• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 #include <crypto/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/timer.h>
45 
46 #include "picoxcell_crypto_regs.h"
47 
48 /*
49  * The threshold for the number of entries in the CMD FIFO available before
50  * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
51  * number of interrupts raised to the CPU.
52  */
53 #define CMD0_IRQ_THRESHOLD   1
54 
55 /*
56  * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
57  * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
58  * When there are packets in flight but lower than the threshold, we enable
59  * the timer and at expiry, attempt to remove any processed packets from the
60  * queue and if there are still packets left, schedule the timer again.
61  */
62 #define PACKET_TIMEOUT	    1
63 
64 /* The priority to register each algorithm with. */
65 #define SPACC_CRYPTO_ALG_PRIORITY	10000
66 
67 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN	16
68 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
69 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ	64
70 #define SPACC_CRYPTO_IPSEC_MAX_CTXS	32
71 #define SPACC_CRYPTO_IPSEC_FIFO_SZ	32
72 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ	64
73 #define SPACC_CRYPTO_L2_HASH_PG_SZ	64
74 #define SPACC_CRYPTO_L2_MAX_CTXS	128
75 #define SPACC_CRYPTO_L2_FIFO_SZ		128
76 
77 #define MAX_DDT_LEN			16
78 
79 /* DDT format. This must match the hardware DDT format exactly. */
80 struct spacc_ddt {
81 	dma_addr_t	p;
82 	u32		len;
83 };
84 
85 /*
86  * Asynchronous crypto request structure.
87  *
88  * This structure defines a request that is either queued for processing or
89  * being processed.
90  */
91 struct spacc_req {
92 	struct list_head		list;
93 	struct spacc_engine		*engine;
94 	struct crypto_async_request	*req;
95 	int				result;
96 	bool				is_encrypt;
97 	unsigned			ctx_id;
98 	dma_addr_t			src_addr, dst_addr;
99 	struct spacc_ddt		*src_ddt, *dst_ddt;
100 	void				(*complete)(struct spacc_req *req);
101 
102 	/* AEAD specific bits. */
103 	u8				*giv;
104 	size_t				giv_len;
105 	dma_addr_t			giv_pa;
106 };
107 
108 struct spacc_engine {
109 	void __iomem			*regs;
110 	struct list_head		pending;
111 	int				next_ctx;
112 	spinlock_t			hw_lock;
113 	int				in_flight;
114 	struct list_head		completed;
115 	struct list_head		in_progress;
116 	struct tasklet_struct		complete;
117 	unsigned long			fifo_sz;
118 	void __iomem			*cipher_ctx_base;
119 	void __iomem			*hash_key_base;
120 	struct spacc_alg		*algs;
121 	unsigned			num_algs;
122 	struct list_head		registered_algs;
123 	size_t				cipher_pg_sz;
124 	size_t				hash_pg_sz;
125 	const char			*name;
126 	struct clk			*clk;
127 	struct device			*dev;
128 	unsigned			max_ctxs;
129 	struct timer_list		packet_timeout;
130 	unsigned			stat_irq_thresh;
131 	struct dma_pool			*req_pool;
132 };
133 
134 /* Algorithm type mask. */
135 #define SPACC_CRYPTO_ALG_MASK		0x7
136 
137 /* SPACC definition of a crypto algorithm. */
138 struct spacc_alg {
139 	unsigned long			ctrl_default;
140 	unsigned long			type;
141 	struct crypto_alg		alg;
142 	struct spacc_engine		*engine;
143 	struct list_head		entry;
144 	int				key_offs;
145 	int				iv_offs;
146 };
147 
148 /* Generic context structure for any algorithm type. */
149 struct spacc_generic_ctx {
150 	struct spacc_engine		*engine;
151 	int				flags;
152 	int				key_offs;
153 	int				iv_offs;
154 };
155 
156 /* Block cipher context. */
157 struct spacc_ablk_ctx {
158 	struct spacc_generic_ctx	generic;
159 	u8				key[AES_MAX_KEY_SIZE];
160 	u8				key_len;
161 	/*
162 	 * The fallback cipher. If the operation can't be done in hardware,
163 	 * fallback to a software version.
164 	 */
165 	struct crypto_ablkcipher	*sw_cipher;
166 };
167 
168 /* AEAD cipher context. */
169 struct spacc_aead_ctx {
170 	struct spacc_generic_ctx	generic;
171 	u8				cipher_key[AES_MAX_KEY_SIZE];
172 	u8				hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
173 	u8				cipher_key_len;
174 	u8				hash_key_len;
175 	struct crypto_aead		*sw_cipher;
176 	size_t				auth_size;
177 	u8				salt[AES_BLOCK_SIZE];
178 };
179 
180 static int spacc_ablk_submit(struct spacc_req *req);
181 
to_spacc_alg(struct crypto_alg * alg)182 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
183 {
184 	return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
185 }
186 
spacc_fifo_cmd_full(struct spacc_engine * engine)187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
188 {
189 	u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
190 
191 	return fifo_stat & SPA_FIFO_CMD_FULL;
192 }
193 
194 /*
195  * Given a cipher context, and a context number, get the base address of the
196  * context page.
197  *
198  * Returns the address of the context page where the key/context may
199  * be written.
200  */
spacc_ctx_page_addr(struct spacc_generic_ctx * ctx,unsigned indx,bool is_cipher_ctx)201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 						unsigned indx,
203 						bool is_cipher_ctx)
204 {
205 	return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 			(indx * ctx->engine->cipher_pg_sz) :
207 		ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
208 }
209 
210 /* The context pages can only be written with 32-bit accesses. */
memcpy_toio32(u32 __iomem * dst,const void * src,unsigned count)211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 				 unsigned count)
213 {
214 	const u32 *src32 = (const u32 *) src;
215 
216 	while (count--)
217 		writel(*src32++, dst++);
218 }
219 
spacc_cipher_write_ctx(struct spacc_generic_ctx * ctx,void __iomem * page_addr,const u8 * key,size_t key_len,const u8 * iv,size_t iv_len)220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 				   void __iomem *page_addr, const u8 *key,
222 				   size_t key_len, const u8 *iv, size_t iv_len)
223 {
224 	void __iomem *key_ptr = page_addr + ctx->key_offs;
225 	void __iomem *iv_ptr = page_addr + ctx->iv_offs;
226 
227 	memcpy_toio32(key_ptr, key, key_len / 4);
228 	memcpy_toio32(iv_ptr, iv, iv_len / 4);
229 }
230 
231 /*
232  * Load a context into the engines context memory.
233  *
234  * Returns the index of the context page where the context was loaded.
235  */
spacc_load_ctx(struct spacc_generic_ctx * ctx,const u8 * ciph_key,size_t ciph_len,const u8 * iv,size_t ivlen,const u8 * hash_key,size_t hash_len)236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 			       const u8 *ciph_key, size_t ciph_len,
238 			       const u8 *iv, size_t ivlen, const u8 *hash_key,
239 			       size_t hash_len)
240 {
241 	unsigned indx = ctx->engine->next_ctx++;
242 	void __iomem *ciph_page_addr, *hash_page_addr;
243 
244 	ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 	hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
246 
247 	ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 	spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 			       ivlen);
250 	writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 	       (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 	       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
253 
254 	if (hash_key) {
255 		memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 		writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 		       ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
258 	}
259 
260 	return indx;
261 }
262 
263 /* Count the number of scatterlist entries in a scatterlist. */
sg_count(struct scatterlist * sg_list,int nbytes)264 static int sg_count(struct scatterlist *sg_list, int nbytes)
265 {
266 	struct scatterlist *sg = sg_list;
267 	int sg_nents = 0;
268 
269 	while (nbytes > 0) {
270 		++sg_nents;
271 		nbytes -= sg->length;
272 		sg = sg_next(sg);
273 	}
274 
275 	return sg_nents;
276 }
277 
ddt_set(struct spacc_ddt * ddt,dma_addr_t phys,size_t len)278 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
279 {
280 	ddt->p = phys;
281 	ddt->len = len;
282 }
283 
284 /*
285  * Take a crypto request and scatterlists for the data and turn them into DDTs
286  * for passing to the crypto engines. This also DMA maps the data so that the
287  * crypto engines can DMA to/from them.
288  */
spacc_sg_to_ddt(struct spacc_engine * engine,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir,dma_addr_t * ddt_phys)289 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
290 					 struct scatterlist *payload,
291 					 unsigned nbytes,
292 					 enum dma_data_direction dir,
293 					 dma_addr_t *ddt_phys)
294 {
295 	unsigned nents, mapped_ents;
296 	struct scatterlist *cur;
297 	struct spacc_ddt *ddt;
298 	int i;
299 
300 	nents = sg_count(payload, nbytes);
301 	mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
302 
303 	if (mapped_ents + 1 > MAX_DDT_LEN)
304 		goto out;
305 
306 	ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
307 	if (!ddt)
308 		goto out;
309 
310 	for_each_sg(payload, cur, mapped_ents, i)
311 		ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
312 	ddt_set(&ddt[mapped_ents], 0, 0);
313 
314 	return ddt;
315 
316 out:
317 	dma_unmap_sg(engine->dev, payload, nents, dir);
318 	return NULL;
319 }
320 
spacc_aead_make_ddts(struct spacc_req * req,u8 * giv)321 static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
322 {
323 	struct aead_request *areq = container_of(req->req, struct aead_request,
324 						 base);
325 	struct spacc_engine *engine = req->engine;
326 	struct spacc_ddt *src_ddt, *dst_ddt;
327 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
328 	unsigned nents = sg_count(areq->src, areq->cryptlen);
329 	dma_addr_t iv_addr;
330 	struct scatterlist *cur;
331 	int i, dst_ents, src_ents, assoc_ents;
332 	u8 *iv = giv ? giv : areq->iv;
333 
334 	src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
335 	if (!src_ddt)
336 		return -ENOMEM;
337 
338 	dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
339 	if (!dst_ddt) {
340 		dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
341 		return -ENOMEM;
342 	}
343 
344 	req->src_ddt = src_ddt;
345 	req->dst_ddt = dst_ddt;
346 
347 	assoc_ents = dma_map_sg(engine->dev, areq->assoc,
348 		sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
349 	if (areq->src != areq->dst) {
350 		src_ents = dma_map_sg(engine->dev, areq->src, nents,
351 				      DMA_TO_DEVICE);
352 		dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
353 				      DMA_FROM_DEVICE);
354 	} else {
355 		src_ents = dma_map_sg(engine->dev, areq->src, nents,
356 				      DMA_BIDIRECTIONAL);
357 		dst_ents = 0;
358 	}
359 
360 	/*
361 	 * Map the IV/GIV. For the GIV it needs to be bidirectional as it is
362 	 * formed by the crypto block and sent as the ESP IV for IPSEC.
363 	 */
364 	iv_addr = dma_map_single(engine->dev, iv, ivsize,
365 				 giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
366 	req->giv_pa = iv_addr;
367 
368 	/*
369 	 * Map the associated data. For decryption we don't copy the
370 	 * associated data.
371 	 */
372 	for_each_sg(areq->assoc, cur, assoc_ents, i) {
373 		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
374 		if (req->is_encrypt)
375 			ddt_set(dst_ddt++, sg_dma_address(cur),
376 				sg_dma_len(cur));
377 	}
378 	ddt_set(src_ddt++, iv_addr, ivsize);
379 
380 	if (giv || req->is_encrypt)
381 		ddt_set(dst_ddt++, iv_addr, ivsize);
382 
383 	/*
384 	 * Now map in the payload for the source and destination and terminate
385 	 * with the NULL pointers.
386 	 */
387 	for_each_sg(areq->src, cur, src_ents, i) {
388 		ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
389 		if (areq->src == areq->dst)
390 			ddt_set(dst_ddt++, sg_dma_address(cur),
391 				sg_dma_len(cur));
392 	}
393 
394 	for_each_sg(areq->dst, cur, dst_ents, i)
395 		ddt_set(dst_ddt++, sg_dma_address(cur),
396 			sg_dma_len(cur));
397 
398 	ddt_set(src_ddt, 0, 0);
399 	ddt_set(dst_ddt, 0, 0);
400 
401 	return 0;
402 }
403 
spacc_aead_free_ddts(struct spacc_req * req)404 static void spacc_aead_free_ddts(struct spacc_req *req)
405 {
406 	struct aead_request *areq = container_of(req->req, struct aead_request,
407 						 base);
408 	struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
409 	struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
410 	struct spacc_engine *engine = aead_ctx->generic.engine;
411 	unsigned ivsize = alg->alg.cra_aead.ivsize;
412 	unsigned nents = sg_count(areq->src, areq->cryptlen);
413 
414 	if (areq->src != areq->dst) {
415 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
416 		dma_unmap_sg(engine->dev, areq->dst,
417 			     sg_count(areq->dst, areq->cryptlen),
418 			     DMA_FROM_DEVICE);
419 	} else
420 		dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
421 
422 	dma_unmap_sg(engine->dev, areq->assoc,
423 		     sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
424 
425 	dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
426 
427 	dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
428 	dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
429 }
430 
spacc_free_ddt(struct spacc_req * req,struct spacc_ddt * ddt,dma_addr_t ddt_addr,struct scatterlist * payload,unsigned nbytes,enum dma_data_direction dir)431 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
432 			   dma_addr_t ddt_addr, struct scatterlist *payload,
433 			   unsigned nbytes, enum dma_data_direction dir)
434 {
435 	unsigned nents = sg_count(payload, nbytes);
436 
437 	dma_unmap_sg(req->engine->dev, payload, nents, dir);
438 	dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
439 }
440 
441 /*
442  * Set key for a DES operation in an AEAD cipher. This also performs weak key
443  * checking if required.
444  */
spacc_aead_des_setkey(struct crypto_aead * aead,const u8 * key,unsigned int len)445 static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
446 				 unsigned int len)
447 {
448 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
449 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
450 	u32 tmp[DES_EXPKEY_WORDS];
451 
452 	if (unlikely(!des_ekey(tmp, key)) &&
453 	    (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
454 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
455 		return -EINVAL;
456 	}
457 
458 	memcpy(ctx->cipher_key, key, len);
459 	ctx->cipher_key_len = len;
460 
461 	return 0;
462 }
463 
464 /* Set the key for the AES block cipher component of the AEAD transform. */
spacc_aead_aes_setkey(struct crypto_aead * aead,const u8 * key,unsigned int len)465 static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
466 				 unsigned int len)
467 {
468 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
469 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
470 
471 	/*
472 	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
473 	 * request for any other size (192 bits) then we need to do a software
474 	 * fallback.
475 	 */
476 	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
477 		/*
478 		 * Set the fallback transform to use the same request flags as
479 		 * the hardware transform.
480 		 */
481 		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
482 		ctx->sw_cipher->base.crt_flags |=
483 			tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
484 		return crypto_aead_setkey(ctx->sw_cipher, key, len);
485 	}
486 
487 	memcpy(ctx->cipher_key, key, len);
488 	ctx->cipher_key_len = len;
489 
490 	return 0;
491 }
492 
spacc_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)493 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
494 			     unsigned int keylen)
495 {
496 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
497 	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
498 	struct crypto_authenc_keys keys;
499 	int err = -EINVAL;
500 
501 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
502 		goto badkey;
503 
504 	if (keys.enckeylen > AES_MAX_KEY_SIZE)
505 		goto badkey;
506 
507 	if (keys.authkeylen > sizeof(ctx->hash_ctx))
508 		goto badkey;
509 
510 	if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
511 	    SPA_CTRL_CIPH_ALG_AES)
512 		err = spacc_aead_aes_setkey(tfm, keys.enckey, keys.enckeylen);
513 	else
514 		err = spacc_aead_des_setkey(tfm, keys.enckey, keys.enckeylen);
515 
516 	if (err)
517 		goto badkey;
518 
519 	memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
520 	ctx->hash_key_len = keys.authkeylen;
521 
522 	return 0;
523 
524 badkey:
525 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
526 	return -EINVAL;
527 }
528 
spacc_aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)529 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
530 				  unsigned int authsize)
531 {
532 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
533 
534 	ctx->auth_size = authsize;
535 
536 	return 0;
537 }
538 
539 /*
540  * Check if an AEAD request requires a fallback operation. Some requests can't
541  * be completed in hardware because the hardware may not support certain key
542  * sizes. In these cases we need to complete the request in software.
543  */
spacc_aead_need_fallback(struct spacc_req * req)544 static int spacc_aead_need_fallback(struct spacc_req *req)
545 {
546 	struct aead_request *aead_req;
547 	struct crypto_tfm *tfm = req->req->tfm;
548 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
549 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
550 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
551 
552 	aead_req = container_of(req->req, struct aead_request, base);
553 	/*
554 	 * If we have a non-supported key-length, then we need to do a
555 	 * software fallback.
556 	 */
557 	if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
558 	    SPA_CTRL_CIPH_ALG_AES &&
559 	    ctx->cipher_key_len != AES_KEYSIZE_128 &&
560 	    ctx->cipher_key_len != AES_KEYSIZE_256)
561 		return 1;
562 
563 	return 0;
564 }
565 
spacc_aead_do_fallback(struct aead_request * req,unsigned alg_type,bool is_encrypt)566 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
567 				  bool is_encrypt)
568 {
569 	struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
570 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
571 	int err;
572 
573 	if (ctx->sw_cipher) {
574 		/*
575 		 * Change the request to use the software fallback transform,
576 		 * and once the ciphering has completed, put the old transform
577 		 * back into the request.
578 		 */
579 		aead_request_set_tfm(req, ctx->sw_cipher);
580 		err = is_encrypt ? crypto_aead_encrypt(req) :
581 		    crypto_aead_decrypt(req);
582 		aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
583 	} else
584 		err = -EINVAL;
585 
586 	return err;
587 }
588 
spacc_aead_complete(struct spacc_req * req)589 static void spacc_aead_complete(struct spacc_req *req)
590 {
591 	spacc_aead_free_ddts(req);
592 	req->req->complete(req->req, req->result);
593 }
594 
spacc_aead_submit(struct spacc_req * req)595 static int spacc_aead_submit(struct spacc_req *req)
596 {
597 	struct crypto_tfm *tfm = req->req->tfm;
598 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
599 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
600 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
601 	struct spacc_engine *engine = ctx->generic.engine;
602 	u32 ctrl, proc_len, assoc_len;
603 	struct aead_request *aead_req =
604 		container_of(req->req, struct aead_request, base);
605 
606 	req->result = -EINPROGRESS;
607 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
608 		ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
609 		ctx->hash_ctx, ctx->hash_key_len);
610 
611 	/* Set the source and destination DDT pointers. */
612 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
613 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
614 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
615 
616 	assoc_len = aead_req->assoclen;
617 	proc_len = aead_req->cryptlen + assoc_len;
618 
619 	/*
620 	 * If we aren't generating an IV, then we need to include the IV in the
621 	 * associated data so that it is included in the hash.
622 	 */
623 	if (!req->giv) {
624 		assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
625 		proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
626 	} else
627 		proc_len += req->giv_len;
628 
629 	/*
630 	 * If we are decrypting, we need to take the length of the ICV out of
631 	 * the processing length.
632 	 */
633 	if (!req->is_encrypt)
634 		proc_len -= ctx->auth_size;
635 
636 	writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
637 	writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
638 	writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
639 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
640 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
641 
642 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
643 		(1 << SPA_CTRL_ICV_APPEND);
644 	if (req->is_encrypt)
645 		ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
646 	else
647 		ctrl |= (1 << SPA_CTRL_KEY_EXP);
648 
649 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
650 
651 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
652 
653 	return -EINPROGRESS;
654 }
655 
656 static int spacc_req_submit(struct spacc_req *req);
657 
spacc_push(struct spacc_engine * engine)658 static void spacc_push(struct spacc_engine *engine)
659 {
660 	struct spacc_req *req;
661 
662 	while (!list_empty(&engine->pending) &&
663 	       engine->in_flight + 1 <= engine->fifo_sz) {
664 
665 		++engine->in_flight;
666 		req = list_first_entry(&engine->pending, struct spacc_req,
667 				       list);
668 		list_move_tail(&req->list, &engine->in_progress);
669 
670 		req->result = spacc_req_submit(req);
671 	}
672 }
673 
674 /*
675  * Setup an AEAD request for processing. This will configure the engine, load
676  * the context and then start the packet processing.
677  *
678  * @giv Pointer to destination address for a generated IV. If the
679  *	request does not need to generate an IV then this should be set to NULL.
680  */
spacc_aead_setup(struct aead_request * req,u8 * giv,unsigned alg_type,bool is_encrypt)681 static int spacc_aead_setup(struct aead_request *req, u8 *giv,
682 			    unsigned alg_type, bool is_encrypt)
683 {
684 	struct crypto_alg *alg = req->base.tfm->__crt_alg;
685 	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
686 	struct spacc_req *dev_req = aead_request_ctx(req);
687 	int err = -EINPROGRESS;
688 	unsigned long flags;
689 	unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
690 
691 	dev_req->giv		= giv;
692 	dev_req->giv_len	= ivsize;
693 	dev_req->req		= &req->base;
694 	dev_req->is_encrypt	= is_encrypt;
695 	dev_req->result		= -EBUSY;
696 	dev_req->engine		= engine;
697 	dev_req->complete	= spacc_aead_complete;
698 
699 	if (unlikely(spacc_aead_need_fallback(dev_req)))
700 		return spacc_aead_do_fallback(req, alg_type, is_encrypt);
701 
702 	spacc_aead_make_ddts(dev_req, dev_req->giv);
703 
704 	err = -EINPROGRESS;
705 	spin_lock_irqsave(&engine->hw_lock, flags);
706 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
707 	    engine->in_flight + 1 > engine->fifo_sz) {
708 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
709 			err = -EBUSY;
710 			spin_unlock_irqrestore(&engine->hw_lock, flags);
711 			goto out_free_ddts;
712 		}
713 		list_add_tail(&dev_req->list, &engine->pending);
714 	} else {
715 		list_add_tail(&dev_req->list, &engine->pending);
716 		spacc_push(engine);
717 	}
718 	spin_unlock_irqrestore(&engine->hw_lock, flags);
719 
720 	goto out;
721 
722 out_free_ddts:
723 	spacc_aead_free_ddts(dev_req);
724 out:
725 	return err;
726 }
727 
spacc_aead_encrypt(struct aead_request * req)728 static int spacc_aead_encrypt(struct aead_request *req)
729 {
730 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
731 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
732 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
733 
734 	return spacc_aead_setup(req, NULL, alg->type, 1);
735 }
736 
spacc_aead_givencrypt(struct aead_givcrypt_request * req)737 static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
738 {
739 	struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
740 	struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
741 	size_t ivsize = crypto_aead_ivsize(tfm);
742 	struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
743 	unsigned len;
744 	__be64 seq;
745 
746 	memcpy(req->areq.iv, ctx->salt, ivsize);
747 	len = ivsize;
748 	if (ivsize > sizeof(u64)) {
749 		memset(req->giv, 0, ivsize - sizeof(u64));
750 		len = sizeof(u64);
751 	}
752 	seq = cpu_to_be64(req->seq);
753 	memcpy(req->giv + ivsize - len, &seq, len);
754 
755 	return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
756 }
757 
spacc_aead_decrypt(struct aead_request * req)758 static int spacc_aead_decrypt(struct aead_request *req)
759 {
760 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
761 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
762 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
763 
764 	return spacc_aead_setup(req, NULL, alg->type, 0);
765 }
766 
767 /*
768  * Initialise a new AEAD context. This is responsible for allocating the
769  * fallback cipher and initialising the context.
770  */
spacc_aead_cra_init(struct crypto_tfm * tfm)771 static int spacc_aead_cra_init(struct crypto_tfm *tfm)
772 {
773 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
774 	struct crypto_alg *alg = tfm->__crt_alg;
775 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
776 	struct spacc_engine *engine = spacc_alg->engine;
777 
778 	ctx->generic.flags = spacc_alg->type;
779 	ctx->generic.engine = engine;
780 	ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
781 					   CRYPTO_ALG_ASYNC |
782 					   CRYPTO_ALG_NEED_FALLBACK);
783 	if (IS_ERR(ctx->sw_cipher)) {
784 		dev_warn(engine->dev, "failed to allocate fallback for %s\n",
785 			 alg->cra_name);
786 		ctx->sw_cipher = NULL;
787 	}
788 	ctx->generic.key_offs = spacc_alg->key_offs;
789 	ctx->generic.iv_offs = spacc_alg->iv_offs;
790 
791 	get_random_bytes(ctx->salt, sizeof(ctx->salt));
792 
793 	tfm->crt_aead.reqsize = sizeof(struct spacc_req);
794 
795 	return 0;
796 }
797 
798 /*
799  * Destructor for an AEAD context. This is called when the transform is freed
800  * and must free the fallback cipher.
801  */
spacc_aead_cra_exit(struct crypto_tfm * tfm)802 static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
803 {
804 	struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
805 
806 	if (ctx->sw_cipher)
807 		crypto_free_aead(ctx->sw_cipher);
808 	ctx->sw_cipher = NULL;
809 }
810 
811 /*
812  * Set the DES key for a block cipher transform. This also performs weak key
813  * checking if the transform has requested it.
814  */
spacc_des_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)815 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
816 			    unsigned int len)
817 {
818 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
819 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
820 	u32 tmp[DES_EXPKEY_WORDS];
821 
822 	if (len > DES3_EDE_KEY_SIZE) {
823 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
824 		return -EINVAL;
825 	}
826 
827 	if (unlikely(!des_ekey(tmp, key)) &&
828 	    (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
829 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
830 		return -EINVAL;
831 	}
832 
833 	memcpy(ctx->key, key, len);
834 	ctx->key_len = len;
835 
836 	return 0;
837 }
838 
839 /*
840  * Set the key for an AES block cipher. Some key lengths are not supported in
841  * hardware so this must also check whether a fallback is needed.
842  */
spacc_aes_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)843 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
844 			    unsigned int len)
845 {
846 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
847 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
848 	int err = 0;
849 
850 	if (len > AES_MAX_KEY_SIZE) {
851 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
852 		return -EINVAL;
853 	}
854 
855 	/*
856 	 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
857 	 * request for any other size (192 bits) then we need to do a software
858 	 * fallback.
859 	 */
860 	if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
861 	    ctx->sw_cipher) {
862 		/*
863 		 * Set the fallback transform to use the same request flags as
864 		 * the hardware transform.
865 		 */
866 		ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
867 		ctx->sw_cipher->base.crt_flags |=
868 			cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
869 
870 		err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
871 		if (err)
872 			goto sw_setkey_failed;
873 	} else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
874 		   !ctx->sw_cipher)
875 		err = -EINVAL;
876 
877 	memcpy(ctx->key, key, len);
878 	ctx->key_len = len;
879 
880 sw_setkey_failed:
881 	if (err && ctx->sw_cipher) {
882 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
883 		tfm->crt_flags |=
884 			ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
885 	}
886 
887 	return err;
888 }
889 
spacc_kasumi_f8_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int len)890 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
891 				  const u8 *key, unsigned int len)
892 {
893 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
894 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
895 	int err = 0;
896 
897 	if (len > AES_MAX_KEY_SIZE) {
898 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
899 		err = -EINVAL;
900 		goto out;
901 	}
902 
903 	memcpy(ctx->key, key, len);
904 	ctx->key_len = len;
905 
906 out:
907 	return err;
908 }
909 
spacc_ablk_need_fallback(struct spacc_req * req)910 static int spacc_ablk_need_fallback(struct spacc_req *req)
911 {
912 	struct spacc_ablk_ctx *ctx;
913 	struct crypto_tfm *tfm = req->req->tfm;
914 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
915 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
916 
917 	ctx = crypto_tfm_ctx(tfm);
918 
919 	return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
920 			SPA_CTRL_CIPH_ALG_AES &&
921 			ctx->key_len != AES_KEYSIZE_128 &&
922 			ctx->key_len != AES_KEYSIZE_256;
923 }
924 
spacc_ablk_complete(struct spacc_req * req)925 static void spacc_ablk_complete(struct spacc_req *req)
926 {
927 	struct ablkcipher_request *ablk_req =
928 		container_of(req->req, struct ablkcipher_request, base);
929 
930 	if (ablk_req->src != ablk_req->dst) {
931 		spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
932 			       ablk_req->nbytes, DMA_TO_DEVICE);
933 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
934 			       ablk_req->nbytes, DMA_FROM_DEVICE);
935 	} else
936 		spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
937 			       ablk_req->nbytes, DMA_BIDIRECTIONAL);
938 
939 	req->req->complete(req->req, req->result);
940 }
941 
spacc_ablk_submit(struct spacc_req * req)942 static int spacc_ablk_submit(struct spacc_req *req)
943 {
944 	struct crypto_tfm *tfm = req->req->tfm;
945 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
946 	struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
947 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
948 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
949 	struct spacc_engine *engine = ctx->generic.engine;
950 	u32 ctrl;
951 
952 	req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
953 		ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
954 		NULL, 0);
955 
956 	writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
957 	writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
958 	writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
959 
960 	writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
961 	writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
962 	writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
963 	writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
964 
965 	ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
966 		(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
967 		 (1 << SPA_CTRL_KEY_EXP));
968 
969 	mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
970 
971 	writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
972 
973 	return -EINPROGRESS;
974 }
975 
spacc_ablk_do_fallback(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)976 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
977 				  unsigned alg_type, bool is_encrypt)
978 {
979 	struct crypto_tfm *old_tfm =
980 	    crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
981 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
982 	int err;
983 
984 	if (!ctx->sw_cipher)
985 		return -EINVAL;
986 
987 	/*
988 	 * Change the request to use the software fallback transform, and once
989 	 * the ciphering has completed, put the old transform back into the
990 	 * request.
991 	 */
992 	ablkcipher_request_set_tfm(req, ctx->sw_cipher);
993 	err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
994 		crypto_ablkcipher_decrypt(req);
995 	ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
996 
997 	return err;
998 }
999 
spacc_ablk_setup(struct ablkcipher_request * req,unsigned alg_type,bool is_encrypt)1000 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
1001 			    bool is_encrypt)
1002 {
1003 	struct crypto_alg *alg = req->base.tfm->__crt_alg;
1004 	struct spacc_engine *engine = to_spacc_alg(alg)->engine;
1005 	struct spacc_req *dev_req = ablkcipher_request_ctx(req);
1006 	unsigned long flags;
1007 	int err = -ENOMEM;
1008 
1009 	dev_req->req		= &req->base;
1010 	dev_req->is_encrypt	= is_encrypt;
1011 	dev_req->engine		= engine;
1012 	dev_req->complete	= spacc_ablk_complete;
1013 	dev_req->result		= -EINPROGRESS;
1014 
1015 	if (unlikely(spacc_ablk_need_fallback(dev_req)))
1016 		return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
1017 
1018 	/*
1019 	 * Create the DDT's for the engine. If we share the same source and
1020 	 * destination then we can optimize by reusing the DDT's.
1021 	 */
1022 	if (req->src != req->dst) {
1023 		dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
1024 			req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
1025 		if (!dev_req->src_ddt)
1026 			goto out;
1027 
1028 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1029 			req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
1030 		if (!dev_req->dst_ddt)
1031 			goto out_free_src;
1032 	} else {
1033 		dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
1034 			req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
1035 		if (!dev_req->dst_ddt)
1036 			goto out;
1037 
1038 		dev_req->src_ddt = NULL;
1039 		dev_req->src_addr = dev_req->dst_addr;
1040 	}
1041 
1042 	err = -EINPROGRESS;
1043 	spin_lock_irqsave(&engine->hw_lock, flags);
1044 	/*
1045 	 * Check if the engine will accept the operation now. If it won't then
1046 	 * we either stick it on the end of a pending list if we can backlog,
1047 	 * or bailout with an error if not.
1048 	 */
1049 	if (unlikely(spacc_fifo_cmd_full(engine)) ||
1050 	    engine->in_flight + 1 > engine->fifo_sz) {
1051 		if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1052 			err = -EBUSY;
1053 			spin_unlock_irqrestore(&engine->hw_lock, flags);
1054 			goto out_free_ddts;
1055 		}
1056 		list_add_tail(&dev_req->list, &engine->pending);
1057 	} else {
1058 		list_add_tail(&dev_req->list, &engine->pending);
1059 		spacc_push(engine);
1060 	}
1061 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1062 
1063 	goto out;
1064 
1065 out_free_ddts:
1066 	spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
1067 		       req->nbytes, req->src == req->dst ?
1068 		       DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1069 out_free_src:
1070 	if (req->src != req->dst)
1071 		spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1072 			       req->src, req->nbytes, DMA_TO_DEVICE);
1073 out:
1074 	return err;
1075 }
1076 
spacc_ablk_cra_init(struct crypto_tfm * tfm)1077 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1078 {
1079 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1080 	struct crypto_alg *alg = tfm->__crt_alg;
1081 	struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1082 	struct spacc_engine *engine = spacc_alg->engine;
1083 
1084 	ctx->generic.flags = spacc_alg->type;
1085 	ctx->generic.engine = engine;
1086 	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1087 		ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1088 				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1089 		if (IS_ERR(ctx->sw_cipher)) {
1090 			dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1091 				 alg->cra_name);
1092 			ctx->sw_cipher = NULL;
1093 		}
1094 	}
1095 	ctx->generic.key_offs = spacc_alg->key_offs;
1096 	ctx->generic.iv_offs = spacc_alg->iv_offs;
1097 
1098 	tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1099 
1100 	return 0;
1101 }
1102 
spacc_ablk_cra_exit(struct crypto_tfm * tfm)1103 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1104 {
1105 	struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1106 
1107 	if (ctx->sw_cipher)
1108 		crypto_free_ablkcipher(ctx->sw_cipher);
1109 	ctx->sw_cipher = NULL;
1110 }
1111 
spacc_ablk_encrypt(struct ablkcipher_request * req)1112 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1113 {
1114 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1115 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1116 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1117 
1118 	return spacc_ablk_setup(req, alg->type, 1);
1119 }
1120 
spacc_ablk_decrypt(struct ablkcipher_request * req)1121 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1122 {
1123 	struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1124 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1125 	struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1126 
1127 	return spacc_ablk_setup(req, alg->type, 0);
1128 }
1129 
spacc_fifo_stat_empty(struct spacc_engine * engine)1130 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1131 {
1132 	return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1133 		SPA_FIFO_STAT_EMPTY;
1134 }
1135 
spacc_process_done(struct spacc_engine * engine)1136 static void spacc_process_done(struct spacc_engine *engine)
1137 {
1138 	struct spacc_req *req;
1139 	unsigned long flags;
1140 
1141 	spin_lock_irqsave(&engine->hw_lock, flags);
1142 
1143 	while (!spacc_fifo_stat_empty(engine)) {
1144 		req = list_first_entry(&engine->in_progress, struct spacc_req,
1145 				       list);
1146 		list_move_tail(&req->list, &engine->completed);
1147 		--engine->in_flight;
1148 
1149 		/* POP the status register. */
1150 		writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1151 		req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1152 		     SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1153 
1154 		/*
1155 		 * Convert the SPAcc error status into the standard POSIX error
1156 		 * codes.
1157 		 */
1158 		if (unlikely(req->result)) {
1159 			switch (req->result) {
1160 			case SPA_STATUS_ICV_FAIL:
1161 				req->result = -EBADMSG;
1162 				break;
1163 
1164 			case SPA_STATUS_MEMORY_ERROR:
1165 				dev_warn(engine->dev,
1166 					 "memory error triggered\n");
1167 				req->result = -EFAULT;
1168 				break;
1169 
1170 			case SPA_STATUS_BLOCK_ERROR:
1171 				dev_warn(engine->dev,
1172 					 "block error triggered\n");
1173 				req->result = -EIO;
1174 				break;
1175 			}
1176 		}
1177 	}
1178 
1179 	tasklet_schedule(&engine->complete);
1180 
1181 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1182 }
1183 
spacc_spacc_irq(int irq,void * dev)1184 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1185 {
1186 	struct spacc_engine *engine = (struct spacc_engine *)dev;
1187 	u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1188 
1189 	writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1190 	spacc_process_done(engine);
1191 
1192 	return IRQ_HANDLED;
1193 }
1194 
spacc_packet_timeout(unsigned long data)1195 static void spacc_packet_timeout(unsigned long data)
1196 {
1197 	struct spacc_engine *engine = (struct spacc_engine *)data;
1198 
1199 	spacc_process_done(engine);
1200 }
1201 
spacc_req_submit(struct spacc_req * req)1202 static int spacc_req_submit(struct spacc_req *req)
1203 {
1204 	struct crypto_alg *alg = req->req->tfm->__crt_alg;
1205 
1206 	if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1207 		return spacc_aead_submit(req);
1208 	else
1209 		return spacc_ablk_submit(req);
1210 }
1211 
spacc_spacc_complete(unsigned long data)1212 static void spacc_spacc_complete(unsigned long data)
1213 {
1214 	struct spacc_engine *engine = (struct spacc_engine *)data;
1215 	struct spacc_req *req, *tmp;
1216 	unsigned long flags;
1217 	LIST_HEAD(completed);
1218 
1219 	spin_lock_irqsave(&engine->hw_lock, flags);
1220 
1221 	list_splice_init(&engine->completed, &completed);
1222 	spacc_push(engine);
1223 	if (engine->in_flight)
1224 		mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1225 
1226 	spin_unlock_irqrestore(&engine->hw_lock, flags);
1227 
1228 	list_for_each_entry_safe(req, tmp, &completed, list) {
1229 		list_del(&req->list);
1230 		req->complete(req);
1231 	}
1232 }
1233 
1234 #ifdef CONFIG_PM
spacc_suspend(struct device * dev)1235 static int spacc_suspend(struct device *dev)
1236 {
1237 	struct platform_device *pdev = to_platform_device(dev);
1238 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1239 
1240 	/*
1241 	 * We only support standby mode. All we have to do is gate the clock to
1242 	 * the spacc. The hardware will preserve state until we turn it back
1243 	 * on again.
1244 	 */
1245 	clk_disable(engine->clk);
1246 
1247 	return 0;
1248 }
1249 
spacc_resume(struct device * dev)1250 static int spacc_resume(struct device *dev)
1251 {
1252 	struct platform_device *pdev = to_platform_device(dev);
1253 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1254 
1255 	return clk_enable(engine->clk);
1256 }
1257 
1258 static const struct dev_pm_ops spacc_pm_ops = {
1259 	.suspend	= spacc_suspend,
1260 	.resume		= spacc_resume,
1261 };
1262 #endif /* CONFIG_PM */
1263 
spacc_dev_to_engine(struct device * dev)1264 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1265 {
1266 	return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1267 }
1268 
spacc_stat_irq_thresh_show(struct device * dev,struct device_attribute * attr,char * buf)1269 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1270 					  struct device_attribute *attr,
1271 					  char *buf)
1272 {
1273 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1274 
1275 	return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1276 }
1277 
spacc_stat_irq_thresh_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1278 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1279 					   struct device_attribute *attr,
1280 					   const char *buf, size_t len)
1281 {
1282 	struct spacc_engine *engine = spacc_dev_to_engine(dev);
1283 	unsigned long thresh;
1284 
1285 	if (kstrtoul(buf, 0, &thresh))
1286 		return -EINVAL;
1287 
1288 	thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1289 
1290 	engine->stat_irq_thresh = thresh;
1291 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1292 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1293 
1294 	return len;
1295 }
1296 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1297 		   spacc_stat_irq_thresh_store);
1298 
1299 static struct spacc_alg ipsec_engine_algs[] = {
1300 	{
1301 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1302 		.key_offs = 0,
1303 		.iv_offs = AES_MAX_KEY_SIZE,
1304 		.alg = {
1305 			.cra_name = "cbc(aes)",
1306 			.cra_driver_name = "cbc-aes-picoxcell",
1307 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1308 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1309 				     CRYPTO_ALG_KERN_DRIVER_ONLY |
1310 				     CRYPTO_ALG_ASYNC |
1311 				     CRYPTO_ALG_NEED_FALLBACK,
1312 			.cra_blocksize = AES_BLOCK_SIZE,
1313 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1314 			.cra_type = &crypto_ablkcipher_type,
1315 			.cra_module = THIS_MODULE,
1316 			.cra_ablkcipher = {
1317 				.setkey = spacc_aes_setkey,
1318 				.encrypt = spacc_ablk_encrypt,
1319 				.decrypt = spacc_ablk_decrypt,
1320 				.min_keysize = AES_MIN_KEY_SIZE,
1321 				.max_keysize = AES_MAX_KEY_SIZE,
1322 				.ivsize = AES_BLOCK_SIZE,
1323 			},
1324 			.cra_init = spacc_ablk_cra_init,
1325 			.cra_exit = spacc_ablk_cra_exit,
1326 		},
1327 	},
1328 	{
1329 		.key_offs = 0,
1330 		.iv_offs = AES_MAX_KEY_SIZE,
1331 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1332 		.alg = {
1333 			.cra_name = "ecb(aes)",
1334 			.cra_driver_name = "ecb-aes-picoxcell",
1335 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1336 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1337 				CRYPTO_ALG_KERN_DRIVER_ONLY |
1338 				CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1339 			.cra_blocksize = AES_BLOCK_SIZE,
1340 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1341 			.cra_type = &crypto_ablkcipher_type,
1342 			.cra_module = THIS_MODULE,
1343 			.cra_ablkcipher = {
1344 				.setkey = spacc_aes_setkey,
1345 				.encrypt = spacc_ablk_encrypt,
1346 				.decrypt = spacc_ablk_decrypt,
1347 				.min_keysize = AES_MIN_KEY_SIZE,
1348 				.max_keysize = AES_MAX_KEY_SIZE,
1349 			},
1350 			.cra_init = spacc_ablk_cra_init,
1351 			.cra_exit = spacc_ablk_cra_exit,
1352 		},
1353 	},
1354 	{
1355 		.key_offs = DES_BLOCK_SIZE,
1356 		.iv_offs = 0,
1357 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1358 		.alg = {
1359 			.cra_name = "cbc(des)",
1360 			.cra_driver_name = "cbc-des-picoxcell",
1361 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1362 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1363 					CRYPTO_ALG_ASYNC |
1364 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1365 			.cra_blocksize = DES_BLOCK_SIZE,
1366 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1367 			.cra_type = &crypto_ablkcipher_type,
1368 			.cra_module = THIS_MODULE,
1369 			.cra_ablkcipher = {
1370 				.setkey = spacc_des_setkey,
1371 				.encrypt = spacc_ablk_encrypt,
1372 				.decrypt = spacc_ablk_decrypt,
1373 				.min_keysize = DES_KEY_SIZE,
1374 				.max_keysize = DES_KEY_SIZE,
1375 				.ivsize = DES_BLOCK_SIZE,
1376 			},
1377 			.cra_init = spacc_ablk_cra_init,
1378 			.cra_exit = spacc_ablk_cra_exit,
1379 		},
1380 	},
1381 	{
1382 		.key_offs = DES_BLOCK_SIZE,
1383 		.iv_offs = 0,
1384 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1385 		.alg = {
1386 			.cra_name = "ecb(des)",
1387 			.cra_driver_name = "ecb-des-picoxcell",
1388 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1389 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1390 					CRYPTO_ALG_ASYNC |
1391 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1392 			.cra_blocksize = DES_BLOCK_SIZE,
1393 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1394 			.cra_type = &crypto_ablkcipher_type,
1395 			.cra_module = THIS_MODULE,
1396 			.cra_ablkcipher = {
1397 				.setkey = spacc_des_setkey,
1398 				.encrypt = spacc_ablk_encrypt,
1399 				.decrypt = spacc_ablk_decrypt,
1400 				.min_keysize = DES_KEY_SIZE,
1401 				.max_keysize = DES_KEY_SIZE,
1402 			},
1403 			.cra_init = spacc_ablk_cra_init,
1404 			.cra_exit = spacc_ablk_cra_exit,
1405 		},
1406 	},
1407 	{
1408 		.key_offs = DES_BLOCK_SIZE,
1409 		.iv_offs = 0,
1410 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1411 		.alg = {
1412 			.cra_name = "cbc(des3_ede)",
1413 			.cra_driver_name = "cbc-des3-ede-picoxcell",
1414 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1415 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416 					CRYPTO_ALG_ASYNC |
1417 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1418 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1419 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1420 			.cra_type = &crypto_ablkcipher_type,
1421 			.cra_module = THIS_MODULE,
1422 			.cra_ablkcipher = {
1423 				.setkey = spacc_des_setkey,
1424 				.encrypt = spacc_ablk_encrypt,
1425 				.decrypt = spacc_ablk_decrypt,
1426 				.min_keysize = DES3_EDE_KEY_SIZE,
1427 				.max_keysize = DES3_EDE_KEY_SIZE,
1428 				.ivsize = DES3_EDE_BLOCK_SIZE,
1429 			},
1430 			.cra_init = spacc_ablk_cra_init,
1431 			.cra_exit = spacc_ablk_cra_exit,
1432 		},
1433 	},
1434 	{
1435 		.key_offs = DES_BLOCK_SIZE,
1436 		.iv_offs = 0,
1437 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1438 		.alg = {
1439 			.cra_name = "ecb(des3_ede)",
1440 			.cra_driver_name = "ecb-des3-ede-picoxcell",
1441 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1442 			.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1443 					CRYPTO_ALG_ASYNC |
1444 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1445 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1446 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1447 			.cra_type = &crypto_ablkcipher_type,
1448 			.cra_module = THIS_MODULE,
1449 			.cra_ablkcipher = {
1450 				.setkey = spacc_des_setkey,
1451 				.encrypt = spacc_ablk_encrypt,
1452 				.decrypt = spacc_ablk_decrypt,
1453 				.min_keysize = DES3_EDE_KEY_SIZE,
1454 				.max_keysize = DES3_EDE_KEY_SIZE,
1455 			},
1456 			.cra_init = spacc_ablk_cra_init,
1457 			.cra_exit = spacc_ablk_cra_exit,
1458 		},
1459 	},
1460 	{
1461 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1462 				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1463 		.key_offs = 0,
1464 		.iv_offs = AES_MAX_KEY_SIZE,
1465 		.alg = {
1466 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
1467 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
1468 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1469 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1470 					CRYPTO_ALG_ASYNC |
1471 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1472 			.cra_blocksize = AES_BLOCK_SIZE,
1473 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1474 			.cra_type = &crypto_aead_type,
1475 			.cra_module = THIS_MODULE,
1476 			.cra_aead = {
1477 				.setkey = spacc_aead_setkey,
1478 				.setauthsize = spacc_aead_setauthsize,
1479 				.encrypt = spacc_aead_encrypt,
1480 				.decrypt = spacc_aead_decrypt,
1481 				.givencrypt = spacc_aead_givencrypt,
1482 				.ivsize = AES_BLOCK_SIZE,
1483 				.maxauthsize = SHA1_DIGEST_SIZE,
1484 			},
1485 			.cra_init = spacc_aead_cra_init,
1486 			.cra_exit = spacc_aead_cra_exit,
1487 		},
1488 	},
1489 	{
1490 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1491 				SPA_CTRL_HASH_ALG_SHA256 |
1492 				SPA_CTRL_HASH_MODE_HMAC,
1493 		.key_offs = 0,
1494 		.iv_offs = AES_MAX_KEY_SIZE,
1495 		.alg = {
1496 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
1497 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
1498 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1499 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1500 					CRYPTO_ALG_ASYNC |
1501 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1502 			.cra_blocksize = AES_BLOCK_SIZE,
1503 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1504 			.cra_type = &crypto_aead_type,
1505 			.cra_module = THIS_MODULE,
1506 			.cra_aead = {
1507 				.setkey = spacc_aead_setkey,
1508 				.setauthsize = spacc_aead_setauthsize,
1509 				.encrypt = spacc_aead_encrypt,
1510 				.decrypt = spacc_aead_decrypt,
1511 				.givencrypt = spacc_aead_givencrypt,
1512 				.ivsize = AES_BLOCK_SIZE,
1513 				.maxauthsize = SHA256_DIGEST_SIZE,
1514 			},
1515 			.cra_init = spacc_aead_cra_init,
1516 			.cra_exit = spacc_aead_cra_exit,
1517 		},
1518 	},
1519 	{
1520 		.key_offs = 0,
1521 		.iv_offs = AES_MAX_KEY_SIZE,
1522 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1523 				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1524 		.alg = {
1525 			.cra_name = "authenc(hmac(md5),cbc(aes))",
1526 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
1527 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1528 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1529 					CRYPTO_ALG_ASYNC |
1530 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1531 			.cra_blocksize = AES_BLOCK_SIZE,
1532 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1533 			.cra_type = &crypto_aead_type,
1534 			.cra_module = THIS_MODULE,
1535 			.cra_aead = {
1536 				.setkey = spacc_aead_setkey,
1537 				.setauthsize = spacc_aead_setauthsize,
1538 				.encrypt = spacc_aead_encrypt,
1539 				.decrypt = spacc_aead_decrypt,
1540 				.givencrypt = spacc_aead_givencrypt,
1541 				.ivsize = AES_BLOCK_SIZE,
1542 				.maxauthsize = MD5_DIGEST_SIZE,
1543 			},
1544 			.cra_init = spacc_aead_cra_init,
1545 			.cra_exit = spacc_aead_cra_exit,
1546 		},
1547 	},
1548 	{
1549 		.key_offs = DES_BLOCK_SIZE,
1550 		.iv_offs = 0,
1551 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1552 				SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
1553 		.alg = {
1554 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1555 			.cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
1556 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1557 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1558 					CRYPTO_ALG_ASYNC |
1559 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1560 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1561 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1562 			.cra_type = &crypto_aead_type,
1563 			.cra_module = THIS_MODULE,
1564 			.cra_aead = {
1565 				.setkey = spacc_aead_setkey,
1566 				.setauthsize = spacc_aead_setauthsize,
1567 				.encrypt = spacc_aead_encrypt,
1568 				.decrypt = spacc_aead_decrypt,
1569 				.givencrypt = spacc_aead_givencrypt,
1570 				.ivsize = DES3_EDE_BLOCK_SIZE,
1571 				.maxauthsize = SHA1_DIGEST_SIZE,
1572 			},
1573 			.cra_init = spacc_aead_cra_init,
1574 			.cra_exit = spacc_aead_cra_exit,
1575 		},
1576 	},
1577 	{
1578 		.key_offs = DES_BLOCK_SIZE,
1579 		.iv_offs = 0,
1580 		.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
1581 				SPA_CTRL_HASH_ALG_SHA256 |
1582 				SPA_CTRL_HASH_MODE_HMAC,
1583 		.alg = {
1584 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
1585 			.cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
1586 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1587 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1588 					CRYPTO_ALG_ASYNC |
1589 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1590 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1591 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1592 			.cra_type = &crypto_aead_type,
1593 			.cra_module = THIS_MODULE,
1594 			.cra_aead = {
1595 				.setkey = spacc_aead_setkey,
1596 				.setauthsize = spacc_aead_setauthsize,
1597 				.encrypt = spacc_aead_encrypt,
1598 				.decrypt = spacc_aead_decrypt,
1599 				.givencrypt = spacc_aead_givencrypt,
1600 				.ivsize = DES3_EDE_BLOCK_SIZE,
1601 				.maxauthsize = SHA256_DIGEST_SIZE,
1602 			},
1603 			.cra_init = spacc_aead_cra_init,
1604 			.cra_exit = spacc_aead_cra_exit,
1605 		},
1606 	},
1607 	{
1608 		.key_offs = DES_BLOCK_SIZE,
1609 		.iv_offs = 0,
1610 		.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
1611 				SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
1612 		.alg = {
1613 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1614 			.cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
1615 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1616 			.cra_flags = CRYPTO_ALG_TYPE_AEAD |
1617 					CRYPTO_ALG_ASYNC |
1618 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1619 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1620 			.cra_ctxsize = sizeof(struct spacc_aead_ctx),
1621 			.cra_type = &crypto_aead_type,
1622 			.cra_module = THIS_MODULE,
1623 			.cra_aead = {
1624 				.setkey = spacc_aead_setkey,
1625 				.setauthsize = spacc_aead_setauthsize,
1626 				.encrypt = spacc_aead_encrypt,
1627 				.decrypt = spacc_aead_decrypt,
1628 				.givencrypt = spacc_aead_givencrypt,
1629 				.ivsize = DES3_EDE_BLOCK_SIZE,
1630 				.maxauthsize = MD5_DIGEST_SIZE,
1631 			},
1632 			.cra_init = spacc_aead_cra_init,
1633 			.cra_exit = spacc_aead_cra_exit,
1634 		},
1635 	},
1636 };
1637 
1638 static struct spacc_alg l2_engine_algs[] = {
1639 	{
1640 		.key_offs = 0,
1641 		.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1642 		.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1643 				SPA_CTRL_CIPH_MODE_F8,
1644 		.alg = {
1645 			.cra_name = "f8(kasumi)",
1646 			.cra_driver_name = "f8-kasumi-picoxcell",
1647 			.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1648 			.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1649 					CRYPTO_ALG_ASYNC |
1650 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1651 			.cra_blocksize = 8,
1652 			.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1653 			.cra_type = &crypto_ablkcipher_type,
1654 			.cra_module = THIS_MODULE,
1655 			.cra_ablkcipher = {
1656 				.setkey = spacc_kasumi_f8_setkey,
1657 				.encrypt = spacc_ablk_encrypt,
1658 				.decrypt = spacc_ablk_decrypt,
1659 				.min_keysize = 16,
1660 				.max_keysize = 16,
1661 				.ivsize = 8,
1662 			},
1663 			.cra_init = spacc_ablk_cra_init,
1664 			.cra_exit = spacc_ablk_cra_exit,
1665 		},
1666 	},
1667 };
1668 
1669 #ifdef CONFIG_OF
1670 static const struct of_device_id spacc_of_id_table[] = {
1671 	{ .compatible = "picochip,spacc-ipsec" },
1672 	{ .compatible = "picochip,spacc-l2" },
1673 	{}
1674 };
1675 #endif /* CONFIG_OF */
1676 
spacc_is_compatible(struct platform_device * pdev,const char * spacc_type)1677 static bool spacc_is_compatible(struct platform_device *pdev,
1678 				const char *spacc_type)
1679 {
1680 	const struct platform_device_id *platid = platform_get_device_id(pdev);
1681 
1682 	if (platid && !strcmp(platid->name, spacc_type))
1683 		return true;
1684 
1685 #ifdef CONFIG_OF
1686 	if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1687 		return true;
1688 #endif /* CONFIG_OF */
1689 
1690 	return false;
1691 }
1692 
spacc_probe(struct platform_device * pdev)1693 static int spacc_probe(struct platform_device *pdev)
1694 {
1695 	int i, err, ret = -EINVAL;
1696 	struct resource *mem, *irq;
1697 	struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1698 						   GFP_KERNEL);
1699 	if (!engine)
1700 		return -ENOMEM;
1701 
1702 	if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1703 		engine->max_ctxs	= SPACC_CRYPTO_IPSEC_MAX_CTXS;
1704 		engine->cipher_pg_sz	= SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1705 		engine->hash_pg_sz	= SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1706 		engine->fifo_sz		= SPACC_CRYPTO_IPSEC_FIFO_SZ;
1707 		engine->algs		= ipsec_engine_algs;
1708 		engine->num_algs	= ARRAY_SIZE(ipsec_engine_algs);
1709 	} else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1710 		engine->max_ctxs	= SPACC_CRYPTO_L2_MAX_CTXS;
1711 		engine->cipher_pg_sz	= SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1712 		engine->hash_pg_sz	= SPACC_CRYPTO_L2_HASH_PG_SZ;
1713 		engine->fifo_sz		= SPACC_CRYPTO_L2_FIFO_SZ;
1714 		engine->algs		= l2_engine_algs;
1715 		engine->num_algs	= ARRAY_SIZE(l2_engine_algs);
1716 	} else {
1717 		return -EINVAL;
1718 	}
1719 
1720 	engine->name = dev_name(&pdev->dev);
1721 
1722 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1723 	engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1724 	if (IS_ERR(engine->regs))
1725 		return PTR_ERR(engine->regs);
1726 
1727 	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1728 	if (!irq) {
1729 		dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1730 		return -ENXIO;
1731 	}
1732 
1733 	if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1734 			     engine->name, engine)) {
1735 		dev_err(engine->dev, "failed to request IRQ\n");
1736 		return -EBUSY;
1737 	}
1738 
1739 	engine->dev		= &pdev->dev;
1740 	engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1741 	engine->hash_key_base	= engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1742 
1743 	engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1744 		MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1745 	if (!engine->req_pool)
1746 		return -ENOMEM;
1747 
1748 	spin_lock_init(&engine->hw_lock);
1749 
1750 	engine->clk = clk_get(&pdev->dev, "ref");
1751 	if (IS_ERR(engine->clk)) {
1752 		dev_info(&pdev->dev, "clk unavailable\n");
1753 		device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1754 		return PTR_ERR(engine->clk);
1755 	}
1756 
1757 	if (clk_enable(engine->clk)) {
1758 		dev_info(&pdev->dev, "unable to enable clk\n");
1759 		clk_put(engine->clk);
1760 		return -EIO;
1761 	}
1762 
1763 	err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1764 	if (err) {
1765 		clk_disable(engine->clk);
1766 		clk_put(engine->clk);
1767 		return err;
1768 	}
1769 
1770 
1771 	/*
1772 	 * Use an IRQ threshold of 50% as a default. This seems to be a
1773 	 * reasonable trade off of latency against throughput but can be
1774 	 * changed at runtime.
1775 	 */
1776 	engine->stat_irq_thresh = (engine->fifo_sz / 2);
1777 
1778 	/*
1779 	 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1780 	 * only submit a new packet for processing when we complete another in
1781 	 * the queue. This minimizes time spent in the interrupt handler.
1782 	 */
1783 	writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1784 	       engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1785 	writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1786 	       engine->regs + SPA_IRQ_EN_REG_OFFSET);
1787 
1788 	setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1789 		    (unsigned long)engine);
1790 
1791 	INIT_LIST_HEAD(&engine->pending);
1792 	INIT_LIST_HEAD(&engine->completed);
1793 	INIT_LIST_HEAD(&engine->in_progress);
1794 	engine->in_flight = 0;
1795 	tasklet_init(&engine->complete, spacc_spacc_complete,
1796 		     (unsigned long)engine);
1797 
1798 	platform_set_drvdata(pdev, engine);
1799 
1800 	INIT_LIST_HEAD(&engine->registered_algs);
1801 	for (i = 0; i < engine->num_algs; ++i) {
1802 		engine->algs[i].engine = engine;
1803 		err = crypto_register_alg(&engine->algs[i].alg);
1804 		if (!err) {
1805 			list_add_tail(&engine->algs[i].entry,
1806 				      &engine->registered_algs);
1807 			ret = 0;
1808 		}
1809 		if (err)
1810 			dev_err(engine->dev, "failed to register alg \"%s\"\n",
1811 				engine->algs[i].alg.cra_name);
1812 		else
1813 			dev_dbg(engine->dev, "registered alg \"%s\"\n",
1814 				engine->algs[i].alg.cra_name);
1815 	}
1816 
1817 	return ret;
1818 }
1819 
spacc_remove(struct platform_device * pdev)1820 static int spacc_remove(struct platform_device *pdev)
1821 {
1822 	struct spacc_alg *alg, *next;
1823 	struct spacc_engine *engine = platform_get_drvdata(pdev);
1824 
1825 	del_timer_sync(&engine->packet_timeout);
1826 	device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1827 
1828 	list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1829 		list_del(&alg->entry);
1830 		crypto_unregister_alg(&alg->alg);
1831 	}
1832 
1833 	clk_disable(engine->clk);
1834 	clk_put(engine->clk);
1835 
1836 	return 0;
1837 }
1838 
1839 static const struct platform_device_id spacc_id_table[] = {
1840 	{ "picochip,spacc-ipsec", },
1841 	{ "picochip,spacc-l2", },
1842 	{ }
1843 };
1844 
1845 static struct platform_driver spacc_driver = {
1846 	.probe		= spacc_probe,
1847 	.remove		= spacc_remove,
1848 	.driver		= {
1849 		.name	= "picochip,spacc",
1850 #ifdef CONFIG_PM
1851 		.pm	= &spacc_pm_ops,
1852 #endif /* CONFIG_PM */
1853 		.of_match_table	= of_match_ptr(spacc_of_id_table),
1854 	},
1855 	.id_table	= spacc_id_table,
1856 };
1857 
1858 module_platform_driver(spacc_driver);
1859 
1860 MODULE_LICENSE("GPL");
1861 MODULE_AUTHOR("Jamie Iles");
1862