• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains driver for the Cadence Triple Timer Counter Rev 06
3  *
4  *  Copyright (C) 2011-2013 Xilinx
5  *
6  * based on arch/mips/kernel/time.c timer driver
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/clk-provider.h>
20 #include <linux/interrupt.h>
21 #include <linux/clockchips.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/slab.h>
25 #include <linux/sched_clock.h>
26 
27 /*
28  * This driver configures the 2 16/32-bit count-up timers as follows:
29  *
30  * T1: Timer 1, clocksource for generic timekeeping
31  * T2: Timer 2, clockevent source for hrtimers
32  * T3: Timer 3, <unused>
33  *
34  * The input frequency to the timer module for emulation is 2.5MHz which is
35  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36  * the timers are clocked at 78.125KHz (12.8 us resolution).
37 
38  * The input frequency to the timer module in silicon is configurable and
39  * obtained from device tree. The pre-scaler of 32 is used.
40  */
41 
42 /*
43  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44  * and use same offsets for Timer 2
45  */
46 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
47 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
48 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
49 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
50 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
51 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
52 
53 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
54 
55 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
56 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
57 #define TTC_CLK_CNTRL_PSV_SHIFT		1
58 
59 /*
60  * Setup the timers to use pre-scaling, using a fixed value for now that will
61  * work across most input frequency, but it may need to be more dynamic
62  */
63 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64 #define PRESCALE		2048	/* The exponent must match this */
65 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
66 #define CLK_CNTRL_PRESCALE_EN	1
67 #define CNT_CNTRL_RESET		(1 << 4)
68 
69 #define MAX_F_ERR 50
70 
71 /**
72  * struct ttc_timer - This definition defines local timer structure
73  *
74  * @base_addr:	Base address of timer
75  * @freq:	Timer input clock frequency
76  * @clk:	Associated clock source
77  * @clk_rate_change_nb	Notifier block for clock rate changes
78  */
79 struct ttc_timer {
80 	void __iomem *base_addr;
81 	unsigned long freq;
82 	struct clk *clk;
83 	struct notifier_block clk_rate_change_nb;
84 };
85 
86 #define to_ttc_timer(x) \
87 		container_of(x, struct ttc_timer, clk_rate_change_nb)
88 
89 struct ttc_timer_clocksource {
90 	u32			scale_clk_ctrl_reg_old;
91 	u32			scale_clk_ctrl_reg_new;
92 	struct ttc_timer	ttc;
93 	struct clocksource	cs;
94 };
95 
96 #define to_ttc_timer_clksrc(x) \
97 		container_of(x, struct ttc_timer_clocksource, cs)
98 
99 struct ttc_timer_clockevent {
100 	struct ttc_timer		ttc;
101 	struct clock_event_device	ce;
102 };
103 
104 #define to_ttc_timer_clkevent(x) \
105 		container_of(x, struct ttc_timer_clockevent, ce)
106 
107 static void __iomem *ttc_sched_clock_val_reg;
108 
109 /**
110  * ttc_set_interval - Set the timer interval value
111  *
112  * @timer:	Pointer to the timer instance
113  * @cycles:	Timer interval ticks
114  **/
ttc_set_interval(struct ttc_timer * timer,unsigned long cycles)115 static void ttc_set_interval(struct ttc_timer *timer,
116 					unsigned long cycles)
117 {
118 	u32 ctrl_reg;
119 
120 	/* Disable the counter, set the counter value  and re-enable counter */
121 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124 
125 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126 
127 	/*
128 	 * Reset the counter (0x10) so that it starts from 0, one-shot
129 	 * mode makes this needed for timing to be right.
130 	 */
131 	ctrl_reg |= CNT_CNTRL_RESET;
132 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 }
135 
136 /**
137  * ttc_clock_event_interrupt - Clock event timer interrupt handler
138  *
139  * @irq:	IRQ number of the Timer
140  * @dev_id:	void pointer to the ttc_timer instance
141  *
142  * returns: Always IRQ_HANDLED - success
143  **/
ttc_clock_event_interrupt(int irq,void * dev_id)144 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 {
146 	struct ttc_timer_clockevent *ttce = dev_id;
147 	struct ttc_timer *timer = &ttce->ttc;
148 
149 	/* Acknowledge the interrupt and call event handler */
150 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151 
152 	ttce->ce.event_handler(&ttce->ce);
153 
154 	return IRQ_HANDLED;
155 }
156 
157 /**
158  * __ttc_clocksource_read - Reads the timer counter register
159  *
160  * returns: Current timer counter register value
161  **/
__ttc_clocksource_read(struct clocksource * cs)162 static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163 {
164 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165 
166 	return (cycle_t)readl_relaxed(timer->base_addr +
167 				TTC_COUNT_VAL_OFFSET);
168 }
169 
ttc_sched_clock_read(void)170 static u64 notrace ttc_sched_clock_read(void)
171 {
172 	return readl_relaxed(ttc_sched_clock_val_reg);
173 }
174 
175 /**
176  * ttc_set_next_event - Sets the time interval for next event
177  *
178  * @cycles:	Timer interval ticks
179  * @evt:	Address of clock event instance
180  *
181  * returns: Always 0 - success
182  **/
ttc_set_next_event(unsigned long cycles,struct clock_event_device * evt)183 static int ttc_set_next_event(unsigned long cycles,
184 					struct clock_event_device *evt)
185 {
186 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187 	struct ttc_timer *timer = &ttce->ttc;
188 
189 	ttc_set_interval(timer, cycles);
190 	return 0;
191 }
192 
193 /**
194  * ttc_set_mode - Sets the mode of timer
195  *
196  * @mode:	Mode to be set
197  * @evt:	Address of clock event instance
198  **/
ttc_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)199 static void ttc_set_mode(enum clock_event_mode mode,
200 					struct clock_event_device *evt)
201 {
202 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
203 	struct ttc_timer *timer = &ttce->ttc;
204 	u32 ctrl_reg;
205 
206 	switch (mode) {
207 	case CLOCK_EVT_MODE_PERIODIC:
208 		ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
209 						PRESCALE * HZ));
210 		break;
211 	case CLOCK_EVT_MODE_ONESHOT:
212 	case CLOCK_EVT_MODE_UNUSED:
213 	case CLOCK_EVT_MODE_SHUTDOWN:
214 		ctrl_reg = readl_relaxed(timer->base_addr +
215 					TTC_CNT_CNTRL_OFFSET);
216 		ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
217 		writel_relaxed(ctrl_reg,
218 				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219 		break;
220 	case CLOCK_EVT_MODE_RESUME:
221 		ctrl_reg = readl_relaxed(timer->base_addr +
222 					TTC_CNT_CNTRL_OFFSET);
223 		ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
224 		writel_relaxed(ctrl_reg,
225 				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226 		break;
227 	}
228 }
229 
ttc_rate_change_clocksource_cb(struct notifier_block * nb,unsigned long event,void * data)230 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
231 		unsigned long event, void *data)
232 {
233 	struct clk_notifier_data *ndata = data;
234 	struct ttc_timer *ttc = to_ttc_timer(nb);
235 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
236 			struct ttc_timer_clocksource, ttc);
237 
238 	switch (event) {
239 	case PRE_RATE_CHANGE:
240 	{
241 		u32 psv;
242 		unsigned long factor, rate_low, rate_high;
243 
244 		if (ndata->new_rate > ndata->old_rate) {
245 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
246 					ndata->old_rate);
247 			rate_low = ndata->old_rate;
248 			rate_high = ndata->new_rate;
249 		} else {
250 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
251 					ndata->new_rate);
252 			rate_low = ndata->new_rate;
253 			rate_high = ndata->old_rate;
254 		}
255 
256 		if (!is_power_of_2(factor))
257 				return NOTIFY_BAD;
258 
259 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
260 			return NOTIFY_BAD;
261 
262 		factor = __ilog2_u32(factor);
263 
264 		/*
265 		 * store timer clock ctrl register so we can restore it in case
266 		 * of an abort.
267 		 */
268 		ttccs->scale_clk_ctrl_reg_old =
269 			readl_relaxed(ttccs->ttc.base_addr +
270 			TTC_CLK_CNTRL_OFFSET);
271 
272 		psv = (ttccs->scale_clk_ctrl_reg_old &
273 				TTC_CLK_CNTRL_PSV_MASK) >>
274 				TTC_CLK_CNTRL_PSV_SHIFT;
275 		if (ndata->new_rate < ndata->old_rate)
276 			psv -= factor;
277 		else
278 			psv += factor;
279 
280 		/* prescaler within legal range? */
281 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
282 			return NOTIFY_BAD;
283 
284 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
285 			~TTC_CLK_CNTRL_PSV_MASK;
286 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
287 
288 
289 		/* scale down: adjust divider in post-change notification */
290 		if (ndata->new_rate < ndata->old_rate)
291 			return NOTIFY_DONE;
292 
293 		/* scale up: adjust divider now - before frequency change */
294 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
295 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
296 		break;
297 	}
298 	case POST_RATE_CHANGE:
299 		/* scale up: pre-change notification did the adjustment */
300 		if (ndata->new_rate > ndata->old_rate)
301 			return NOTIFY_OK;
302 
303 		/* scale down: adjust divider now - after frequency change */
304 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
305 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
306 		break;
307 
308 	case ABORT_RATE_CHANGE:
309 		/* we have to undo the adjustment in case we scale up */
310 		if (ndata->new_rate < ndata->old_rate)
311 			return NOTIFY_OK;
312 
313 		/* restore original register value */
314 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
315 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
316 		/* fall through */
317 	default:
318 		return NOTIFY_DONE;
319 	}
320 
321 	return NOTIFY_DONE;
322 }
323 
ttc_setup_clocksource(struct clk * clk,void __iomem * base,u32 timer_width)324 static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
325 					 u32 timer_width)
326 {
327 	struct ttc_timer_clocksource *ttccs;
328 	int err;
329 
330 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
331 	if (WARN_ON(!ttccs))
332 		return;
333 
334 	ttccs->ttc.clk = clk;
335 
336 	err = clk_prepare_enable(ttccs->ttc.clk);
337 	if (WARN_ON(err)) {
338 		kfree(ttccs);
339 		return;
340 	}
341 
342 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
343 
344 	ttccs->ttc.clk_rate_change_nb.notifier_call =
345 		ttc_rate_change_clocksource_cb;
346 	ttccs->ttc.clk_rate_change_nb.next = NULL;
347 	if (clk_notifier_register(ttccs->ttc.clk,
348 				&ttccs->ttc.clk_rate_change_nb))
349 		pr_warn("Unable to register clock notifier.\n");
350 
351 	ttccs->ttc.base_addr = base;
352 	ttccs->cs.name = "ttc_clocksource";
353 	ttccs->cs.rating = 200;
354 	ttccs->cs.read = __ttc_clocksource_read;
355 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
356 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
357 
358 	/*
359 	 * Setup the clock source counter to be an incrementing counter
360 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
361 	 * it by 32 also. Let it start running now.
362 	 */
363 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
364 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
365 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
366 	writel_relaxed(CNT_CNTRL_RESET,
367 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
368 
369 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
370 	if (WARN_ON(err)) {
371 		kfree(ttccs);
372 		return;
373 	}
374 
375 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
376 	sched_clock_register(ttc_sched_clock_read, timer_width,
377 			     ttccs->ttc.freq / PRESCALE);
378 }
379 
ttc_rate_change_clockevent_cb(struct notifier_block * nb,unsigned long event,void * data)380 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
381 		unsigned long event, void *data)
382 {
383 	struct clk_notifier_data *ndata = data;
384 	struct ttc_timer *ttc = to_ttc_timer(nb);
385 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
386 			struct ttc_timer_clockevent, ttc);
387 
388 	switch (event) {
389 	case POST_RATE_CHANGE:
390 		/* update cached frequency */
391 		ttc->freq = ndata->new_rate;
392 
393 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
394 
395 		/* fall through */
396 	case PRE_RATE_CHANGE:
397 	case ABORT_RATE_CHANGE:
398 	default:
399 		return NOTIFY_DONE;
400 	}
401 }
402 
ttc_setup_clockevent(struct clk * clk,void __iomem * base,u32 irq)403 static void __init ttc_setup_clockevent(struct clk *clk,
404 						void __iomem *base, u32 irq)
405 {
406 	struct ttc_timer_clockevent *ttcce;
407 	int err;
408 
409 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
410 	if (WARN_ON(!ttcce))
411 		return;
412 
413 	ttcce->ttc.clk = clk;
414 
415 	err = clk_prepare_enable(ttcce->ttc.clk);
416 	if (WARN_ON(err)) {
417 		kfree(ttcce);
418 		return;
419 	}
420 
421 	ttcce->ttc.clk_rate_change_nb.notifier_call =
422 		ttc_rate_change_clockevent_cb;
423 	ttcce->ttc.clk_rate_change_nb.next = NULL;
424 	if (clk_notifier_register(ttcce->ttc.clk,
425 				&ttcce->ttc.clk_rate_change_nb))
426 		pr_warn("Unable to register clock notifier.\n");
427 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
428 
429 	ttcce->ttc.base_addr = base;
430 	ttcce->ce.name = "ttc_clockevent";
431 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
432 	ttcce->ce.set_next_event = ttc_set_next_event;
433 	ttcce->ce.set_mode = ttc_set_mode;
434 	ttcce->ce.rating = 200;
435 	ttcce->ce.irq = irq;
436 	ttcce->ce.cpumask = cpu_possible_mask;
437 
438 	/*
439 	 * Setup the clock event timer to be an interval timer which
440 	 * is prescaled by 32 using the interval interrupt. Leave it
441 	 * disabled for now.
442 	 */
443 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
444 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
445 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
446 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
447 
448 	err = request_irq(irq, ttc_clock_event_interrupt,
449 			  IRQF_TIMER, ttcce->ce.name, ttcce);
450 	if (WARN_ON(err)) {
451 		kfree(ttcce);
452 		return;
453 	}
454 
455 	clockevents_config_and_register(&ttcce->ce,
456 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
457 }
458 
459 /**
460  * ttc_timer_init - Initialize the timer
461  *
462  * Initializes the timer hardware and register the clock source and clock event
463  * timers with Linux kernal timer framework
464  */
ttc_timer_init(struct device_node * timer)465 static void __init ttc_timer_init(struct device_node *timer)
466 {
467 	unsigned int irq;
468 	void __iomem *timer_baseaddr;
469 	struct clk *clk_cs, *clk_ce;
470 	static int initialized;
471 	int clksel;
472 	u32 timer_width = 16;
473 
474 	if (initialized)
475 		return;
476 
477 	initialized = 1;
478 
479 	/*
480 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
481 	 * and use it. Note that the event timer uses the interrupt and it's the
482 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
483 	 */
484 	timer_baseaddr = of_iomap(timer, 0);
485 	if (!timer_baseaddr) {
486 		pr_err("ERROR: invalid timer base address\n");
487 		BUG();
488 	}
489 
490 	irq = irq_of_parse_and_map(timer, 1);
491 	if (irq <= 0) {
492 		pr_err("ERROR: invalid interrupt number\n");
493 		BUG();
494 	}
495 
496 	of_property_read_u32(timer, "timer-width", &timer_width);
497 
498 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
499 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
500 	clk_cs = of_clk_get(timer, clksel);
501 	if (IS_ERR(clk_cs)) {
502 		pr_err("ERROR: timer input clock not found\n");
503 		BUG();
504 	}
505 
506 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
507 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508 	clk_ce = of_clk_get(timer, clksel);
509 	if (IS_ERR(clk_ce)) {
510 		pr_err("ERROR: timer input clock not found\n");
511 		BUG();
512 	}
513 
514 	ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
515 	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
516 
517 	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
518 }
519 
520 CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
521