• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22 
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31 
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34 
35 #define MAX_KEYLEN 32
36 
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40 
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52 
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59 
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63 
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66 
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74 
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81 
82 #define SEND_QID    29
83 #define RECV_QID    30
84 
85 #define CTL_FLAG_UNUSED		0x0000
86 #define CTL_FLAG_USED		0x1000
87 #define CTL_FLAG_PERFORM_ABLK	0x0001
88 #define CTL_FLAG_GEN_ICV	0x0002
89 #define CTL_FLAG_GEN_REVAES	0x0004
90 #define CTL_FLAG_PERFORM_AEAD	0x0008
91 #define CTL_FLAG_MASK		0x000f
92 
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 
97 #define MD5_DIGEST_SIZE   16
98 
99 struct buffer_desc {
100 	u32 phys_next;
101 #ifdef __ARMEB__
102 	u16 buf_len;
103 	u16 pkt_len;
104 #else
105 	u16 pkt_len;
106 	u16 buf_len;
107 #endif
108 	u32 phys_addr;
109 	u32 __reserved[4];
110 	struct buffer_desc *next;
111 	enum dma_data_direction dir;
112 };
113 
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116 	u8 mode;		/* NPE_OP_*  operation mode */
117 	u8 init_len;
118 	u16 reserved;
119 #else
120 	u16 reserved;
121 	u8 init_len;
122 	u8 mode;		/* NPE_OP_*  operation mode */
123 #endif
124 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
125 	u32 icv_rev_aes;	/* icv or rev aes */
126 	u32 src_buf;
127 	u32 dst_buf;
128 #ifdef __ARMEB__
129 	u16 auth_offs;		/* Authentication start offset */
130 	u16 auth_len;		/* Authentication data length */
131 	u16 crypt_offs;		/* Cryption start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 #else
134 	u16 auth_len;		/* Authentication data length */
135 	u16 auth_offs;		/* Authentication start offset */
136 	u16 crypt_len;		/* Cryption data length */
137 	u16 crypt_offs;		/* Cryption start offset */
138 #endif
139 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
140 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
141 
142 	/* Used by Host: 4*4 bytes*/
143 	unsigned ctl_flags;
144 	union {
145 		struct ablkcipher_request *ablk_req;
146 		struct aead_request *aead_req;
147 		struct crypto_tfm *tfm;
148 	} data;
149 	struct buffer_desc *regist_buf;
150 	u8 *regist_ptr;
151 };
152 
153 struct ablk_ctx {
154 	struct buffer_desc *src;
155 	struct buffer_desc *dst;
156 };
157 
158 struct aead_ctx {
159 	struct buffer_desc *buffer;
160 	struct scatterlist ivlist;
161 	/* used when the hmac is not on one sg entry */
162 	u8 *hmac_virt;
163 	int encrypt;
164 };
165 
166 struct ix_hash_algo {
167 	u32 cfgword;
168 	unsigned char *icv;
169 };
170 
171 struct ix_sa_dir {
172 	unsigned char *npe_ctx;
173 	dma_addr_t npe_ctx_phys;
174 	int npe_ctx_idx;
175 	u8 npe_mode;
176 };
177 
178 struct ixp_ctx {
179 	struct ix_sa_dir encrypt;
180 	struct ix_sa_dir decrypt;
181 	int authkey_len;
182 	u8 authkey[MAX_KEYLEN];
183 	int enckey_len;
184 	u8 enckey[MAX_KEYLEN];
185 	u8 salt[MAX_IVLEN];
186 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 	unsigned salted;
188 	atomic_t configuring;
189 	struct completion completion;
190 };
191 
192 struct ixp_alg {
193 	struct crypto_alg crypto;
194 	const struct ix_hash_algo *hash;
195 	u32 cfg_enc;
196 	u32 cfg_dec;
197 
198 	int registered;
199 };
200 
201 static const struct ix_hash_algo hash_alg_md5 = {
202 	.cfgword	= 0xAA010004,
203 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
204 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
205 };
206 static const struct ix_hash_algo hash_alg_sha1 = {
207 	.cfgword	= 0x00000005,
208 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
209 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
210 };
211 
212 static struct npe *npe_c;
213 static struct dma_pool *buffer_pool = NULL;
214 static struct dma_pool *ctx_pool = NULL;
215 
216 static struct crypt_ctl *crypt_virt = NULL;
217 static dma_addr_t crypt_phys;
218 
219 static int support_aes = 1;
220 
221 #define DRIVER_NAME "ixp4xx_crypto"
222 
223 static struct platform_device *pdev;
224 
crypt_virt2phys(struct crypt_ctl * virt)225 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
226 {
227 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
228 }
229 
crypt_phys2virt(dma_addr_t phys)230 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
231 {
232 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
233 }
234 
cipher_cfg_enc(struct crypto_tfm * tfm)235 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
236 {
237 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
238 }
239 
cipher_cfg_dec(struct crypto_tfm * tfm)240 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
241 {
242 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
243 }
244 
ix_hash(struct crypto_tfm * tfm)245 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
246 {
247 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
248 }
249 
setup_crypt_desc(void)250 static int setup_crypt_desc(void)
251 {
252 	struct device *dev = &pdev->dev;
253 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
254 	crypt_virt = dma_alloc_coherent(dev,
255 			NPE_QLEN * sizeof(struct crypt_ctl),
256 			&crypt_phys, GFP_ATOMIC);
257 	if (!crypt_virt)
258 		return -ENOMEM;
259 	memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
260 	return 0;
261 }
262 
263 static spinlock_t desc_lock;
get_crypt_desc(void)264 static struct crypt_ctl *get_crypt_desc(void)
265 {
266 	int i;
267 	static int idx = 0;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&desc_lock, flags);
271 
272 	if (unlikely(!crypt_virt))
273 		setup_crypt_desc();
274 	if (unlikely(!crypt_virt)) {
275 		spin_unlock_irqrestore(&desc_lock, flags);
276 		return NULL;
277 	}
278 	i = idx;
279 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
280 		if (++idx >= NPE_QLEN)
281 			idx = 0;
282 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
283 		spin_unlock_irqrestore(&desc_lock, flags);
284 		return crypt_virt +i;
285 	} else {
286 		spin_unlock_irqrestore(&desc_lock, flags);
287 		return NULL;
288 	}
289 }
290 
291 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)292 static struct crypt_ctl *get_crypt_desc_emerg(void)
293 {
294 	int i;
295 	static int idx = NPE_QLEN;
296 	struct crypt_ctl *desc;
297 	unsigned long flags;
298 
299 	desc = get_crypt_desc();
300 	if (desc)
301 		return desc;
302 	if (unlikely(!crypt_virt))
303 		return NULL;
304 
305 	spin_lock_irqsave(&emerg_lock, flags);
306 	i = idx;
307 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
308 		if (++idx >= NPE_QLEN_TOTAL)
309 			idx = NPE_QLEN;
310 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
311 		spin_unlock_irqrestore(&emerg_lock, flags);
312 		return crypt_virt +i;
313 	} else {
314 		spin_unlock_irqrestore(&emerg_lock, flags);
315 		return NULL;
316 	}
317 }
318 
free_buf_chain(struct device * dev,struct buffer_desc * buf,u32 phys)319 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
320 {
321 	while (buf) {
322 		struct buffer_desc *buf1;
323 		u32 phys1;
324 
325 		buf1 = buf->next;
326 		phys1 = buf->phys_next;
327 		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
328 		dma_pool_free(buffer_pool, buf, phys);
329 		buf = buf1;
330 		phys = phys1;
331 	}
332 }
333 
334 static struct tasklet_struct crypto_done_tasklet;
335 
finish_scattered_hmac(struct crypt_ctl * crypt)336 static void finish_scattered_hmac(struct crypt_ctl *crypt)
337 {
338 	struct aead_request *req = crypt->data.aead_req;
339 	struct aead_ctx *req_ctx = aead_request_ctx(req);
340 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
341 	int authsize = crypto_aead_authsize(tfm);
342 	int decryptlen = req->cryptlen - authsize;
343 
344 	if (req_ctx->encrypt) {
345 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
346 			req->src, decryptlen, authsize, 1);
347 	}
348 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
349 }
350 
one_packet(dma_addr_t phys)351 static void one_packet(dma_addr_t phys)
352 {
353 	struct device *dev = &pdev->dev;
354 	struct crypt_ctl *crypt;
355 	struct ixp_ctx *ctx;
356 	int failed;
357 
358 	failed = phys & 0x1 ? -EBADMSG : 0;
359 	phys &= ~0x3;
360 	crypt = crypt_phys2virt(phys);
361 
362 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
363 	case CTL_FLAG_PERFORM_AEAD: {
364 		struct aead_request *req = crypt->data.aead_req;
365 		struct aead_ctx *req_ctx = aead_request_ctx(req);
366 
367 		free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
368 		if (req_ctx->hmac_virt) {
369 			finish_scattered_hmac(crypt);
370 		}
371 		req->base.complete(&req->base, failed);
372 		break;
373 	}
374 	case CTL_FLAG_PERFORM_ABLK: {
375 		struct ablkcipher_request *req = crypt->data.ablk_req;
376 		struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
377 
378 		if (req_ctx->dst) {
379 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
380 		}
381 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
382 		req->base.complete(&req->base, failed);
383 		break;
384 	}
385 	case CTL_FLAG_GEN_ICV:
386 		ctx = crypto_tfm_ctx(crypt->data.tfm);
387 		dma_pool_free(ctx_pool, crypt->regist_ptr,
388 				crypt->regist_buf->phys_addr);
389 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
390 		if (atomic_dec_and_test(&ctx->configuring))
391 			complete(&ctx->completion);
392 		break;
393 	case CTL_FLAG_GEN_REVAES:
394 		ctx = crypto_tfm_ctx(crypt->data.tfm);
395 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
396 		if (atomic_dec_and_test(&ctx->configuring))
397 			complete(&ctx->completion);
398 		break;
399 	default:
400 		BUG();
401 	}
402 	crypt->ctl_flags = CTL_FLAG_UNUSED;
403 }
404 
irqhandler(void * _unused)405 static void irqhandler(void *_unused)
406 {
407 	tasklet_schedule(&crypto_done_tasklet);
408 }
409 
crypto_done_action(unsigned long arg)410 static void crypto_done_action(unsigned long arg)
411 {
412 	int i;
413 
414 	for(i=0; i<4; i++) {
415 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
416 		if (!phys)
417 			return;
418 		one_packet(phys);
419 	}
420 	tasklet_schedule(&crypto_done_tasklet);
421 }
422 
init_ixp_crypto(struct device * dev)423 static int init_ixp_crypto(struct device *dev)
424 {
425 	int ret = -ENODEV;
426 	u32 msg[2] = { 0, 0 };
427 
428 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
429 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
430 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
431 		return ret;
432 	}
433 	npe_c = npe_request(NPE_ID);
434 	if (!npe_c)
435 		return ret;
436 
437 	if (!npe_running(npe_c)) {
438 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
439 		if (ret) {
440 			return ret;
441 		}
442 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
443 			goto npe_error;
444 	} else {
445 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
446 			goto npe_error;
447 
448 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449 			goto npe_error;
450 	}
451 
452 	switch ((msg[1]>>16) & 0xff) {
453 	case 3:
454 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
455 				npe_name(npe_c));
456 		support_aes = 0;
457 		break;
458 	case 4:
459 	case 5:
460 		support_aes = 1;
461 		break;
462 	default:
463 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
464 			npe_name(npe_c));
465 		return -ENODEV;
466 	}
467 	/* buffer_pool will also be used to sometimes store the hmac,
468 	 * so assure it is large enough
469 	 */
470 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
471 	buffer_pool = dma_pool_create("buffer", dev,
472 			sizeof(struct buffer_desc), 32, 0);
473 	ret = -ENOMEM;
474 	if (!buffer_pool) {
475 		goto err;
476 	}
477 	ctx_pool = dma_pool_create("context", dev,
478 			NPE_CTX_LEN, 16, 0);
479 	if (!ctx_pool) {
480 		goto err;
481 	}
482 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
483 				 "ixp_crypto:out", NULL);
484 	if (ret)
485 		goto err;
486 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
487 				 "ixp_crypto:in", NULL);
488 	if (ret) {
489 		qmgr_release_queue(SEND_QID);
490 		goto err;
491 	}
492 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
493 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
494 
495 	qmgr_enable_irq(RECV_QID);
496 	return 0;
497 
498 npe_error:
499 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
500 	ret = -EIO;
501 err:
502 	if (ctx_pool)
503 		dma_pool_destroy(ctx_pool);
504 	if (buffer_pool)
505 		dma_pool_destroy(buffer_pool);
506 	npe_release(npe_c);
507 	return ret;
508 }
509 
release_ixp_crypto(struct device * dev)510 static void release_ixp_crypto(struct device *dev)
511 {
512 	qmgr_disable_irq(RECV_QID);
513 	tasklet_kill(&crypto_done_tasklet);
514 
515 	qmgr_release_queue(SEND_QID);
516 	qmgr_release_queue(RECV_QID);
517 
518 	dma_pool_destroy(ctx_pool);
519 	dma_pool_destroy(buffer_pool);
520 
521 	npe_release(npe_c);
522 
523 	if (crypt_virt) {
524 		dma_free_coherent(dev,
525 			NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
526 			crypt_virt, crypt_phys);
527 	}
528 	return;
529 }
530 
reset_sa_dir(struct ix_sa_dir * dir)531 static void reset_sa_dir(struct ix_sa_dir *dir)
532 {
533 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
534 	dir->npe_ctx_idx = 0;
535 	dir->npe_mode = 0;
536 }
537 
init_sa_dir(struct ix_sa_dir * dir)538 static int init_sa_dir(struct ix_sa_dir *dir)
539 {
540 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
541 	if (!dir->npe_ctx) {
542 		return -ENOMEM;
543 	}
544 	reset_sa_dir(dir);
545 	return 0;
546 }
547 
free_sa_dir(struct ix_sa_dir * dir)548 static void free_sa_dir(struct ix_sa_dir *dir)
549 {
550 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
551 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
552 }
553 
init_tfm(struct crypto_tfm * tfm)554 static int init_tfm(struct crypto_tfm *tfm)
555 {
556 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
557 	int ret;
558 
559 	atomic_set(&ctx->configuring, 0);
560 	ret = init_sa_dir(&ctx->encrypt);
561 	if (ret)
562 		return ret;
563 	ret = init_sa_dir(&ctx->decrypt);
564 	if (ret) {
565 		free_sa_dir(&ctx->encrypt);
566 	}
567 	return ret;
568 }
569 
init_tfm_ablk(struct crypto_tfm * tfm)570 static int init_tfm_ablk(struct crypto_tfm *tfm)
571 {
572 	tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
573 	return init_tfm(tfm);
574 }
575 
init_tfm_aead(struct crypto_tfm * tfm)576 static int init_tfm_aead(struct crypto_tfm *tfm)
577 {
578 	tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
579 	return init_tfm(tfm);
580 }
581 
exit_tfm(struct crypto_tfm * tfm)582 static void exit_tfm(struct crypto_tfm *tfm)
583 {
584 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
585 	free_sa_dir(&ctx->encrypt);
586 	free_sa_dir(&ctx->decrypt);
587 }
588 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)589 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
590 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
591 {
592 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
593 	struct crypt_ctl *crypt;
594 	struct buffer_desc *buf;
595 	int i;
596 	u8 *pad;
597 	u32 pad_phys, buf_phys;
598 
599 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
600 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
601 	if (!pad)
602 		return -ENOMEM;
603 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
604 	if (!buf) {
605 		dma_pool_free(ctx_pool, pad, pad_phys);
606 		return -ENOMEM;
607 	}
608 	crypt = get_crypt_desc_emerg();
609 	if (!crypt) {
610 		dma_pool_free(ctx_pool, pad, pad_phys);
611 		dma_pool_free(buffer_pool, buf, buf_phys);
612 		return -EAGAIN;
613 	}
614 
615 	memcpy(pad, key, key_len);
616 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
617 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
618 		pad[i] ^= xpad;
619 	}
620 
621 	crypt->data.tfm = tfm;
622 	crypt->regist_ptr = pad;
623 	crypt->regist_buf = buf;
624 
625 	crypt->auth_offs = 0;
626 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
627 	crypt->crypto_ctx = ctx_addr;
628 	crypt->src_buf = buf_phys;
629 	crypt->icv_rev_aes = target;
630 	crypt->mode = NPE_OP_HASH_GEN_ICV;
631 	crypt->init_len = init_len;
632 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
633 
634 	buf->next = 0;
635 	buf->buf_len = HMAC_PAD_BLOCKLEN;
636 	buf->pkt_len = 0;
637 	buf->phys_addr = pad_phys;
638 
639 	atomic_inc(&ctx->configuring);
640 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
641 	BUG_ON(qmgr_stat_overflow(SEND_QID));
642 	return 0;
643 }
644 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)645 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
646 		const u8 *key, int key_len, unsigned digest_len)
647 {
648 	u32 itarget, otarget, npe_ctx_addr;
649 	unsigned char *cinfo;
650 	int init_len, ret = 0;
651 	u32 cfgword;
652 	struct ix_sa_dir *dir;
653 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
654 	const struct ix_hash_algo *algo;
655 
656 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
657 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
658 	algo = ix_hash(tfm);
659 
660 	/* write cfg word to cryptinfo */
661 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
662 #ifndef __ARMEB__
663 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
664 #endif
665 	*(u32*)cinfo = cpu_to_be32(cfgword);
666 	cinfo += sizeof(cfgword);
667 
668 	/* write ICV to cryptinfo */
669 	memcpy(cinfo, algo->icv, digest_len);
670 	cinfo += digest_len;
671 
672 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
673 				+ sizeof(algo->cfgword);
674 	otarget = itarget + digest_len;
675 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
676 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
677 
678 	dir->npe_ctx_idx += init_len;
679 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
680 
681 	if (!encrypt)
682 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
683 
684 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
685 			init_len, npe_ctx_addr, key, key_len);
686 	if (ret)
687 		return ret;
688 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
689 			init_len, npe_ctx_addr, key, key_len);
690 }
691 
gen_rev_aes_key(struct crypto_tfm * tfm)692 static int gen_rev_aes_key(struct crypto_tfm *tfm)
693 {
694 	struct crypt_ctl *crypt;
695 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
696 	struct ix_sa_dir *dir = &ctx->decrypt;
697 
698 	crypt = get_crypt_desc_emerg();
699 	if (!crypt) {
700 		return -EAGAIN;
701 	}
702 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
703 
704 	crypt->data.tfm = tfm;
705 	crypt->crypt_offs = 0;
706 	crypt->crypt_len = AES_BLOCK128;
707 	crypt->src_buf = 0;
708 	crypt->crypto_ctx = dir->npe_ctx_phys;
709 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
710 	crypt->mode = NPE_OP_ENC_GEN_KEY;
711 	crypt->init_len = dir->npe_ctx_idx;
712 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
713 
714 	atomic_inc(&ctx->configuring);
715 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
716 	BUG_ON(qmgr_stat_overflow(SEND_QID));
717 	return 0;
718 }
719 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)720 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
721 		const u8 *key, int key_len)
722 {
723 	u8 *cinfo;
724 	u32 cipher_cfg;
725 	u32 keylen_cfg = 0;
726 	struct ix_sa_dir *dir;
727 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
728 	u32 *flags = &tfm->crt_flags;
729 
730 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
731 	cinfo = dir->npe_ctx;
732 
733 	if (encrypt) {
734 		cipher_cfg = cipher_cfg_enc(tfm);
735 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
736 	} else {
737 		cipher_cfg = cipher_cfg_dec(tfm);
738 	}
739 	if (cipher_cfg & MOD_AES) {
740 		switch (key_len) {
741 		case 16: keylen_cfg = MOD_AES128; break;
742 		case 24: keylen_cfg = MOD_AES192; break;
743 		case 32: keylen_cfg = MOD_AES256; break;
744 		default:
745 			*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
746 			return -EINVAL;
747 		}
748 		cipher_cfg |= keylen_cfg;
749 	} else if (cipher_cfg & MOD_3DES) {
750 		const u32 *K = (const u32 *)key;
751 		if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
752 			     !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
753 		{
754 			*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
755 			return -EINVAL;
756 		}
757 	} else {
758 		u32 tmp[DES_EXPKEY_WORDS];
759 		if (des_ekey(tmp, key) == 0) {
760 			*flags |= CRYPTO_TFM_RES_WEAK_KEY;
761 		}
762 	}
763 	/* write cfg word to cryptinfo */
764 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
765 	cinfo += sizeof(cipher_cfg);
766 
767 	/* write cipher key to cryptinfo */
768 	memcpy(cinfo, key, key_len);
769 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
770 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
771 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
772 		key_len = DES3_EDE_KEY_SIZE;
773 	}
774 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
775 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
776 	if ((cipher_cfg & MOD_AES) && !encrypt) {
777 		return gen_rev_aes_key(tfm);
778 	}
779 	return 0;
780 }
781 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)782 static struct buffer_desc *chainup_buffers(struct device *dev,
783 		struct scatterlist *sg,	unsigned nbytes,
784 		struct buffer_desc *buf, gfp_t flags,
785 		enum dma_data_direction dir)
786 {
787 	for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
788 		unsigned len = min(nbytes, sg->length);
789 		struct buffer_desc *next_buf;
790 		u32 next_buf_phys;
791 		void *ptr;
792 
793 		nbytes -= len;
794 		ptr = page_address(sg_page(sg)) + sg->offset;
795 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
796 		if (!next_buf) {
797 			buf = NULL;
798 			break;
799 		}
800 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
801 		buf->next = next_buf;
802 		buf->phys_next = next_buf_phys;
803 		buf = next_buf;
804 
805 		buf->phys_addr = sg_dma_address(sg);
806 		buf->buf_len = len;
807 		buf->dir = dir;
808 	}
809 	buf->next = NULL;
810 	buf->phys_next = 0;
811 	return buf;
812 }
813 
ablk_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)814 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
815 			unsigned int key_len)
816 {
817 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
818 	u32 *flags = &tfm->base.crt_flags;
819 	int ret;
820 
821 	init_completion(&ctx->completion);
822 	atomic_inc(&ctx->configuring);
823 
824 	reset_sa_dir(&ctx->encrypt);
825 	reset_sa_dir(&ctx->decrypt);
826 
827 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
828 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
829 
830 	ret = setup_cipher(&tfm->base, 0, key, key_len);
831 	if (ret)
832 		goto out;
833 	ret = setup_cipher(&tfm->base, 1, key, key_len);
834 	if (ret)
835 		goto out;
836 
837 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
838 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
839 			ret = -EINVAL;
840 		} else {
841 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
842 		}
843 	}
844 out:
845 	if (!atomic_dec_and_test(&ctx->configuring))
846 		wait_for_completion(&ctx->completion);
847 	return ret;
848 }
849 
ablk_rfc3686_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)850 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
851 		unsigned int key_len)
852 {
853 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
854 
855 	/* the nonce is stored in bytes at end of key */
856 	if (key_len < CTR_RFC3686_NONCE_SIZE)
857 		return -EINVAL;
858 
859 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
860 			CTR_RFC3686_NONCE_SIZE);
861 
862 	key_len -= CTR_RFC3686_NONCE_SIZE;
863 	return ablk_setkey(tfm, key, key_len);
864 }
865 
ablk_perform(struct ablkcipher_request * req,int encrypt)866 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
867 {
868 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
869 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
870 	unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
871 	struct ix_sa_dir *dir;
872 	struct crypt_ctl *crypt;
873 	unsigned int nbytes = req->nbytes;
874 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
875 	struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
876 	struct buffer_desc src_hook;
877 	struct device *dev = &pdev->dev;
878 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
879 				GFP_KERNEL : GFP_ATOMIC;
880 
881 	if (qmgr_stat_full(SEND_QID))
882 		return -EAGAIN;
883 	if (atomic_read(&ctx->configuring))
884 		return -EAGAIN;
885 
886 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
887 
888 	crypt = get_crypt_desc();
889 	if (!crypt)
890 		return -ENOMEM;
891 
892 	crypt->data.ablk_req = req;
893 	crypt->crypto_ctx = dir->npe_ctx_phys;
894 	crypt->mode = dir->npe_mode;
895 	crypt->init_len = dir->npe_ctx_idx;
896 
897 	crypt->crypt_offs = 0;
898 	crypt->crypt_len = nbytes;
899 
900 	BUG_ON(ivsize && !req->info);
901 	memcpy(crypt->iv, req->info, ivsize);
902 	if (req->src != req->dst) {
903 		struct buffer_desc dst_hook;
904 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
905 		/* This was never tested by Intel
906 		 * for more than one dst buffer, I think. */
907 		req_ctx->dst = NULL;
908 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
909 					flags, DMA_FROM_DEVICE))
910 			goto free_buf_dest;
911 		src_direction = DMA_TO_DEVICE;
912 		req_ctx->dst = dst_hook.next;
913 		crypt->dst_buf = dst_hook.phys_next;
914 	} else {
915 		req_ctx->dst = NULL;
916 	}
917 	req_ctx->src = NULL;
918 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
919 				flags, src_direction))
920 		goto free_buf_src;
921 
922 	req_ctx->src = src_hook.next;
923 	crypt->src_buf = src_hook.phys_next;
924 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
925 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
926 	BUG_ON(qmgr_stat_overflow(SEND_QID));
927 	return -EINPROGRESS;
928 
929 free_buf_src:
930 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
931 free_buf_dest:
932 	if (req->src != req->dst) {
933 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
934 	}
935 	crypt->ctl_flags = CTL_FLAG_UNUSED;
936 	return -ENOMEM;
937 }
938 
ablk_encrypt(struct ablkcipher_request * req)939 static int ablk_encrypt(struct ablkcipher_request *req)
940 {
941 	return ablk_perform(req, 1);
942 }
943 
ablk_decrypt(struct ablkcipher_request * req)944 static int ablk_decrypt(struct ablkcipher_request *req)
945 {
946 	return ablk_perform(req, 0);
947 }
948 
ablk_rfc3686_crypt(struct ablkcipher_request * req)949 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
950 {
951 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
952 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
953 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
954 	u8 *info = req->info;
955 	int ret;
956 
957 	/* set up counter block */
958         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
959 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
960 
961 	/* initialize counter portion of counter block */
962 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
963 		cpu_to_be32(1);
964 
965 	req->info = iv;
966 	ret = ablk_perform(req, 1);
967 	req->info = info;
968 	return ret;
969 }
970 
hmac_inconsistent(struct scatterlist * sg,unsigned start,unsigned int nbytes)971 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
972 		unsigned int nbytes)
973 {
974 	int offset = 0;
975 
976 	if (!nbytes)
977 		return 0;
978 
979 	for (;;) {
980 		if (start < offset + sg->length)
981 			break;
982 
983 		offset += sg->length;
984 		sg = scatterwalk_sg_next(sg);
985 	}
986 	return (start + nbytes > offset + sg->length);
987 }
988 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)989 static int aead_perform(struct aead_request *req, int encrypt,
990 		int cryptoffset, int eff_cryptlen, u8 *iv)
991 {
992 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
993 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
994 	unsigned ivsize = crypto_aead_ivsize(tfm);
995 	unsigned authsize = crypto_aead_authsize(tfm);
996 	struct ix_sa_dir *dir;
997 	struct crypt_ctl *crypt;
998 	unsigned int cryptlen;
999 	struct buffer_desc *buf, src_hook;
1000 	struct aead_ctx *req_ctx = aead_request_ctx(req);
1001 	struct device *dev = &pdev->dev;
1002 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1003 				GFP_KERNEL : GFP_ATOMIC;
1004 
1005 	if (qmgr_stat_full(SEND_QID))
1006 		return -EAGAIN;
1007 	if (atomic_read(&ctx->configuring))
1008 		return -EAGAIN;
1009 
1010 	if (encrypt) {
1011 		dir = &ctx->encrypt;
1012 		cryptlen = req->cryptlen;
1013 	} else {
1014 		dir = &ctx->decrypt;
1015 		/* req->cryptlen includes the authsize when decrypting */
1016 		cryptlen = req->cryptlen -authsize;
1017 		eff_cryptlen -= authsize;
1018 	}
1019 	crypt = get_crypt_desc();
1020 	if (!crypt)
1021 		return -ENOMEM;
1022 
1023 	crypt->data.aead_req = req;
1024 	crypt->crypto_ctx = dir->npe_ctx_phys;
1025 	crypt->mode = dir->npe_mode;
1026 	crypt->init_len = dir->npe_ctx_idx;
1027 
1028 	crypt->crypt_offs = cryptoffset;
1029 	crypt->crypt_len = eff_cryptlen;
1030 
1031 	crypt->auth_offs = 0;
1032 	crypt->auth_len = req->assoclen + ivsize + cryptlen;
1033 	BUG_ON(ivsize && !req->iv);
1034 	memcpy(crypt->iv, req->iv, ivsize);
1035 
1036 	if (req->src != req->dst) {
1037 		BUG(); /* -ENOTSUP because of my laziness */
1038 	}
1039 
1040 	/* ASSOC data */
1041 	buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1042 		flags, DMA_TO_DEVICE);
1043 	req_ctx->buffer = src_hook.next;
1044 	crypt->src_buf = src_hook.phys_next;
1045 	if (!buf)
1046 		goto out;
1047 	/* IV */
1048 	sg_init_table(&req_ctx->ivlist, 1);
1049 	sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1050 	buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1051 			DMA_BIDIRECTIONAL);
1052 	if (!buf)
1053 		goto free_chain;
1054 	if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1055 		/* The 12 hmac bytes are scattered,
1056 		 * we need to copy them into a safe buffer */
1057 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1058 				&crypt->icv_rev_aes);
1059 		if (unlikely(!req_ctx->hmac_virt))
1060 			goto free_chain;
1061 		if (!encrypt) {
1062 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1063 				req->src, cryptlen, authsize, 0);
1064 		}
1065 		req_ctx->encrypt = encrypt;
1066 	} else {
1067 		req_ctx->hmac_virt = NULL;
1068 	}
1069 	/* Crypt */
1070 	buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1071 			DMA_BIDIRECTIONAL);
1072 	if (!buf)
1073 		goto free_hmac_virt;
1074 	if (!req_ctx->hmac_virt) {
1075 		crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1076 	}
1077 
1078 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1079 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1080 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1081 	return -EINPROGRESS;
1082 free_hmac_virt:
1083 	if (req_ctx->hmac_virt) {
1084 		dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1085 				crypt->icv_rev_aes);
1086 	}
1087 free_chain:
1088 	free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1089 out:
1090 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1091 	return -ENOMEM;
1092 }
1093 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1094 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1095 {
1096 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1097 	u32 *flags = &tfm->base.crt_flags;
1098 	unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1099 	int ret;
1100 
1101 	if (!ctx->enckey_len && !ctx->authkey_len)
1102 		return 0;
1103 	init_completion(&ctx->completion);
1104 	atomic_inc(&ctx->configuring);
1105 
1106 	reset_sa_dir(&ctx->encrypt);
1107 	reset_sa_dir(&ctx->decrypt);
1108 
1109 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1110 	if (ret)
1111 		goto out;
1112 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1113 	if (ret)
1114 		goto out;
1115 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1116 			ctx->authkey_len, digest_len);
1117 	if (ret)
1118 		goto out;
1119 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1120 			ctx->authkey_len, digest_len);
1121 	if (ret)
1122 		goto out;
1123 
1124 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1125 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1126 			ret = -EINVAL;
1127 			goto out;
1128 		} else {
1129 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1130 		}
1131 	}
1132 out:
1133 	if (!atomic_dec_and_test(&ctx->configuring))
1134 		wait_for_completion(&ctx->completion);
1135 	return ret;
1136 }
1137 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1138 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1139 {
1140 	int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1141 
1142 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1143 		return -EINVAL;
1144 	return aead_setup(tfm, authsize);
1145 }
1146 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1147 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1148 			unsigned int keylen)
1149 {
1150 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1151 	struct crypto_authenc_keys keys;
1152 
1153 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1154 		goto badkey;
1155 
1156 	if (keys.authkeylen > sizeof(ctx->authkey))
1157 		goto badkey;
1158 
1159 	if (keys.enckeylen > sizeof(ctx->enckey))
1160 		goto badkey;
1161 
1162 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1163 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1164 	ctx->authkey_len = keys.authkeylen;
1165 	ctx->enckey_len = keys.enckeylen;
1166 
1167 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1168 badkey:
1169 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1170 	return -EINVAL;
1171 }
1172 
aead_encrypt(struct aead_request * req)1173 static int aead_encrypt(struct aead_request *req)
1174 {
1175 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1176 	return aead_perform(req, 1, req->assoclen + ivsize,
1177 			req->cryptlen, req->iv);
1178 }
1179 
aead_decrypt(struct aead_request * req)1180 static int aead_decrypt(struct aead_request *req)
1181 {
1182 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1183 	return aead_perform(req, 0, req->assoclen + ivsize,
1184 			req->cryptlen, req->iv);
1185 }
1186 
aead_givencrypt(struct aead_givcrypt_request * req)1187 static int aead_givencrypt(struct aead_givcrypt_request *req)
1188 {
1189 	struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1190 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1191 	unsigned len, ivsize = crypto_aead_ivsize(tfm);
1192 	__be64 seq;
1193 
1194 	/* copied from eseqiv.c */
1195 	if (!ctx->salted) {
1196 		get_random_bytes(ctx->salt, ivsize);
1197 		ctx->salted = 1;
1198 	}
1199 	memcpy(req->areq.iv, ctx->salt, ivsize);
1200 	len = ivsize;
1201 	if (ivsize > sizeof(u64)) {
1202 		memset(req->giv, 0, ivsize - sizeof(u64));
1203 		len = sizeof(u64);
1204 	}
1205 	seq = cpu_to_be64(req->seq);
1206 	memcpy(req->giv + ivsize - len, &seq, len);
1207 	return aead_perform(&req->areq, 1, req->areq.assoclen,
1208 			req->areq.cryptlen +ivsize, req->giv);
1209 }
1210 
1211 static struct ixp_alg ixp4xx_algos[] = {
1212 {
1213 	.crypto	= {
1214 		.cra_name	= "cbc(des)",
1215 		.cra_blocksize	= DES_BLOCK_SIZE,
1216 		.cra_u		= { .ablkcipher = {
1217 			.min_keysize	= DES_KEY_SIZE,
1218 			.max_keysize	= DES_KEY_SIZE,
1219 			.ivsize		= DES_BLOCK_SIZE,
1220 			.geniv		= "eseqiv",
1221 			}
1222 		}
1223 	},
1224 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1225 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1226 
1227 }, {
1228 	.crypto	= {
1229 		.cra_name	= "ecb(des)",
1230 		.cra_blocksize	= DES_BLOCK_SIZE,
1231 		.cra_u		= { .ablkcipher = {
1232 			.min_keysize	= DES_KEY_SIZE,
1233 			.max_keysize	= DES_KEY_SIZE,
1234 			}
1235 		}
1236 	},
1237 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1238 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1239 }, {
1240 	.crypto	= {
1241 		.cra_name	= "cbc(des3_ede)",
1242 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1243 		.cra_u		= { .ablkcipher = {
1244 			.min_keysize	= DES3_EDE_KEY_SIZE,
1245 			.max_keysize	= DES3_EDE_KEY_SIZE,
1246 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1247 			.geniv		= "eseqiv",
1248 			}
1249 		}
1250 	},
1251 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1252 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1253 }, {
1254 	.crypto	= {
1255 		.cra_name	= "ecb(des3_ede)",
1256 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1257 		.cra_u		= { .ablkcipher = {
1258 			.min_keysize	= DES3_EDE_KEY_SIZE,
1259 			.max_keysize	= DES3_EDE_KEY_SIZE,
1260 			}
1261 		}
1262 	},
1263 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1264 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1265 }, {
1266 	.crypto	= {
1267 		.cra_name	= "cbc(aes)",
1268 		.cra_blocksize	= AES_BLOCK_SIZE,
1269 		.cra_u		= { .ablkcipher = {
1270 			.min_keysize	= AES_MIN_KEY_SIZE,
1271 			.max_keysize	= AES_MAX_KEY_SIZE,
1272 			.ivsize		= AES_BLOCK_SIZE,
1273 			.geniv		= "eseqiv",
1274 			}
1275 		}
1276 	},
1277 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1278 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1279 }, {
1280 	.crypto	= {
1281 		.cra_name	= "ecb(aes)",
1282 		.cra_blocksize	= AES_BLOCK_SIZE,
1283 		.cra_u		= { .ablkcipher = {
1284 			.min_keysize	= AES_MIN_KEY_SIZE,
1285 			.max_keysize	= AES_MAX_KEY_SIZE,
1286 			}
1287 		}
1288 	},
1289 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1290 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1291 }, {
1292 	.crypto	= {
1293 		.cra_name	= "ctr(aes)",
1294 		.cra_blocksize	= AES_BLOCK_SIZE,
1295 		.cra_u		= { .ablkcipher = {
1296 			.min_keysize	= AES_MIN_KEY_SIZE,
1297 			.max_keysize	= AES_MAX_KEY_SIZE,
1298 			.ivsize		= AES_BLOCK_SIZE,
1299 			.geniv		= "eseqiv",
1300 			}
1301 		}
1302 	},
1303 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1304 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1305 }, {
1306 	.crypto	= {
1307 		.cra_name	= "rfc3686(ctr(aes))",
1308 		.cra_blocksize	= AES_BLOCK_SIZE,
1309 		.cra_u		= { .ablkcipher = {
1310 			.min_keysize	= AES_MIN_KEY_SIZE,
1311 			.max_keysize	= AES_MAX_KEY_SIZE,
1312 			.ivsize		= AES_BLOCK_SIZE,
1313 			.geniv		= "eseqiv",
1314 			.setkey		= ablk_rfc3686_setkey,
1315 			.encrypt	= ablk_rfc3686_crypt,
1316 			.decrypt	= ablk_rfc3686_crypt }
1317 		}
1318 	},
1319 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1320 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1321 }, {
1322 	.crypto	= {
1323 		.cra_name	= "authenc(hmac(md5),cbc(des))",
1324 		.cra_blocksize	= DES_BLOCK_SIZE,
1325 		.cra_u		= { .aead = {
1326 			.ivsize		= DES_BLOCK_SIZE,
1327 			.maxauthsize	= MD5_DIGEST_SIZE,
1328 			}
1329 		}
1330 	},
1331 	.hash = &hash_alg_md5,
1332 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1333 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1334 }, {
1335 	.crypto	= {
1336 		.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1337 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1338 		.cra_u		= { .aead = {
1339 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1340 			.maxauthsize	= MD5_DIGEST_SIZE,
1341 			}
1342 		}
1343 	},
1344 	.hash = &hash_alg_md5,
1345 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1346 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1347 }, {
1348 	.crypto	= {
1349 		.cra_name	= "authenc(hmac(sha1),cbc(des))",
1350 		.cra_blocksize	= DES_BLOCK_SIZE,
1351 		.cra_u		= { .aead = {
1352 			.ivsize		= DES_BLOCK_SIZE,
1353 			.maxauthsize	= SHA1_DIGEST_SIZE,
1354 			}
1355 		}
1356 	},
1357 	.hash = &hash_alg_sha1,
1358 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1359 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1360 }, {
1361 	.crypto	= {
1362 		.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1363 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1364 		.cra_u		= { .aead = {
1365 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1366 			.maxauthsize	= SHA1_DIGEST_SIZE,
1367 			}
1368 		}
1369 	},
1370 	.hash = &hash_alg_sha1,
1371 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1372 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1373 }, {
1374 	.crypto	= {
1375 		.cra_name	= "authenc(hmac(md5),cbc(aes))",
1376 		.cra_blocksize	= AES_BLOCK_SIZE,
1377 		.cra_u		= { .aead = {
1378 			.ivsize		= AES_BLOCK_SIZE,
1379 			.maxauthsize	= MD5_DIGEST_SIZE,
1380 			}
1381 		}
1382 	},
1383 	.hash = &hash_alg_md5,
1384 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1385 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1386 }, {
1387 	.crypto	= {
1388 		.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1389 		.cra_blocksize	= AES_BLOCK_SIZE,
1390 		.cra_u		= { .aead = {
1391 			.ivsize		= AES_BLOCK_SIZE,
1392 			.maxauthsize	= SHA1_DIGEST_SIZE,
1393 			}
1394 		}
1395 	},
1396 	.hash = &hash_alg_sha1,
1397 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1398 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1399 } };
1400 
1401 #define IXP_POSTFIX "-ixp4xx"
1402 
1403 static const struct platform_device_info ixp_dev_info __initdata = {
1404 	.name		= DRIVER_NAME,
1405 	.id		= 0,
1406 	.dma_mask	= DMA_BIT_MASK(32),
1407 };
1408 
ixp_module_init(void)1409 static int __init ixp_module_init(void)
1410 {
1411 	int num = ARRAY_SIZE(ixp4xx_algos);
1412 	int i, err;
1413 
1414 	pdev = platform_device_register_full(&ixp_dev_info);
1415 	if (IS_ERR(pdev))
1416 		return PTR_ERR(pdev);
1417 
1418 	spin_lock_init(&desc_lock);
1419 	spin_lock_init(&emerg_lock);
1420 
1421 	err = init_ixp_crypto(&pdev->dev);
1422 	if (err) {
1423 		platform_device_unregister(pdev);
1424 		return err;
1425 	}
1426 	for (i=0; i< num; i++) {
1427 		struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1428 
1429 		if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1430 			"%s"IXP_POSTFIX, cra->cra_name) >=
1431 			CRYPTO_MAX_ALG_NAME)
1432 		{
1433 			continue;
1434 		}
1435 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1436 			continue;
1437 		}
1438 		if (!ixp4xx_algos[i].hash) {
1439 			/* block ciphers */
1440 			cra->cra_type = &crypto_ablkcipher_type;
1441 			cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1442 					 CRYPTO_ALG_KERN_DRIVER_ONLY |
1443 					 CRYPTO_ALG_ASYNC;
1444 			if (!cra->cra_ablkcipher.setkey)
1445 				cra->cra_ablkcipher.setkey = ablk_setkey;
1446 			if (!cra->cra_ablkcipher.encrypt)
1447 				cra->cra_ablkcipher.encrypt = ablk_encrypt;
1448 			if (!cra->cra_ablkcipher.decrypt)
1449 				cra->cra_ablkcipher.decrypt = ablk_decrypt;
1450 			cra->cra_init = init_tfm_ablk;
1451 		} else {
1452 			/* authenc */
1453 			cra->cra_type = &crypto_aead_type;
1454 			cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1455 					 CRYPTO_ALG_KERN_DRIVER_ONLY |
1456 					 CRYPTO_ALG_ASYNC;
1457 			cra->cra_aead.setkey = aead_setkey;
1458 			cra->cra_aead.setauthsize = aead_setauthsize;
1459 			cra->cra_aead.encrypt = aead_encrypt;
1460 			cra->cra_aead.decrypt = aead_decrypt;
1461 			cra->cra_aead.givencrypt = aead_givencrypt;
1462 			cra->cra_init = init_tfm_aead;
1463 		}
1464 		cra->cra_ctxsize = sizeof(struct ixp_ctx);
1465 		cra->cra_module = THIS_MODULE;
1466 		cra->cra_alignmask = 3;
1467 		cra->cra_priority = 300;
1468 		cra->cra_exit = exit_tfm;
1469 		if (crypto_register_alg(cra))
1470 			printk(KERN_ERR "Failed to register '%s'\n",
1471 				cra->cra_name);
1472 		else
1473 			ixp4xx_algos[i].registered = 1;
1474 	}
1475 	return 0;
1476 }
1477 
ixp_module_exit(void)1478 static void __exit ixp_module_exit(void)
1479 {
1480 	int num = ARRAY_SIZE(ixp4xx_algos);
1481 	int i;
1482 
1483 	for (i=0; i< num; i++) {
1484 		if (ixp4xx_algos[i].registered)
1485 			crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1486 	}
1487 	release_ixp_crypto(&pdev->dev);
1488 	platform_device_unregister(pdev);
1489 }
1490 
1491 module_init(ixp_module_init);
1492 module_exit(ixp_module_exit);
1493 
1494 MODULE_LICENSE("GPL");
1495 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1496 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1497 
1498