• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OMAP DMAengine support
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/omap-dma.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22 
23 #include "virt-dma.h"
24 
25 struct omap_dmadev {
26 	struct dma_device ddev;
27 	spinlock_t lock;
28 	struct tasklet_struct task;
29 	struct list_head pending;
30 	void __iomem *base;
31 	const struct omap_dma_reg *reg_map;
32 	struct omap_system_dma_plat_info *plat;
33 	bool legacy;
34 	spinlock_t irq_lock;
35 	uint32_t irq_enable_mask;
36 	struct omap_chan *lch_map[32];
37 };
38 
39 struct omap_chan {
40 	struct virt_dma_chan vc;
41 	struct list_head node;
42 	void __iomem *channel_base;
43 	const struct omap_dma_reg *reg_map;
44 	uint32_t ccr;
45 
46 	struct dma_slave_config	cfg;
47 	unsigned dma_sig;
48 	bool cyclic;
49 	bool paused;
50 
51 	int dma_ch;
52 	struct omap_desc *desc;
53 	unsigned sgidx;
54 };
55 
56 struct omap_sg {
57 	dma_addr_t addr;
58 	uint32_t en;		/* number of elements (24-bit) */
59 	uint32_t fn;		/* number of frames (16-bit) */
60 };
61 
62 struct omap_desc {
63 	struct virt_dma_desc vd;
64 	enum dma_transfer_direction dir;
65 	dma_addr_t dev_addr;
66 
67 	int16_t fi;		/* for OMAP_DMA_SYNC_PACKET */
68 	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
69 	uint32_t ccr;		/* CCR value */
70 	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
71 	uint16_t cicr;		/* CICR value */
72 	uint32_t csdp;		/* CSDP value */
73 
74 	unsigned sglen;
75 	struct omap_sg sg[0];
76 };
77 
78 enum {
79 	CCR_FS			= BIT(5),
80 	CCR_READ_PRIORITY	= BIT(6),
81 	CCR_ENABLE		= BIT(7),
82 	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
83 	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
84 	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
85 	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
86 	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
87 	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
88 	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
89 	CCR_SRC_AMODE_POSTINC	= 1 << 12,
90 	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
91 	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
92 	CCR_DST_AMODE_CONSTANT	= 0 << 14,
93 	CCR_DST_AMODE_POSTINC	= 1 << 14,
94 	CCR_DST_AMODE_SGLIDX	= 2 << 14,
95 	CCR_DST_AMODE_DBLIDX	= 3 << 14,
96 	CCR_CONSTANT_FILL	= BIT(16),
97 	CCR_TRANSPARENT_COPY	= BIT(17),
98 	CCR_BS			= BIT(18),
99 	CCR_SUPERVISOR		= BIT(22),
100 	CCR_PREFETCH		= BIT(23),
101 	CCR_TRIGGER_SRC		= BIT(24),
102 	CCR_BUFFERING_DISABLE	= BIT(25),
103 	CCR_WRITE_PRIORITY	= BIT(26),
104 	CCR_SYNC_ELEMENT	= 0,
105 	CCR_SYNC_FRAME		= CCR_FS,
106 	CCR_SYNC_BLOCK		= CCR_BS,
107 	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,
108 
109 	CSDP_DATA_TYPE_8	= 0,
110 	CSDP_DATA_TYPE_16	= 1,
111 	CSDP_DATA_TYPE_32	= 2,
112 	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
113 	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
114 	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
115 	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
116 	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
117 	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
118 	CSDP_SRC_PACKED		= BIT(6),
119 	CSDP_SRC_BURST_1	= 0 << 7,
120 	CSDP_SRC_BURST_16	= 1 << 7,
121 	CSDP_SRC_BURST_32	= 2 << 7,
122 	CSDP_SRC_BURST_64	= 3 << 7,
123 	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
124 	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
125 	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
126 	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
127 	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
128 	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
129 	CSDP_DST_PACKED		= BIT(13),
130 	CSDP_DST_BURST_1	= 0 << 14,
131 	CSDP_DST_BURST_16	= 1 << 14,
132 	CSDP_DST_BURST_32	= 2 << 14,
133 	CSDP_DST_BURST_64	= 3 << 14,
134 
135 	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
136 	CICR_DROP_IE		= BIT(1),
137 	CICR_HALF_IE		= BIT(2),
138 	CICR_FRAME_IE		= BIT(3),
139 	CICR_LAST_IE		= BIT(4),
140 	CICR_BLOCK_IE		= BIT(5),
141 	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
142 	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
143 	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
144 	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
145 	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
146 	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */
147 
148 	CLNK_CTRL_ENABLE_LNK	= BIT(15),
149 };
150 
151 static const unsigned es_bytes[] = {
152 	[CSDP_DATA_TYPE_8] = 1,
153 	[CSDP_DATA_TYPE_16] = 2,
154 	[CSDP_DATA_TYPE_32] = 4,
155 };
156 
157 static struct of_dma_filter_info omap_dma_info = {
158 	.filter_fn = omap_dma_filter_fn,
159 };
160 
to_omap_dma_dev(struct dma_device * d)161 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
162 {
163 	return container_of(d, struct omap_dmadev, ddev);
164 }
165 
to_omap_dma_chan(struct dma_chan * c)166 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
167 {
168 	return container_of(c, struct omap_chan, vc.chan);
169 }
170 
to_omap_dma_desc(struct dma_async_tx_descriptor * t)171 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
172 {
173 	return container_of(t, struct omap_desc, vd.tx);
174 }
175 
omap_dma_desc_free(struct virt_dma_desc * vd)176 static void omap_dma_desc_free(struct virt_dma_desc *vd)
177 {
178 	kfree(container_of(vd, struct omap_desc, vd));
179 }
180 
omap_dma_write(uint32_t val,unsigned type,void __iomem * addr)181 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
182 {
183 	switch (type) {
184 	case OMAP_DMA_REG_16BIT:
185 		writew_relaxed(val, addr);
186 		break;
187 	case OMAP_DMA_REG_2X16BIT:
188 		writew_relaxed(val, addr);
189 		writew_relaxed(val >> 16, addr + 2);
190 		break;
191 	case OMAP_DMA_REG_32BIT:
192 		writel_relaxed(val, addr);
193 		break;
194 	default:
195 		WARN_ON(1);
196 	}
197 }
198 
omap_dma_read(unsigned type,void __iomem * addr)199 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
200 {
201 	unsigned val;
202 
203 	switch (type) {
204 	case OMAP_DMA_REG_16BIT:
205 		val = readw_relaxed(addr);
206 		break;
207 	case OMAP_DMA_REG_2X16BIT:
208 		val = readw_relaxed(addr);
209 		val |= readw_relaxed(addr + 2) << 16;
210 		break;
211 	case OMAP_DMA_REG_32BIT:
212 		val = readl_relaxed(addr);
213 		break;
214 	default:
215 		WARN_ON(1);
216 		val = 0;
217 	}
218 
219 	return val;
220 }
221 
omap_dma_glbl_write(struct omap_dmadev * od,unsigned reg,unsigned val)222 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
223 {
224 	const struct omap_dma_reg *r = od->reg_map + reg;
225 
226 	WARN_ON(r->stride);
227 
228 	omap_dma_write(val, r->type, od->base + r->offset);
229 }
230 
omap_dma_glbl_read(struct omap_dmadev * od,unsigned reg)231 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
232 {
233 	const struct omap_dma_reg *r = od->reg_map + reg;
234 
235 	WARN_ON(r->stride);
236 
237 	return omap_dma_read(r->type, od->base + r->offset);
238 }
239 
omap_dma_chan_write(struct omap_chan * c,unsigned reg,unsigned val)240 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
241 {
242 	const struct omap_dma_reg *r = c->reg_map + reg;
243 
244 	omap_dma_write(val, r->type, c->channel_base + r->offset);
245 }
246 
omap_dma_chan_read(struct omap_chan * c,unsigned reg)247 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
248 {
249 	const struct omap_dma_reg *r = c->reg_map + reg;
250 
251 	return omap_dma_read(r->type, c->channel_base + r->offset);
252 }
253 
omap_dma_clear_csr(struct omap_chan * c)254 static void omap_dma_clear_csr(struct omap_chan *c)
255 {
256 	if (dma_omap1())
257 		omap_dma_chan_read(c, CSR);
258 	else
259 		omap_dma_chan_write(c, CSR, ~0);
260 }
261 
omap_dma_get_csr(struct omap_chan * c)262 static unsigned omap_dma_get_csr(struct omap_chan *c)
263 {
264 	unsigned val = omap_dma_chan_read(c, CSR);
265 
266 	if (!dma_omap1())
267 		omap_dma_chan_write(c, CSR, val);
268 
269 	return val;
270 }
271 
omap_dma_assign(struct omap_dmadev * od,struct omap_chan * c,unsigned lch)272 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
273 	unsigned lch)
274 {
275 	c->channel_base = od->base + od->plat->channel_stride * lch;
276 
277 	od->lch_map[lch] = c;
278 }
279 
omap_dma_start(struct omap_chan * c,struct omap_desc * d)280 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
281 {
282 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
283 
284 	if (__dma_omap15xx(od->plat->dma_attr))
285 		omap_dma_chan_write(c, CPC, 0);
286 	else
287 		omap_dma_chan_write(c, CDAC, 0);
288 
289 	omap_dma_clear_csr(c);
290 
291 	/* Enable interrupts */
292 	omap_dma_chan_write(c, CICR, d->cicr);
293 
294 	/* Enable channel */
295 	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
296 }
297 
omap_dma_stop(struct omap_chan * c)298 static void omap_dma_stop(struct omap_chan *c)
299 {
300 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
301 	uint32_t val;
302 
303 	/* disable irq */
304 	omap_dma_chan_write(c, CICR, 0);
305 
306 	omap_dma_clear_csr(c);
307 
308 	val = omap_dma_chan_read(c, CCR);
309 	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
310 		uint32_t sysconfig;
311 		unsigned i;
312 
313 		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
314 		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
315 		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
316 		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
317 
318 		val = omap_dma_chan_read(c, CCR);
319 		val &= ~CCR_ENABLE;
320 		omap_dma_chan_write(c, CCR, val);
321 
322 		/* Wait for sDMA FIFO to drain */
323 		for (i = 0; ; i++) {
324 			val = omap_dma_chan_read(c, CCR);
325 			if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
326 				break;
327 
328 			if (i > 100)
329 				break;
330 
331 			udelay(5);
332 		}
333 
334 		if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
335 			dev_err(c->vc.chan.device->dev,
336 				"DMA drain did not complete on lch %d\n",
337 			        c->dma_ch);
338 
339 		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
340 	} else {
341 		val &= ~CCR_ENABLE;
342 		omap_dma_chan_write(c, CCR, val);
343 	}
344 
345 	mb();
346 
347 	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
348 		val = omap_dma_chan_read(c, CLNK_CTRL);
349 
350 		if (dma_omap1())
351 			val |= 1 << 14; /* set the STOP_LNK bit */
352 		else
353 			val &= ~CLNK_CTRL_ENABLE_LNK;
354 
355 		omap_dma_chan_write(c, CLNK_CTRL, val);
356 	}
357 }
358 
omap_dma_start_sg(struct omap_chan * c,struct omap_desc * d,unsigned idx)359 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
360 	unsigned idx)
361 {
362 	struct omap_sg *sg = d->sg + idx;
363 	unsigned cxsa, cxei, cxfi;
364 
365 	if (d->dir == DMA_DEV_TO_MEM) {
366 		cxsa = CDSA;
367 		cxei = CDEI;
368 		cxfi = CDFI;
369 	} else {
370 		cxsa = CSSA;
371 		cxei = CSEI;
372 		cxfi = CSFI;
373 	}
374 
375 	omap_dma_chan_write(c, cxsa, sg->addr);
376 	omap_dma_chan_write(c, cxei, 0);
377 	omap_dma_chan_write(c, cxfi, 0);
378 	omap_dma_chan_write(c, CEN, sg->en);
379 	omap_dma_chan_write(c, CFN, sg->fn);
380 
381 	omap_dma_start(c, d);
382 }
383 
omap_dma_start_desc(struct omap_chan * c)384 static void omap_dma_start_desc(struct omap_chan *c)
385 {
386 	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
387 	struct omap_desc *d;
388 	unsigned cxsa, cxei, cxfi;
389 
390 	if (!vd) {
391 		c->desc = NULL;
392 		return;
393 	}
394 
395 	list_del(&vd->node);
396 
397 	c->desc = d = to_omap_dma_desc(&vd->tx);
398 	c->sgidx = 0;
399 
400 	/*
401 	 * This provides the necessary barrier to ensure data held in
402 	 * DMA coherent memory is visible to the DMA engine prior to
403 	 * the transfer starting.
404 	 */
405 	mb();
406 
407 	omap_dma_chan_write(c, CCR, d->ccr);
408 	if (dma_omap1())
409 		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
410 
411 	if (d->dir == DMA_DEV_TO_MEM) {
412 		cxsa = CSSA;
413 		cxei = CSEI;
414 		cxfi = CSFI;
415 	} else {
416 		cxsa = CDSA;
417 		cxei = CDEI;
418 		cxfi = CDFI;
419 	}
420 
421 	omap_dma_chan_write(c, cxsa, d->dev_addr);
422 	omap_dma_chan_write(c, cxei, 0);
423 	omap_dma_chan_write(c, cxfi, d->fi);
424 	omap_dma_chan_write(c, CSDP, d->csdp);
425 	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
426 
427 	omap_dma_start_sg(c, d, 0);
428 }
429 
omap_dma_callback(int ch,u16 status,void * data)430 static void omap_dma_callback(int ch, u16 status, void *data)
431 {
432 	struct omap_chan *c = data;
433 	struct omap_desc *d;
434 	unsigned long flags;
435 
436 	spin_lock_irqsave(&c->vc.lock, flags);
437 	d = c->desc;
438 	if (d) {
439 		if (!c->cyclic) {
440 			if (++c->sgidx < d->sglen) {
441 				omap_dma_start_sg(c, d, c->sgidx);
442 			} else {
443 				omap_dma_start_desc(c);
444 				vchan_cookie_complete(&d->vd);
445 			}
446 		} else {
447 			vchan_cyclic_callback(&d->vd);
448 		}
449 	}
450 	spin_unlock_irqrestore(&c->vc.lock, flags);
451 }
452 
453 /*
454  * This callback schedules all pending channels.  We could be more
455  * clever here by postponing allocation of the real DMA channels to
456  * this point, and freeing them when our virtual channel becomes idle.
457  *
458  * We would then need to deal with 'all channels in-use'
459  */
omap_dma_sched(unsigned long data)460 static void omap_dma_sched(unsigned long data)
461 {
462 	struct omap_dmadev *d = (struct omap_dmadev *)data;
463 	LIST_HEAD(head);
464 
465 	spin_lock_irq(&d->lock);
466 	list_splice_tail_init(&d->pending, &head);
467 	spin_unlock_irq(&d->lock);
468 
469 	while (!list_empty(&head)) {
470 		struct omap_chan *c = list_first_entry(&head,
471 			struct omap_chan, node);
472 
473 		spin_lock_irq(&c->vc.lock);
474 		list_del_init(&c->node);
475 		omap_dma_start_desc(c);
476 		spin_unlock_irq(&c->vc.lock);
477 	}
478 }
479 
omap_dma_irq(int irq,void * devid)480 static irqreturn_t omap_dma_irq(int irq, void *devid)
481 {
482 	struct omap_dmadev *od = devid;
483 	unsigned status, channel;
484 
485 	spin_lock(&od->irq_lock);
486 
487 	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
488 	status &= od->irq_enable_mask;
489 	if (status == 0) {
490 		spin_unlock(&od->irq_lock);
491 		return IRQ_NONE;
492 	}
493 
494 	while ((channel = ffs(status)) != 0) {
495 		unsigned mask, csr;
496 		struct omap_chan *c;
497 
498 		channel -= 1;
499 		mask = BIT(channel);
500 		status &= ~mask;
501 
502 		c = od->lch_map[channel];
503 		if (c == NULL) {
504 			/* This should never happen */
505 			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
506 			continue;
507 		}
508 
509 		csr = omap_dma_get_csr(c);
510 		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
511 
512 		omap_dma_callback(channel, csr, c);
513 	}
514 
515 	spin_unlock(&od->irq_lock);
516 
517 	return IRQ_HANDLED;
518 }
519 
omap_dma_alloc_chan_resources(struct dma_chan * chan)520 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
521 {
522 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
523 	struct omap_chan *c = to_omap_dma_chan(chan);
524 	int ret;
525 
526 	if (od->legacy) {
527 		ret = omap_request_dma(c->dma_sig, "DMA engine",
528 				       omap_dma_callback, c, &c->dma_ch);
529 	} else {
530 		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
531 				       &c->dma_ch);
532 	}
533 
534 	dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
535 		c->dma_ch, c->dma_sig);
536 
537 	if (ret >= 0) {
538 		omap_dma_assign(od, c, c->dma_ch);
539 
540 		if (!od->legacy) {
541 			unsigned val;
542 
543 			spin_lock_irq(&od->irq_lock);
544 			val = BIT(c->dma_ch);
545 			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
546 			od->irq_enable_mask |= val;
547 			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
548 
549 			val = omap_dma_glbl_read(od, IRQENABLE_L0);
550 			val &= ~BIT(c->dma_ch);
551 			omap_dma_glbl_write(od, IRQENABLE_L0, val);
552 			spin_unlock_irq(&od->irq_lock);
553 		}
554 	}
555 
556 	if (dma_omap1()) {
557 		if (__dma_omap16xx(od->plat->dma_attr)) {
558 			c->ccr = CCR_OMAP31_DISABLE;
559 			/* Duplicate what plat-omap/dma.c does */
560 			c->ccr |= c->dma_ch + 1;
561 		} else {
562 			c->ccr = c->dma_sig & 0x1f;
563 		}
564 	} else {
565 		c->ccr = c->dma_sig & 0x1f;
566 		c->ccr |= (c->dma_sig & ~0x1f) << 14;
567 	}
568 	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
569 		c->ccr |= CCR_BUFFERING_DISABLE;
570 
571 	return ret;
572 }
573 
omap_dma_free_chan_resources(struct dma_chan * chan)574 static void omap_dma_free_chan_resources(struct dma_chan *chan)
575 {
576 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
577 	struct omap_chan *c = to_omap_dma_chan(chan);
578 
579 	if (!od->legacy) {
580 		spin_lock_irq(&od->irq_lock);
581 		od->irq_enable_mask &= ~BIT(c->dma_ch);
582 		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
583 		spin_unlock_irq(&od->irq_lock);
584 	}
585 
586 	c->channel_base = NULL;
587 	od->lch_map[c->dma_ch] = NULL;
588 	vchan_free_chan_resources(&c->vc);
589 	omap_free_dma(c->dma_ch);
590 
591 	dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
592 }
593 
omap_dma_sg_size(struct omap_sg * sg)594 static size_t omap_dma_sg_size(struct omap_sg *sg)
595 {
596 	return sg->en * sg->fn;
597 }
598 
omap_dma_desc_size(struct omap_desc * d)599 static size_t omap_dma_desc_size(struct omap_desc *d)
600 {
601 	unsigned i;
602 	size_t size;
603 
604 	for (size = i = 0; i < d->sglen; i++)
605 		size += omap_dma_sg_size(&d->sg[i]);
606 
607 	return size * es_bytes[d->es];
608 }
609 
omap_dma_desc_size_pos(struct omap_desc * d,dma_addr_t addr)610 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
611 {
612 	unsigned i;
613 	size_t size, es_size = es_bytes[d->es];
614 
615 	for (size = i = 0; i < d->sglen; i++) {
616 		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
617 
618 		if (size)
619 			size += this_size;
620 		else if (addr >= d->sg[i].addr &&
621 			 addr < d->sg[i].addr + this_size)
622 			size += d->sg[i].addr + this_size - addr;
623 	}
624 	return size;
625 }
626 
627 /*
628  * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
629  * read before the DMA controller finished disabling the channel.
630  */
omap_dma_chan_read_3_3(struct omap_chan * c,unsigned reg)631 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
632 {
633 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
634 	uint32_t val;
635 
636 	val = omap_dma_chan_read(c, reg);
637 	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
638 		val = omap_dma_chan_read(c, reg);
639 
640 	return val;
641 }
642 
omap_dma_get_src_pos(struct omap_chan * c)643 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
644 {
645 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
646 	dma_addr_t addr, cdac;
647 
648 	if (__dma_omap15xx(od->plat->dma_attr)) {
649 		addr = omap_dma_chan_read(c, CPC);
650 	} else {
651 		addr = omap_dma_chan_read_3_3(c, CSAC);
652 		cdac = omap_dma_chan_read_3_3(c, CDAC);
653 
654 		/*
655 		 * CDAC == 0 indicates that the DMA transfer on the channel has
656 		 * not been started (no data has been transferred so far).
657 		 * Return the programmed source start address in this case.
658 		 */
659 		if (cdac == 0)
660 			addr = omap_dma_chan_read(c, CSSA);
661 	}
662 
663 	if (dma_omap1())
664 		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
665 
666 	return addr;
667 }
668 
omap_dma_get_dst_pos(struct omap_chan * c)669 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
670 {
671 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
672 	dma_addr_t addr;
673 
674 	if (__dma_omap15xx(od->plat->dma_attr)) {
675 		addr = omap_dma_chan_read(c, CPC);
676 	} else {
677 		addr = omap_dma_chan_read_3_3(c, CDAC);
678 
679 		/*
680 		 * CDAC == 0 indicates that the DMA transfer on the channel
681 		 * has not been started (no data has been transferred so
682 		 * far).  Return the programmed destination start address in
683 		 * this case.
684 		 */
685 		if (addr == 0)
686 			addr = omap_dma_chan_read(c, CDSA);
687 	}
688 
689 	if (dma_omap1())
690 		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
691 
692 	return addr;
693 }
694 
omap_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)695 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
696 	dma_cookie_t cookie, struct dma_tx_state *txstate)
697 {
698 	struct omap_chan *c = to_omap_dma_chan(chan);
699 	struct virt_dma_desc *vd;
700 	enum dma_status ret;
701 	unsigned long flags;
702 
703 	ret = dma_cookie_status(chan, cookie, txstate);
704 	if (ret == DMA_COMPLETE || !txstate)
705 		return ret;
706 
707 	spin_lock_irqsave(&c->vc.lock, flags);
708 	vd = vchan_find_desc(&c->vc, cookie);
709 	if (vd) {
710 		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
711 	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
712 		struct omap_desc *d = c->desc;
713 		dma_addr_t pos;
714 
715 		if (d->dir == DMA_MEM_TO_DEV)
716 			pos = omap_dma_get_src_pos(c);
717 		else if (d->dir == DMA_DEV_TO_MEM)
718 			pos = omap_dma_get_dst_pos(c);
719 		else
720 			pos = 0;
721 
722 		txstate->residue = omap_dma_desc_size_pos(d, pos);
723 	} else {
724 		txstate->residue = 0;
725 	}
726 	spin_unlock_irqrestore(&c->vc.lock, flags);
727 
728 	return ret;
729 }
730 
omap_dma_issue_pending(struct dma_chan * chan)731 static void omap_dma_issue_pending(struct dma_chan *chan)
732 {
733 	struct omap_chan *c = to_omap_dma_chan(chan);
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&c->vc.lock, flags);
737 	if (vchan_issue_pending(&c->vc) && !c->desc) {
738 		/*
739 		 * c->cyclic is used only by audio and in this case the DMA need
740 		 * to be started without delay.
741 		 */
742 		if (!c->cyclic) {
743 			struct omap_dmadev *d = to_omap_dma_dev(chan->device);
744 			spin_lock(&d->lock);
745 			if (list_empty(&c->node))
746 				list_add_tail(&c->node, &d->pending);
747 			spin_unlock(&d->lock);
748 			tasklet_schedule(&d->task);
749 		} else {
750 			omap_dma_start_desc(c);
751 		}
752 	}
753 	spin_unlock_irqrestore(&c->vc.lock, flags);
754 }
755 
omap_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned sglen,enum dma_transfer_direction dir,unsigned long tx_flags,void * context)756 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
757 	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
758 	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
759 {
760 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
761 	struct omap_chan *c = to_omap_dma_chan(chan);
762 	enum dma_slave_buswidth dev_width;
763 	struct scatterlist *sgent;
764 	struct omap_desc *d;
765 	dma_addr_t dev_addr;
766 	unsigned i, j = 0, es, en, frame_bytes;
767 	u32 burst;
768 
769 	if (dir == DMA_DEV_TO_MEM) {
770 		dev_addr = c->cfg.src_addr;
771 		dev_width = c->cfg.src_addr_width;
772 		burst = c->cfg.src_maxburst;
773 	} else if (dir == DMA_MEM_TO_DEV) {
774 		dev_addr = c->cfg.dst_addr;
775 		dev_width = c->cfg.dst_addr_width;
776 		burst = c->cfg.dst_maxburst;
777 	} else {
778 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
779 		return NULL;
780 	}
781 
782 	/* Bus width translates to the element size (ES) */
783 	switch (dev_width) {
784 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
785 		es = CSDP_DATA_TYPE_8;
786 		break;
787 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
788 		es = CSDP_DATA_TYPE_16;
789 		break;
790 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
791 		es = CSDP_DATA_TYPE_32;
792 		break;
793 	default: /* not reached */
794 		return NULL;
795 	}
796 
797 	/* Now allocate and setup the descriptor. */
798 	d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
799 	if (!d)
800 		return NULL;
801 
802 	d->dir = dir;
803 	d->dev_addr = dev_addr;
804 	d->es = es;
805 
806 	d->ccr = c->ccr | CCR_SYNC_FRAME;
807 	if (dir == DMA_DEV_TO_MEM)
808 		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
809 	else
810 		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
811 
812 	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
813 	d->csdp = es;
814 
815 	if (dma_omap1()) {
816 		d->cicr |= CICR_TOUT_IE;
817 
818 		if (dir == DMA_DEV_TO_MEM)
819 			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
820 		else
821 			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
822 	} else {
823 		if (dir == DMA_DEV_TO_MEM)
824 			d->ccr |= CCR_TRIGGER_SRC;
825 
826 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
827 	}
828 	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
829 		d->clnk_ctrl = c->dma_ch;
830 
831 	/*
832 	 * Build our scatterlist entries: each contains the address,
833 	 * the number of elements (EN) in each frame, and the number of
834 	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
835 	 *
836 	 * Burst size translates to number of elements with frame sync.
837 	 * Note: DMA engine defines burst to be the number of dev-width
838 	 * transfers.
839 	 */
840 	en = burst;
841 	frame_bytes = es_bytes[es] * en;
842 	for_each_sg(sgl, sgent, sglen, i) {
843 		d->sg[j].addr = sg_dma_address(sgent);
844 		d->sg[j].en = en;
845 		d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
846 		j++;
847 	}
848 
849 	d->sglen = j;
850 
851 	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
852 }
853 
omap_dma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)854 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
855 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
856 	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
857 {
858 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
859 	struct omap_chan *c = to_omap_dma_chan(chan);
860 	enum dma_slave_buswidth dev_width;
861 	struct omap_desc *d;
862 	dma_addr_t dev_addr;
863 	unsigned es;
864 	u32 burst;
865 
866 	if (dir == DMA_DEV_TO_MEM) {
867 		dev_addr = c->cfg.src_addr;
868 		dev_width = c->cfg.src_addr_width;
869 		burst = c->cfg.src_maxburst;
870 	} else if (dir == DMA_MEM_TO_DEV) {
871 		dev_addr = c->cfg.dst_addr;
872 		dev_width = c->cfg.dst_addr_width;
873 		burst = c->cfg.dst_maxburst;
874 	} else {
875 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
876 		return NULL;
877 	}
878 
879 	/* Bus width translates to the element size (ES) */
880 	switch (dev_width) {
881 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
882 		es = CSDP_DATA_TYPE_8;
883 		break;
884 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
885 		es = CSDP_DATA_TYPE_16;
886 		break;
887 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
888 		es = CSDP_DATA_TYPE_32;
889 		break;
890 	default: /* not reached */
891 		return NULL;
892 	}
893 
894 	/* Now allocate and setup the descriptor. */
895 	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
896 	if (!d)
897 		return NULL;
898 
899 	d->dir = dir;
900 	d->dev_addr = dev_addr;
901 	d->fi = burst;
902 	d->es = es;
903 	d->sg[0].addr = buf_addr;
904 	d->sg[0].en = period_len / es_bytes[es];
905 	d->sg[0].fn = buf_len / period_len;
906 	d->sglen = 1;
907 
908 	d->ccr = c->ccr;
909 	if (dir == DMA_DEV_TO_MEM)
910 		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
911 	else
912 		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
913 
914 	d->cicr = CICR_DROP_IE;
915 	if (flags & DMA_PREP_INTERRUPT)
916 		d->cicr |= CICR_FRAME_IE;
917 
918 	d->csdp = es;
919 
920 	if (dma_omap1()) {
921 		d->cicr |= CICR_TOUT_IE;
922 
923 		if (dir == DMA_DEV_TO_MEM)
924 			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
925 		else
926 			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
927 	} else {
928 		if (burst)
929 			d->ccr |= CCR_SYNC_PACKET;
930 		else
931 			d->ccr |= CCR_SYNC_ELEMENT;
932 
933 		if (dir == DMA_DEV_TO_MEM)
934 			d->ccr |= CCR_TRIGGER_SRC;
935 
936 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
937 
938 		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
939 	}
940 
941 	if (__dma_omap15xx(od->plat->dma_attr))
942 		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
943 	else
944 		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
945 
946 	c->cyclic = true;
947 
948 	return vchan_tx_prep(&c->vc, &d->vd, flags);
949 }
950 
omap_dma_slave_config(struct omap_chan * c,struct dma_slave_config * cfg)951 static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg)
952 {
953 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
954 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
955 		return -EINVAL;
956 
957 	memcpy(&c->cfg, cfg, sizeof(c->cfg));
958 
959 	return 0;
960 }
961 
omap_dma_terminate_all(struct omap_chan * c)962 static int omap_dma_terminate_all(struct omap_chan *c)
963 {
964 	struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device);
965 	unsigned long flags;
966 	LIST_HEAD(head);
967 
968 	spin_lock_irqsave(&c->vc.lock, flags);
969 
970 	/* Prevent this channel being scheduled */
971 	spin_lock(&d->lock);
972 	list_del_init(&c->node);
973 	spin_unlock(&d->lock);
974 
975 	/*
976 	 * Stop DMA activity: we assume the callback will not be called
977 	 * after omap_dma_stop() returns (even if it does, it will see
978 	 * c->desc is NULL and exit.)
979 	 */
980 	if (c->desc) {
981 		omap_dma_desc_free(&c->desc->vd);
982 		c->desc = NULL;
983 		/* Avoid stopping the dma twice */
984 		if (!c->paused)
985 			omap_dma_stop(c);
986 	}
987 
988 	if (c->cyclic) {
989 		c->cyclic = false;
990 		c->paused = false;
991 	}
992 
993 	vchan_get_all_descriptors(&c->vc, &head);
994 	spin_unlock_irqrestore(&c->vc.lock, flags);
995 	vchan_dma_desc_free_list(&c->vc, &head);
996 
997 	return 0;
998 }
999 
omap_dma_pause(struct omap_chan * c)1000 static int omap_dma_pause(struct omap_chan *c)
1001 {
1002 	/* Pause/Resume only allowed with cyclic mode */
1003 	if (!c->cyclic)
1004 		return -EINVAL;
1005 
1006 	if (!c->paused) {
1007 		omap_dma_stop(c);
1008 		c->paused = true;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
omap_dma_resume(struct omap_chan * c)1014 static int omap_dma_resume(struct omap_chan *c)
1015 {
1016 	/* Pause/Resume only allowed with cyclic mode */
1017 	if (!c->cyclic)
1018 		return -EINVAL;
1019 
1020 	if (c->paused) {
1021 		mb();
1022 
1023 		/* Restore channel link register */
1024 		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1025 
1026 		omap_dma_start(c, c->desc);
1027 		c->paused = false;
1028 	}
1029 
1030 	return 0;
1031 }
1032 
omap_dma_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)1033 static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1034 	unsigned long arg)
1035 {
1036 	struct omap_chan *c = to_omap_dma_chan(chan);
1037 	int ret;
1038 
1039 	switch (cmd) {
1040 	case DMA_SLAVE_CONFIG:
1041 		ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg);
1042 		break;
1043 
1044 	case DMA_TERMINATE_ALL:
1045 		ret = omap_dma_terminate_all(c);
1046 		break;
1047 
1048 	case DMA_PAUSE:
1049 		ret = omap_dma_pause(c);
1050 		break;
1051 
1052 	case DMA_RESUME:
1053 		ret = omap_dma_resume(c);
1054 		break;
1055 
1056 	default:
1057 		ret = -ENXIO;
1058 		break;
1059 	}
1060 
1061 	return ret;
1062 }
1063 
omap_dma_chan_init(struct omap_dmadev * od,int dma_sig)1064 static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig)
1065 {
1066 	struct omap_chan *c;
1067 
1068 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1069 	if (!c)
1070 		return -ENOMEM;
1071 
1072 	c->reg_map = od->reg_map;
1073 	c->dma_sig = dma_sig;
1074 	c->vc.desc_free = omap_dma_desc_free;
1075 	vchan_init(&c->vc, &od->ddev);
1076 	INIT_LIST_HEAD(&c->node);
1077 
1078 	od->ddev.chancnt++;
1079 
1080 	return 0;
1081 }
1082 
omap_dma_free(struct omap_dmadev * od)1083 static void omap_dma_free(struct omap_dmadev *od)
1084 {
1085 	tasklet_kill(&od->task);
1086 	while (!list_empty(&od->ddev.channels)) {
1087 		struct omap_chan *c = list_first_entry(&od->ddev.channels,
1088 			struct omap_chan, vc.chan.device_node);
1089 
1090 		list_del(&c->vc.chan.device_node);
1091 		tasklet_kill(&c->vc.task);
1092 		kfree(c);
1093 	}
1094 }
1095 
1096 #define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1097 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1098 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1099 
omap_dma_device_slave_caps(struct dma_chan * dchan,struct dma_slave_caps * caps)1100 static int omap_dma_device_slave_caps(struct dma_chan *dchan,
1101 				      struct dma_slave_caps *caps)
1102 {
1103 	caps->src_addr_widths = OMAP_DMA_BUSWIDTHS;
1104 	caps->dstn_addr_widths = OMAP_DMA_BUSWIDTHS;
1105 	caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1106 	caps->cmd_pause = true;
1107 	caps->cmd_terminate = true;
1108 	caps->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1109 
1110 	return 0;
1111 }
1112 
omap_dma_probe(struct platform_device * pdev)1113 static int omap_dma_probe(struct platform_device *pdev)
1114 {
1115 	struct omap_dmadev *od;
1116 	struct resource *res;
1117 	int rc, i, irq;
1118 
1119 	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1120 	if (!od)
1121 		return -ENOMEM;
1122 
1123 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1124 	od->base = devm_ioremap_resource(&pdev->dev, res);
1125 	if (IS_ERR(od->base))
1126 		return PTR_ERR(od->base);
1127 
1128 	od->plat = omap_get_plat_info();
1129 	if (!od->plat)
1130 		return -EPROBE_DEFER;
1131 
1132 	od->reg_map = od->plat->reg_map;
1133 
1134 	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1135 	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1136 	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1137 	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1138 	od->ddev.device_tx_status = omap_dma_tx_status;
1139 	od->ddev.device_issue_pending = omap_dma_issue_pending;
1140 	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1141 	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1142 	od->ddev.device_control = omap_dma_control;
1143 	od->ddev.device_slave_caps = omap_dma_device_slave_caps;
1144 	od->ddev.dev = &pdev->dev;
1145 	INIT_LIST_HEAD(&od->ddev.channels);
1146 	INIT_LIST_HEAD(&od->pending);
1147 	spin_lock_init(&od->lock);
1148 	spin_lock_init(&od->irq_lock);
1149 
1150 	tasklet_init(&od->task, omap_dma_sched, (unsigned long)od);
1151 
1152 	for (i = 0; i < 127; i++) {
1153 		rc = omap_dma_chan_init(od, i);
1154 		if (rc) {
1155 			omap_dma_free(od);
1156 			return rc;
1157 		}
1158 	}
1159 
1160 	irq = platform_get_irq(pdev, 1);
1161 	if (irq <= 0) {
1162 		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1163 		od->legacy = true;
1164 	} else {
1165 		/* Disable all interrupts */
1166 		od->irq_enable_mask = 0;
1167 		omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1168 
1169 		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1170 				      IRQF_SHARED, "omap-dma-engine", od);
1171 		if (rc)
1172 			return rc;
1173 	}
1174 
1175 	rc = dma_async_device_register(&od->ddev);
1176 	if (rc) {
1177 		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1178 			rc);
1179 		omap_dma_free(od);
1180 		return rc;
1181 	}
1182 
1183 	platform_set_drvdata(pdev, od);
1184 
1185 	if (pdev->dev.of_node) {
1186 		omap_dma_info.dma_cap = od->ddev.cap_mask;
1187 
1188 		/* Device-tree DMA controller registration */
1189 		rc = of_dma_controller_register(pdev->dev.of_node,
1190 				of_dma_simple_xlate, &omap_dma_info);
1191 		if (rc) {
1192 			pr_warn("OMAP-DMA: failed to register DMA controller\n");
1193 			dma_async_device_unregister(&od->ddev);
1194 			omap_dma_free(od);
1195 		}
1196 	}
1197 
1198 	dev_info(&pdev->dev, "OMAP DMA engine driver\n");
1199 
1200 	return rc;
1201 }
1202 
omap_dma_remove(struct platform_device * pdev)1203 static int omap_dma_remove(struct platform_device *pdev)
1204 {
1205 	struct omap_dmadev *od = platform_get_drvdata(pdev);
1206 
1207 	if (pdev->dev.of_node)
1208 		of_dma_controller_free(pdev->dev.of_node);
1209 
1210 	dma_async_device_unregister(&od->ddev);
1211 
1212 	if (!od->legacy) {
1213 		/* Disable all interrupts */
1214 		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1215 	}
1216 
1217 	omap_dma_free(od);
1218 
1219 	return 0;
1220 }
1221 
1222 static const struct of_device_id omap_dma_match[] = {
1223 	{ .compatible = "ti,omap2420-sdma", },
1224 	{ .compatible = "ti,omap2430-sdma", },
1225 	{ .compatible = "ti,omap3430-sdma", },
1226 	{ .compatible = "ti,omap3630-sdma", },
1227 	{ .compatible = "ti,omap4430-sdma", },
1228 	{},
1229 };
1230 MODULE_DEVICE_TABLE(of, omap_dma_match);
1231 
1232 static struct platform_driver omap_dma_driver = {
1233 	.probe	= omap_dma_probe,
1234 	.remove	= omap_dma_remove,
1235 	.driver = {
1236 		.name = "omap-dma-engine",
1237 		.owner = THIS_MODULE,
1238 		.of_match_table = of_match_ptr(omap_dma_match),
1239 	},
1240 };
1241 
omap_dma_filter_fn(struct dma_chan * chan,void * param)1242 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1243 {
1244 	if (chan->device->dev->driver == &omap_dma_driver.driver) {
1245 		struct omap_chan *c = to_omap_dma_chan(chan);
1246 		unsigned req = *(unsigned *)param;
1247 
1248 		return req == c->dma_sig;
1249 	}
1250 	return false;
1251 }
1252 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1253 
omap_dma_init(void)1254 static int omap_dma_init(void)
1255 {
1256 	return platform_driver_register(&omap_dma_driver);
1257 }
1258 subsys_initcall(omap_dma_init);
1259 
omap_dma_exit(void)1260 static void __exit omap_dma_exit(void)
1261 {
1262 	platform_driver_unregister(&omap_dma_driver);
1263 }
1264 module_exit(omap_dma_exit);
1265 
1266 MODULE_AUTHOR("Russell King");
1267 MODULE_LICENSE("GPL");
1268