snapc = NULL;
1912 	struct ceph_osd_client *osdc;
1913 	struct ceph_osd_request *osd_req;
1914 
1915 	if (obj_request_img_data_test(obj_request) &&
1916 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1917 		struct rbd_img_request *img_request = obj_request->img_request;
1918 		if (op_type == OBJ_OP_WRITE) {
1919 			rbd_assert(img_request_write_test(img_request));
1920 		} else {
1921 			rbd_assert(img_request_discard_test(img_request));
1922 		}
1923 		snapc = img_request->snapc;
1924 	}
1925 
1926 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1927 
1928 	/* Allocate and initialize the request, for the num_ops ops */
1929 
1930 	osdc = &rbd_dev->rbd_client->client->osdc;
1931 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1932 					  GFP_NOIO);
1933 	if (!osd_req)
1934 		return NULL;	/* ENOMEM */
1935 
1936 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1937 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1938 	else
1939 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1940 
1941 	osd_req->r_callback = rbd_osd_req_callback;
1942 	osd_req->r_priv = obj_request;
1943 
1944 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1945 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1946 
1947 	return osd_req;
1948 }
1949 
1950 /*
1951  * Create a copyup osd request based on the information in the object
1952  * request supplied.  A copyup request has two or three osd ops, a
1953  * copyup method call, potentially a hint op, and a write or truncate
1954  * or zero op.
1955  */
1956 static struct ceph_osd_request *
rbd_osd_req_create_copyup(struct rbd_obj_request * obj_request)1957 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1958 {
1959 	struct rbd_img_request *img_request;
1960 	struct ceph_snap_context *snapc;
1961 	struct rbd_device *rbd_dev;
1962 	struct ceph_osd_client *osdc;
1963 	struct ceph_osd_request *osd_req;
1964 	int num_osd_ops = 3;
1965 
1966 	rbd_assert(obj_request_img_data_test(obj_request));
1967 	img_request = obj_request->img_request;
1968 	rbd_assert(img_request);
1969 	rbd_assert(img_request_write_test(img_request) ||
1970 			img_request_discard_test(img_request));
1971 
1972 	if (img_request_discard_test(img_request))
1973 		num_osd_ops = 2;
1974 
1975 	/* Allocate and initialize the request, for all the ops */
1976 
1977 	snapc = img_request->snapc;
1978 	rbd_dev = img_request->rbd_dev;
1979 	osdc = &rbd_dev->rbd_client->client->osdc;
1980 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1981 						false, GFP_NOIO);
1982 	if (!osd_req)
1983 		return NULL;	/* ENOMEM */
1984 
1985 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1986 	osd_req->r_callback = rbd_osd_req_callback;
1987 	osd_req->r_priv = obj_request;
1988 
1989 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1990 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1991 
1992 	return osd_req;
1993 }
1994 
1995 
rbd_osd_req_destroy(struct ceph_osd_request * osd_req)1996 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1997 {
1998 	ceph_osdc_put_request(osd_req);
1999 }
2000 
2001 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2002 
rbd_obj_request_create(const char * object_name,u64 offset,u64 length,enum obj_request_type type)2003 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2004 						u64 offset, u64 length,
2005 						enum obj_request_type type)
2006 {
2007 	struct rbd_obj_request *obj_request;
2008 	size_t size;
2009 	char *name;
2010 
2011 	rbd_assert(obj_request_type_valid(type));
2012 
2013 	size = strlen(object_name) + 1;
2014 	name = kmalloc(size, GFP_NOIO);
2015 	if (!name)
2016 		return NULL;
2017 
2018 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2019 	if (!obj_request) {
2020 		kfree(name);
2021 		return NULL;
2022 	}
2023 
2024 	obj_request->object_name = memcpy(name, object_name, size);
2025 	obj_request->offset = offset;
2026 	obj_request->length = length;
2027 	obj_request->flags = 0;
2028 	obj_request->which = BAD_WHICH;
2029 	obj_request->type = type;
2030 	INIT_LIST_HEAD(&obj_request->links);
2031 	init_completion(&obj_request->completion);
2032 	kref_init(&obj_request->kref);
2033 
2034 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2035 		offset, length, (int)type, obj_request);
2036 
2037 	return obj_request;
2038 }
2039 
rbd_obj_request_destroy(struct kref * kref)2040 static void rbd_obj_request_destroy(struct kref *kref)
2041 {
2042 	struct rbd_obj_request *obj_request;
2043 
2044 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2045 
2046 	dout("%s: obj %p\n", __func__, obj_request);
2047 
2048 	rbd_assert(obj_request->img_request == NULL);
2049 	rbd_assert(obj_request->which == BAD_WHICH);
2050 
2051 	if (obj_request->osd_req)
2052 		rbd_osd_req_destroy(obj_request->osd_req);
2053 
2054 	rbd_assert(obj_request_type_valid(obj_request->type));
2055 	switch (obj_request->type) {
2056 	case OBJ_REQUEST_NODATA:
2057 		break;		/* Nothing to do */
2058 	case OBJ_REQUEST_BIO:
2059 		if (obj_request->bio_list)
2060 			bio_chain_put(obj_request->bio_list);
2061 		break;
2062 	case OBJ_REQUEST_PAGES:
2063 		if (obj_request->pages)
2064 			ceph_release_page_vector(obj_request->pages,
2065 						obj_request->page_count);
2066 		break;
2067 	}
2068 
2069 	kfree(obj_request->object_name);
2070 	obj_request->object_name = NULL;
2071 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2072 }
2073 
2074 /* It's OK to call this for a device with no parent */
2075 
2076 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)2077 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2078 {
2079 	rbd_dev_remove_parent(rbd_dev);
2080 	rbd_spec_put(rbd_dev->parent_spec);
2081 	rbd_dev->parent_spec = NULL;
2082 	rbd_dev->parent_overlap = 0;
2083 }
2084 
2085 /*
2086  * Parent image reference counting is used to determine when an
2087  * image's parent fields can be safely torn down--after there are no
2088  * more in-flight requests to the parent image.  When the last
2089  * reference is dropped, cleaning them up is safe.
2090  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)2091 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2092 {
2093 	int counter;
2094 
2095 	if (!rbd_dev->parent_spec)
2096 		return;
2097 
2098 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2099 	if (counter > 0)
2100 		return;
2101 
2102 	/* Last reference; clean up parent data structures */
2103 
2104 	if (!counter)
2105 		rbd_dev_unparent(rbd_dev);
2106 	else
2107 		rbd_warn(rbd_dev, "parent reference underflow");
2108 }
2109 
2110 /*
2111  * If an image has a non-zero parent overlap, get a reference to its
2112  * parent.
2113  *
2114  * Returns true if the rbd device has a parent with a non-zero
2115  * overlap and a reference for it was successfully taken, or
2116  * false otherwise.
2117  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)2118 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2119 {
2120 	int counter = 0;
2121 
2122 	if (!rbd_dev->parent_spec)
2123 		return false;
2124 
2125 	down_read(&rbd_dev->header_rwsem);
2126 	if (rbd_dev->parent_overlap)
2127 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2128 	up_read(&rbd_dev->header_rwsem);
2129 
2130 	if (counter < 0)
2131 		rbd_warn(rbd_dev, "parent reference overflow");
2132 
2133 	return counter > 0;
2134 }
2135 
2136 /*
2137  * Caller is responsible for filling in the list of object requests
2138  * that comprises the image request, and the Linux request pointer
2139  * (if there is one).
2140  */
rbd_img_request_create(struct rbd_device * rbd_dev,u64 offset,u64 length,enum obj_operation_type op_type,struct ceph_snap_context * snapc)2141 static struct rbd_img_request *rbd_img_request_create(
2142 					struct rbd_device *rbd_dev,
2143 					u64 offset, u64 length,
2144 					enum obj_operation_type op_type,
2145 					struct ceph_snap_context *snapc)
2146 {
2147 	struct rbd_img_request *img_request;
2148 
2149 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2150 	if (!img_request)
2151 		return NULL;
2152 
2153 	img_request->rq = NULL;
2154 	img_request->rbd_dev = rbd_dev;
2155 	img_request->offset = offset;
2156 	img_request->length = length;
2157 	img_request->flags = 0;
2158 	if (op_type == OBJ_OP_DISCARD) {
2159 		img_request_discard_set(img_request);
2160 		img_request->snapc = snapc;
2161 	} else if (op_type == OBJ_OP_WRITE) {
2162 		img_request_write_set(img_request);
2163 		img_request->snapc = snapc;
2164 	} else {
2165 		img_request->snap_id = rbd_dev->spec->snap_id;
2166 	}
2167 	if (rbd_dev_parent_get(rbd_dev))
2168 		img_request_layered_set(img_request);
2169 	spin_lock_init(&img_request->completion_lock);
2170 	img_request->next_completion = 0;
2171 	img_request->callback = NULL;
2172 	img_request->result = 0;
2173 	img_request->obj_request_count = 0;
2174 	INIT_LIST_HEAD(&img_request->obj_requests);
2175 	kref_init(&img_request->kref);
2176 
2177 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2178 		obj_op_name(op_type), offset, length, img_request);
2179 
2180 	return img_request;
2181 }
2182 
rbd_img_request_destroy(struct kref * kref)2183 static void rbd_img_request_destroy(struct kref *kref)
2184 {
2185 	struct rbd_img_request *img_request;
2186 	struct rbd_obj_request *obj_request;
2187 	struct rbd_obj_request *next_obj_request;
2188 
2189 	img_request = container_of(kref, struct rbd_img_request, kref);
2190 
2191 	dout("%s: img %p\n", __func__, img_request);
2192 
2193 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2194 		rbd_img_obj_request_del(img_request, obj_request);
2195 	rbd_assert(img_request->obj_request_count == 0);
2196 
2197 	if (img_request_layered_test(img_request)) {
2198 		img_request_layered_clear(img_request);
2199 		rbd_dev_parent_put(img_request->rbd_dev);
2200 	}
2201 
2202 	if (img_request_write_test(img_request) ||
2203 		img_request_discard_test(img_request))
2204 		ceph_put_snap_context(img_request->snapc);
2205 
2206 	kmem_cache_free(rbd_img_request_cache, img_request);
2207 }
2208 
rbd_parent_request_create(struct rbd_obj_request * obj_request,u64 img_offset,u64 length)2209 static struct rbd_img_request *rbd_parent_request_create(
2210 					struct rbd_obj_request *obj_request,
2211 					u64 img_offset, u64 length)
2212 {
2213 	struct rbd_img_request *parent_request;
2214 	struct rbd_device *rbd_dev;
2215 
2216 	rbd_assert(obj_request->img_request);
2217 	rbd_dev = obj_request->img_request->rbd_dev;
2218 
2219 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2220 						length, OBJ_OP_READ, NULL);
2221 	if (!parent_request)
2222 		return NULL;
2223 
2224 	img_request_child_set(parent_request);
2225 	rbd_obj_request_get(obj_request);
2226 	parent_request->obj_request = obj_request;
2227 
2228 	return parent_request;
2229 }
2230 
rbd_parent_request_destroy(struct kref * kref)2231 static void rbd_parent_request_destroy(struct kref *kref)
2232 {
2233 	struct rbd_img_request *parent_request;
2234 	struct rbd_obj_request *orig_request;
2235 
2236 	parent_request = container_of(kref, struct rbd_img_request, kref);
2237 	orig_request = parent_request->obj_request;
2238 
2239 	parent_request->obj_request = NULL;
2240 	rbd_obj_request_put(orig_request);
2241 	img_request_child_clear(parent_request);
2242 
2243 	rbd_img_request_destroy(kref);
2244 }
2245 
rbd_img_obj_end_request(struct rbd_obj_request * obj_request)2246 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2247 {
2248 	struct rbd_img_request *img_request;
2249 	unsigned int xferred;
2250 	int result;
2251 	bool more;
2252 
2253 	rbd_assert(obj_request_img_data_test(obj_request));
2254 	img_request = obj_request->img_request;
2255 
2256 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2257 	xferred = (unsigned int)obj_request->xferred;
2258 	result = obj_request->result;
2259 	if (result) {
2260 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2261 		enum obj_operation_type op_type;
2262 
2263 		if (img_request_discard_test(img_request))
2264 			op_type = OBJ_OP_DISCARD;
2265 		else if (img_request_write_test(img_request))
2266 			op_type = OBJ_OP_WRITE;
2267 		else
2268 			op_type = OBJ_OP_READ;
2269 
2270 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2271 			obj_op_name(op_type), obj_request->length,
2272 			obj_request->img_offset, obj_request->offset);
2273 		rbd_warn(rbd_dev, "  result %d xferred %x",
2274 			result, xferred);
2275 		if (!img_request->result)
2276 			img_request->result = result;
2277 		/*
2278 		 * Need to end I/O on the entire obj_request worth of
2279 		 * bytes in case of error.
2280 		 */
2281 		xferred = obj_request->length;
2282 	}
2283 
2284 	/* Image object requests don't own their page array */
2285 
2286 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2287 		obj_request->pages = NULL;
2288 		obj_request->page_count = 0;
2289 	}
2290 
2291 	if (img_request_child_test(img_request)) {
2292 		rbd_assert(img_request->obj_request != NULL);
2293 		more = obj_request->which < img_request->obj_request_count - 1;
2294 	} else {
2295 		rbd_assert(img_request->rq != NULL);
2296 		more = blk_end_request(img_request->rq, result, xferred);
2297 	}
2298 
2299 	return more;
2300 }
2301 
rbd_img_obj_callback(struct rbd_obj_request * obj_request)2302 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2303 {
2304 	struct rbd_img_request *img_request;
2305 	u32 which = obj_request->which;
2306 	bool more = true;
2307 
2308 	rbd_assert(obj_request_img_data_test(obj_request));
2309 	img_request = obj_request->img_request;
2310 
2311 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2312 	rbd_assert(img_request != NULL);
2313 	rbd_assert(img_request->obj_request_count > 0);
2314 	rbd_assert(which != BAD_WHICH);
2315 	rbd_assert(which < img_request->obj_request_count);
2316 
2317 	spin_lock_irq(&img_request->completion_lock);
2318 	if (which != img_request->next_completion)
2319 		goto out;
2320 
2321 	for_each_obj_request_from(img_request, obj_request) {
2322 		rbd_assert(more);
2323 		rbd_assert(which < img_request->obj_request_count);
2324 
2325 		if (!obj_request_done_test(obj_request))
2326 			break;
2327 		more = rbd_img_obj_end_request(obj_request);
2328 		which++;
2329 	}
2330 
2331 	rbd_assert(more ^ (which == img_request->obj_request_count));
2332 	img_request->next_completion = which;
2333 out:
2334 	spin_unlock_irq(&img_request->completion_lock);
2335 	rbd_img_request_put(img_request);
2336 
2337 	if (!more)
2338 		rbd_img_request_complete(img_request);
2339 }
2340 
2341 /*
2342  * Add individual osd ops to the given ceph_osd_request and prepare
2343  * them for submission. num_ops is the current number of
2344  * osd operations already to the object request.
2345  */
rbd_img_obj_request_fill(struct rbd_obj_request * obj_request,struct ceph_osd_request * osd_request,enum obj_operation_type op_type,unsigned int num_ops)2346 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2347 				struct ceph_osd_request *osd_request,
2348 				enum obj_operation_type op_type,
2349 				unsigned int num_ops)
2350 {
2351 	struct rbd_img_request *img_request = obj_request->img_request;
2352 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2353 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2354 	u64 offset = obj_request->offset;
2355 	u64 length = obj_request->length;
2356 	u64 img_end;
2357 	u16 opcode;
2358 
2359 	if (op_type == OBJ_OP_DISCARD) {
2360 		if (!offset && length == object_size &&
2361 		    (!img_request_layered_test(img_request) ||
2362 		     !obj_request_overlaps_parent(obj_request))) {
2363 			opcode = CEPH_OSD_OP_DELETE;
2364 		} else if ((offset + length == object_size)) {
2365 			opcode = CEPH_OSD_OP_TRUNCATE;
2366 		} else {
2367 			down_read(&rbd_dev->header_rwsem);
2368 			img_end = rbd_dev->header.image_size;
2369 			up_read(&rbd_dev->header_rwsem);
2370 
2371 			if (obj_request->img_offset + length == img_end)
2372 				opcode = CEPH_OSD_OP_TRUNCATE;
2373 			else
2374 				opcode = CEPH_OSD_OP_ZERO;
2375 		}
2376 	} else if (op_type == OBJ_OP_WRITE) {
2377 		opcode = CEPH_OSD_OP_WRITE;
2378 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2379 					object_size, object_size);
2380 		num_ops++;
2381 	} else {
2382 		opcode = CEPH_OSD_OP_READ;
2383 	}
2384 
2385 	osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2386 				0, 0);
2387 	if (obj_request->type == OBJ_REQUEST_BIO)
2388 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2389 					obj_request->bio_list, length);
2390 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2391 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2392 					obj_request->pages, length,
2393 					offset & ~PAGE_MASK, false, false);
2394 
2395 	/* Discards are also writes */
2396 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2397 		rbd_osd_req_format_write(obj_request);
2398 	else
2399 		rbd_osd_req_format_read(obj_request);
2400 }
2401 
2402 /*
2403  * Split up an image request into one or more object requests, each
2404  * to a different object.  The "type" parameter indicates whether
2405  * "data_desc" is the pointer to the head of a list of bio
2406  * structures, or the base of a page array.  In either case this
2407  * function assumes data_desc describes memory sufficient to hold
2408  * all data described by the image request.
2409  */
rbd_img_request_fill(struct rbd_img_request * img_request,enum obj_request_type type,void * data_desc)2410 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2411 					enum obj_request_type type,
2412 					void *data_desc)
2413 {
2414 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2415 	struct rbd_obj_request *obj_request = NULL;
2416 	struct rbd_obj_request *next_obj_request;
2417 	struct bio *bio_list = NULL;
2418 	unsigned int bio_offset = 0;
2419 	struct page **pages = NULL;
2420 	enum obj_operation_type op_type;
2421 	u64 img_offset;
2422 	u64 resid;
2423 
2424 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2425 		(int)type, data_desc);
2426 
2427 	img_offset = img_request->offset;
2428 	resid = img_request->length;
2429 	rbd_assert(resid > 0);
2430 	op_type = rbd_img_request_op_type(img_request);
2431 
2432 	if (type == OBJ_REQUEST_BIO) {
2433 		bio_list = data_desc;
2434 		rbd_assert(img_offset ==
2435 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2436 	} else if (type == OBJ_REQUEST_PAGES) {
2437 		pages = data_desc;
2438 	}
2439 
2440 	while (resid) {
2441 		struct ceph_osd_request *osd_req;
2442 		const char *object_name;
2443 		u64 offset;
2444 		u64 length;
2445 
2446 		object_name = rbd_segment_name(rbd_dev, img_offset);
2447 		if (!object_name)
2448 			goto out_unwind;
2449 		offset = rbd_segment_offset(rbd_dev, img_offset);
2450 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2451 		obj_request = rbd_obj_request_create(object_name,
2452 						offset, length, type);
2453 		/* object request has its own copy of the object name */
2454 		rbd_segment_name_free(object_name);
2455 		if (!obj_request)
2456 			goto out_unwind;
2457 
2458 		/*
2459 		 * set obj_request->img_request before creating the
2460 		 * osd_request so that it gets the right snapc
2461 		 */
2462 		rbd_img_obj_request_add(img_request, obj_request);
2463 
2464 		if (type == OBJ_REQUEST_BIO) {
2465 			unsigned int clone_size;
2466 
2467 			rbd_assert(length <= (u64)UINT_MAX);
2468 			clone_size = (unsigned int)length;
2469 			obj_request->bio_list =
2470 					bio_chain_clone_range(&bio_list,
2471 								&bio_offset,
2472 								clone_size,
2473 								GFP_NOIO);
2474 			if (!obj_request->bio_list)
2475 				goto out_unwind;
2476 		} else if (type == OBJ_REQUEST_PAGES) {
2477 			unsigned int page_count;
2478 
2479 			obj_request->pages = pages;
2480 			page_count = (u32)calc_pages_for(offset, length);
2481 			obj_request->page_count = page_count;
2482 			if ((offset + length) & ~PAGE_MASK)
2483 				page_count--;	/* more on last page */
2484 			pages += page_count;
2485 		}
2486 
2487 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2488 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2489 					obj_request);
2490 		if (!osd_req)
2491 			goto out_unwind;
2492 
2493 		obj_request->osd_req = osd_req;
2494 		obj_request->callback = rbd_img_obj_callback;
2495 		obj_request->img_offset = img_offset;
2496 
2497 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2498 
2499 		rbd_img_request_get(img_request);
2500 
2501 		img_offset += length;
2502 		resid -= length;
2503 	}
2504 
2505 	return 0;
2506 
2507 out_unwind:
2508 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2509 		rbd_img_obj_request_del(img_request, obj_request);
2510 
2511 	return -ENOMEM;
2512 }
2513 
2514 static void
rbd_osd_copyup_callback(struct rbd_obj_request * obj_request)2515 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2516 {
2517 	struct rbd_img_request *img_request;
2518 	struct rbd_device *rbd_dev;
2519 	struct page **pages;
2520 	u32 page_count;
2521 
2522 	dout("%s: obj %p\n", __func__, obj_request);
2523 
2524 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2525 		obj_request->type == OBJ_REQUEST_NODATA);
2526 	rbd_assert(obj_request_img_data_test(obj_request));
2527 	img_request = obj_request->img_request;
2528 	rbd_assert(img_request);
2529 
2530 	rbd_dev = img_request->rbd_dev;
2531 	rbd_assert(rbd_dev);
2532 
2533 	pages = obj_request->copyup_pages;
2534 	rbd_assert(pages != NULL);
2535 	obj_request->copyup_pages = NULL;
2536 	page_count = obj_request->copyup_page_count;
2537 	rbd_assert(page_count);
2538 	obj_request->copyup_page_count = 0;
2539 	ceph_release_page_vector(pages, page_count);
2540 
2541 	/*
2542 	 * We want the transfer count to reflect the size of the
2543 	 * original write request.  There is no such thing as a
2544 	 * successful short write, so if the request was successful
2545 	 * we can just set it to the originally-requested length.
2546 	 */
2547 	if (!obj_request->result)
2548 		obj_request->xferred = obj_request->length;
2549 
2550 	obj_request_done_set(obj_request);
2551 }
2552 
2553 static void
rbd_img_obj_parent_read_full_callback(struct rbd_img_request * img_request)2554 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2555 {
2556 	struct rbd_obj_request *orig_request;
2557 	struct ceph_osd_request *osd_req;
2558 	struct ceph_osd_client *osdc;
2559 	struct rbd_device *rbd_dev;
2560 	struct page **pages;
2561 	enum obj_operation_type op_type;
2562 	u32 page_count;
2563 	int img_result;
2564 	u64 parent_length;
2565 
2566 	rbd_assert(img_request_child_test(img_request));
2567 
2568 	/* First get what we need from the image request */
2569 
2570 	pages = img_request->copyup_pages;
2571 	rbd_assert(pages != NULL);
2572 	img_request->copyup_pages = NULL;
2573 	page_count = img_request->copyup_page_count;
2574 	rbd_assert(page_count);
2575 	img_request->copyup_page_count = 0;
2576 
2577 	orig_request = img_request->obj_request;
2578 	rbd_assert(orig_request != NULL);
2579 	rbd_assert(obj_request_type_valid(orig_request->type));
2580 	img_result = img_request->result;
2581 	parent_length = img_request->length;
2582 	rbd_assert(parent_length == img_request->xferred);
2583 	rbd_img_request_put(img_request);
2584 
2585 	rbd_assert(orig_request->img_request);
2586 	rbd_dev = orig_request->img_request->rbd_dev;
2587 	rbd_assert(rbd_dev);
2588 
2589 	/*
2590 	 * If the overlap has become 0 (most likely because the
2591 	 * image has been flattened) we need to free the pages
2592 	 * and re-submit the original write request.
2593 	 */
2594 	if (!rbd_dev->parent_overlap) {
2595 		struct ceph_osd_client *osdc;
2596 
2597 		ceph_release_page_vector(pages, page_count);
2598 		osdc = &rbd_dev->rbd_client->client->osdc;
2599 		img_result = rbd_obj_request_submit(osdc, orig_request);
2600 		if (!img_result)
2601 			return;
2602 	}
2603 
2604 	if (img_result)
2605 		goto out_err;
2606 
2607 	/*
2608 	 * The original osd request is of no use to use any more.
2609 	 * We need a new one that can hold the three ops in a copyup
2610 	 * request.  Allocate the new copyup osd request for the
2611 	 * original request, and release the old one.
2612 	 */
2613 	img_result = -ENOMEM;
2614 	osd_req = rbd_osd_req_create_copyup(orig_request);
2615 	if (!osd_req)
2616 		goto out_err;
2617 	rbd_osd_req_destroy(orig_request->osd_req);
2618 	orig_request->osd_req = osd_req;
2619 	orig_request->copyup_pages = pages;
2620 	orig_request->copyup_page_count = page_count;
2621 
2622 	/* Initialize the copyup op */
2623 
2624 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2625 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2626 						false, false);
2627 
2628 	/* Add the other op(s) */
2629 
2630 	op_type = rbd_img_request_op_type(orig_request->img_request);
2631 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2632 
2633 	/* All set, send it off. */
2634 
2635 	osdc = &rbd_dev->rbd_client->client->osdc;
2636 	img_result = rbd_obj_request_submit(osdc, orig_request);
2637 	if (!img_result)
2638 		return;
2639 out_err:
2640 	/* Record the error code and complete the request */
2641 
2642 	orig_request->result = img_result;
2643 	orig_request->xferred = 0;
2644 	obj_request_done_set(orig_request);
2645 	rbd_obj_request_complete(orig_request);
2646 }
2647 
2648 /*
2649  * Read from the parent image the range of data that covers the
2650  * entire target of the given object request.  This is used for
2651  * satisfying a layered image write request when the target of an
2652  * object request from the image request does not exist.
2653  *
2654  * A page array big enough to hold the returned data is allocated
2655  * and supplied to rbd_img_request_fill() as the "data descriptor."
2656  * When the read completes, this page array will be transferred to
2657  * the original object request for the copyup operation.
2658  *
2659  * If an error occurs, record it as the result of the original
2660  * object request and mark it done so it gets completed.
2661  */
rbd_img_obj_parent_read_full(struct rbd_obj_request * obj_request)2662 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2663 {
2664 	struct rbd_img_request *img_request = NULL;
2665 	struct rbd_img_request *parent_request = NULL;
2666 	struct rbd_device *rbd_dev;
2667 	u64 img_offset;
2668 	u64 length;
2669 	struct page **pages = NULL;
2670 	u32 page_count;
2671 	int result;
2672 
2673 	rbd_assert(obj_request_img_data_test(obj_request));
2674 	rbd_assert(obj_request_type_valid(obj_request->type));
2675 
2676 	img_request = obj_request->img_request;
2677 	rbd_assert(img_request != NULL);
2678 	rbd_dev = img_request->rbd_dev;
2679 	rbd_assert(rbd_dev->parent != NULL);
2680 
2681 	/*
2682 	 * Determine the byte range covered by the object in the
2683 	 * child image to which the original request was to be sent.
2684 	 */
2685 	img_offset = obj_request->img_offset - obj_request->offset;
2686 	length = (u64)1 << rbd_dev->header.obj_order;
2687 
2688 	/*
2689 	 * There is no defined parent data beyond the parent
2690 	 * overlap, so limit what we read at that boundary if
2691 	 * necessary.
2692 	 */
2693 	if (img_offset + length > rbd_dev->parent_overlap) {
2694 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2695 		length = rbd_dev->parent_overlap - img_offset;
2696 	}
2697 
2698 	/*
2699 	 * Allocate a page array big enough to receive the data read
2700 	 * from the parent.
2701 	 */
2702 	page_count = (u32)calc_pages_for(0, length);
2703 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2704 	if (IS_ERR(pages)) {
2705 		result = PTR_ERR(pages);
2706 		pages = NULL;
2707 		goto out_err;
2708 	}
2709 
2710 	result = -ENOMEM;
2711 	parent_request = rbd_parent_request_create(obj_request,
2712 						img_offset, length);
2713 	if (!parent_request)
2714 		goto out_err;
2715 
2716 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2717 	if (result)
2718 		goto out_err;
2719 	parent_request->copyup_pages = pages;
2720 	parent_request->copyup_page_count = page_count;
2721 
2722 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2723 	result = rbd_img_request_submit(parent_request);
2724 	if (!result)
2725 		return 0;
2726 
2727 	parent_request->copyup_pages = NULL;
2728 	parent_request->copyup_page_count = 0;
2729 	parent_request->obj_request = NULL;
2730 	rbd_obj_request_put(obj_request);
2731 out_err:
2732 	if (pages)
2733 		ceph_release_page_vector(pages, page_count);
2734 	if (parent_request)
2735 		rbd_img_request_put(parent_request);
2736 	obj_request->result = result;
2737 	obj_request->xferred = 0;
2738 	obj_request_done_set(obj_request);
2739 
2740 	return result;
2741 }
2742 
rbd_img_obj_exists_callback(struct rbd_obj_request * obj_request)2743 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2744 {
2745 	struct rbd_obj_request *orig_request;
2746 	struct rbd_device *rbd_dev;
2747 	int result;
2748 
2749 	rbd_assert(!obj_request_img_data_test(obj_request));
2750 
2751 	/*
2752 	 * All we need from the object request is the original
2753 	 * request and the result of the STAT op.  Grab those, then
2754 	 * we're done with the request.
2755 	 */
2756 	orig_request = obj_request->obj_request;
2757 	obj_request->obj_request = NULL;
2758 	rbd_obj_request_put(orig_request);
2759 	rbd_assert(orig_request);
2760 	rbd_assert(orig_request->img_request);
2761 
2762 	result = obj_request->result;
2763 	obj_request->result = 0;
2764 
2765 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2766 		obj_request, orig_request, result,
2767 		obj_request->xferred, obj_request->length);
2768 	rbd_obj_request_put(obj_request);
2769 
2770 	/*
2771 	 * If the overlap has become 0 (most likely because the
2772 	 * image has been flattened) we need to free the pages
2773 	 * and re-submit the original write request.
2774 	 */
2775 	rbd_dev = orig_request->img_request->rbd_dev;
2776 	if (!rbd_dev->parent_overlap) {
2777 		struct ceph_osd_client *osdc;
2778 
2779 		osdc = &rbd_dev->rbd_client->client->osdc;
2780 		result = rbd_obj_request_submit(osdc, orig_request);
2781 		if (!result)
2782 			return;
2783 	}
2784 
2785 	/*
2786 	 * Our only purpose here is to determine whether the object
2787 	 * exists, and we don't want to treat the non-existence as
2788 	 * an error.  If something else comes back, transfer the
2789 	 * error to the original request and complete it now.
2790 	 */
2791 	if (!result) {
2792 		obj_request_existence_set(orig_request, true);
2793 	} else if (result == -ENOENT) {
2794 		obj_request_existence_set(orig_request, false);
2795 	} else if (result) {
2796 		orig_request->result = result;
2797 		goto out;
2798 	}
2799 
2800 	/*
2801 	 * Resubmit the original request now that we have recorded
2802 	 * whether the target object exists.
2803 	 */
2804 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2805 out:
2806 	if (orig_request->result)
2807 		rbd_obj_request_complete(orig_request);
2808 }
2809 
rbd_img_obj_exists_submit(struct rbd_obj_request * obj_request)2810 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2811 {
2812 	struct rbd_obj_request *stat_request;
2813 	struct rbd_device *rbd_dev;
2814 	struct ceph_osd_client *osdc;
2815 	struct page **pages = NULL;
2816 	u32 page_count;
2817 	size_t size;
2818 	int ret;
2819 
2820 	/*
2821 	 * The response data for a STAT call consists of:
2822 	 *     le64 length;
2823 	 *     struct {
2824 	 *         le32 tv_sec;
2825 	 *         le32 tv_nsec;
2826 	 *     } mtime;
2827 	 */
2828 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2829 	page_count = (u32)calc_pages_for(0, size);
2830 	pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2831 	if (IS_ERR(pages))
2832 		return PTR_ERR(pages);
2833 
2834 	ret = -ENOMEM;
2835 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2836 							OBJ_REQUEST_PAGES);
2837 	if (!stat_request)
2838 		goto out;
2839 
2840 	rbd_obj_request_get(obj_request);
2841 	stat_request->obj_request = obj_request;
2842 	stat_request->pages = pages;
2843 	stat_request->page_count = page_count;
2844 
2845 	rbd_assert(obj_request->img_request);
2846 	rbd_dev = obj_request->img_request->rbd_dev;
2847 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2848 						   stat_request);
2849 	if (!stat_request->osd_req)
2850 		goto out;
2851 	stat_request->callback = rbd_img_obj_exists_callback;
2852 
2853 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2854 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2855 					false, false);
2856 	rbd_osd_req_format_read(stat_request);
2857 
2858 	osdc = &rbd_dev->rbd_client->client->osdc;
2859 	ret = rbd_obj_request_submit(osdc, stat_request);
2860 out:
2861 	if (ret)
2862 		rbd_obj_request_put(obj_request);
2863 
2864 	return ret;
2865 }
2866 
img_obj_request_simple(struct rbd_obj_request * obj_request)2867 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2868 {
2869 	struct rbd_img_request *img_request;
2870 	struct rbd_device *rbd_dev;
2871 
2872 	rbd_assert(obj_request_img_data_test(obj_request));
2873 
2874 	img_request = obj_request->img_request;
2875 	rbd_assert(img_request);
2876 	rbd_dev = img_request->rbd_dev;
2877 
2878 	/* Reads */
2879 	if (!img_request_write_test(img_request) &&
2880 	    !img_request_discard_test(img_request))
2881 		return true;
2882 
2883 	/* Non-layered writes */
2884 	if (!img_request_layered_test(img_request))
2885 		return true;
2886 
2887 	/*
2888 	 * Layered writes outside of the parent overlap range don't
2889 	 * share any data with the parent.
2890 	 */
2891 	if (!obj_request_overlaps_parent(obj_request))
2892 		return true;
2893 
2894 	/*
2895 	 * Entire-object layered writes - we will overwrite whatever
2896 	 * parent data there is anyway.
2897 	 */
2898 	if (!obj_request->offset &&
2899 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2900 		return true;
2901 
2902 	/*
2903 	 * If the object is known to already exist, its parent data has
2904 	 * already been copied.
2905 	 */
2906 	if (obj_request_known_test(obj_request) &&
2907 	    obj_request_exists_test(obj_request))
2908 		return true;
2909 
2910 	return false;
2911 }
2912 
rbd_img_obj_request_submit(struct rbd_obj_request * obj_request)2913 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2914 {
2915 	if (img_obj_request_simple(obj_request)) {
2916 		struct rbd_device *rbd_dev;
2917 		struct ceph_osd_client *osdc;
2918 
2919 		rbd_dev = obj_request->img_request->rbd_dev;
2920 		osdc = &rbd_dev->rbd_client->client->osdc;
2921 
2922 		return rbd_obj_request_submit(osdc, obj_request);
2923 	}
2924 
2925 	/*
2926 	 * It's a layered write.  The target object might exist but
2927 	 * we may not know that yet.  If we know it doesn't exist,
2928 	 * start by reading the data for the full target object from
2929 	 * the parent so we can use it for a copyup to the target.
2930 	 */
2931 	if (obj_request_known_test(obj_request))
2932 		return rbd_img_obj_parent_read_full(obj_request);
2933 
2934 	/* We don't know whether the target exists.  Go find out. */
2935 
2936 	return rbd_img_obj_exists_submit(obj_request);
2937 }
2938 
rbd_img_request_submit(struct rbd_img_request * img_request)2939 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2940 {
2941 	struct rbd_obj_request *obj_request;
2942 	struct rbd_obj_request *next_obj_request;
2943 
2944 	dout("%s: img %p\n", __func__, img_request);
2945 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2946 		int ret;
2947 
2948 		ret = rbd_img_obj_request_submit(obj_request);
2949 		if (ret)
2950 			return ret;
2951 	}
2952 
2953 	return 0;
2954 }
2955 
rbd_img_parent_read_callback(struct rbd_img_request * img_request)2956 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2957 {
2958 	struct rbd_obj_request *obj_request;
2959 	struct rbd_device *rbd_dev;
2960 	u64 obj_end;
2961 	u64 img_xferred;
2962 	int img_result;
2963 
2964 	rbd_assert(img_request_child_test(img_request));
2965 
2966 	/* First get what we need from the image request and release it */
2967 
2968 	obj_request = img_request->obj_request;
2969 	img_xferred = img_request->xferred;
2970 	img_result = img_request->result;
2971 	rbd_img_request_put(img_request);
2972 
2973 	/*
2974 	 * If the overlap has become 0 (most likely because the
2975 	 * image has been flattened) we need to re-submit the
2976 	 * original request.
2977 	 */
2978 	rbd_assert(obj_request);
2979 	rbd_assert(obj_request->img_request);
2980 	rbd_dev = obj_request->img_request->rbd_dev;
2981 	if (!rbd_dev->parent_overlap) {
2982 		struct ceph_osd_client *osdc;
2983 
2984 		osdc = &rbd_dev->rbd_client->client->osdc;
2985 		img_result = rbd_obj_request_submit(osdc, obj_request);
2986 		if (!img_result)
2987 			return;
2988 	}
2989 
2990 	obj_request->result = img_result;
2991 	if (obj_request->result)
2992 		goto out;
2993 
2994 	/*
2995 	 * We need to zero anything beyond the parent overlap
2996 	 * boundary.  Since rbd_img_obj_request_read_callback()
2997 	 * will zero anything beyond the end of a short read, an
2998 	 * easy way to do this is to pretend the data from the
2999 	 * parent came up short--ending at the overlap boundary.
3000 	 */
3001 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3002 	obj_end = obj_request->img_offset + obj_request->length;
3003 	if (obj_end > rbd_dev->parent_overlap) {
3004 		u64 xferred = 0;
3005 
3006 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3007 			xferred = rbd_dev->parent_overlap -
3008 					obj_request->img_offset;
3009 
3010 		obj_request->xferred = min(img_xferred, xferred);
3011 	} else {
3012 		obj_request->xferred = img_xferred;
3013 	}
3014 out:
3015 	rbd_img_obj_request_read_callback(obj_request);
3016 	rbd_obj_request_complete(obj_request);
3017 }
3018 
rbd_img_parent_read(struct rbd_obj_request * obj_request)3019 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3020 {
3021 	struct rbd_img_request *img_request;
3022 	int result;
3023 
3024 	rbd_assert(obj_request_img_data_test(obj_request));
3025 	rbd_assert(obj_request->img_request != NULL);
3026 	rbd_assert(obj_request->result == (s32) -ENOENT);
3027 	rbd_assert(obj_request_type_valid(obj_request->type));
3028 
3029 	/* rbd_read_finish(obj_request, obj_request->length); */
3030 	img_request = rbd_parent_request_create(obj_request,
3031 						obj_request->img_offset,
3032 						obj_request->length);
3033 	result = -ENOMEM;
3034 	if (!img_request)
3035 		goto out_err;
3036 
3037 	if (obj_request->type == OBJ_REQUEST_BIO)
3038 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3039 						obj_request->bio_list);
3040 	else
3041 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3042 						obj_request->pages);
3043 	if (result)
3044 		goto out_err;
3045 
3046 	img_request->callback = rbd_img_parent_read_callback;
3047 	result = rbd_img_request_submit(img_request);
3048 	if (result)
3049 		goto out_err;
3050 
3051 	return;
3052 out_err:
3053 	if (img_request)
3054 		rbd_img_request_put(img_request);
3055 	obj_request->result = result;
3056 	obj_request->xferred = 0;
3057 	obj_request_done_set(obj_request);
3058 }
3059 
rbd_obj_notify_ack_sync(struct rbd_device * rbd_dev,u64 notify_id)3060 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3061 {
3062 	struct rbd_obj_request *obj_request;
3063 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3064 	int ret;
3065 
3066 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3067 							OBJ_REQUEST_NODATA);
3068 	if (!obj_request)
3069 		return -ENOMEM;
3070 
3071 	ret = -ENOMEM;
3072 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3073 						  obj_request);
3074 	if (!obj_request->osd_req)
3075 		goto out;
3076 
3077 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3078 					notify_id, 0, 0);
3079 	rbd_osd_req_format_read(obj_request);
3080 
3081 	ret = rbd_obj_request_submit(osdc, obj_request);
3082 	if (ret)
3083 		goto out;
3084 	ret = rbd_obj_request_wait(obj_request);
3085 out:
3086 	rbd_obj_request_put(obj_request);
3087 
3088 	return ret;
3089 }
3090 
rbd_watch_cb(u64 ver,u64 notify_id,u8 opcode,void * data)3091 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3092 {
3093 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3094 	int ret;
3095 
3096 	if (!rbd_dev)
3097 		return;
3098 
3099 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3100 		rbd_dev->header_name, (unsigned long long)notify_id,
3101 		(unsigned int)opcode);
3102 
3103 	/*
3104 	 * Until adequate refresh error handling is in place, there is
3105 	 * not much we can do here, except warn.
3106 	 *
3107 	 * See http://tracker.ceph.com/issues/5040
3108 	 */
3109 	ret = rbd_dev_refresh(rbd_dev);
3110 	if (ret)
3111 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3112 
3113 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3114 	if (ret)
3115 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3116 }
3117 
3118 /*
3119  * Send a (un)watch request and wait for the ack.  Return a request
3120  * with a ref held on success or error.
3121  */
rbd_obj_watch_request_helper(struct rbd_device * rbd_dev,bool watch)3122 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3123 						struct rbd_device *rbd_dev,
3124 						bool watch)
3125 {
3126 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3127 	struct rbd_obj_request *obj_request;
3128 	int ret;
3129 
3130 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3131 					     OBJ_REQUEST_NODATA);
3132 	if (!obj_request)
3133 		return ERR_PTR(-ENOMEM);
3134 
3135 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3136 						  obj_request);
3137 	if (!obj_request->osd_req) {
3138 		ret = -ENOMEM;
3139 		goto out;
3140 	}
3141 
3142 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3143 			      rbd_dev->watch_event->cookie, 0, watch);
3144 	rbd_osd_req_format_write(obj_request);
3145 
3146 	if (watch)
3147 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3148 
3149 	ret = rbd_obj_request_submit(osdc, obj_request);
3150 	if (ret)
3151 		goto out;
3152 
3153 	ret = rbd_obj_request_wait(obj_request);
3154 	if (ret)
3155 		goto out;
3156 
3157 	ret = obj_request->result;
3158 	if (ret) {
3159 		if (watch)
3160 			rbd_obj_request_end(obj_request);
3161 		goto out;
3162 	}
3163 
3164 	return obj_request;
3165 
3166 out:
3167 	rbd_obj_request_put(obj_request);
3168 	return ERR_PTR(ret);
3169 }
3170 
3171 /*
3172  * Initiate a watch request, synchronously.
3173  */
rbd_dev_header_watch_sync(struct rbd_device * rbd_dev)3174 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3175 {
3176 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3177 	struct rbd_obj_request *obj_request;
3178 	int ret;
3179 
3180 	rbd_assert(!rbd_dev->watch_event);
3181 	rbd_assert(!rbd_dev->watch_request);
3182 
3183 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3184 				     &rbd_dev->watch_event);
3185 	if (ret < 0)
3186 		return ret;
3187 
3188 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3189 	if (IS_ERR(obj_request)) {
3190 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3191 		rbd_dev->watch_event = NULL;
3192 		return PTR_ERR(obj_request);
3193 	}
3194 
3195 	/*
3196 	 * A watch request is set to linger, so the underlying osd
3197 	 * request won't go away until we unregister it.  We retain
3198 	 * a pointer to the object request during that time (in
3199 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3200 	 * We'll drop that reference after we've unregistered it in
3201 	 * rbd_dev_header_unwatch_sync().
3202 	 */
3203 	rbd_dev->watch_request = obj_request;
3204 
3205 	return 0;
3206 }
3207 
3208 /*
3209  * Tear down a watch request, synchronously.
3210  */
rbd_dev_header_unwatch_sync(struct rbd_device * rbd_dev)3211 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3212 {
3213 	struct rbd_obj_request *obj_request;
3214 
3215 	rbd_assert(rbd_dev->watch_event);
3216 	rbd_assert(rbd_dev->watch_request);
3217 
3218 	rbd_obj_request_end(rbd_dev->watch_request);
3219 	rbd_obj_request_put(rbd_dev->watch_request);
3220 	rbd_dev->watch_request = NULL;
3221 
3222 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3223 	if (!IS_ERR(obj_request))
3224 		rbd_obj_request_put(obj_request);
3225 	else
3226 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3227 			 PTR_ERR(obj_request));
3228 
3229 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3230 	rbd_dev->watch_event = NULL;
3231 }
3232 
3233 /*
3234  * Synchronous osd object method call.  Returns the number of bytes
3235  * returned in the outbound buffer, or a negative error code.
3236  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,const char * object_name,const char * class_name,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)3237 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3238 			     const char *object_name,
3239 			     const char *class_name,
3240 			     const char *method_name,
3241 			     const void *outbound,
3242 			     size_t outbound_size,
3243 			     void *inbound,
3244 			     size_t inbound_size)
3245 {
3246 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3247 	struct rbd_obj_request *obj_request;
3248 	struct page **pages;
3249 	u32 page_count;
3250 	int ret;
3251 
3252 	/*
3253 	 * Method calls are ultimately read operations.  The result
3254 	 * should placed into the inbound buffer provided.  They
3255 	 * also supply outbound data--parameters for the object
3256 	 * method.  Currently if this is present it will be a
3257 	 * snapshot id.
3258 	 */
3259 	page_count = (u32)calc_pages_for(0, inbound_size);
3260 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3261 	if (IS_ERR(pages))
3262 		return PTR_ERR(pages);
3263 
3264 	ret = -ENOMEM;
3265 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3266 							OBJ_REQUEST_PAGES);
3267 	if (!obj_request)
3268 		goto out;
3269 
3270 	obj_request->pages = pages;
3271 	obj_request->page_count = page_count;
3272 
3273 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3274 						  obj_request);
3275 	if (!obj_request->osd_req)
3276 		goto out;
3277 
3278 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3279 					class_name, method_name);
3280 	if (outbound_size) {
3281 		struct ceph_pagelist *pagelist;
3282 
3283 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3284 		if (!pagelist)
3285 			goto out;
3286 
3287 		ceph_pagelist_init(pagelist);
3288 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3289 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3290 						pagelist);
3291 	}
3292 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3293 					obj_request->pages, inbound_size,
3294 					0, false, false);
3295 	rbd_osd_req_format_read(obj_request);
3296 
3297 	ret = rbd_obj_request_submit(osdc, obj_request);
3298 	if (ret)
3299 		goto out;
3300 	ret = rbd_obj_request_wait(obj_request);
3301 	if (ret)
3302 		goto out;
3303 
3304 	ret = obj_request->result;
3305 	if (ret < 0)
3306 		goto out;
3307 
3308 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3309 	ret = (int)obj_request->xferred;
3310 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3311 out:
3312 	if (obj_request)
3313 		rbd_obj_request_put(obj_request);
3314 	else
3315 		ceph_release_page_vector(pages, page_count);
3316 
3317 	return ret;
3318 }
3319 
rbd_handle_request(struct rbd_device * rbd_dev,struct request * rq)3320 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3321 {
3322 	struct rbd_img_request *img_request;
3323 	struct ceph_snap_context *snapc = NULL;
3324 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3325 	u64 length = blk_rq_bytes(rq);
3326 	enum obj_operation_type op_type;
3327 	u64 mapping_size;
3328 	int result;
3329 
3330 	if (rq->cmd_flags & REQ_DISCARD)
3331 		op_type = OBJ_OP_DISCARD;
3332 	else if (rq->cmd_flags & REQ_WRITE)
3333 		op_type = OBJ_OP_WRITE;
3334 	else
3335 		op_type = OBJ_OP_READ;
3336 
3337 	/* Ignore/skip any zero-length requests */
3338 
3339 	if (!length) {
3340 		dout("%s: zero-length request\n", __func__);
3341 		result = 0;
3342 		goto err_rq;
3343 	}
3344 
3345 	/* Only reads are allowed to a read-only device */
3346 
3347 	if (op_type != OBJ_OP_READ) {
3348 		if (rbd_dev->mapping.read_only) {
3349 			result = -EROFS;
3350 			goto err_rq;
3351 		}
3352 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3353 	}
3354 
3355 	/*
3356 	 * Quit early if the mapped snapshot no longer exists.  It's
3357 	 * still possible the snapshot will have disappeared by the
3358 	 * time our request arrives at the osd, but there's no sense in
3359 	 * sending it if we already know.
3360 	 */
3361 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3362 		dout("request for non-existent snapshot");
3363 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3364 		result = -ENXIO;
3365 		goto err_rq;
3366 	}
3367 
3368 	if (offset && length > U64_MAX - offset + 1) {
3369 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3370 			 length);
3371 		result = -EINVAL;
3372 		goto err_rq;	/* Shouldn't happen */
3373 	}
3374 
3375 	down_read(&rbd_dev->header_rwsem);
3376 	mapping_size = rbd_dev->mapping.size;
3377 	if (op_type != OBJ_OP_READ) {
3378 		snapc = rbd_dev->header.snapc;
3379 		ceph_get_snap_context(snapc);
3380 	}
3381 	up_read(&rbd_dev->header_rwsem);
3382 
3383 	if (offset + length > mapping_size) {
3384 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3385 			 length, mapping_size);
3386 		result = -EIO;
3387 		goto err_rq;
3388 	}
3389 
3390 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3391 					     snapc);
3392 	if (!img_request) {
3393 		result = -ENOMEM;
3394 		goto err_rq;
3395 	}
3396 	img_request->rq = rq;
3397 	snapc = NULL; /* img_request consumes a ref */
3398 
3399 	if (op_type == OBJ_OP_DISCARD)
3400 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3401 					      NULL);
3402 	else
3403 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3404 					      rq->bio);
3405 	if (result)
3406 		goto err_img_request;
3407 
3408 	result = rbd_img_request_submit(img_request);
3409 	if (result)
3410 		goto err_img_request;
3411 
3412 	return;
3413 
3414 err_img_request:
3415 	rbd_img_request_put(img_request);
3416 err_rq:
3417 	if (result)
3418 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3419 			 obj_op_name(op_type), length, offset, result);
3420 	if (snapc)
3421 		ceph_put_snap_context(snapc);
3422 	blk_end_request_all(rq, result);
3423 }
3424 
rbd_request_workfn(struct work_struct * work)3425 static void rbd_request_workfn(struct work_struct *work)
3426 {
3427 	struct rbd_device *rbd_dev =
3428 	    container_of(work, struct rbd_device, rq_work);
3429 	struct request *rq, *next;
3430 	LIST_HEAD(requests);
3431 
3432 	spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3433 	list_splice_init(&rbd_dev->rq_queue, &requests);
3434 	spin_unlock_irq(&rbd_dev->lock);
3435 
3436 	list_for_each_entry_safe(rq, next, &requests, queuelist) {
3437 		list_del_init(&rq->queuelist);
3438 		rbd_handle_request(rbd_dev, rq);
3439 	}
3440 }
3441 
3442 /*
3443  * Called with q->queue_lock held and interrupts disabled, possibly on
3444  * the way to schedule().  Do not sleep here!
3445  */
rbd_request_fn(struct request_queue * q)3446 static void rbd_request_fn(struct request_queue *q)
3447 {
3448 	struct rbd_device *rbd_dev = q->queuedata;
3449 	struct request *rq;
3450 	int queued = 0;
3451 
3452 	rbd_assert(rbd_dev);
3453 
3454 	while ((rq = blk_fetch_request(q))) {
3455 		/* Ignore any non-FS requests that filter through. */
3456 		if (rq->cmd_type != REQ_TYPE_FS) {
3457 			dout("%s: non-fs request type %d\n", __func__,
3458 				(int) rq->cmd_type);
3459 			__blk_end_request_all(rq, 0);
3460 			continue;
3461 		}
3462 
3463 		list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3464 		queued++;
3465 	}
3466 
3467 	if (queued)
3468 		queue_work(rbd_wq, &rbd_dev->rq_work);
3469 }
3470 
3471 /*
3472  * a queue callback. Makes sure that we don't create a bio that spans across
3473  * multiple osd objects. One exception would be with a single page bios,
3474  * which we handle later at bio_chain_clone_range()
3475  */
rbd_merge_bvec(struct request_queue * q,struct bvec_merge_data * bmd,struct bio_vec * bvec)3476 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3477 			  struct bio_vec *bvec)
3478 {
3479 	struct rbd_device *rbd_dev = q->queuedata;
3480 	sector_t sector_offset;
3481 	sector_t sectors_per_obj;
3482 	sector_t obj_sector_offset;
3483 	int ret;
3484 
3485 	/*
3486 	 * Find how far into its rbd object the partition-relative
3487 	 * bio start sector is to offset relative to the enclosing
3488 	 * device.
3489 	 */
3490 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3491 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3492 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3493 
3494 	/*
3495 	 * Compute the number of bytes from that offset to the end
3496 	 * of the object.  Account for what's already used by the bio.
3497 	 */
3498 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3499 	if (ret > bmd->bi_size)
3500 		ret -= bmd->bi_size;
3501 	else
3502 		ret = 0;
3503 
3504 	/*
3505 	 * Don't send back more than was asked for.  And if the bio
3506 	 * was empty, let the whole thing through because:  "Note
3507 	 * that a block device *must* allow a single page to be
3508 	 * added to an empty bio."
3509 	 */
3510 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3511 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3512 		ret = (int) bvec->bv_len;
3513 
3514 	return ret;
3515 }
3516 
rbd_free_disk(struct rbd_device * rbd_dev)3517 static void rbd_free_disk(struct rbd_device *rbd_dev)
3518 {
3519 	struct gendisk *disk = rbd_dev->disk;
3520 
3521 	if (!disk)
3522 		return;
3523 
3524 	rbd_dev->disk = NULL;
3525 	if (disk->flags & GENHD_FL_UP) {
3526 		del_gendisk(disk);
3527 		if (disk->queue)
3528 			blk_cleanup_queue(disk->queue);
3529 	}
3530 	put_disk(disk);
3531 }
3532 
rbd_obj_read_sync(struct rbd_device * rbd_dev,const char * object_name,u64 offset,u64 length,void * buf)3533 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3534 				const char *object_name,
3535 				u64 offset, u64 length, void *buf)
3536 
3537 {
3538 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3539 	struct rbd_obj_request *obj_request;
3540 	struct page **pages = NULL;
3541 	u32 page_count;
3542 	size_t size;
3543 	int ret;
3544 
3545 	page_count = (u32) calc_pages_for(offset, length);
3546 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3547 	if (IS_ERR(pages))
3548 		return PTR_ERR(pages);
3549 
3550 	ret = -ENOMEM;
3551 	obj_request = rbd_obj_request_create(object_name, offset, length,
3552 							OBJ_REQUEST_PAGES);
3553 	if (!obj_request)
3554 		goto out;
3555 
3556 	obj_request->pages = pages;
3557 	obj_request->page_count = page_count;
3558 
3559 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3560 						  obj_request);
3561 	if (!obj_request->osd_req)
3562 		goto out;
3563 
3564 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3565 					offset, length, 0, 0);
3566 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3567 					obj_request->pages,
3568 					obj_request->length,
3569 					obj_request->offset & ~PAGE_MASK,
3570 					false, false);
3571 	rbd_osd_req_format_read(obj_request);
3572 
3573 	ret = rbd_obj_request_submit(osdc, obj_request);
3574 	if (ret)
3575 		goto out;
3576 	ret = rbd_obj_request_wait(obj_request);
3577 	if (ret)
3578 		goto out;
3579 
3580 	ret = obj_request->result;
3581 	if (ret < 0)
3582 		goto out;
3583 
3584 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3585 	size = (size_t) obj_request->xferred;
3586 	ceph_copy_from_page_vector(pages, buf, 0, size);
3587 	rbd_assert(size <= (size_t)INT_MAX);
3588 	ret = (int)size;
3589 out:
3590 	if (obj_request)
3591 		rbd_obj_request_put(obj_request);
3592 	else
3593 		ceph_release_page_vector(pages, page_count);
3594 
3595 	return ret;
3596 }
3597 
3598 /*
3599  * Read the complete header for the given rbd device.  On successful
3600  * return, the rbd_dev->header field will contain up-to-date
3601  * information about the image.
3602  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev)3603 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3604 {
3605 	struct rbd_image_header_ondisk *ondisk = NULL;
3606 	u32 snap_count = 0;
3607 	u64 names_size = 0;
3608 	u32 want_count;
3609 	int ret;
3610 
3611 	/*
3612 	 * The complete header will include an array of its 64-bit
3613 	 * snapshot ids, followed by the names of those snapshots as
3614 	 * a contiguous block of NUL-terminated strings.  Note that
3615 	 * the number of snapshots could change by the time we read
3616 	 * it in, in which case we re-read it.
3617 	 */
3618 	do {
3619 		size_t size;
3620 
3621 		kfree(ondisk);
3622 
3623 		size = sizeof (*ondisk);
3624 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3625 		size += names_size;
3626 		ondisk = kmalloc(size, GFP_KERNEL);
3627 		if (!ondisk)
3628 			return -ENOMEM;
3629 
3630 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3631 				       0, size, ondisk);
3632 		if (ret < 0)
3633 			goto out;
3634 		if ((size_t)ret < size) {
3635 			ret = -ENXIO;
3636 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3637 				size, ret);
3638 			goto out;
3639 		}
3640 		if (!rbd_dev_ondisk_valid(ondisk)) {
3641 			ret = -ENXIO;
3642 			rbd_warn(rbd_dev, "invalid header");
3643 			goto out;
3644 		}
3645 
3646 		names_size = le64_to_cpu(ondisk->snap_names_len);
3647 		want_count = snap_count;
3648 		snap_count = le32_to_cpu(ondisk->snap_count);
3649 	} while (snap_count != want_count);
3650 
3651 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3652 out:
3653 	kfree(ondisk);
3654 
3655 	return ret;
3656 }
3657 
3658 /*
3659  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3660  * has disappeared from the (just updated) snapshot context.
3661  */
rbd_exists_validate(struct rbd_device * rbd_dev)3662 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3663 {
3664 	u64 snap_id;
3665 
3666 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3667 		return;
3668 
3669 	snap_id = rbd_dev->spec->snap_id;
3670 	if (snap_id == CEPH_NOSNAP)
3671 		return;
3672 
3673 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3674 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3675 }
3676 
rbd_dev_update_size(struct rbd_device * rbd_dev)3677 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3678 {
3679 	sector_t size;
3680 	bool removing;
3681 
3682 	/*
3683 	 * Don't hold the lock while doing disk operations,
3684 	 * or lock ordering will conflict with the bdev mutex via:
3685 	 * rbd_add() -> blkdev_get() -> rbd_open()
3686 	 */
3687 	spin_lock_irq(&rbd_dev->lock);
3688 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3689 	spin_unlock_irq(&rbd_dev->lock);
3690 	/*
3691 	 * If the device is being removed, rbd_dev->disk has
3692 	 * been destroyed, so don't try to update its size
3693 	 */
3694 	if (!removing) {
3695 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3696 		dout("setting size to %llu sectors", (unsigned long long)size);
3697 		set_capacity(rbd_dev->disk, size);
3698 		revalidate_disk(rbd_dev->disk);
3699 	}
3700 }
3701 
rbd_dev_refresh(struct rbd_device * rbd_dev)3702 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3703 {
3704 	u64 mapping_size;
3705 	int ret;
3706 
3707 	down_write(&rbd_dev->header_rwsem);
3708 	mapping_size = rbd_dev->mapping.size;
3709 
3710 	ret = rbd_dev_header_info(rbd_dev);
3711 	if (ret)
3712 		return ret;
3713 
3714 	/*
3715 	 * If there is a parent, see if it has disappeared due to the
3716 	 * mapped image getting flattened.
3717 	 */
3718 	if (rbd_dev->parent) {
3719 		ret = rbd_dev_v2_parent_info(rbd_dev);
3720 		if (ret)
3721 			return ret;
3722 	}
3723 
3724 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3725 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3726 			rbd_dev->mapping.size = rbd_dev->header.image_size;
3727 	} else {
3728 		/* validate mapped snapshot's EXISTS flag */
3729 		rbd_exists_validate(rbd_dev);
3730 	}
3731 
3732 	up_write(&rbd_dev->header_rwsem);
3733 
3734 	if (mapping_size != rbd_dev->mapping.size)
3735 		rbd_dev_update_size(rbd_dev);
3736 
3737 	return 0;
3738 }
3739 
rbd_init_disk(struct rbd_device * rbd_dev)3740 static int rbd_init_disk(struct rbd_device *rbd_dev)
3741 {
3742 	struct gendisk *disk;
3743 	struct request_queue *q;
3744 	u64 segment_size;
3745 
3746 	/* create gendisk info */
3747 	disk = alloc_disk(single_major ?
3748 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3749 			  RBD_MINORS_PER_MAJOR);
3750 	if (!disk)
3751 		return -ENOMEM;
3752 
3753 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3754 		 rbd_dev->dev_id);
3755 	disk->major = rbd_dev->major;
3756 	disk->first_minor = rbd_dev->minor;
3757 	if (single_major)
3758 		disk->flags |= GENHD_FL_EXT_DEVT;
3759 	disk->fops = &rbd_bd_ops;
3760 	disk->private_data = rbd_dev;
3761 
3762 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3763 	if (!q)
3764 		goto out_disk;
3765 
3766 	/* We use the default size, but let's be explicit about it. */
3767 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3768 
3769 	/* set io sizes to object size */
3770 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3771 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3772 	blk_queue_max_segment_size(q, segment_size);
3773 	blk_queue_io_min(q, segment_size);
3774 	blk_queue_io_opt(q, segment_size);
3775 
3776 	/* enable the discard support */
3777 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3778 	q->limits.discard_granularity = segment_size;
3779 	q->limits.discard_alignment = segment_size;
3780 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3781 	q->limits.discard_zeroes_data = 1;
3782 
3783 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3784 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3785 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3786 
3787 	disk->queue = q;
3788 
3789 	q->queuedata = rbd_dev;
3790 
3791 	rbd_dev->disk = disk;
3792 
3793 	return 0;
3794 out_disk:
3795 	put_disk(disk);
3796 
3797 	return -ENOMEM;
3798 }
3799 
3800 /*
3801   sysfs
3802 */
3803 
dev_to_rbd_dev(struct device * dev)3804 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3805 {
3806 	return container_of(dev, struct rbd_device, dev);
3807 }
3808 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)3809 static ssize_t rbd_size_show(struct device *dev,
3810 			     struct device_attribute *attr, char *buf)
3811 {
3812 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3813 
3814 	return sprintf(buf, "%llu\n",
3815 		(unsigned long long)rbd_dev->mapping.size);
3816 }
3817 
3818 /*
3819  * Note this shows the features for whatever's mapped, which is not
3820  * necessarily the base image.
3821  */
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)3822 static ssize_t rbd_features_show(struct device *dev,
3823 			     struct device_attribute *attr, char *buf)
3824 {
3825 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3826 
3827 	return sprintf(buf, "0x%016llx\n",
3828 			(unsigned long long)rbd_dev->mapping.features);
3829 }
3830 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)3831 static ssize_t rbd_major_show(struct device *dev,
3832 			      struct device_attribute *attr, char *buf)
3833 {
3834 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835 
3836 	if (rbd_dev->major)
3837 		return sprintf(buf, "%d\n", rbd_dev->major);
3838 
3839 	return sprintf(buf, "(none)\n");
3840 }
3841 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)3842 static ssize_t rbd_minor_show(struct device *dev,
3843 			      struct device_attribute *attr, char *buf)
3844 {
3845 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846 
3847 	return sprintf(buf, "%d\n", rbd_dev->minor);
3848 }
3849 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)3850 static ssize_t rbd_client_id_show(struct device *dev,
3851 				  struct device_attribute *attr, char *buf)
3852 {
3853 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3854 
3855 	return sprintf(buf, "client%lld\n",
3856 			ceph_client_id(rbd_dev->rbd_client->client));
3857 }
3858 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)3859 static ssize_t rbd_pool_show(struct device *dev,
3860 			     struct device_attribute *attr, char *buf)
3861 {
3862 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3863 
3864 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3865 }
3866 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)3867 static ssize_t rbd_pool_id_show(struct device *dev,
3868 			     struct device_attribute *attr, char *buf)
3869 {
3870 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3871 
3872 	return sprintf(buf, "%llu\n",
3873 			(unsigned long long) rbd_dev->spec->pool_id);
3874 }
3875 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)3876 static ssize_t rbd_name_show(struct device *dev,
3877 			     struct device_attribute *attr, char *buf)
3878 {
3879 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880 
3881 	if (rbd_dev->spec->image_name)
3882 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3883 
3884 	return sprintf(buf, "(unknown)\n");
3885 }
3886 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)3887 static ssize_t rbd_image_id_show(struct device *dev,
3888 			     struct device_attribute *attr, char *buf)
3889 {
3890 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3891 
3892 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3893 }
3894 
3895 /*
3896  * Shows the name of the currently-mapped snapshot (or
3897  * RBD_SNAP_HEAD_NAME for the base image).
3898  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)3899 static ssize_t rbd_snap_show(struct device *dev,
3900 			     struct device_attribute *attr,
3901 			     char *buf)
3902 {
3903 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3904 
3905 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3906 }
3907 
3908 /*
3909  * For a v2 image, shows the chain of parent images, separated by empty
3910  * lines.  For v1 images or if there is no parent, shows "(no parent
3911  * image)".
3912  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)3913 static ssize_t rbd_parent_show(struct device *dev,
3914 			       struct device_attribute *attr,
3915 			       char *buf)
3916 {
3917 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3918 	ssize_t count = 0;
3919 
3920 	if (!rbd_dev->parent)
3921 		return sprintf(buf, "(no parent image)\n");
3922 
3923 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3924 		struct rbd_spec *spec = rbd_dev->parent_spec;
3925 
3926 		count += sprintf(&buf[count], "%s"
3927 			    "pool_id %llu\npool_name %s\n"
3928 			    "image_id %s\nimage_name %s\n"
3929 			    "snap_id %llu\nsnap_name %s\n"
3930 			    "overlap %llu\n",
3931 			    !count ? "" : "\n", /* first? */
3932 			    spec->pool_id, spec->pool_name,
3933 			    spec->image_id, spec->image_name ?: "(unknown)",
3934 			    spec->snap_id, spec->snap_name,
3935 			    rbd_dev->parent_overlap);
3936 	}
3937 
3938 	return count;
3939 }
3940 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)3941 static ssize_t rbd_image_refresh(struct device *dev,
3942 				 struct device_attribute *attr,
3943 				 const char *buf,
3944 				 size_t size)
3945 {
3946 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3947 	int ret;
3948 
3949 	ret = rbd_dev_refresh(rbd_dev);
3950 	if (ret)
3951 		return ret;
3952 
3953 	return size;
3954 }
3955 
3956 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3957 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3958 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3959 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3960 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3961 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3962 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3963 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3964 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3965 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3966 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3967 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3968 
3969 static struct attribute *rbd_attrs[] = {
3970 	&dev_attr_size.attr,
3971 	&dev_attr_features.attr,
3972 	&dev_attr_major.attr,
3973 	&dev_attr_minor.attr,
3974 	&dev_attr_client_id.attr,
3975 	&dev_attr_pool.attr,
3976 	&dev_attr_pool_id.attr,
3977 	&dev_attr_name.attr,
3978 	&dev_attr_image_id.attr,
3979 	&dev_attr_current_snap.attr,
3980 	&dev_attr_parent.attr,
3981 	&dev_attr_refresh.attr,
3982 	NULL
3983 };
3984 
3985 static struct attribute_group rbd_attr_group = {
3986 	.attrs = rbd_attrs,
3987 };
3988 
3989 static const struct attribute_group *rbd_attr_groups[] = {
3990 	&rbd_attr_group,
3991 	NULL
3992 };
3993 
rbd_sysfs_dev_release(struct device * dev)3994 static void rbd_sysfs_dev_release(struct device *dev)
3995 {
3996 }
3997 
3998 static struct device_type rbd_device_type = {
3999 	.name		= "rbd",
4000 	.groups		= rbd_attr_groups,
4001 	.release	= rbd_sysfs_dev_release,
4002 };
4003 
rbd_spec_get(struct rbd_spec * spec)4004 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4005 {
4006 	kref_get(&spec->kref);
4007 
4008 	return spec;
4009 }
4010 
4011 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)4012 static void rbd_spec_put(struct rbd_spec *spec)
4013 {
4014 	if (spec)
4015 		kref_put(&spec->kref, rbd_spec_free);
4016 }
4017 
rbd_spec_alloc(void)4018 static struct rbd_spec *rbd_spec_alloc(void)
4019 {
4020 	struct rbd_spec *spec;
4021 
4022 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4023 	if (!spec)
4024 		return NULL;
4025 
4026 	spec->pool_id = CEPH_NOPOOL;
4027 	spec->snap_id = CEPH_NOSNAP;
4028 	kref_init(&spec->kref);
4029 
4030 	return spec;
4031 }
4032 
rbd_spec_free(struct kref * kref)4033 static void rbd_spec_free(struct kref *kref)
4034 {
4035 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4036 
4037 	kfree(spec->pool_name);
4038 	kfree(spec->image_id);
4039 	kfree(spec->image_name);
4040 	kfree(spec->snap_name);
4041 	kfree(spec);
4042 }
4043 
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec)4044 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4045 				struct rbd_spec *spec)
4046 {
4047 	struct rbd_device *rbd_dev;
4048 
4049 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4050 	if (!rbd_dev)
4051 		return NULL;
4052 
4053 	spin_lock_init(&rbd_dev->lock);
4054 	INIT_LIST_HEAD(&rbd_dev->rq_queue);
4055 	INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4056 	rbd_dev->flags = 0;
4057 	atomic_set(&rbd_dev->parent_ref, 0);
4058 	INIT_LIST_HEAD(&rbd_dev->node);
4059 	init_rwsem(&rbd_dev->header_rwsem);
4060 
4061 	rbd_dev->spec = spec;
4062 	rbd_dev->rbd_client = rbdc;
4063 
4064 	/* Initialize the layout used for all rbd requests */
4065 
4066 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4067 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4068 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4069 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4070 
4071 	return rbd_dev;
4072 }
4073 
rbd_dev_destroy(struct rbd_device * rbd_dev)4074 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4075 {
4076 	rbd_put_client(rbd_dev->rbd_client);
4077 	rbd_spec_put(rbd_dev->spec);
4078 	kfree(rbd_dev);
4079 }
4080 
4081 /*
4082  * Get the size and object order for an image snapshot, or if
4083  * snap_id is CEPH_NOSNAP, gets this information for the base
4084  * image.
4085  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)4086 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4087 				u8 *order, u64 *snap_size)
4088 {
4089 	__le64 snapid = cpu_to_le64(snap_id);
4090 	int ret;
4091 	struct {
4092 		u8 order;
4093 		__le64 size;
4094 	} __attribute__ ((packed)) size_buf = { 0 };
4095 
4096 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4097 				"rbd", "get_size",
4098 				&snapid, sizeof (snapid),
4099 				&size_buf, sizeof (size_buf));
4100 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4101 	if (ret < 0)
4102 		return ret;
4103 	if (ret < sizeof (size_buf))
4104 		return -ERANGE;
4105 
4106 	if (order) {
4107 		*order = size_buf.order;
4108 		dout("  order %u", (unsigned int)*order);
4109 	}
4110 	*snap_size = le64_to_cpu(size_buf.size);
4111 
4112 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4113 		(unsigned long long)snap_id,
4114 		(unsigned long long)*snap_size);
4115 
4116 	return 0;
4117 }
4118 
rbd_dev_v2_image_size(struct rbd_device * rbd_dev)4119 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4120 {
4121 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4122 					&rbd_dev->header.obj_order,
4123 					&rbd_dev->header.image_size);
4124 }
4125 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev)4126 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4127 {
4128 	void *reply_buf;
4129 	int ret;
4130 	void *p;
4131 
4132 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4133 	if (!reply_buf)
4134 		return -ENOMEM;
4135 
4136 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4137 				"rbd", "get_object_prefix", NULL, 0,
4138 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4139 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4140 	if (ret < 0)
4141 		goto out;
4142 
4143 	p = reply_buf;
4144 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4145 						p + ret, NULL, GFP_NOIO);
4146 	ret = 0;
4147 
4148 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4149 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4150 		rbd_dev->header.object_prefix = NULL;
4151 	} else {
4152 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4153 	}
4154 out:
4155 	kfree(reply_buf);
4156 
4157 	return ret;
4158 }
4159 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)4160 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4161 		u64 *snap_features)
4162 {
4163 	__le64 snapid = cpu_to_le64(snap_id);
4164 	struct {
4165 		__le64 features;
4166 		__le64 incompat;
4167 	} __attribute__ ((packed)) features_buf = { 0 };
4168 	u64 incompat;
4169 	int ret;
4170 
4171 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4172 				"rbd", "get_features",
4173 				&snapid, sizeof (snapid),
4174 				&features_buf, sizeof (features_buf));
4175 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4176 	if (ret < 0)
4177 		return ret;
4178 	if (ret < sizeof (features_buf))
4179 		return -ERANGE;
4180 
4181 	incompat = le64_to_cpu(features_buf.incompat);
4182 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4183 		return -ENXIO;
4184 
4185 	*snap_features = le64_to_cpu(features_buf.features);
4186 
4187 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4188 		(unsigned long long)snap_id,
4189 		(unsigned long long)*snap_features,
4190 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4191 
4192 	return 0;
4193 }
4194 
rbd_dev_v2_features(struct rbd_device * rbd_dev)4195 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4196 {
4197 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4198 						&rbd_dev->header.features);
4199 }
4200 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev)4201 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4202 {
4203 	struct rbd_spec *parent_spec;
4204 	size_t size;
4205 	void *reply_buf = NULL;
4206 	__le64 snapid;
4207 	void *p;
4208 	void *end;
4209 	u64 pool_id;
4210 	char *image_id;
4211 	u64 snap_id;
4212 	u64 overlap;
4213 	int ret;
4214 
4215 	parent_spec = rbd_spec_alloc();
4216 	if (!parent_spec)
4217 		return -ENOMEM;
4218 
4219 	size = sizeof (__le64) +				/* pool_id */
4220 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4221 		sizeof (__le64) +				/* snap_id */
4222 		sizeof (__le64);				/* overlap */
4223 	reply_buf = kmalloc(size, GFP_KERNEL);
4224 	if (!reply_buf) {
4225 		ret = -ENOMEM;
4226 		goto out_err;
4227 	}
4228 
4229 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4230 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4231 				"rbd", "get_parent",
4232 				&snapid, sizeof (snapid),
4233 				reply_buf, size);
4234 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4235 	if (ret < 0)
4236 		goto out_err;
4237 
4238 	p = reply_buf;
4239 	end = reply_buf + ret;
4240 	ret = -ERANGE;
4241 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4242 	if (pool_id == CEPH_NOPOOL) {
4243 		/*
4244 		 * Either the parent never existed, or we have
4245 		 * record of it but the image got flattened so it no
4246 		 * longer has a parent.  When the parent of a
4247 		 * layered image disappears we immediately set the
4248 		 * overlap to 0.  The effect of this is that all new
4249 		 * requests will be treated as if the image had no
4250 		 * parent.
4251 		 */
4252 		if (rbd_dev->parent_overlap) {
4253 			rbd_dev->parent_overlap = 0;
4254 			rbd_dev_parent_put(rbd_dev);
4255 			pr_info("%s: clone image has been flattened\n",
4256 				rbd_dev->disk->disk_name);
4257 		}
4258 
4259 		goto out;	/* No parent?  No problem. */
4260 	}
4261 
4262 	/* The ceph file layout needs to fit pool id in 32 bits */
4263 
4264 	ret = -EIO;
4265 	if (pool_id > (u64)U32_MAX) {
4266 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4267 			(unsigned long long)pool_id, U32_MAX);
4268 		goto out_err;
4269 	}
4270 
4271 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4272 	if (IS_ERR(image_id)) {
4273 		ret = PTR_ERR(image_id);
4274 		goto out_err;
4275 	}
4276 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4277 	ceph_decode_64_safe(&p, end, overlap, out_err);
4278 
4279 	/*
4280 	 * The parent won't change (except when the clone is
4281 	 * flattened, already handled that).  So we only need to
4282 	 * record the parent spec we have not already done so.
4283 	 */
4284 	if (!rbd_dev->parent_spec) {
4285 		parent_spec->pool_id = pool_id;
4286 		parent_spec->image_id = image_id;
4287 		parent_spec->snap_id = snap_id;
4288 		rbd_dev->parent_spec = parent_spec;
4289 		parent_spec = NULL;	/* rbd_dev now owns this */
4290 	} else {
4291 		kfree(image_id);
4292 	}
4293 
4294 	/*
4295 	 * We always update the parent overlap.  If it's zero we
4296 	 * treat it specially.
4297 	 */
4298 	rbd_dev->parent_overlap = overlap;
4299 	if (!overlap) {
4300 
4301 		/* A null parent_spec indicates it's the initial probe */
4302 
4303 		if (parent_spec) {
4304 			/*
4305 			 * The overlap has become zero, so the clone
4306 			 * must have been resized down to 0 at some
4307 			 * point.  Treat this the same as a flatten.
4308 			 */
4309 			rbd_dev_parent_put(rbd_dev);
4310 			pr_info("%s: clone image now standalone\n",
4311 				rbd_dev->disk->disk_name);
4312 		} else {
4313 			/*
4314 			 * For the initial probe, if we find the
4315 			 * overlap is zero we just pretend there was
4316 			 * no parent image.
4317 			 */
4318 			rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4319 		}
4320 	}
4321 out:
4322 	ret = 0;
4323 out_err:
4324 	kfree(reply_buf);
4325 	rbd_spec_put(parent_spec);
4326 
4327 	return ret;
4328 }
4329 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev)4330 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4331 {
4332 	struct {
4333 		__le64 stripe_unit;
4334 		__le64 stripe_count;
4335 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4336 	size_t size = sizeof (striping_info_buf);
4337 	void *p;
4338 	u64 obj_size;
4339 	u64 stripe_unit;
4340 	u64 stripe_count;
4341 	int ret;
4342 
4343 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4344 				"rbd", "get_stripe_unit_count", NULL, 0,
4345 				(char *)&striping_info_buf, size);
4346 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4347 	if (ret < 0)
4348 		return ret;
4349 	if (ret < size)
4350 		return -ERANGE;
4351 
4352 	/*
4353 	 * We don't actually support the "fancy striping" feature
4354 	 * (STRIPINGV2) yet, but if the striping sizes are the
4355 	 * defaults the behavior is the same as before.  So find
4356 	 * out, and only fail if the image has non-default values.
4357 	 */
4358 	ret = -EINVAL;
4359 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4360 	p = &striping_info_buf;
4361 	stripe_unit = ceph_decode_64(&p);
4362 	if (stripe_unit != obj_size) {
4363 		rbd_warn(rbd_dev, "unsupported stripe unit "
4364 				"(got %llu want %llu)",
4365 				stripe_unit, obj_size);
4366 		return -EINVAL;
4367 	}
4368 	stripe_count = ceph_decode_64(&p);
4369 	if (stripe_count != 1) {
4370 		rbd_warn(rbd_dev, "unsupported stripe count "
4371 				"(got %llu want 1)", stripe_count);
4372 		return -EINVAL;
4373 	}
4374 	rbd_dev->header.stripe_unit = stripe_unit;
4375 	rbd_dev->header.stripe_count = stripe_count;
4376 
4377 	return 0;
4378 }
4379 
rbd_dev_image_name(struct rbd_device * rbd_dev)4380 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4381 {
4382 	size_t image_id_size;
4383 	char *image_id;
4384 	void *p;
4385 	void *end;
4386 	size_t size;
4387 	void *reply_buf = NULL;
4388 	size_t len = 0;
4389 	char *image_name = NULL;
4390 	int ret;
4391 
4392 	rbd_assert(!rbd_dev->spec->image_name);
4393 
4394 	len = strlen(rbd_dev->spec->image_id);
4395 	image_id_size = sizeof (__le32) + len;
4396 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4397 	if (!image_id)
4398 		return NULL;
4399 
4400 	p = image_id;
4401 	end = image_id + image_id_size;
4402 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4403 
4404 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4405 	reply_buf = kmalloc(size, GFP_KERNEL);
4406 	if (!reply_buf)
4407 		goto out;
4408 
4409 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4410 				"rbd", "dir_get_name",
4411 				image_id, image_id_size,
4412 				reply_buf, size);
4413 	if (ret < 0)
4414 		goto out;
4415 	p = reply_buf;
4416 	end = reply_buf + ret;
4417 
4418 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4419 	if (IS_ERR(image_name))
4420 		image_name = NULL;
4421 	else
4422 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4423 out:
4424 	kfree(reply_buf);
4425 	kfree(image_id);
4426 
4427 	return image_name;
4428 }
4429 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4430 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4431 {
4432 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4433 	const char *snap_name;
4434 	u32 which = 0;
4435 
4436 	/* Skip over names until we find the one we are looking for */
4437 
4438 	snap_name = rbd_dev->header.snap_names;
4439 	while (which < snapc->num_snaps) {
4440 		if (!strcmp(name, snap_name))
4441 			return snapc->snaps[which];
4442 		snap_name += strlen(snap_name) + 1;
4443 		which++;
4444 	}
4445 	return CEPH_NOSNAP;
4446 }
4447 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4448 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4449 {
4450 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4451 	u32 which;
4452 	bool found = false;
4453 	u64 snap_id;
4454 
4455 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4456 		const char *snap_name;
4457 
4458 		snap_id = snapc->snaps[which];
4459 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4460 		if (IS_ERR(snap_name)) {
4461 			/* ignore no-longer existing snapshots */
4462 			if (PTR_ERR(snap_name) == -ENOENT)
4463 				continue;
4464 			else
4465 				break;
4466 		}
4467 		found = !strcmp(name, snap_name);
4468 		kfree(snap_name);
4469 	}
4470 	return found ? snap_id : CEPH_NOSNAP;
4471 }
4472 
4473 /*
4474  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4475  * no snapshot by that name is found, or if an error occurs.
4476  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4478 {
4479 	if (rbd_dev->image_format == 1)
4480 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4481 
4482 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4483 }
4484 
4485 /*
4486  * An image being mapped will have everything but the snap id.
4487  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)4488 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4489 {
4490 	struct rbd_spec *spec = rbd_dev->spec;
4491 
4492 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4493 	rbd_assert(spec->image_id && spec->image_name);
4494 	rbd_assert(spec->snap_name);
4495 
4496 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4497 		u64 snap_id;
4498 
4499 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4500 		if (snap_id == CEPH_NOSNAP)
4501 			return -ENOENT;
4502 
4503 		spec->snap_id = snap_id;
4504 	} else {
4505 		spec->snap_id = CEPH_NOSNAP;
4506 	}
4507 
4508 	return 0;
4509 }
4510 
4511 /*
4512  * A parent image will have all ids but none of the names.
4513  *
4514  * All names in an rbd spec are dynamically allocated.  It's OK if we
4515  * can't figure out the name for an image id.
4516  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)4517 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4518 {
4519 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4520 	struct rbd_spec *spec = rbd_dev->spec;
4521 	const char *pool_name;
4522 	const char *image_name;
4523 	const char *snap_name;
4524 	int ret;
4525 
4526 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4527 	rbd_assert(spec->image_id);
4528 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4529 
4530 	/* Get the pool name; we have to make our own copy of this */
4531 
4532 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4533 	if (!pool_name) {
4534 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4535 		return -EIO;
4536 	}
4537 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4538 	if (!pool_name)
4539 		return -ENOMEM;
4540 
4541 	/* Fetch the image name; tolerate failure here */
4542 
4543 	image_name = rbd_dev_image_name(rbd_dev);
4544 	if (!image_name)
4545 		rbd_warn(rbd_dev, "unable to get image name");
4546 
4547 	/* Fetch the snapshot name */
4548 
4549 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4550 	if (IS_ERR(snap_name)) {
4551 		ret = PTR_ERR(snap_name);
4552 		goto out_err;
4553 	}
4554 
4555 	spec->pool_name = pool_name;
4556 	spec->image_name = image_name;
4557 	spec->snap_name = snap_name;
4558 
4559 	return 0;
4560 
4561 out_err:
4562 	kfree(image_name);
4563 	kfree(pool_name);
4564 	return ret;
4565 }
4566 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev)4567 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4568 {
4569 	size_t size;
4570 	int ret;
4571 	void *reply_buf;
4572 	void *p;
4573 	void *end;
4574 	u64 seq;
4575 	u32 snap_count;
4576 	struct ceph_snap_context *snapc;
4577 	u32 i;
4578 
4579 	/*
4580 	 * We'll need room for the seq value (maximum snapshot id),
4581 	 * snapshot count, and array of that many snapshot ids.
4582 	 * For now we have a fixed upper limit on the number we're
4583 	 * prepared to receive.
4584 	 */
4585 	size = sizeof (__le64) + sizeof (__le32) +
4586 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4587 	reply_buf = kzalloc(size, GFP_KERNEL);
4588 	if (!reply_buf)
4589 		return -ENOMEM;
4590 
4591 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4592 				"rbd", "get_snapcontext", NULL, 0,
4593 				reply_buf, size);
4594 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4595 	if (ret < 0)
4596 		goto out;
4597 
4598 	p = reply_buf;
4599 	end = reply_buf + ret;
4600 	ret = -ERANGE;
4601 	ceph_decode_64_safe(&p, end, seq, out);
4602 	ceph_decode_32_safe(&p, end, snap_count, out);
4603 
4604 	/*
4605 	 * Make sure the reported number of snapshot ids wouldn't go
4606 	 * beyond the end of our buffer.  But before checking that,
4607 	 * make sure the computed size of the snapshot context we
4608 	 * allocate is representable in a size_t.
4609 	 */
4610 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4611 				 / sizeof (u64)) {
4612 		ret = -EINVAL;
4613 		goto out;
4614 	}
4615 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4616 		goto out;
4617 	ret = 0;
4618 
4619 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4620 	if (!snapc) {
4621 		ret = -ENOMEM;
4622 		goto out;
4623 	}
4624 	snapc->seq = seq;
4625 	for (i = 0; i < snap_count; i++)
4626 		snapc->snaps[i] = ceph_decode_64(&p);
4627 
4628 	ceph_put_snap_context(rbd_dev->header.snapc);
4629 	rbd_dev->header.snapc = snapc;
4630 
4631 	dout("  snap context seq = %llu, snap_count = %u\n",
4632 		(unsigned long long)seq, (unsigned int)snap_count);
4633 out:
4634 	kfree(reply_buf);
4635 
4636 	return ret;
4637 }
4638 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)4639 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4640 					u64 snap_id)
4641 {
4642 	size_t size;
4643 	void *reply_buf;
4644 	__le64 snapid;
4645 	int ret;
4646 	void *p;
4647 	void *end;
4648 	char *snap_name;
4649 
4650 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4651 	reply_buf = kmalloc(size, GFP_KERNEL);
4652 	if (!reply_buf)
4653 		return ERR_PTR(-ENOMEM);
4654 
4655 	snapid = cpu_to_le64(snap_id);
4656 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4657 				"rbd", "get_snapshot_name",
4658 				&snapid, sizeof (snapid),
4659 				reply_buf, size);
4660 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4661 	if (ret < 0) {
4662 		snap_name = ERR_PTR(ret);
4663 		goto out;
4664 	}
4665 
4666 	p = reply_buf;
4667 	end = reply_buf + ret;
4668 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4669 	if (IS_ERR(snap_name))
4670 		goto out;
4671 
4672 	dout("  snap_id 0x%016llx snap_name = %s\n",
4673 		(unsigned long long)snap_id, snap_name);
4674 out:
4675 	kfree(reply_buf);
4676 
4677 	return snap_name;
4678 }
4679 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev)4680 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4681 {
4682 	bool first_time = rbd_dev->header.object_prefix == NULL;
4683 	int ret;
4684 
4685 	ret = rbd_dev_v2_image_size(rbd_dev);
4686 	if (ret)
4687 		return ret;
4688 
4689 	if (first_time) {
4690 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4691 		if (ret)
4692 			return ret;
4693 	}
4694 
4695 	ret = rbd_dev_v2_snap_context(rbd_dev);
4696 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4697 
4698 	return ret;
4699 }
4700 
rbd_dev_header_info(struct rbd_device * rbd_dev)4701 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4702 {
4703 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4704 
4705 	if (rbd_dev->image_format == 1)
4706 		return rbd_dev_v1_header_info(rbd_dev);
4707 
4708 	return rbd_dev_v2_header_info(rbd_dev);
4709 }
4710 
rbd_bus_add_dev(struct rbd_device * rbd_dev)4711 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4712 {
4713 	struct device *dev;
4714 	int ret;
4715 
4716 	dev = &rbd_dev->dev;
4717 	dev->bus = &rbd_bus_type;
4718 	dev->type = &rbd_device_type;
4719 	dev->parent = &rbd_root_dev;
4720 	dev->release = rbd_dev_device_release;
4721 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4722 	ret = device_register(dev);
4723 
4724 	return ret;
4725 }
4726 
rbd_bus_del_dev(struct rbd_device * rbd_dev)4727 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4728 {
4729 	device_unregister(&rbd_dev->dev);
4730 }
4731 
4732 /*
4733  * Get a unique rbd identifier for the given new rbd_dev, and add
4734  * the rbd_dev to the global list.
4735  */
rbd_dev_id_get(struct rbd_device * rbd_dev)4736 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4737 {
4738 	int new_dev_id;
4739 
4740 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4741 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4742 				    GFP_KERNEL);
4743 	if (new_dev_id < 0)
4744 		return new_dev_id;
4745 
4746 	rbd_dev->dev_id = new_dev_id;
4747 
4748 	spin_lock(&rbd_dev_list_lock);
4749 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4750 	spin_unlock(&rbd_dev_list_lock);
4751 
4752 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4753 
4754 	return 0;
4755 }
4756 
4757 /*
4758  * Remove an rbd_dev from the global list, and record that its
4759  * identifier is no longer in use.
4760  */
rbd_dev_id_put(struct rbd_device * rbd_dev)4761 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4762 {
4763 	spin_lock(&rbd_dev_list_lock);
4764 	list_del_init(&rbd_dev->node);
4765 	spin_unlock(&rbd_dev_list_lock);
4766 
4767 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4768 
4769 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4770 }
4771 
4772 /*
4773  * Skips over white space at *buf, and updates *buf to point to the
4774  * first found non-space character (if any). Returns the length of
4775  * the token (string of non-white space characters) found.  Note
4776  * that *buf must be terminated with '\0'.
4777  */
next_token(const char ** buf)4778 static inline size_t next_token(const char **buf)
4779 {
4780         /*
4781         * These are the characters that produce nonzero for
4782         * isspace() in the "C" and "POSIX" locales.
4783         */
4784         const char *spaces = " \f\n\r\t\v";
4785 
4786         *buf += strspn(*buf, spaces);	/* Find start of token */
4787 
4788 	return strcspn(*buf, spaces);   /* Return token length */
4789 }
4790 
4791 /*
4792  * Finds the next token in *buf, and if the provided token buffer is
4793  * big enough, copies the found token into it.  The result, if
4794  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4795  * must be terminated with '\0' on entry.
4796  *
4797  * Returns the length of the token found (not including the '\0').
4798  * Return value will be 0 if no token is found, and it will be >=
4799  * token_size if the token would not fit.
4800  *
4801  * The *buf pointer will be updated to point beyond the end of the
4802  * found token.  Note that this occurs even if the token buffer is
4803  * too small to hold it.
4804  */
copy_token(const char ** buf,char * token,size_t token_size)4805 static inline size_t copy_token(const char **buf,
4806 				char *token,
4807 				size_t token_size)
4808 {
4809         size_t len;
4810 
4811 	len = next_token(buf);
4812 	if (len < token_size) {
4813 		memcpy(token, *buf, len);
4814 		*(token + len) = '\0';
4815 	}
4816 	*buf += len;
4817 
4818         return len;
4819 }
4820 
4821 /*
4822  * Finds the next token in *buf, dynamically allocates a buffer big
4823  * enough to hold a copy of it, and copies the token into the new
4824  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4825  * that a duplicate buffer is created even for a zero-length token.
4826  *
4827  * Returns a pointer to the newly-allocated duplicate, or a null
4828  * pointer if memory for the duplicate was not available.  If
4829  * the lenp argument is a non-null pointer, the length of the token
4830  * (not including the '\0') is returned in *lenp.
4831  *
4832  * If successful, the *buf pointer will be updated to point beyond
4833  * the end of the found token.
4834  *
4835  * Note: uses GFP_KERNEL for allocation.
4836  */
dup_token(const char ** buf,size_t * lenp)4837 static inline char *dup_token(const char **buf, size_t *lenp)
4838 {
4839 	char *dup;
4840 	size_t len;
4841 
4842 	len = next_token(buf);
4843 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4844 	if (!dup)
4845 		return NULL;
4846 	*(dup + len) = '\0';
4847 	*buf += len;
4848 
4849 	if (lenp)
4850 		*lenp = len;
4851 
4852 	return dup;
4853 }
4854 
4855 /*
4856  * Parse the options provided for an "rbd add" (i.e., rbd image
4857  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4858  * and the data written is passed here via a NUL-terminated buffer.
4859  * Returns 0 if successful or an error code otherwise.
4860  *
4861  * The information extracted from these options is recorded in
4862  * the other parameters which return dynamically-allocated
4863  * structures:
4864  *  ceph_opts
4865  *      The address of a pointer that will refer to a ceph options
4866  *      structure.  Caller must release the returned pointer using
4867  *      ceph_destroy_options() when it is no longer needed.
4868  *  rbd_opts
4869  *	Address of an rbd options pointer.  Fully initialized by
4870  *	this function; caller must release with kfree().
4871  *  spec
4872  *	Address of an rbd image specification pointer.  Fully
4873  *	initialized by this function based on parsed options.
4874  *	Caller must release with rbd_spec_put().
4875  *
4876  * The options passed take this form:
4877  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4878  * where:
4879  *  <mon_addrs>
4880  *      A comma-separated list of one or more monitor addresses.
4881  *      A monitor address is an ip address, optionally followed
4882  *      by a port number (separated by a colon).
4883  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4884  *  <options>
4885  *      A comma-separated list of ceph and/or rbd options.
4886  *  <pool_name>
4887  *      The name of the rados pool containing the rbd image.
4888  *  <image_name>
4889  *      The name of the image in that pool to map.
4890  *  <snap_id>
4891  *      An optional snapshot id.  If provided, the mapping will
4892  *      present data from the image at the time that snapshot was
4893  *      created.  The image head is used if no snapshot id is
4894  *      provided.  Snapshot mappings are always read-only.
4895  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)4896 static int rbd_add_parse_args(const char *buf,
4897 				struct ceph_options **ceph_opts,
4898 				struct rbd_options **opts,
4899 				struct rbd_spec **rbd_spec)
4900 {
4901 	size_t len;
4902 	char *options;
4903 	const char *mon_addrs;
4904 	char *snap_name;
4905 	size_t mon_addrs_size;
4906 	struct rbd_spec *spec = NULL;
4907 	struct rbd_options *rbd_opts = NULL;
4908 	struct ceph_options *copts;
4909 	int ret;
4910 
4911 	/* The first four tokens are required */
4912 
4913 	len = next_token(&buf);
4914 	if (!len) {
4915 		rbd_warn(NULL, "no monitor address(es) provided");
4916 		return -EINVAL;
4917 	}
4918 	mon_addrs = buf;
4919 	mon_addrs_size = len + 1;
4920 	buf += len;
4921 
4922 	ret = -EINVAL;
4923 	options = dup_token(&buf, NULL);
4924 	if (!options)
4925 		return -ENOMEM;
4926 	if (!*options) {
4927 		rbd_warn(NULL, "no options provided");
4928 		goto out_err;
4929 	}
4930 
4931 	spec = rbd_spec_alloc();
4932 	if (!spec)
4933 		goto out_mem;
4934 
4935 	spec->pool_name = dup_token(&buf, NULL);
4936 	if (!spec->pool_name)
4937 		goto out_mem;
4938 	if (!*spec->pool_name) {
4939 		rbd_warn(NULL, "no pool name provided");
4940 		goto out_err;
4941 	}
4942 
4943 	spec->image_name = dup_token(&buf, NULL);
4944 	if (!spec->image_name)
4945 		goto out_mem;
4946 	if (!*spec->image_name) {
4947 		rbd_warn(NULL, "no image name provided");
4948 		goto out_err;
4949 	}
4950 
4951 	/*
4952 	 * Snapshot name is optional; default is to use "-"
4953 	 * (indicating the head/no snapshot).
4954 	 */
4955 	len = next_token(&buf);
4956 	if (!len) {
4957 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4958 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4959 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4960 		ret = -ENAMETOOLONG;
4961 		goto out_err;
4962 	}
4963 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4964 	if (!snap_name)
4965 		goto out_mem;
4966 	*(snap_name + len) = '\0';
4967 	spec->snap_name = snap_name;
4968 
4969 	/* Initialize all rbd options to the defaults */
4970 
4971 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4972 	if (!rbd_opts)
4973 		goto out_mem;
4974 
4975 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4976 
4977 	copts = ceph_parse_options(options, mon_addrs,
4978 					mon_addrs + mon_addrs_size - 1,
4979 					parse_rbd_opts_token, rbd_opts);
4980 	if (IS_ERR(copts)) {
4981 		ret = PTR_ERR(copts);
4982 		goto out_err;
4983 	}
4984 	kfree(options);
4985 
4986 	*ceph_opts = copts;
4987 	*opts = rbd_opts;
4988 	*rbd_spec = spec;
4989 
4990 	return 0;
4991 out_mem:
4992 	ret = -ENOMEM;
4993 out_err:
4994 	kfree(rbd_opts);
4995 	rbd_spec_put(spec);
4996 	kfree(options);
4997 
4998 	return ret;
4999 }
5000 
5001 /*
5002  * Return pool id (>= 0) or a negative error code.
5003  */
rbd_add_get_pool_id(struct rbd_client * rbdc,const char * pool_name)5004 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5005 {
5006 	u64 newest_epoch;
5007 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
5008 	int tries = 0;
5009 	int ret;
5010 
5011 again:
5012 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5013 	if (ret == -ENOENT && tries++ < 1) {
5014 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5015 					       &newest_epoch);
5016 		if (ret < 0)
5017 			return ret;
5018 
5019 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5020 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
5021 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5022 						     newest_epoch, timeout);
5023 			goto again;
5024 		} else {
5025 			/* the osdmap we have is new enough */
5026 			return -ENOENT;
5027 		}
5028 	}
5029 
5030 	return ret;
5031 }
5032 
5033 /*
5034  * An rbd format 2 image has a unique identifier, distinct from the
5035  * name given to it by the user.  Internally, that identifier is
5036  * what's used to specify the names of objects related to the image.
5037  *
5038  * A special "rbd id" object is used to map an rbd image name to its
5039  * id.  If that object doesn't exist, then there is no v2 rbd image
5040  * with the supplied name.
5041  *
5042  * This function will record the given rbd_dev's image_id field if
5043  * it can be determined, and in that case will return 0.  If any
5044  * errors occur a negative errno will be returned and the rbd_dev's
5045  * image_id field will be unchanged (and should be NULL).
5046  */
rbd_dev_image_id(struct rbd_device * rbd_dev)5047 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5048 {
5049 	int ret;
5050 	size_t size;
5051 	char *object_name;
5052 	void *response;
5053 	char *image_id;
5054 
5055 	/*
5056 	 * When probing a parent image, the image id is already
5057 	 * known (and the image name likely is not).  There's no
5058 	 * need to fetch the image id again in this case.  We
5059 	 * do still need to set the image format though.
5060 	 */
5061 	if (rbd_dev->spec->image_id) {
5062 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5063 
5064 		return 0;
5065 	}
5066 
5067 	/*
5068 	 * First, see if the format 2 image id file exists, and if
5069 	 * so, get the image's persistent id from it.
5070 	 */
5071 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5072 	object_name = kmalloc(size, GFP_NOIO);
5073 	if (!object_name)
5074 		return -ENOMEM;
5075 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5076 	dout("rbd id object name is %s\n", object_name);
5077 
5078 	/* Response will be an encoded string, which includes a length */
5079 
5080 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5081 	response = kzalloc(size, GFP_NOIO);
5082 	if (!response) {
5083 		ret = -ENOMEM;
5084 		goto out;
5085 	}
5086 
5087 	/* If it doesn't exist we'll assume it's a format 1 image */
5088 
5089 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5090 				"rbd", "get_id", NULL, 0,
5091 				response, RBD_IMAGE_ID_LEN_MAX);
5092 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5093 	if (ret == -ENOENT) {
5094 		image_id = kstrdup("", GFP_KERNEL);
5095 		ret = image_id ? 0 : -ENOMEM;
5096 		if (!ret)
5097 			rbd_dev->image_format = 1;
5098 	} else if (ret >= 0) {
5099 		void *p = response;
5100 
5101 		image_id = ceph_extract_encoded_string(&p, p + ret,
5102 						NULL, GFP_NOIO);
5103 		ret = PTR_ERR_OR_ZERO(image_id);
5104 		if (!ret)
5105 			rbd_dev->image_format = 2;
5106 	}
5107 
5108 	if (!ret) {
5109 		rbd_dev->spec->image_id = image_id;
5110 		dout("image_id is %s\n", image_id);
5111 	}
5112 out:
5113 	kfree(response);
5114 	kfree(object_name);
5115 
5116 	return ret;
5117 }
5118 
5119 /*
5120  * Undo whatever state changes are made by v1 or v2 header info
5121  * call.
5122  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)5123 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5124 {
5125 	struct rbd_image_header	*header;
5126 
5127 	rbd_dev_parent_put(rbd_dev);
5128 
5129 	/* Free dynamic fields from the header, then zero it out */
5130 
5131 	header = &rbd_dev->header;
5132 	ceph_put_snap_context(header->snapc);
5133 	kfree(header->snap_sizes);
5134 	kfree(header->snap_names);
5135 	kfree(header->object_prefix);
5136 	memset(header, 0, sizeof (*header));
5137 }
5138 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev)5139 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5140 {
5141 	int ret;
5142 
5143 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5144 	if (ret)
5145 		goto out_err;
5146 
5147 	/*
5148 	 * Get the and check features for the image.  Currently the
5149 	 * features are assumed to never change.
5150 	 */
5151 	ret = rbd_dev_v2_features(rbd_dev);
5152 	if (ret)
5153 		goto out_err;
5154 
5155 	/* If the image supports fancy striping, get its parameters */
5156 
5157 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5158 		ret = rbd_dev_v2_striping_info(rbd_dev);
5159 		if (ret < 0)
5160 			goto out_err;
5161 	}
5162 	/* No support for crypto and compression type format 2 images */
5163 
5164 	return 0;
5165 out_err:
5166 	rbd_dev->header.features = 0;
5167 	kfree(rbd_dev->header.object_prefix);
5168 	rbd_dev->header.object_prefix = NULL;
5169 
5170 	return ret;
5171 }
5172 
rbd_dev_probe_parent(struct rbd_device * rbd_dev)5173 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5174 {
5175 	struct rbd_device *parent = NULL;
5176 	int ret;
5177 
5178 	if (!rbd_dev->parent_spec)
5179 		return 0;
5180 
5181 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5182 	if (!parent) {
5183 		ret = -ENOMEM;
5184 		goto out_err;
5185 	}
5186 
5187 	/*
5188 	 * Images related by parent/child relationships always share
5189 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5190 	 */
5191 	__rbd_get_client(rbd_dev->rbd_client);
5192 	rbd_spec_get(rbd_dev->parent_spec);
5193 
5194 	ret = rbd_dev_image_probe(parent, false);
5195 	if (ret < 0)
5196 		goto out_err;
5197 
5198 	rbd_dev->parent = parent;
5199 	atomic_set(&rbd_dev->parent_ref, 1);
5200 	return 0;
5201 
5202 out_err:
5203 	rbd_dev_unparent(rbd_dev);
5204 	if (parent)
5205 		rbd_dev_destroy(parent);
5206 	return ret;
5207 }
5208 
rbd_dev_device_setup(struct rbd_device * rbd_dev)5209 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5210 {
5211 	int ret;
5212 
5213 	/* Get an id and fill in device name. */
5214 
5215 	ret = rbd_dev_id_get(rbd_dev);
5216 	if (ret)
5217 		return ret;
5218 
5219 	BUILD_BUG_ON(DEV_NAME_LEN
5220 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5221 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5222 
5223 	/* Record our major and minor device numbers. */
5224 
5225 	if (!single_major) {
5226 		ret = register_blkdev(0, rbd_dev->name);
5227 		if (ret < 0)
5228 			goto err_out_id;
5229 
5230 		rbd_dev->major = ret;
5231 		rbd_dev->minor = 0;
5232 	} else {
5233 		rbd_dev->major = rbd_major;
5234 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5235 	}
5236 
5237 	/* Set up the blkdev mapping. */
5238 
5239 	ret = rbd_init_disk(rbd_dev);
5240 	if (ret)
5241 		goto err_out_blkdev;
5242 
5243 	ret = rbd_dev_mapping_set(rbd_dev);
5244 	if (ret)
5245 		goto err_out_disk;
5246 
5247 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5248 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5249 
5250 	ret = rbd_bus_add_dev(rbd_dev);
5251 	if (ret)
5252 		goto err_out_mapping;
5253 
5254 	/* Everything's ready.  Announce the disk to the world. */
5255 
5256 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5257 	add_disk(rbd_dev->disk);
5258 
5259 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5260 		(unsigned long long) rbd_dev->mapping.size);
5261 
5262 	return ret;
5263 
5264 err_out_mapping:
5265 	rbd_dev_mapping_clear(rbd_dev);
5266 err_out_disk:
5267 	rbd_free_disk(rbd_dev);
5268 err_out_blkdev:
5269 	if (!single_major)
5270 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5271 err_out_id:
5272 	rbd_dev_id_put(rbd_dev);
5273 	rbd_dev_mapping_clear(rbd_dev);
5274 
5275 	return ret;
5276 }
5277 
rbd_dev_header_name(struct rbd_device * rbd_dev)5278 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5279 {
5280 	struct rbd_spec *spec = rbd_dev->spec;
5281 	size_t size;
5282 
5283 	/* Record the header object name for this rbd image. */
5284 
5285 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5286 
5287 	if (rbd_dev->image_format == 1)
5288 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5289 	else
5290 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5291 
5292 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5293 	if (!rbd_dev->header_name)
5294 		return -ENOMEM;
5295 
5296 	if (rbd_dev->image_format == 1)
5297 		sprintf(rbd_dev->header_name, "%s%s",
5298 			spec->image_name, RBD_SUFFIX);
5299 	else
5300 		sprintf(rbd_dev->header_name, "%s%s",
5301 			RBD_HEADER_PREFIX, spec->image_id);
5302 	return 0;
5303 }
5304 
rbd_dev_image_release(struct rbd_device * rbd_dev)5305 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5306 {
5307 	rbd_dev_unprobe(rbd_dev);
5308 	kfree(rbd_dev->header_name);
5309 	rbd_dev->header_name = NULL;
5310 	rbd_dev->image_format = 0;
5311 	kfree(rbd_dev->spec->image_id);
5312 	rbd_dev->spec->image_id = NULL;
5313 
5314 	rbd_dev_destroy(rbd_dev);
5315 }
5316 
5317 /*
5318  * Probe for the existence of the header object for the given rbd
5319  * device.  If this image is the one being mapped (i.e., not a
5320  * parent), initiate a watch on its header object before using that
5321  * object to get detailed information about the rbd image.
5322  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,bool mapping)5323 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5324 {
5325 	int ret;
5326 
5327 	/*
5328 	 * Get the id from the image id object.  Unless there's an
5329 	 * error, rbd_dev->spec->image_id will be filled in with
5330 	 * a dynamically-allocated string, and rbd_dev->image_format
5331 	 * will be set to either 1 or 2.
5332 	 */
5333 	ret = rbd_dev_image_id(rbd_dev);
5334 	if (ret)
5335 		return ret;
5336 
5337 	ret = rbd_dev_header_name(rbd_dev);
5338 	if (ret)
5339 		goto err_out_format;
5340 
5341 	if (mapping) {
5342 		ret = rbd_dev_header_watch_sync(rbd_dev);
5343 		if (ret)
5344 			goto out_header_name;
5345 	}
5346 
5347 	ret = rbd_dev_header_info(rbd_dev);
5348 	if (ret)
5349 		goto err_out_watch;
5350 
5351 	/*
5352 	 * If this image is the one being mapped, we have pool name and
5353 	 * id, image name and id, and snap name - need to fill snap id.
5354 	 * Otherwise this is a parent image, identified by pool, image
5355 	 * and snap ids - need to fill in names for those ids.
5356 	 */
5357 	if (mapping)
5358 		ret = rbd_spec_fill_snap_id(rbd_dev);
5359 	else
5360 		ret = rbd_spec_fill_names(rbd_dev);
5361 	if (ret)
5362 		goto err_out_probe;
5363 
5364 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5365 		ret = rbd_dev_v2_parent_info(rbd_dev);
5366 		if (ret)
5367 			goto err_out_probe;
5368 
5369 		/*
5370 		 * Need to warn users if this image is the one being
5371 		 * mapped and has a parent.
5372 		 */
5373 		if (mapping && rbd_dev->parent_spec)
5374 			rbd_warn(rbd_dev,
5375 				 "WARNING: kernel layering is EXPERIMENTAL!");
5376 	}
5377 
5378 	ret = rbd_dev_probe_parent(rbd_dev);
5379 	if (ret)
5380 		goto err_out_probe;
5381 
5382 	dout("discovered format %u image, header name is %s\n",
5383 		rbd_dev->image_format, rbd_dev->header_name);
5384 	return 0;
5385 
5386 err_out_probe:
5387 	rbd_dev_unprobe(rbd_dev);
5388 err_out_watch:
5389 	if (mapping)
5390 		rbd_dev_header_unwatch_sync(rbd_dev);
5391 out_header_name:
5392 	kfree(rbd_dev->header_name);
5393 	rbd_dev->header_name = NULL;
5394 err_out_format:
5395 	rbd_dev->image_format = 0;
5396 	kfree(rbd_dev->spec->image_id);
5397 	rbd_dev->spec->image_id = NULL;
5398 	return ret;
5399 }
5400 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)5401 static ssize_t do_rbd_add(struct bus_type *bus,
5402 			  const char *buf,
5403 			  size_t count)
5404 {
5405 	struct rbd_device *rbd_dev = NULL;
5406 	struct ceph_options *ceph_opts = NULL;
5407 	struct rbd_options *rbd_opts = NULL;
5408 	struct rbd_spec *spec = NULL;
5409 	struct rbd_client *rbdc;
5410 	bool read_only;
5411 	int rc = -ENOMEM;
5412 
5413 	if (!try_module_get(THIS_MODULE))
5414 		return -ENODEV;
5415 
5416 	/* parse add command */
5417 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5418 	if (rc < 0)
5419 		goto err_out_module;
5420 	read_only = rbd_opts->read_only;
5421 	kfree(rbd_opts);
5422 	rbd_opts = NULL;	/* done with this */
5423 
5424 	rbdc = rbd_get_client(ceph_opts);
5425 	if (IS_ERR(rbdc)) {
5426 		rc = PTR_ERR(rbdc);
5427 		goto err_out_args;
5428 	}
5429 
5430 	/* pick the pool */
5431 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5432 	if (rc < 0)
5433 		goto err_out_client;
5434 	spec->pool_id = (u64)rc;
5435 
5436 	/* The ceph file layout needs to fit pool id in 32 bits */
5437 
5438 	if (spec->pool_id > (u64)U32_MAX) {
5439 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5440 				(unsigned long long)spec->pool_id, U32_MAX);
5441 		rc = -EIO;
5442 		goto err_out_client;
5443 	}
5444 
5445 	rbd_dev = rbd_dev_create(rbdc, spec);
5446 	if (!rbd_dev)
5447 		goto err_out_client;
5448 	rbdc = NULL;		/* rbd_dev now owns this */
5449 	spec = NULL;		/* rbd_dev now owns this */
5450 
5451 	rc = rbd_dev_image_probe(rbd_dev, true);
5452 	if (rc < 0)
5453 		goto err_out_rbd_dev;
5454 
5455 	/* If we are mapping a snapshot it must be marked read-only */
5456 
5457 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5458 		read_only = true;
5459 	rbd_dev->mapping.read_only = read_only;
5460 
5461 	rc = rbd_dev_device_setup(rbd_dev);
5462 	if (rc) {
5463 		/*
5464 		 * rbd_dev_header_unwatch_sync() can't be moved into
5465 		 * rbd_dev_image_release() without refactoring, see
5466 		 * commit 1f3ef78861ac.
5467 		 */
5468 		rbd_dev_header_unwatch_sync(rbd_dev);
5469 		rbd_dev_image_release(rbd_dev);
5470 		goto err_out_module;
5471 	}
5472 
5473 	return count;
5474 
5475 err_out_rbd_dev:
5476 	rbd_dev_destroy(rbd_dev);
5477 err_out_client:
5478 	rbd_put_client(rbdc);
5479 err_out_args:
5480 	rbd_spec_put(spec);
5481 err_out_module:
5482 	module_put(THIS_MODULE);
5483 
5484 	dout("Error adding device %s\n", buf);
5485 
5486 	return (ssize_t)rc;
5487 }
5488 
rbd_add(struct bus_type * bus,const char * buf,size_t count)5489 static ssize_t rbd_add(struct bus_type *bus,
5490 		       const char *buf,
5491 		       size_t count)
5492 {
5493 	if (single_major)
5494 		return -EINVAL;
5495 
5496 	return do_rbd_add(bus, buf, count);
5497 }
5498 
rbd_add_single_major(struct bus_type * bus,const char * buf,size_t count)5499 static ssize_t rbd_add_single_major(struct bus_type *bus,
5500 				    const char *buf,
5501 				    size_t count)
5502 {
5503 	return do_rbd_add(bus, buf, count);
5504 }
5505 
rbd_dev_device_release(struct device * dev)5506 static void rbd_dev_device_release(struct device *dev)
5507 {
5508 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5509 
5510 	rbd_free_disk(rbd_dev);
5511 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5512 	rbd_dev_mapping_clear(rbd_dev);
5513 	if (!single_major)
5514 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5515 	rbd_dev_id_put(rbd_dev);
5516 	rbd_dev_mapping_clear(rbd_dev);
5517 }
5518 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)5519 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5520 {
5521 	while (rbd_dev->parent) {
5522 		struct rbd_device *first = rbd_dev;
5523 		struct rbd_device *second = first->parent;
5524 		struct rbd_device *third;
5525 
5526 		/*
5527 		 * Follow to the parent with no grandparent and
5528 		 * remove it.
5529 		 */
5530 		while (second && (third = second->parent)) {
5531 			first = second;
5532 			second = third;
5533 		}
5534 		rbd_assert(second);
5535 		rbd_dev_image_release(second);
5536 		first->parent = NULL;
5537 		first->parent_overlap = 0;
5538 
5539 		rbd_assert(first->parent_spec);
5540 		rbd_spec_put(first->parent_spec);
5541 		first->parent_spec = NULL;
5542 	}
5543 }
5544 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)5545 static ssize_t do_rbd_remove(struct bus_type *bus,
5546 			     const char *buf,
5547 			     size_t count)
5548 {
5549 	struct rbd_device *rbd_dev = NULL;
5550 	struct list_head *tmp;
5551 	int dev_id;
5552 	unsigned long ul;
5553 	bool already = false;
5554 	int ret;
5555 
5556 	ret = kstrtoul(buf, 10, &ul);
5557 	if (ret)
5558 		return ret;
5559 
5560 	/* convert to int; abort if we lost anything in the conversion */
5561 	dev_id = (int)ul;
5562 	if (dev_id != ul)
5563 		return -EINVAL;
5564 
5565 	ret = -ENOENT;
5566 	spin_lock(&rbd_dev_list_lock);
5567 	list_for_each(tmp, &rbd_dev_list) {
5568 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5569 		if (rbd_dev->dev_id == dev_id) {
5570 			ret = 0;
5571 			break;
5572 		}
5573 	}
5574 	if (!ret) {
5575 		spin_lock_irq(&rbd_dev->lock);
5576 		if (rbd_dev->open_count)
5577 			ret = -EBUSY;
5578 		else
5579 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5580 							&rbd_dev->flags);
5581 		spin_unlock_irq(&rbd_dev->lock);
5582 	}
5583 	spin_unlock(&rbd_dev_list_lock);
5584 	if (ret < 0 || already)
5585 		return ret;
5586 
5587 	rbd_dev_header_unwatch_sync(rbd_dev);
5588 	/*
5589 	 * flush remaining watch callbacks - these must be complete
5590 	 * before the osd_client is shutdown
5591 	 */
5592 	dout("%s: flushing notifies", __func__);
5593 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5594 
5595 	/*
5596 	 * Don't free anything from rbd_dev->disk until after all
5597 	 * notifies are completely processed. Otherwise
5598 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5599 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5600 	 */
5601 	rbd_bus_del_dev(rbd_dev);
5602 	rbd_dev_image_release(rbd_dev);
5603 	module_put(THIS_MODULE);
5604 
5605 	return count;
5606 }
5607 
rbd_remove(struct bus_type * bus,const char * buf,size_t count)5608 static ssize_t rbd_remove(struct bus_type *bus,
5609 			  const char *buf,
5610 			  size_t count)
5611 {
5612 	if (single_major)
5613 		return -EINVAL;
5614 
5615 	return do_rbd_remove(bus, buf, count);
5616 }
5617 
rbd_remove_single_major(struct bus_type * bus,const char * buf,size_t count)5618 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5619 				       const char *buf,
5620 				       size_t count)
5621 {
5622 	return do_rbd_remove(bus, buf, count);
5623 }
5624 
5625 /*
5626  * create control files in sysfs
5627  * /sys/bus/rbd/...
5628  */
rbd_sysfs_init(void)5629 static int rbd_sysfs_init(void)
5630 {
5631 	int ret;
5632 
5633 	ret = device_register(&rbd_root_dev);
5634 	if (ret < 0)
5635 		return ret;
5636 
5637 	ret = bus_register(&rbd_bus_type);
5638 	if (ret < 0)
5639 		device_unregister(&rbd_root_dev);
5640 
5641 	return ret;
5642 }
5643 
rbd_sysfs_cleanup(void)5644 static void rbd_sysfs_cleanup(void)
5645 {
5646 	bus_unregister(&rbd_bus_type);
5647 	device_unregister(&rbd_root_dev);
5648 }
5649 
rbd_slab_init(void)5650 static int rbd_slab_init(void)
5651 {
5652 	rbd_assert(!rbd_img_request_cache);
5653 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5654 					sizeof (struct rbd_img_request),
5655 					__alignof__(struct rbd_img_request),
5656 					0, NULL);
5657 	if (!rbd_img_request_cache)
5658 		return -ENOMEM;
5659 
5660 	rbd_assert(!rbd_obj_request_cache);
5661 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5662 					sizeof (struct rbd_obj_request),
5663 					__alignof__(struct rbd_obj_request),
5664 					0, NULL);
5665 	if (!rbd_obj_request_cache)
5666 		goto out_err;
5667 
5668 	rbd_assert(!rbd_segment_name_cache);
5669 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5670 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5671 	if (rbd_segment_name_cache)
5672 		return 0;
5673 out_err:
5674 	if (rbd_obj_request_cache) {
5675 		kmem_cache_destroy(rbd_obj_request_cache);
5676 		rbd_obj_request_cache = NULL;
5677 	}
5678 
5679 	kmem_cache_destroy(rbd_img_request_cache);
5680 	rbd_img_request_cache = NULL;
5681 
5682 	return -ENOMEM;
5683 }
5684 
rbd_slab_exit(void)5685 static void rbd_slab_exit(void)
5686 {
5687 	rbd_assert(rbd_segment_name_cache);
5688 	kmem_cache_destroy(rbd_segment_name_cache);
5689 	rbd_segment_name_cache = NULL;
5690 
5691 	rbd_assert(rbd_obj_request_cache);
5692 	kmem_cache_destroy(rbd_obj_request_cache);
5693 	rbd_obj_request_cache = NULL;
5694 
5695 	rbd_assert(rbd_img_request_cache);
5696 	kmem_cache_destroy(rbd_img_request_cache);
5697 	rbd_img_request_cache = NULL;
5698 }
5699 
rbd_init(void)5700 static int __init rbd_init(void)
5701 {
5702 	int rc;
5703 
5704 	if (!libceph_compatible(NULL)) {
5705 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5706 		return -EINVAL;
5707 	}
5708 
5709 	rc = rbd_slab_init();
5710 	if (rc)
5711 		return rc;
5712 
5713 	/*
5714 	 * The number of active work items is limited by the number of
5715 	 * rbd devices, so leave @max_active at default.
5716 	 */
5717 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5718 	if (!rbd_wq) {
5719 		rc = -ENOMEM;
5720 		goto err_out_slab;
5721 	}
5722 
5723 	if (single_major) {
5724 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5725 		if (rbd_major < 0) {
5726 			rc = rbd_major;
5727 			goto err_out_wq;
5728 		}
5729 	}
5730 
5731 	rc = rbd_sysfs_init();
5732 	if (rc)
5733 		goto err_out_blkdev;
5734 
5735 	if (single_major)
5736 		pr_info("loaded (major %d)\n", rbd_major);
5737 	else
5738 		pr_info("loaded\n");
5739 
5740 	return 0;
5741 
5742 err_out_blkdev:
5743 	if (single_major)
5744 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5745 err_out_wq:
5746 	destroy_workqueue(rbd_wq);
5747 err_out_slab:
5748 	rbd_slab_exit();
5749 	return rc;
5750 }
5751 
rbd_exit(void)5752 static void __exit rbd_exit(void)
5753 {
5754 	ida_destroy(&rbd_dev_id_ida);
5755 	rbd_sysfs_cleanup();
5756 	if (single_major)
5757 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5758 	destroy_workqueue(rbd_wq);
5759 	rbd_slab_exit();
5760 }
5761 
5762 module_init(rbd_init);
5763 module_exit(rbd_exit);
5764 
5765 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5766 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5767 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5768 /* following authorship retained from original osdblk.c */
5769 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5770 
5771 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5772 MODULE_LICENSE("GPL");
5773