1 /*
2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
5 *
6 * Copyright 2013 Linaro Limited; author Roy Franz
7 *
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
10 *
11 */
12
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16
17 #include "efistub.h"
18
update_fdt(efi_system_table_t * sys_table,void * orig_fdt,unsigned long orig_fdt_size,void * fdt,int new_fdt_size,char * cmdline_ptr,u64 initrd_addr,u64 initrd_size,efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,u32 desc_ver)19 efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 unsigned long orig_fdt_size,
21 void *fdt, int new_fdt_size, char *cmdline_ptr,
22 u64 initrd_addr, u64 initrd_size,
23 efi_memory_desc_t *memory_map,
24 unsigned long map_size, unsigned long desc_size,
25 u32 desc_ver)
26 {
27 int node, prev, num_rsv;
28 int status;
29 u32 fdt_val32;
30 u64 fdt_val64;
31
32 /* Do some checks on provided FDT, if it exists*/
33 if (orig_fdt) {
34 if (fdt_check_header(orig_fdt)) {
35 pr_efi_err(sys_table, "Device Tree header not valid!\n");
36 return EFI_LOAD_ERROR;
37 }
38 /*
39 * We don't get the size of the FDT if we get if from a
40 * configuration table.
41 */
42 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43 pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44 return EFI_LOAD_ERROR;
45 }
46 }
47
48 if (orig_fdt)
49 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50 else
51 status = fdt_create_empty_tree(fdt, new_fdt_size);
52
53 if (status != 0)
54 goto fdt_set_fail;
55
56 /*
57 * Delete any memory nodes present. We must delete nodes which
58 * early_init_dt_scan_memory may try to use.
59 */
60 prev = 0;
61 for (;;) {
62 const char *type;
63 int len;
64
65 node = fdt_next_node(fdt, prev, NULL);
66 if (node < 0)
67 break;
68
69 type = fdt_getprop(fdt, node, "device_type", &len);
70 if (type && strncmp(type, "memory", len) == 0) {
71 fdt_del_node(fdt, node);
72 continue;
73 }
74
75 prev = node;
76 }
77
78 /*
79 * Delete all memory reserve map entries. When booting via UEFI,
80 * kernel will use the UEFI memory map to find reserved regions.
81 */
82 num_rsv = fdt_num_mem_rsv(fdt);
83 while (num_rsv-- > 0)
84 fdt_del_mem_rsv(fdt, num_rsv);
85
86 node = fdt_subnode_offset(fdt, 0, "chosen");
87 if (node < 0) {
88 node = fdt_add_subnode(fdt, 0, "chosen");
89 if (node < 0) {
90 status = node; /* node is error code when negative */
91 goto fdt_set_fail;
92 }
93 }
94
95 if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97 strlen(cmdline_ptr) + 1);
98 if (status)
99 goto fdt_set_fail;
100 }
101
102 /* Set initrd address/end in device tree, if present */
103 if (initrd_size != 0) {
104 u64 initrd_image_end;
105 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106
107 status = fdt_setprop(fdt, node, "linux,initrd-start",
108 &initrd_image_start, sizeof(u64));
109 if (status)
110 goto fdt_set_fail;
111 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112 status = fdt_setprop(fdt, node, "linux,initrd-end",
113 &initrd_image_end, sizeof(u64));
114 if (status)
115 goto fdt_set_fail;
116 }
117
118 /* Add FDT entries for EFI runtime services in chosen node. */
119 node = fdt_subnode_offset(fdt, 0, "chosen");
120 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121 status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122 &fdt_val64, sizeof(fdt_val64));
123 if (status)
124 goto fdt_set_fail;
125
126 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127 status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128 &fdt_val64, sizeof(fdt_val64));
129 if (status)
130 goto fdt_set_fail;
131
132 fdt_val32 = cpu_to_fdt32(map_size);
133 status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134 &fdt_val32, sizeof(fdt_val32));
135 if (status)
136 goto fdt_set_fail;
137
138 fdt_val32 = cpu_to_fdt32(desc_size);
139 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140 &fdt_val32, sizeof(fdt_val32));
141 if (status)
142 goto fdt_set_fail;
143
144 fdt_val32 = cpu_to_fdt32(desc_ver);
145 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146 &fdt_val32, sizeof(fdt_val32));
147 if (status)
148 goto fdt_set_fail;
149
150 /*
151 * Add kernel version banner so stub/kernel match can be
152 * verified.
153 */
154 status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver",
155 linux_banner);
156 if (status)
157 goto fdt_set_fail;
158
159 return EFI_SUCCESS;
160
161 fdt_set_fail:
162 if (status == -FDT_ERR_NOSPACE)
163 return EFI_BUFFER_TOO_SMALL;
164
165 return EFI_LOAD_ERROR;
166 }
167
168 #ifndef EFI_FDT_ALIGN
169 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
170 #endif
171
172 /*
173 * Allocate memory for a new FDT, then add EFI, commandline, and
174 * initrd related fields to the FDT. This routine increases the
175 * FDT allocation size until the allocated memory is large
176 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
177 * which are fixed at 4K bytes, so in most cases the first
178 * allocation should succeed.
179 * EFI boot services are exited at the end of this function.
180 * There must be no allocations between the get_memory_map()
181 * call and the exit_boot_services() call, so the exiting of
182 * boot services is very tightly tied to the creation of the FDT
183 * with the final memory map in it.
184 */
185
allocate_new_fdt_and_exit_boot(efi_system_table_t * sys_table,void * handle,unsigned long * new_fdt_addr,unsigned long max_addr,u64 initrd_addr,u64 initrd_size,char * cmdline_ptr,unsigned long fdt_addr,unsigned long fdt_size)186 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
187 void *handle,
188 unsigned long *new_fdt_addr,
189 unsigned long max_addr,
190 u64 initrd_addr, u64 initrd_size,
191 char *cmdline_ptr,
192 unsigned long fdt_addr,
193 unsigned long fdt_size)
194 {
195 unsigned long map_size, desc_size;
196 u32 desc_ver;
197 unsigned long mmap_key;
198 efi_memory_desc_t *memory_map, *runtime_map;
199 unsigned long new_fdt_size;
200 efi_status_t status;
201 int runtime_entry_count = 0;
202
203 /*
204 * Get a copy of the current memory map that we will use to prepare
205 * the input for SetVirtualAddressMap(). We don't have to worry about
206 * subsequent allocations adding entries, since they could not affect
207 * the number of EFI_MEMORY_RUNTIME regions.
208 */
209 status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
210 &desc_size, &desc_ver, &mmap_key);
211 if (status != EFI_SUCCESS) {
212 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
213 return status;
214 }
215
216 pr_efi(sys_table,
217 "Exiting boot services and installing virtual address map...\n");
218
219 /*
220 * Estimate size of new FDT, and allocate memory for it. We
221 * will allocate a bigger buffer if this ends up being too
222 * small, so a rough guess is OK here.
223 */
224 new_fdt_size = fdt_size + EFI_PAGE_SIZE;
225 while (1) {
226 status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
227 new_fdt_addr, max_addr);
228 if (status != EFI_SUCCESS) {
229 pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
230 goto fail;
231 }
232
233 /*
234 * Now that we have done our final memory allocation (and free)
235 * we can get the memory map key needed for
236 * exit_boot_services().
237 */
238 status = efi_get_memory_map(sys_table, &memory_map, &map_size,
239 &desc_size, &desc_ver, &mmap_key);
240 if (status != EFI_SUCCESS)
241 goto fail_free_new_fdt;
242
243 status = update_fdt(sys_table,
244 (void *)fdt_addr, fdt_size,
245 (void *)*new_fdt_addr, new_fdt_size,
246 cmdline_ptr, initrd_addr, initrd_size,
247 memory_map, map_size, desc_size, desc_ver);
248
249 /* Succeeding the first time is the expected case. */
250 if (status == EFI_SUCCESS)
251 break;
252
253 if (status == EFI_BUFFER_TOO_SMALL) {
254 /*
255 * We need to allocate more space for the new
256 * device tree, so free existing buffer that is
257 * too small. Also free memory map, as we will need
258 * to get new one that reflects the free/alloc we do
259 * on the device tree buffer.
260 */
261 efi_free(sys_table, new_fdt_size, *new_fdt_addr);
262 sys_table->boottime->free_pool(memory_map);
263 new_fdt_size += EFI_PAGE_SIZE;
264 } else {
265 pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
266 goto fail_free_mmap;
267 }
268 }
269
270 /*
271 * Update the memory map with virtual addresses. The function will also
272 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
273 * entries so that we can pass it straight into SetVirtualAddressMap()
274 */
275 efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
276 &runtime_entry_count);
277
278 /* Now we are ready to exit_boot_services.*/
279 status = sys_table->boottime->exit_boot_services(handle, mmap_key);
280
281 if (status == EFI_SUCCESS) {
282 efi_set_virtual_address_map_t *svam;
283
284 /* Install the new virtual address map */
285 svam = sys_table->runtime->set_virtual_address_map;
286 status = svam(runtime_entry_count * desc_size, desc_size,
287 desc_ver, runtime_map);
288
289 /*
290 * We are beyond the point of no return here, so if the call to
291 * SetVirtualAddressMap() failed, we need to signal that to the
292 * incoming kernel but proceed normally otherwise.
293 */
294 if (status != EFI_SUCCESS) {
295 int l;
296
297 /*
298 * Set the virtual address field of all
299 * EFI_MEMORY_RUNTIME entries to 0. This will signal
300 * the incoming kernel that no virtual translation has
301 * been installed.
302 */
303 for (l = 0; l < map_size; l += desc_size) {
304 efi_memory_desc_t *p = (void *)memory_map + l;
305
306 if (p->attribute & EFI_MEMORY_RUNTIME)
307 p->virt_addr = 0;
308 }
309 }
310 return EFI_SUCCESS;
311 }
312
313 pr_efi_err(sys_table, "Exit boot services failed.\n");
314
315 fail_free_mmap:
316 sys_table->boottime->free_pool(memory_map);
317
318 fail_free_new_fdt:
319 efi_free(sys_table, new_fdt_size, *new_fdt_addr);
320
321 fail:
322 sys_table->boottime->free_pool(runtime_map);
323 return EFI_LOAD_ERROR;
324 }
325
get_fdt(efi_system_table_t * sys_table)326 void *get_fdt(efi_system_table_t *sys_table)
327 {
328 efi_guid_t fdt_guid = DEVICE_TREE_GUID;
329 efi_config_table_t *tables;
330 void *fdt;
331 int i;
332
333 tables = (efi_config_table_t *) sys_table->tables;
334 fdt = NULL;
335
336 for (i = 0; i < sys_table->nr_tables; i++)
337 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
338 fdt = (void *) tables[i].table;
339 break;
340 }
341
342 return fdt;
343 }
344