1 /*
2 * Copyright 2011 (c) Oracle Corp.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24 */
25
26 /*
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 * the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 * when freed).
34 */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #ifdef TTM_HAS_AGP
54 #include <asm/agp.h>
55 #endif
56
57 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
58 #define SMALL_ALLOCATION 4
59 #define FREE_ALL_PAGES (~0U)
60 /* times are in msecs */
61 #define IS_UNDEFINED (0)
62 #define IS_WC (1<<1)
63 #define IS_UC (1<<2)
64 #define IS_CACHED (1<<3)
65 #define IS_DMA32 (1<<4)
66
67 enum pool_type {
68 POOL_IS_UNDEFINED,
69 POOL_IS_WC = IS_WC,
70 POOL_IS_UC = IS_UC,
71 POOL_IS_CACHED = IS_CACHED,
72 POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73 POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74 POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75 };
76 /*
77 * The pool structure. There are usually six pools:
78 * - generic (not restricted to DMA32):
79 * - write combined, uncached, cached.
80 * - dma32 (up to 2^32 - so up 4GB):
81 * - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if neccessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
88 * from delayed work.
89 * @inuse_list: Pool of pages that are in use. The order is very important and
90 * it is in the order that the TTM pages that are put back are in.
91 * @free_list: Pool of pages that are free to be used. No order requirements.
92 * @dev: The device that is associated with these pools.
93 * @size: Size used during DMA allocation.
94 * @npages_free: Count of available pages for re-use.
95 * @npages_in_use: Count of pages that are in use.
96 * @nfrees: Stats when pool is shrinking.
97 * @nrefills: Stats when the pool is grown.
98 * @gfp_flags: Flags to pass for alloc_page.
99 * @name: Name of the pool.
100 * @dev_name: Name derieved from dev - similar to how dev_info works.
101 * Used during shutdown as the dev_info during release is unavailable.
102 */
103 struct dma_pool {
104 struct list_head pools; /* The 'struct device->dma_pools link */
105 enum pool_type type;
106 spinlock_t lock;
107 struct list_head inuse_list;
108 struct list_head free_list;
109 struct device *dev;
110 unsigned size;
111 unsigned npages_free;
112 unsigned npages_in_use;
113 unsigned long nfrees; /* Stats when shrunk. */
114 unsigned long nrefills; /* Stats when grown. */
115 gfp_t gfp_flags;
116 char name[13]; /* "cached dma32" */
117 char dev_name[64]; /* Constructed from dev */
118 };
119
120 /*
121 * The accounting page keeping track of the allocated page along with
122 * the DMA address.
123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124 * @vaddr: The virtual address of the page
125 * @dma: The bus address of the page. If the page is not allocated
126 * via the DMA API, it will be -1.
127 */
128 struct dma_page {
129 struct list_head page_list;
130 void *vaddr;
131 struct page *p;
132 dma_addr_t dma;
133 };
134
135 /*
136 * Limits for the pool. They are handled without locks because only place where
137 * they may change is in sysfs store. They won't have immediate effect anyway
138 * so forcing serialization to access them is pointless.
139 */
140
141 struct ttm_pool_opts {
142 unsigned alloc_size;
143 unsigned max_size;
144 unsigned small;
145 };
146
147 /*
148 * Contains the list of all of the 'struct device' and their corresponding
149 * DMA pools. Guarded by _mutex->lock.
150 * @pools: The link to 'struct ttm_pool_manager->pools'
151 * @dev: The 'struct device' associated with the 'pool'
152 * @pool: The 'struct dma_pool' associated with the 'dev'
153 */
154 struct device_pools {
155 struct list_head pools;
156 struct device *dev;
157 struct dma_pool *pool;
158 };
159
160 /*
161 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 *
163 * @lock: Lock used when adding/removing from pools
164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165 * @options: Limits for the pool.
166 * @npools: Total amount of pools in existence.
167 * @shrinker: The structure used by [un|]register_shrinker
168 */
169 struct ttm_pool_manager {
170 struct mutex lock;
171 struct list_head pools;
172 struct ttm_pool_opts options;
173 unsigned npools;
174 struct shrinker mm_shrink;
175 struct kobject kobj;
176 };
177
178 static struct ttm_pool_manager *_manager;
179
180 static struct attribute ttm_page_pool_max = {
181 .name = "pool_max_size",
182 .mode = S_IRUGO | S_IWUSR
183 };
184 static struct attribute ttm_page_pool_small = {
185 .name = "pool_small_allocation",
186 .mode = S_IRUGO | S_IWUSR
187 };
188 static struct attribute ttm_page_pool_alloc_size = {
189 .name = "pool_allocation_size",
190 .mode = S_IRUGO | S_IWUSR
191 };
192
193 static struct attribute *ttm_pool_attrs[] = {
194 &ttm_page_pool_max,
195 &ttm_page_pool_small,
196 &ttm_page_pool_alloc_size,
197 NULL
198 };
199
ttm_pool_kobj_release(struct kobject * kobj)200 static void ttm_pool_kobj_release(struct kobject *kobj)
201 {
202 struct ttm_pool_manager *m =
203 container_of(kobj, struct ttm_pool_manager, kobj);
204 kfree(m);
205 }
206
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)207 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208 const char *buffer, size_t size)
209 {
210 struct ttm_pool_manager *m =
211 container_of(kobj, struct ttm_pool_manager, kobj);
212 int chars;
213 unsigned val;
214 chars = sscanf(buffer, "%u", &val);
215 if (chars == 0)
216 return size;
217
218 /* Convert kb to number of pages */
219 val = val / (PAGE_SIZE >> 10);
220
221 if (attr == &ttm_page_pool_max)
222 m->options.max_size = val;
223 else if (attr == &ttm_page_pool_small)
224 m->options.small = val;
225 else if (attr == &ttm_page_pool_alloc_size) {
226 if (val > NUM_PAGES_TO_ALLOC*8) {
227 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230 return size;
231 } else if (val > NUM_PAGES_TO_ALLOC) {
232 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234 }
235 m->options.alloc_size = val;
236 }
237
238 return size;
239 }
240
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)241 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242 char *buffer)
243 {
244 struct ttm_pool_manager *m =
245 container_of(kobj, struct ttm_pool_manager, kobj);
246 unsigned val = 0;
247
248 if (attr == &ttm_page_pool_max)
249 val = m->options.max_size;
250 else if (attr == &ttm_page_pool_small)
251 val = m->options.small;
252 else if (attr == &ttm_page_pool_alloc_size)
253 val = m->options.alloc_size;
254
255 val = val * (PAGE_SIZE >> 10);
256
257 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258 }
259
260 static const struct sysfs_ops ttm_pool_sysfs_ops = {
261 .show = &ttm_pool_show,
262 .store = &ttm_pool_store,
263 };
264
265 static struct kobj_type ttm_pool_kobj_type = {
266 .release = &ttm_pool_kobj_release,
267 .sysfs_ops = &ttm_pool_sysfs_ops,
268 .default_attrs = ttm_pool_attrs,
269 };
270
271 #ifndef CONFIG_X86
set_pages_array_wb(struct page ** pages,int addrinarray)272 static int set_pages_array_wb(struct page **pages, int addrinarray)
273 {
274 #ifdef TTM_HAS_AGP
275 int i;
276
277 for (i = 0; i < addrinarray; i++)
278 unmap_page_from_agp(pages[i]);
279 #endif
280 return 0;
281 }
282
set_pages_array_wc(struct page ** pages,int addrinarray)283 static int set_pages_array_wc(struct page **pages, int addrinarray)
284 {
285 #ifdef TTM_HAS_AGP
286 int i;
287
288 for (i = 0; i < addrinarray; i++)
289 map_page_into_agp(pages[i]);
290 #endif
291 return 0;
292 }
293
set_pages_array_uc(struct page ** pages,int addrinarray)294 static int set_pages_array_uc(struct page **pages, int addrinarray)
295 {
296 #ifdef TTM_HAS_AGP
297 int i;
298
299 for (i = 0; i < addrinarray; i++)
300 map_page_into_agp(pages[i]);
301 #endif
302 return 0;
303 }
304 #endif /* for !CONFIG_X86 */
305
ttm_set_pages_caching(struct dma_pool * pool,struct page ** pages,unsigned cpages)306 static int ttm_set_pages_caching(struct dma_pool *pool,
307 struct page **pages, unsigned cpages)
308 {
309 int r = 0;
310 /* Set page caching */
311 if (pool->type & IS_UC) {
312 r = set_pages_array_uc(pages, cpages);
313 if (r)
314 pr_err("%s: Failed to set %d pages to uc!\n",
315 pool->dev_name, cpages);
316 }
317 if (pool->type & IS_WC) {
318 r = set_pages_array_wc(pages, cpages);
319 if (r)
320 pr_err("%s: Failed to set %d pages to wc!\n",
321 pool->dev_name, cpages);
322 }
323 return r;
324 }
325
__ttm_dma_free_page(struct dma_pool * pool,struct dma_page * d_page)326 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327 {
328 dma_addr_t dma = d_page->dma;
329 dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330
331 kfree(d_page);
332 d_page = NULL;
333 }
__ttm_dma_alloc_page(struct dma_pool * pool)334 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335 {
336 struct dma_page *d_page;
337
338 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339 if (!d_page)
340 return NULL;
341
342 d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343 &d_page->dma,
344 pool->gfp_flags);
345 if (d_page->vaddr)
346 d_page->p = virt_to_page(d_page->vaddr);
347 else {
348 kfree(d_page);
349 d_page = NULL;
350 }
351 return d_page;
352 }
ttm_to_type(int flags,enum ttm_caching_state cstate)353 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
354 {
355 enum pool_type type = IS_UNDEFINED;
356
357 if (flags & TTM_PAGE_FLAG_DMA32)
358 type |= IS_DMA32;
359 if (cstate == tt_cached)
360 type |= IS_CACHED;
361 else if (cstate == tt_uncached)
362 type |= IS_UC;
363 else
364 type |= IS_WC;
365
366 return type;
367 }
368
ttm_pool_update_free_locked(struct dma_pool * pool,unsigned freed_pages)369 static void ttm_pool_update_free_locked(struct dma_pool *pool,
370 unsigned freed_pages)
371 {
372 pool->npages_free -= freed_pages;
373 pool->nfrees += freed_pages;
374
375 }
376
377 /* set memory back to wb and free the pages. */
ttm_dma_pages_put(struct dma_pool * pool,struct list_head * d_pages,struct page * pages[],unsigned npages)378 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
379 struct page *pages[], unsigned npages)
380 {
381 struct dma_page *d_page, *tmp;
382
383 /* Don't set WB on WB page pool. */
384 if (npages && !(pool->type & IS_CACHED) &&
385 set_pages_array_wb(pages, npages))
386 pr_err("%s: Failed to set %d pages to wb!\n",
387 pool->dev_name, npages);
388
389 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
390 list_del(&d_page->page_list);
391 __ttm_dma_free_page(pool, d_page);
392 }
393 }
394
ttm_dma_page_put(struct dma_pool * pool,struct dma_page * d_page)395 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
396 {
397 /* Don't set WB on WB page pool. */
398 if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
399 pr_err("%s: Failed to set %d pages to wb!\n",
400 pool->dev_name, 1);
401
402 list_del(&d_page->page_list);
403 __ttm_dma_free_page(pool, d_page);
404 }
405
406 /*
407 * Free pages from pool.
408 *
409 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
410 * number of pages in one go.
411 *
412 * @pool: to free the pages from
413 * @nr_free: If set to true will free all pages in pool
414 * @use_static: Safe to use static buffer
415 **/
ttm_dma_page_pool_free(struct dma_pool * pool,unsigned nr_free,bool use_static)416 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
417 bool use_static)
418 {
419 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
420 unsigned long irq_flags;
421 struct dma_page *dma_p, *tmp;
422 struct page **pages_to_free;
423 struct list_head d_pages;
424 unsigned freed_pages = 0,
425 npages_to_free = nr_free;
426
427 if (NUM_PAGES_TO_ALLOC < nr_free)
428 npages_to_free = NUM_PAGES_TO_ALLOC;
429 #if 0
430 if (nr_free > 1) {
431 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
432 pool->dev_name, pool->name, current->pid,
433 npages_to_free, nr_free);
434 }
435 #endif
436 if (use_static)
437 pages_to_free = static_buf;
438 else
439 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
440 GFP_KERNEL);
441
442 if (!pages_to_free) {
443 pr_err("%s: Failed to allocate memory for pool free operation\n",
444 pool->dev_name);
445 return 0;
446 }
447 INIT_LIST_HEAD(&d_pages);
448 restart:
449 spin_lock_irqsave(&pool->lock, irq_flags);
450
451 /* We picking the oldest ones off the list */
452 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
453 page_list) {
454 if (freed_pages >= npages_to_free)
455 break;
456
457 /* Move the dma_page from one list to another. */
458 list_move(&dma_p->page_list, &d_pages);
459
460 pages_to_free[freed_pages++] = dma_p->p;
461 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
462 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
463
464 ttm_pool_update_free_locked(pool, freed_pages);
465 /**
466 * Because changing page caching is costly
467 * we unlock the pool to prevent stalling.
468 */
469 spin_unlock_irqrestore(&pool->lock, irq_flags);
470
471 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
472 freed_pages);
473
474 INIT_LIST_HEAD(&d_pages);
475
476 if (likely(nr_free != FREE_ALL_PAGES))
477 nr_free -= freed_pages;
478
479 if (NUM_PAGES_TO_ALLOC >= nr_free)
480 npages_to_free = nr_free;
481 else
482 npages_to_free = NUM_PAGES_TO_ALLOC;
483
484 freed_pages = 0;
485
486 /* free all so restart the processing */
487 if (nr_free)
488 goto restart;
489
490 /* Not allowed to fall through or break because
491 * following context is inside spinlock while we are
492 * outside here.
493 */
494 goto out;
495
496 }
497 }
498
499 /* remove range of pages from the pool */
500 if (freed_pages) {
501 ttm_pool_update_free_locked(pool, freed_pages);
502 nr_free -= freed_pages;
503 }
504
505 spin_unlock_irqrestore(&pool->lock, irq_flags);
506
507 if (freed_pages)
508 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
509 out:
510 if (pages_to_free != static_buf)
511 kfree(pages_to_free);
512 return nr_free;
513 }
514
ttm_dma_free_pool(struct device * dev,enum pool_type type)515 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
516 {
517 struct device_pools *p;
518 struct dma_pool *pool;
519
520 if (!dev)
521 return;
522
523 mutex_lock(&_manager->lock);
524 list_for_each_entry_reverse(p, &_manager->pools, pools) {
525 if (p->dev != dev)
526 continue;
527 pool = p->pool;
528 if (pool->type != type)
529 continue;
530
531 list_del(&p->pools);
532 kfree(p);
533 _manager->npools--;
534 break;
535 }
536 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
537 if (pool->type != type)
538 continue;
539 /* Takes a spinlock.. */
540 /* OK to use static buffer since global mutex is held. */
541 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
542 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
543 /* This code path is called after _all_ references to the
544 * struct device has been dropped - so nobody should be
545 * touching it. In case somebody is trying to _add_ we are
546 * guarded by the mutex. */
547 list_del(&pool->pools);
548 kfree(pool);
549 break;
550 }
551 mutex_unlock(&_manager->lock);
552 }
553
554 /*
555 * On free-ing of the 'struct device' this deconstructor is run.
556 * Albeit the pool might have already been freed earlier.
557 */
ttm_dma_pool_release(struct device * dev,void * res)558 static void ttm_dma_pool_release(struct device *dev, void *res)
559 {
560 struct dma_pool *pool = *(struct dma_pool **)res;
561
562 if (pool)
563 ttm_dma_free_pool(dev, pool->type);
564 }
565
ttm_dma_pool_match(struct device * dev,void * res,void * match_data)566 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
567 {
568 return *(struct dma_pool **)res == match_data;
569 }
570
ttm_dma_pool_init(struct device * dev,gfp_t flags,enum pool_type type)571 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
572 enum pool_type type)
573 {
574 char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
575 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
576 struct device_pools *sec_pool = NULL;
577 struct dma_pool *pool = NULL, **ptr;
578 unsigned i;
579 int ret = -ENODEV;
580 char *p;
581
582 if (!dev)
583 return NULL;
584
585 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
586 if (!ptr)
587 return NULL;
588
589 ret = -ENOMEM;
590
591 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
592 dev_to_node(dev));
593 if (!pool)
594 goto err_mem;
595
596 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
597 dev_to_node(dev));
598 if (!sec_pool)
599 goto err_mem;
600
601 INIT_LIST_HEAD(&sec_pool->pools);
602 sec_pool->dev = dev;
603 sec_pool->pool = pool;
604
605 INIT_LIST_HEAD(&pool->free_list);
606 INIT_LIST_HEAD(&pool->inuse_list);
607 INIT_LIST_HEAD(&pool->pools);
608 spin_lock_init(&pool->lock);
609 pool->dev = dev;
610 pool->npages_free = pool->npages_in_use = 0;
611 pool->nfrees = 0;
612 pool->gfp_flags = flags;
613 pool->size = PAGE_SIZE;
614 pool->type = type;
615 pool->nrefills = 0;
616 p = pool->name;
617 for (i = 0; i < 5; i++) {
618 if (type & t[i]) {
619 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
620 "%s", n[i]);
621 }
622 }
623 *p = 0;
624 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
625 * - the kobj->name has already been deallocated.*/
626 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
627 dev_driver_string(dev), dev_name(dev));
628 mutex_lock(&_manager->lock);
629 /* You can get the dma_pool from either the global: */
630 list_add(&sec_pool->pools, &_manager->pools);
631 _manager->npools++;
632 /* or from 'struct device': */
633 list_add(&pool->pools, &dev->dma_pools);
634 mutex_unlock(&_manager->lock);
635
636 *ptr = pool;
637 devres_add(dev, ptr);
638
639 return pool;
640 err_mem:
641 devres_free(ptr);
642 kfree(sec_pool);
643 kfree(pool);
644 return ERR_PTR(ret);
645 }
646
ttm_dma_find_pool(struct device * dev,enum pool_type type)647 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
648 enum pool_type type)
649 {
650 struct dma_pool *pool, *tmp, *found = NULL;
651
652 if (type == IS_UNDEFINED)
653 return found;
654
655 /* NB: We iterate on the 'struct dev' which has no spinlock, but
656 * it does have a kref which we have taken. The kref is taken during
657 * graphic driver loading - in the drm_pci_init it calls either
658 * pci_dev_get or pci_register_driver which both end up taking a kref
659 * on 'struct device'.
660 *
661 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
662 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
663 * thing is at that point of time there are no pages associated with the
664 * driver so this function will not be called.
665 */
666 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
667 if (pool->type != type)
668 continue;
669 found = pool;
670 break;
671 }
672 return found;
673 }
674
675 /*
676 * Free pages the pages that failed to change the caching state. If there
677 * are pages that have changed their caching state already put them to the
678 * pool.
679 */
ttm_dma_handle_caching_state_failure(struct dma_pool * pool,struct list_head * d_pages,struct page ** failed_pages,unsigned cpages)680 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
681 struct list_head *d_pages,
682 struct page **failed_pages,
683 unsigned cpages)
684 {
685 struct dma_page *d_page, *tmp;
686 struct page *p;
687 unsigned i = 0;
688
689 p = failed_pages[0];
690 if (!p)
691 return;
692 /* Find the failed page. */
693 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
694 if (d_page->p != p)
695 continue;
696 /* .. and then progress over the full list. */
697 list_del(&d_page->page_list);
698 __ttm_dma_free_page(pool, d_page);
699 if (++i < cpages)
700 p = failed_pages[i];
701 else
702 break;
703 }
704
705 }
706
707 /*
708 * Allocate 'count' pages, and put 'need' number of them on the
709 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
710 * The full list of pages should also be on 'd_pages'.
711 * We return zero for success, and negative numbers as errors.
712 */
ttm_dma_pool_alloc_new_pages(struct dma_pool * pool,struct list_head * d_pages,unsigned count)713 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
714 struct list_head *d_pages,
715 unsigned count)
716 {
717 struct page **caching_array;
718 struct dma_page *dma_p;
719 struct page *p;
720 int r = 0;
721 unsigned i, cpages;
722 unsigned max_cpages = min(count,
723 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
724
725 /* allocate array for page caching change */
726 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
727
728 if (!caching_array) {
729 pr_err("%s: Unable to allocate table for new pages\n",
730 pool->dev_name);
731 return -ENOMEM;
732 }
733
734 if (count > 1) {
735 pr_debug("%s: (%s:%d) Getting %d pages\n",
736 pool->dev_name, pool->name, current->pid, count);
737 }
738
739 for (i = 0, cpages = 0; i < count; ++i) {
740 dma_p = __ttm_dma_alloc_page(pool);
741 if (!dma_p) {
742 pr_err("%s: Unable to get page %u\n",
743 pool->dev_name, i);
744
745 /* store already allocated pages in the pool after
746 * setting the caching state */
747 if (cpages) {
748 r = ttm_set_pages_caching(pool, caching_array,
749 cpages);
750 if (r)
751 ttm_dma_handle_caching_state_failure(
752 pool, d_pages, caching_array,
753 cpages);
754 }
755 r = -ENOMEM;
756 goto out;
757 }
758 p = dma_p->p;
759 #ifdef CONFIG_HIGHMEM
760 /* gfp flags of highmem page should never be dma32 so we
761 * we should be fine in such case
762 */
763 if (!PageHighMem(p))
764 #endif
765 {
766 caching_array[cpages++] = p;
767 if (cpages == max_cpages) {
768 /* Note: Cannot hold the spinlock */
769 r = ttm_set_pages_caching(pool, caching_array,
770 cpages);
771 if (r) {
772 ttm_dma_handle_caching_state_failure(
773 pool, d_pages, caching_array,
774 cpages);
775 goto out;
776 }
777 cpages = 0;
778 }
779 }
780 list_add(&dma_p->page_list, d_pages);
781 }
782
783 if (cpages) {
784 r = ttm_set_pages_caching(pool, caching_array, cpages);
785 if (r)
786 ttm_dma_handle_caching_state_failure(pool, d_pages,
787 caching_array, cpages);
788 }
789 out:
790 kfree(caching_array);
791 return r;
792 }
793
794 /*
795 * @return count of pages still required to fulfill the request.
796 */
ttm_dma_page_pool_fill_locked(struct dma_pool * pool,unsigned long * irq_flags)797 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
798 unsigned long *irq_flags)
799 {
800 unsigned count = _manager->options.small;
801 int r = pool->npages_free;
802
803 if (count > pool->npages_free) {
804 struct list_head d_pages;
805
806 INIT_LIST_HEAD(&d_pages);
807
808 spin_unlock_irqrestore(&pool->lock, *irq_flags);
809
810 /* Returns how many more are neccessary to fulfill the
811 * request. */
812 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
813
814 spin_lock_irqsave(&pool->lock, *irq_flags);
815 if (!r) {
816 /* Add the fresh to the end.. */
817 list_splice(&d_pages, &pool->free_list);
818 ++pool->nrefills;
819 pool->npages_free += count;
820 r = count;
821 } else {
822 struct dma_page *d_page;
823 unsigned cpages = 0;
824
825 pr_err("%s: Failed to fill %s pool (r:%d)!\n",
826 pool->dev_name, pool->name, r);
827
828 list_for_each_entry(d_page, &d_pages, page_list) {
829 cpages++;
830 }
831 list_splice_tail(&d_pages, &pool->free_list);
832 pool->npages_free += cpages;
833 r = cpages;
834 }
835 }
836 return r;
837 }
838
839 /*
840 * @return count of pages still required to fulfill the request.
841 * The populate list is actually a stack (not that is matters as TTM
842 * allocates one page at a time.
843 */
ttm_dma_pool_get_pages(struct dma_pool * pool,struct ttm_dma_tt * ttm_dma,unsigned index)844 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
845 struct ttm_dma_tt *ttm_dma,
846 unsigned index)
847 {
848 struct dma_page *d_page;
849 struct ttm_tt *ttm = &ttm_dma->ttm;
850 unsigned long irq_flags;
851 int count, r = -ENOMEM;
852
853 spin_lock_irqsave(&pool->lock, irq_flags);
854 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
855 if (count) {
856 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
857 ttm->pages[index] = d_page->p;
858 ttm_dma->cpu_address[index] = d_page->vaddr;
859 ttm_dma->dma_address[index] = d_page->dma;
860 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
861 r = 0;
862 pool->npages_in_use += 1;
863 pool->npages_free -= 1;
864 }
865 spin_unlock_irqrestore(&pool->lock, irq_flags);
866 return r;
867 }
868
869 /*
870 * On success pages list will hold count number of correctly
871 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
872 */
ttm_dma_populate(struct ttm_dma_tt * ttm_dma,struct device * dev)873 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
874 {
875 struct ttm_tt *ttm = &ttm_dma->ttm;
876 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
877 struct dma_pool *pool;
878 enum pool_type type;
879 unsigned i;
880 gfp_t gfp_flags;
881 int ret;
882
883 if (ttm->state != tt_unpopulated)
884 return 0;
885
886 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
887 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
888 gfp_flags = GFP_USER | GFP_DMA32;
889 else
890 gfp_flags = GFP_HIGHUSER;
891 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
892 gfp_flags |= __GFP_ZERO;
893
894 pool = ttm_dma_find_pool(dev, type);
895 if (!pool) {
896 pool = ttm_dma_pool_init(dev, gfp_flags, type);
897 if (IS_ERR_OR_NULL(pool)) {
898 return -ENOMEM;
899 }
900 }
901
902 INIT_LIST_HEAD(&ttm_dma->pages_list);
903 for (i = 0; i < ttm->num_pages; ++i) {
904 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
905 if (ret != 0) {
906 ttm_dma_unpopulate(ttm_dma, dev);
907 return -ENOMEM;
908 }
909
910 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
911 false, false);
912 if (unlikely(ret != 0)) {
913 ttm_dma_unpopulate(ttm_dma, dev);
914 return -ENOMEM;
915 }
916 }
917
918 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
919 ret = ttm_tt_swapin(ttm);
920 if (unlikely(ret != 0)) {
921 ttm_dma_unpopulate(ttm_dma, dev);
922 return ret;
923 }
924 }
925
926 ttm->state = tt_unbound;
927 return 0;
928 }
929 EXPORT_SYMBOL_GPL(ttm_dma_populate);
930
931 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_dma_unpopulate(struct ttm_dma_tt * ttm_dma,struct device * dev)932 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
933 {
934 struct ttm_tt *ttm = &ttm_dma->ttm;
935 struct dma_pool *pool;
936 struct dma_page *d_page, *next;
937 enum pool_type type;
938 bool is_cached = false;
939 unsigned count = 0, i, npages = 0;
940 unsigned long irq_flags;
941
942 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
943 pool = ttm_dma_find_pool(dev, type);
944 if (!pool)
945 return;
946
947 is_cached = (ttm_dma_find_pool(pool->dev,
948 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
949
950 /* make sure pages array match list and count number of pages */
951 list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
952 ttm->pages[count] = d_page->p;
953 count++;
954 }
955
956 spin_lock_irqsave(&pool->lock, irq_flags);
957 pool->npages_in_use -= count;
958 if (is_cached) {
959 pool->nfrees += count;
960 } else {
961 pool->npages_free += count;
962 list_splice(&ttm_dma->pages_list, &pool->free_list);
963 npages = count;
964 if (pool->npages_free > _manager->options.max_size) {
965 npages = pool->npages_free - _manager->options.max_size;
966 /* free at least NUM_PAGES_TO_ALLOC number of pages
967 * to reduce calls to set_memory_wb */
968 if (npages < NUM_PAGES_TO_ALLOC)
969 npages = NUM_PAGES_TO_ALLOC;
970 }
971 }
972 spin_unlock_irqrestore(&pool->lock, irq_flags);
973
974 if (is_cached) {
975 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
976 ttm_mem_global_free_page(ttm->glob->mem_glob,
977 d_page->p);
978 ttm_dma_page_put(pool, d_page);
979 }
980 } else {
981 for (i = 0; i < count; i++) {
982 ttm_mem_global_free_page(ttm->glob->mem_glob,
983 ttm->pages[i]);
984 }
985 }
986
987 INIT_LIST_HEAD(&ttm_dma->pages_list);
988 for (i = 0; i < ttm->num_pages; i++) {
989 ttm->pages[i] = NULL;
990 ttm_dma->cpu_address[i] = 0;
991 ttm_dma->dma_address[i] = 0;
992 }
993
994 /* shrink pool if necessary (only on !is_cached pools)*/
995 if (npages)
996 ttm_dma_page_pool_free(pool, npages, false);
997 ttm->state = tt_unpopulated;
998 }
999 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1000
1001 /**
1002 * Callback for mm to request pool to reduce number of page held.
1003 *
1004 * XXX: (dchinner) Deadlock warning!
1005 *
1006 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1007 * shrinkers
1008 */
1009 static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1010 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1011 {
1012 static unsigned start_pool;
1013 unsigned idx = 0;
1014 unsigned pool_offset;
1015 unsigned shrink_pages = sc->nr_to_scan;
1016 struct device_pools *p;
1017 unsigned long freed = 0;
1018
1019 if (list_empty(&_manager->pools))
1020 return SHRINK_STOP;
1021
1022 if (!mutex_trylock(&_manager->lock))
1023 return SHRINK_STOP;
1024 if (!_manager->npools)
1025 goto out;
1026 pool_offset = ++start_pool % _manager->npools;
1027 list_for_each_entry(p, &_manager->pools, pools) {
1028 unsigned nr_free;
1029
1030 if (!p->dev)
1031 continue;
1032 if (shrink_pages == 0)
1033 break;
1034 /* Do it in round-robin fashion. */
1035 if (++idx < pool_offset)
1036 continue;
1037 nr_free = shrink_pages;
1038 /* OK to use static buffer since global mutex is held. */
1039 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1040 freed += nr_free - shrink_pages;
1041
1042 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1043 p->pool->dev_name, p->pool->name, current->pid,
1044 nr_free, shrink_pages);
1045 }
1046 out:
1047 mutex_unlock(&_manager->lock);
1048 return freed;
1049 }
1050
1051 static unsigned long
ttm_dma_pool_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1052 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1053 {
1054 struct device_pools *p;
1055 unsigned long count = 0;
1056
1057 if (!mutex_trylock(&_manager->lock))
1058 return 0;
1059 list_for_each_entry(p, &_manager->pools, pools)
1060 count += p->pool->npages_free;
1061 mutex_unlock(&_manager->lock);
1062 return count;
1063 }
1064
ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager * manager)1065 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1066 {
1067 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1068 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1069 manager->mm_shrink.seeks = 1;
1070 register_shrinker(&manager->mm_shrink);
1071 }
1072
ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager * manager)1073 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1074 {
1075 unregister_shrinker(&manager->mm_shrink);
1076 }
1077
ttm_dma_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)1078 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1079 {
1080 int ret = -ENOMEM;
1081
1082 WARN_ON(_manager);
1083
1084 pr_info("Initializing DMA pool allocator\n");
1085
1086 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1087 if (!_manager)
1088 goto err;
1089
1090 mutex_init(&_manager->lock);
1091 INIT_LIST_HEAD(&_manager->pools);
1092
1093 _manager->options.max_size = max_pages;
1094 _manager->options.small = SMALL_ALLOCATION;
1095 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1096
1097 /* This takes care of auto-freeing the _manager */
1098 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1099 &glob->kobj, "dma_pool");
1100 if (unlikely(ret != 0)) {
1101 kobject_put(&_manager->kobj);
1102 goto err;
1103 }
1104 ttm_dma_pool_mm_shrink_init(_manager);
1105 return 0;
1106 err:
1107 return ret;
1108 }
1109
ttm_dma_page_alloc_fini(void)1110 void ttm_dma_page_alloc_fini(void)
1111 {
1112 struct device_pools *p, *t;
1113
1114 pr_info("Finalizing DMA pool allocator\n");
1115 ttm_dma_pool_mm_shrink_fini(_manager);
1116
1117 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1118 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1119 current->pid);
1120 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1121 ttm_dma_pool_match, p->pool));
1122 ttm_dma_free_pool(p->dev, p->pool->type);
1123 }
1124 kobject_put(&_manager->kobj);
1125 _manager = NULL;
1126 }
1127
ttm_dma_page_alloc_debugfs(struct seq_file * m,void * data)1128 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1129 {
1130 struct device_pools *p;
1131 struct dma_pool *pool = NULL;
1132 char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1133 "name", "virt", "busaddr"};
1134
1135 if (!_manager) {
1136 seq_printf(m, "No pool allocator running.\n");
1137 return 0;
1138 }
1139 seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1140 h[0], h[1], h[2], h[3], h[4], h[5]);
1141 mutex_lock(&_manager->lock);
1142 list_for_each_entry(p, &_manager->pools, pools) {
1143 struct device *dev = p->dev;
1144 if (!dev)
1145 continue;
1146 pool = p->pool;
1147 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1148 pool->name, pool->nrefills,
1149 pool->nfrees, pool->npages_in_use,
1150 pool->npages_free,
1151 pool->dev_name);
1152 }
1153 mutex_unlock(&_manager->lock);
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1157
1158 #endif
1159