• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/dmaengine.h>
2 #include <linux/dma-mapping.h>
3 #include <linux/platform_device.h>
4 #include <linux/module.h>
5 #include <linux/of.h>
6 #include <linux/slab.h>
7 #include <linux/of_dma.h>
8 #include <linux/of_irq.h>
9 #include <linux/dmapool.h>
10 #include <linux/interrupt.h>
11 #include <linux/of_address.h>
12 #include <linux/pm_runtime.h>
13 #include "dmaengine.h"
14 
15 #define DESC_TYPE	27
16 #define DESC_TYPE_HOST	0x10
17 #define DESC_TYPE_TEARD	0x13
18 
19 #define TD_DESC_IS_RX	(1 << 16)
20 #define TD_DESC_DMA_NUM	10
21 
22 #define DESC_LENGTH_BITS_NUM	21
23 
24 #define DESC_TYPE_USB	(5 << 26)
25 #define DESC_PD_COMPLETE	(1 << 31)
26 
27 /* DMA engine */
28 #define DMA_TDFDQ	4
29 #define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
30 #define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
31 #define RXHPCRA0		4
32 
33 #define GCR_CHAN_ENABLE		(1 << 31)
34 #define GCR_TEARDOWN		(1 << 30)
35 #define GCR_STARV_RETRY		(1 << 24)
36 #define GCR_DESC_TYPE_HOST	(1 << 14)
37 
38 /* DMA scheduler */
39 #define DMA_SCHED_CTRL		0
40 #define DMA_SCHED_CTRL_EN	(1 << 31)
41 #define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
42 
43 #define SCHED_ENTRY0_CHAN(x)	((x) << 0)
44 #define SCHED_ENTRY0_IS_RX	(1 << 7)
45 
46 #define SCHED_ENTRY1_CHAN(x)	((x) << 8)
47 #define SCHED_ENTRY1_IS_RX	(1 << 15)
48 
49 #define SCHED_ENTRY2_CHAN(x)	((x) << 16)
50 #define SCHED_ENTRY2_IS_RX	(1 << 23)
51 
52 #define SCHED_ENTRY3_CHAN(x)	((x) << 24)
53 #define SCHED_ENTRY3_IS_RX	(1 << 31)
54 
55 /* Queue manager */
56 /* 4 KiB of memory for descriptors, 2 for each endpoint */
57 #define ALLOC_DECS_NUM		128
58 #define DESCS_AREAS		1
59 #define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
60 #define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
61 
62 #define QMGR_LRAM0_BASE		0x80
63 #define QMGR_LRAM_SIZE		0x84
64 #define QMGR_LRAM1_BASE		0x88
65 #define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
66 #define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
67 #define QMGR_MEMCTRL_IDX_SH	16
68 #define QMGR_MEMCTRL_DESC_SH	8
69 
70 #define QMGR_NUM_PEND	5
71 #define QMGR_PEND(x)	(0x90 + (x) * 4)
72 
73 #define QMGR_PENDING_SLOT_Q(x)	(x / 32)
74 #define QMGR_PENDING_BIT_Q(x)	(x % 32)
75 
76 #define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
77 #define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
78 #define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
79 #define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
80 
81 /* Glue layer specific */
82 /* USBSS  / USB AM335x */
83 #define USBSS_IRQ_STATUS	0x28
84 #define USBSS_IRQ_ENABLER	0x2c
85 #define USBSS_IRQ_CLEARR	0x30
86 
87 #define USBSS_IRQ_PD_COMP	(1 <<  2)
88 
89 /* Packet Descriptor */
90 #define PD2_ZERO_LENGTH		(1 << 19)
91 
92 struct cppi41_channel {
93 	struct dma_chan chan;
94 	struct dma_async_tx_descriptor txd;
95 	struct cppi41_dd *cdd;
96 	struct cppi41_desc *desc;
97 	dma_addr_t desc_phys;
98 	void __iomem *gcr_reg;
99 	int is_tx;
100 	u32 residue;
101 
102 	unsigned int q_num;
103 	unsigned int q_comp_num;
104 	unsigned int port_num;
105 
106 	unsigned td_retry;
107 	unsigned td_queued:1;
108 	unsigned td_seen:1;
109 	unsigned td_desc_seen:1;
110 };
111 
112 struct cppi41_desc {
113 	u32 pd0;
114 	u32 pd1;
115 	u32 pd2;
116 	u32 pd3;
117 	u32 pd4;
118 	u32 pd5;
119 	u32 pd6;
120 	u32 pd7;
121 } __aligned(32);
122 
123 struct chan_queues {
124 	u16 submit;
125 	u16 complete;
126 };
127 
128 struct cppi41_dd {
129 	struct dma_device ddev;
130 
131 	void *qmgr_scratch;
132 	dma_addr_t scratch_phys;
133 
134 	struct cppi41_desc *cd;
135 	dma_addr_t descs_phys;
136 	u32 first_td_desc;
137 	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
138 
139 	void __iomem *usbss_mem;
140 	void __iomem *ctrl_mem;
141 	void __iomem *sched_mem;
142 	void __iomem *qmgr_mem;
143 	unsigned int irq;
144 	const struct chan_queues *queues_rx;
145 	const struct chan_queues *queues_tx;
146 	struct chan_queues td_queue;
147 
148 	/* context for suspend/resume */
149 	unsigned int dma_tdfdq;
150 };
151 
152 #define FIST_COMPLETION_QUEUE	93
153 static struct chan_queues usb_queues_tx[] = {
154 	/* USB0 ENDP 1 */
155 	[ 0] = { .submit = 32, .complete =  93},
156 	[ 1] = { .submit = 34, .complete =  94},
157 	[ 2] = { .submit = 36, .complete =  95},
158 	[ 3] = { .submit = 38, .complete =  96},
159 	[ 4] = { .submit = 40, .complete =  97},
160 	[ 5] = { .submit = 42, .complete =  98},
161 	[ 6] = { .submit = 44, .complete =  99},
162 	[ 7] = { .submit = 46, .complete = 100},
163 	[ 8] = { .submit = 48, .complete = 101},
164 	[ 9] = { .submit = 50, .complete = 102},
165 	[10] = { .submit = 52, .complete = 103},
166 	[11] = { .submit = 54, .complete = 104},
167 	[12] = { .submit = 56, .complete = 105},
168 	[13] = { .submit = 58, .complete = 106},
169 	[14] = { .submit = 60, .complete = 107},
170 
171 	/* USB1 ENDP1 */
172 	[15] = { .submit = 62, .complete = 125},
173 	[16] = { .submit = 64, .complete = 126},
174 	[17] = { .submit = 66, .complete = 127},
175 	[18] = { .submit = 68, .complete = 128},
176 	[19] = { .submit = 70, .complete = 129},
177 	[20] = { .submit = 72, .complete = 130},
178 	[21] = { .submit = 74, .complete = 131},
179 	[22] = { .submit = 76, .complete = 132},
180 	[23] = { .submit = 78, .complete = 133},
181 	[24] = { .submit = 80, .complete = 134},
182 	[25] = { .submit = 82, .complete = 135},
183 	[26] = { .submit = 84, .complete = 136},
184 	[27] = { .submit = 86, .complete = 137},
185 	[28] = { .submit = 88, .complete = 138},
186 	[29] = { .submit = 90, .complete = 139},
187 };
188 
189 static const struct chan_queues usb_queues_rx[] = {
190 	/* USB0 ENDP 1 */
191 	[ 0] = { .submit =  1, .complete = 109},
192 	[ 1] = { .submit =  2, .complete = 110},
193 	[ 2] = { .submit =  3, .complete = 111},
194 	[ 3] = { .submit =  4, .complete = 112},
195 	[ 4] = { .submit =  5, .complete = 113},
196 	[ 5] = { .submit =  6, .complete = 114},
197 	[ 6] = { .submit =  7, .complete = 115},
198 	[ 7] = { .submit =  8, .complete = 116},
199 	[ 8] = { .submit =  9, .complete = 117},
200 	[ 9] = { .submit = 10, .complete = 118},
201 	[10] = { .submit = 11, .complete = 119},
202 	[11] = { .submit = 12, .complete = 120},
203 	[12] = { .submit = 13, .complete = 121},
204 	[13] = { .submit = 14, .complete = 122},
205 	[14] = { .submit = 15, .complete = 123},
206 
207 	/* USB1 ENDP 1 */
208 	[15] = { .submit = 16, .complete = 141},
209 	[16] = { .submit = 17, .complete = 142},
210 	[17] = { .submit = 18, .complete = 143},
211 	[18] = { .submit = 19, .complete = 144},
212 	[19] = { .submit = 20, .complete = 145},
213 	[20] = { .submit = 21, .complete = 146},
214 	[21] = { .submit = 22, .complete = 147},
215 	[22] = { .submit = 23, .complete = 148},
216 	[23] = { .submit = 24, .complete = 149},
217 	[24] = { .submit = 25, .complete = 150},
218 	[25] = { .submit = 26, .complete = 151},
219 	[26] = { .submit = 27, .complete = 152},
220 	[27] = { .submit = 28, .complete = 153},
221 	[28] = { .submit = 29, .complete = 154},
222 	[29] = { .submit = 30, .complete = 155},
223 };
224 
225 struct cppi_glue_infos {
226 	irqreturn_t (*isr)(int irq, void *data);
227 	const struct chan_queues *queues_rx;
228 	const struct chan_queues *queues_tx;
229 	struct chan_queues td_queue;
230 };
231 
to_cpp41_chan(struct dma_chan * c)232 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
233 {
234 	return container_of(c, struct cppi41_channel, chan);
235 }
236 
desc_to_chan(struct cppi41_dd * cdd,u32 desc)237 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
238 {
239 	struct cppi41_channel *c;
240 	u32 descs_size;
241 	u32 desc_num;
242 
243 	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
244 
245 	if (!((desc >= cdd->descs_phys) &&
246 			(desc < (cdd->descs_phys + descs_size)))) {
247 		return NULL;
248 	}
249 
250 	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
251 	BUG_ON(desc_num >= ALLOC_DECS_NUM);
252 	c = cdd->chan_busy[desc_num];
253 	cdd->chan_busy[desc_num] = NULL;
254 	return c;
255 }
256 
cppi_writel(u32 val,void * __iomem * mem)257 static void cppi_writel(u32 val, void *__iomem *mem)
258 {
259 	__raw_writel(val, mem);
260 }
261 
cppi_readl(void * __iomem * mem)262 static u32 cppi_readl(void *__iomem *mem)
263 {
264 	return __raw_readl(mem);
265 }
266 
pd_trans_len(u32 val)267 static u32 pd_trans_len(u32 val)
268 {
269 	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
270 }
271 
cppi41_pop_desc(struct cppi41_dd * cdd,unsigned queue_num)272 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
273 {
274 	u32 desc;
275 
276 	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
277 	desc &= ~0x1f;
278 	return desc;
279 }
280 
cppi41_irq(int irq,void * data)281 static irqreturn_t cppi41_irq(int irq, void *data)
282 {
283 	struct cppi41_dd *cdd = data;
284 	struct cppi41_channel *c;
285 	u32 status;
286 	int i;
287 
288 	status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
289 	if (!(status & USBSS_IRQ_PD_COMP))
290 		return IRQ_NONE;
291 	cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
292 
293 	for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
294 			i++) {
295 		u32 val;
296 		u32 q_num;
297 
298 		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
299 		if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
300 			u32 mask;
301 			/* set corresponding bit for completetion Q 93 */
302 			mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
303 			/* not set all bits for queues less than Q 93 */
304 			mask--;
305 			/* now invert and keep only Q 93+ set */
306 			val &= ~mask;
307 		}
308 
309 		if (val)
310 			__iormb();
311 
312 		while (val) {
313 			u32 desc, len;
314 
315 			q_num = __fls(val);
316 			val &= ~(1 << q_num);
317 			q_num += 32 * i;
318 			desc = cppi41_pop_desc(cdd, q_num);
319 			c = desc_to_chan(cdd, desc);
320 			if (WARN_ON(!c)) {
321 				pr_err("%s() q %d desc %08x\n", __func__,
322 						q_num, desc);
323 				continue;
324 			}
325 
326 			if (c->desc->pd2 & PD2_ZERO_LENGTH)
327 				len = 0;
328 			else
329 				len = pd_trans_len(c->desc->pd0);
330 
331 			c->residue = pd_trans_len(c->desc->pd6) - len;
332 			dma_cookie_complete(&c->txd);
333 			c->txd.callback(c->txd.callback_param);
334 		}
335 	}
336 	return IRQ_HANDLED;
337 }
338 
cppi41_tx_submit(struct dma_async_tx_descriptor * tx)339 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341 	dma_cookie_t cookie;
342 
343 	cookie = dma_cookie_assign(tx);
344 
345 	return cookie;
346 }
347 
cppi41_dma_alloc_chan_resources(struct dma_chan * chan)348 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
349 {
350 	struct cppi41_channel *c = to_cpp41_chan(chan);
351 
352 	dma_cookie_init(chan);
353 	dma_async_tx_descriptor_init(&c->txd, chan);
354 	c->txd.tx_submit = cppi41_tx_submit;
355 
356 	if (!c->is_tx)
357 		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
358 
359 	return 0;
360 }
361 
cppi41_dma_free_chan_resources(struct dma_chan * chan)362 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
363 {
364 }
365 
cppi41_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)366 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
367 	dma_cookie_t cookie, struct dma_tx_state *txstate)
368 {
369 	struct cppi41_channel *c = to_cpp41_chan(chan);
370 	enum dma_status ret;
371 
372 	/* lock */
373 	ret = dma_cookie_status(chan, cookie, txstate);
374 	if (txstate && ret == DMA_COMPLETE)
375 		txstate->residue = c->residue;
376 	/* unlock */
377 
378 	return ret;
379 }
380 
push_desc_queue(struct cppi41_channel * c)381 static void push_desc_queue(struct cppi41_channel *c)
382 {
383 	struct cppi41_dd *cdd = c->cdd;
384 	u32 desc_num;
385 	u32 desc_phys;
386 	u32 reg;
387 
388 	desc_phys = lower_32_bits(c->desc_phys);
389 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
390 	WARN_ON(cdd->chan_busy[desc_num]);
391 	cdd->chan_busy[desc_num] = c;
392 
393 	reg = (sizeof(struct cppi41_desc) - 24) / 4;
394 	reg |= desc_phys;
395 	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
396 }
397 
cppi41_dma_issue_pending(struct dma_chan * chan)398 static void cppi41_dma_issue_pending(struct dma_chan *chan)
399 {
400 	struct cppi41_channel *c = to_cpp41_chan(chan);
401 	u32 reg;
402 
403 	c->residue = 0;
404 
405 	reg = GCR_CHAN_ENABLE;
406 	if (!c->is_tx) {
407 		reg |= GCR_STARV_RETRY;
408 		reg |= GCR_DESC_TYPE_HOST;
409 		reg |= c->q_comp_num;
410 	}
411 
412 	cppi_writel(reg, c->gcr_reg);
413 
414 	/*
415 	 * We don't use writel() but __raw_writel() so we have to make sure
416 	 * that the DMA descriptor in coherent memory made to the main memory
417 	 * before starting the dma engine.
418 	 */
419 	__iowmb();
420 	push_desc_queue(c);
421 }
422 
get_host_pd0(u32 length)423 static u32 get_host_pd0(u32 length)
424 {
425 	u32 reg;
426 
427 	reg = DESC_TYPE_HOST << DESC_TYPE;
428 	reg |= length;
429 
430 	return reg;
431 }
432 
get_host_pd1(struct cppi41_channel * c)433 static u32 get_host_pd1(struct cppi41_channel *c)
434 {
435 	u32 reg;
436 
437 	reg = 0;
438 
439 	return reg;
440 }
441 
get_host_pd2(struct cppi41_channel * c)442 static u32 get_host_pd2(struct cppi41_channel *c)
443 {
444 	u32 reg;
445 
446 	reg = DESC_TYPE_USB;
447 	reg |= c->q_comp_num;
448 
449 	return reg;
450 }
451 
get_host_pd3(u32 length)452 static u32 get_host_pd3(u32 length)
453 {
454 	u32 reg;
455 
456 	/* PD3 = packet size */
457 	reg = length;
458 
459 	return reg;
460 }
461 
get_host_pd6(u32 length)462 static u32 get_host_pd6(u32 length)
463 {
464 	u32 reg;
465 
466 	/* PD6 buffer size */
467 	reg = DESC_PD_COMPLETE;
468 	reg |= length;
469 
470 	return reg;
471 }
472 
get_host_pd4_or_7(u32 addr)473 static u32 get_host_pd4_or_7(u32 addr)
474 {
475 	u32 reg;
476 
477 	reg = addr;
478 
479 	return reg;
480 }
481 
get_host_pd5(void)482 static u32 get_host_pd5(void)
483 {
484 	u32 reg;
485 
486 	reg = 0;
487 
488 	return reg;
489 }
490 
cppi41_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned sg_len,enum dma_transfer_direction dir,unsigned long tx_flags,void * context)491 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
492 	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
493 	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
494 {
495 	struct cppi41_channel *c = to_cpp41_chan(chan);
496 	struct cppi41_desc *d;
497 	struct scatterlist *sg;
498 	unsigned int i;
499 	unsigned int num;
500 
501 	num = 0;
502 	d = c->desc;
503 	for_each_sg(sgl, sg, sg_len, i) {
504 		u32 addr;
505 		u32 len;
506 
507 		/* We need to use more than one desc once musb supports sg */
508 		BUG_ON(num > 0);
509 		addr = lower_32_bits(sg_dma_address(sg));
510 		len = sg_dma_len(sg);
511 
512 		d->pd0 = get_host_pd0(len);
513 		d->pd1 = get_host_pd1(c);
514 		d->pd2 = get_host_pd2(c);
515 		d->pd3 = get_host_pd3(len);
516 		d->pd4 = get_host_pd4_or_7(addr);
517 		d->pd5 = get_host_pd5();
518 		d->pd6 = get_host_pd6(len);
519 		d->pd7 = get_host_pd4_or_7(addr);
520 
521 		d++;
522 	}
523 
524 	return &c->txd;
525 }
526 
cpp41_cfg_chan(struct cppi41_channel * c,struct dma_slave_config * cfg)527 static int cpp41_cfg_chan(struct cppi41_channel *c,
528 		struct dma_slave_config *cfg)
529 {
530 	return 0;
531 }
532 
cppi41_compute_td_desc(struct cppi41_desc * d)533 static void cppi41_compute_td_desc(struct cppi41_desc *d)
534 {
535 	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
536 }
537 
cppi41_tear_down_chan(struct cppi41_channel * c)538 static int cppi41_tear_down_chan(struct cppi41_channel *c)
539 {
540 	struct cppi41_dd *cdd = c->cdd;
541 	struct cppi41_desc *td;
542 	u32 reg;
543 	u32 desc_phys;
544 	u32 td_desc_phys;
545 
546 	td = cdd->cd;
547 	td += cdd->first_td_desc;
548 
549 	td_desc_phys = cdd->descs_phys;
550 	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
551 
552 	if (!c->td_queued) {
553 		cppi41_compute_td_desc(td);
554 		__iowmb();
555 
556 		reg = (sizeof(struct cppi41_desc) - 24) / 4;
557 		reg |= td_desc_phys;
558 		cppi_writel(reg, cdd->qmgr_mem +
559 				QMGR_QUEUE_D(cdd->td_queue.submit));
560 
561 		reg = GCR_CHAN_ENABLE;
562 		if (!c->is_tx) {
563 			reg |= GCR_STARV_RETRY;
564 			reg |= GCR_DESC_TYPE_HOST;
565 			reg |= c->q_comp_num;
566 		}
567 		reg |= GCR_TEARDOWN;
568 		cppi_writel(reg, c->gcr_reg);
569 		c->td_queued = 1;
570 		c->td_retry = 100;
571 	}
572 
573 	if (!c->td_seen || !c->td_desc_seen) {
574 
575 		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
576 		if (!desc_phys)
577 			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
578 
579 		if (desc_phys == c->desc_phys) {
580 			c->td_desc_seen = 1;
581 
582 		} else if (desc_phys == td_desc_phys) {
583 			u32 pd0;
584 
585 			__iormb();
586 			pd0 = td->pd0;
587 			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
588 			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
589 			WARN_ON((pd0 & 0x1f) != c->port_num);
590 			c->td_seen = 1;
591 		} else if (desc_phys) {
592 			WARN_ON_ONCE(1);
593 		}
594 	}
595 	c->td_retry--;
596 	/*
597 	 * If the TX descriptor / channel is in use, the caller needs to poke
598 	 * his TD bit multiple times. After that he hardware releases the
599 	 * transfer descriptor followed by TD descriptor. Waiting seems not to
600 	 * cause any difference.
601 	 * RX seems to be thrown out right away. However once the TearDown
602 	 * descriptor gets through we are done. If we have seens the transfer
603 	 * descriptor before the TD we fetch it from enqueue, it has to be
604 	 * there waiting for us.
605 	 */
606 	if (!c->td_seen && c->td_retry)
607 		return -EAGAIN;
608 
609 	WARN_ON(!c->td_retry);
610 	if (!c->td_desc_seen) {
611 		desc_phys = cppi41_pop_desc(cdd, c->q_num);
612 		WARN_ON(!desc_phys);
613 	}
614 
615 	c->td_queued = 0;
616 	c->td_seen = 0;
617 	c->td_desc_seen = 0;
618 	cppi_writel(0, c->gcr_reg);
619 	return 0;
620 }
621 
cppi41_stop_chan(struct dma_chan * chan)622 static int cppi41_stop_chan(struct dma_chan *chan)
623 {
624 	struct cppi41_channel *c = to_cpp41_chan(chan);
625 	struct cppi41_dd *cdd = c->cdd;
626 	u32 desc_num;
627 	u32 desc_phys;
628 	int ret;
629 
630 	desc_phys = lower_32_bits(c->desc_phys);
631 	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
632 	if (!cdd->chan_busy[desc_num])
633 		return 0;
634 
635 	ret = cppi41_tear_down_chan(c);
636 	if (ret)
637 		return ret;
638 
639 	WARN_ON(!cdd->chan_busy[desc_num]);
640 	cdd->chan_busy[desc_num] = NULL;
641 
642 	return 0;
643 }
644 
cppi41_dma_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)645 static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
646 	unsigned long arg)
647 {
648 	struct cppi41_channel *c = to_cpp41_chan(chan);
649 	int ret;
650 
651 	switch (cmd) {
652 	case DMA_SLAVE_CONFIG:
653 		ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
654 		break;
655 
656 	case DMA_TERMINATE_ALL:
657 		ret = cppi41_stop_chan(chan);
658 		break;
659 
660 	default:
661 		ret = -ENXIO;
662 		break;
663 	}
664 	return ret;
665 }
666 
cleanup_chans(struct cppi41_dd * cdd)667 static void cleanup_chans(struct cppi41_dd *cdd)
668 {
669 	while (!list_empty(&cdd->ddev.channels)) {
670 		struct cppi41_channel *cchan;
671 
672 		cchan = list_first_entry(&cdd->ddev.channels,
673 				struct cppi41_channel, chan.device_node);
674 		list_del(&cchan->chan.device_node);
675 		kfree(cchan);
676 	}
677 }
678 
cppi41_add_chans(struct device * dev,struct cppi41_dd * cdd)679 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
680 {
681 	struct cppi41_channel *cchan;
682 	int i;
683 	int ret;
684 	u32 n_chans;
685 
686 	ret = of_property_read_u32(dev->of_node, "#dma-channels",
687 			&n_chans);
688 	if (ret)
689 		return ret;
690 	/*
691 	 * The channels can only be used as TX or as RX. So we add twice
692 	 * that much dma channels because USB can only do RX or TX.
693 	 */
694 	n_chans *= 2;
695 
696 	for (i = 0; i < n_chans; i++) {
697 		cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
698 		if (!cchan)
699 			goto err;
700 
701 		cchan->cdd = cdd;
702 		if (i & 1) {
703 			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
704 			cchan->is_tx = 1;
705 		} else {
706 			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
707 			cchan->is_tx = 0;
708 		}
709 		cchan->port_num = i >> 1;
710 		cchan->desc = &cdd->cd[i];
711 		cchan->desc_phys = cdd->descs_phys;
712 		cchan->desc_phys += i * sizeof(struct cppi41_desc);
713 		cchan->chan.device = &cdd->ddev;
714 		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
715 	}
716 	cdd->first_td_desc = n_chans;
717 
718 	return 0;
719 err:
720 	cleanup_chans(cdd);
721 	return -ENOMEM;
722 }
723 
purge_descs(struct device * dev,struct cppi41_dd * cdd)724 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
725 {
726 	unsigned int mem_decs;
727 	int i;
728 
729 	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
730 
731 	for (i = 0; i < DESCS_AREAS; i++) {
732 
733 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
734 		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
735 
736 		dma_free_coherent(dev, mem_decs, cdd->cd,
737 				cdd->descs_phys);
738 	}
739 }
740 
disable_sched(struct cppi41_dd * cdd)741 static void disable_sched(struct cppi41_dd *cdd)
742 {
743 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
744 }
745 
deinit_cppi41(struct device * dev,struct cppi41_dd * cdd)746 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
747 {
748 	disable_sched(cdd);
749 
750 	purge_descs(dev, cdd);
751 
752 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
753 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
754 	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
755 			cdd->scratch_phys);
756 }
757 
init_descs(struct device * dev,struct cppi41_dd * cdd)758 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
759 {
760 	unsigned int desc_size;
761 	unsigned int mem_decs;
762 	int i;
763 	u32 reg;
764 	u32 idx;
765 
766 	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
767 			(sizeof(struct cppi41_desc) - 1));
768 	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
769 	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
770 
771 	desc_size = sizeof(struct cppi41_desc);
772 	mem_decs = ALLOC_DECS_NUM * desc_size;
773 
774 	idx = 0;
775 	for (i = 0; i < DESCS_AREAS; i++) {
776 
777 		reg = idx << QMGR_MEMCTRL_IDX_SH;
778 		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
779 		reg |= ilog2(ALLOC_DECS_NUM) - 5;
780 
781 		BUILD_BUG_ON(DESCS_AREAS != 1);
782 		cdd->cd = dma_alloc_coherent(dev, mem_decs,
783 				&cdd->descs_phys, GFP_KERNEL);
784 		if (!cdd->cd)
785 			return -ENOMEM;
786 
787 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
788 		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
789 
790 		idx += ALLOC_DECS_NUM;
791 	}
792 	return 0;
793 }
794 
init_sched(struct cppi41_dd * cdd)795 static void init_sched(struct cppi41_dd *cdd)
796 {
797 	unsigned ch;
798 	unsigned word;
799 	u32 reg;
800 
801 	word = 0;
802 	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
803 	for (ch = 0; ch < 15 * 2; ch += 2) {
804 
805 		reg = SCHED_ENTRY0_CHAN(ch);
806 		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
807 
808 		reg |= SCHED_ENTRY2_CHAN(ch + 1);
809 		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
810 		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
811 		word++;
812 	}
813 	reg = 15 * 2 * 2 - 1;
814 	reg |= DMA_SCHED_CTRL_EN;
815 	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
816 }
817 
init_cppi41(struct device * dev,struct cppi41_dd * cdd)818 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
819 {
820 	int ret;
821 
822 	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
823 	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
824 			&cdd->scratch_phys, GFP_KERNEL);
825 	if (!cdd->qmgr_scratch)
826 		return -ENOMEM;
827 
828 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
829 	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
830 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
831 
832 	ret = init_descs(dev, cdd);
833 	if (ret)
834 		goto err_td;
835 
836 	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
837 	init_sched(cdd);
838 	return 0;
839 err_td:
840 	deinit_cppi41(dev, cdd);
841 	return ret;
842 }
843 
844 static struct platform_driver cpp41_dma_driver;
845 /*
846  * The param format is:
847  * X Y
848  * X: Port
849  * Y: 0 = RX else TX
850  */
851 #define INFO_PORT	0
852 #define INFO_IS_TX	1
853 
cpp41_dma_filter_fn(struct dma_chan * chan,void * param)854 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
855 {
856 	struct cppi41_channel *cchan;
857 	struct cppi41_dd *cdd;
858 	const struct chan_queues *queues;
859 	u32 *num = param;
860 
861 	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
862 		return false;
863 
864 	cchan = to_cpp41_chan(chan);
865 
866 	if (cchan->port_num != num[INFO_PORT])
867 		return false;
868 
869 	if (cchan->is_tx && !num[INFO_IS_TX])
870 		return false;
871 	cdd = cchan->cdd;
872 	if (cchan->is_tx)
873 		queues = cdd->queues_tx;
874 	else
875 		queues = cdd->queues_rx;
876 
877 	BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
878 	if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
879 		return false;
880 
881 	cchan->q_num = queues[cchan->port_num].submit;
882 	cchan->q_comp_num = queues[cchan->port_num].complete;
883 	return true;
884 }
885 
886 static struct of_dma_filter_info cpp41_dma_info = {
887 	.filter_fn = cpp41_dma_filter_fn,
888 };
889 
cppi41_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)890 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
891 		struct of_dma *ofdma)
892 {
893 	int count = dma_spec->args_count;
894 	struct of_dma_filter_info *info = ofdma->of_dma_data;
895 
896 	if (!info || !info->filter_fn)
897 		return NULL;
898 
899 	if (count != 2)
900 		return NULL;
901 
902 	return dma_request_channel(info->dma_cap, info->filter_fn,
903 			&dma_spec->args[0]);
904 }
905 
906 static const struct cppi_glue_infos usb_infos = {
907 	.isr = cppi41_irq,
908 	.queues_rx = usb_queues_rx,
909 	.queues_tx = usb_queues_tx,
910 	.td_queue = { .submit = 31, .complete = 0 },
911 };
912 
913 static const struct of_device_id cppi41_dma_ids[] = {
914 	{ .compatible = "ti,am3359-cppi41", .data = &usb_infos},
915 	{},
916 };
917 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
918 
get_glue_info(struct device * dev)919 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
920 {
921 	const struct of_device_id *of_id;
922 
923 	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
924 	if (!of_id)
925 		return NULL;
926 	return of_id->data;
927 }
928 
cppi41_dma_probe(struct platform_device * pdev)929 static int cppi41_dma_probe(struct platform_device *pdev)
930 {
931 	struct cppi41_dd *cdd;
932 	struct device *dev = &pdev->dev;
933 	const struct cppi_glue_infos *glue_info;
934 	int irq;
935 	int ret;
936 
937 	glue_info = get_glue_info(dev);
938 	if (!glue_info)
939 		return -EINVAL;
940 
941 	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
942 	if (!cdd)
943 		return -ENOMEM;
944 
945 	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
946 	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
947 	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
948 	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
949 	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
950 	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
951 	cdd->ddev.device_control = cppi41_dma_control;
952 	cdd->ddev.dev = dev;
953 	INIT_LIST_HEAD(&cdd->ddev.channels);
954 	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
955 
956 	cdd->usbss_mem = of_iomap(dev->of_node, 0);
957 	cdd->ctrl_mem = of_iomap(dev->of_node, 1);
958 	cdd->sched_mem = of_iomap(dev->of_node, 2);
959 	cdd->qmgr_mem = of_iomap(dev->of_node, 3);
960 
961 	if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
962 			!cdd->qmgr_mem)
963 		return -ENXIO;
964 
965 	pm_runtime_enable(dev);
966 	ret = pm_runtime_get_sync(dev);
967 	if (ret < 0)
968 		goto err_get_sync;
969 
970 	cdd->queues_rx = glue_info->queues_rx;
971 	cdd->queues_tx = glue_info->queues_tx;
972 	cdd->td_queue = glue_info->td_queue;
973 
974 	ret = init_cppi41(dev, cdd);
975 	if (ret)
976 		goto err_init_cppi;
977 
978 	ret = cppi41_add_chans(dev, cdd);
979 	if (ret)
980 		goto err_chans;
981 
982 	irq = irq_of_parse_and_map(dev->of_node, 0);
983 	if (!irq) {
984 		ret = -EINVAL;
985 		goto err_irq;
986 	}
987 
988 	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
989 
990 	ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
991 			dev_name(dev), cdd);
992 	if (ret)
993 		goto err_irq;
994 	cdd->irq = irq;
995 
996 	ret = dma_async_device_register(&cdd->ddev);
997 	if (ret)
998 		goto err_dma_reg;
999 
1000 	ret = of_dma_controller_register(dev->of_node,
1001 			cppi41_dma_xlate, &cpp41_dma_info);
1002 	if (ret)
1003 		goto err_of;
1004 
1005 	platform_set_drvdata(pdev, cdd);
1006 	return 0;
1007 err_of:
1008 	dma_async_device_unregister(&cdd->ddev);
1009 err_dma_reg:
1010 err_irq:
1011 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1012 	cleanup_chans(cdd);
1013 err_chans:
1014 	deinit_cppi41(dev, cdd);
1015 err_init_cppi:
1016 	pm_runtime_put(dev);
1017 err_get_sync:
1018 	pm_runtime_disable(dev);
1019 	iounmap(cdd->usbss_mem);
1020 	iounmap(cdd->ctrl_mem);
1021 	iounmap(cdd->sched_mem);
1022 	iounmap(cdd->qmgr_mem);
1023 	return ret;
1024 }
1025 
cppi41_dma_remove(struct platform_device * pdev)1026 static int cppi41_dma_remove(struct platform_device *pdev)
1027 {
1028 	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1029 
1030 	of_dma_controller_free(pdev->dev.of_node);
1031 	dma_async_device_unregister(&cdd->ddev);
1032 
1033 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1034 	devm_free_irq(&pdev->dev, cdd->irq, cdd);
1035 	cleanup_chans(cdd);
1036 	deinit_cppi41(&pdev->dev, cdd);
1037 	iounmap(cdd->usbss_mem);
1038 	iounmap(cdd->ctrl_mem);
1039 	iounmap(cdd->sched_mem);
1040 	iounmap(cdd->qmgr_mem);
1041 	pm_runtime_put(&pdev->dev);
1042 	pm_runtime_disable(&pdev->dev);
1043 	return 0;
1044 }
1045 
1046 #ifdef CONFIG_PM_SLEEP
cppi41_suspend(struct device * dev)1047 static int cppi41_suspend(struct device *dev)
1048 {
1049 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1050 
1051 	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1052 	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1053 	disable_sched(cdd);
1054 
1055 	return 0;
1056 }
1057 
cppi41_resume(struct device * dev)1058 static int cppi41_resume(struct device *dev)
1059 {
1060 	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1061 	struct cppi41_channel *c;
1062 	int i;
1063 
1064 	for (i = 0; i < DESCS_AREAS; i++)
1065 		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1066 
1067 	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1068 		if (!c->is_tx)
1069 			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1070 
1071 	init_sched(cdd);
1072 
1073 	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1074 	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1075 	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1076 	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1077 
1078 	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1079 
1080 	return 0;
1081 }
1082 #endif
1083 
1084 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1085 
1086 static struct platform_driver cpp41_dma_driver = {
1087 	.probe  = cppi41_dma_probe,
1088 	.remove = cppi41_dma_remove,
1089 	.driver = {
1090 		.name = "cppi41-dma-engine",
1091 		.owner = THIS_MODULE,
1092 		.pm = &cppi41_pm_ops,
1093 		.of_match_table = of_match_ptr(cppi41_dma_ids),
1094 	},
1095 };
1096 
1097 module_platform_driver(cpp41_dma_driver);
1098 MODULE_LICENSE("GPL");
1099 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1100