1 /*
2 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 *
5 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 /*
23 * Supports following chips:
24 *
25 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
26 * w83791d 10 5 5 3 0x71 0x5ca3 yes no
27 *
28 * The w83791d chip appears to be part way between the 83781d and the
29 * 83792d. Thus, this file is derived from both the w83792d.c and
30 * w83781d.c files.
31 *
32 * The w83791g chip is the same as the w83791d but lead-free.
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/hwmon.h>
40 #include <linux/hwmon-vid.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/jiffies.h>
45
46 #define NUMBER_OF_VIN 10
47 #define NUMBER_OF_FANIN 5
48 #define NUMBER_OF_TEMPIN 3
49 #define NUMBER_OF_PWM 5
50
51 /* Addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
53 I2C_CLIENT_END };
54
55 /* Insmod parameters */
56
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients,
60 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
61
62 static bool reset;
63 module_param(reset, bool, 0);
64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
65
66 static bool init;
67 module_param(init, bool, 0);
68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
69
70 /* The W83791D registers */
71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
72 0x20, /* VCOREA in DataSheet */
73 0x21, /* VINR0 in DataSheet */
74 0x22, /* +3.3VIN in DataSheet */
75 0x23, /* VDD5V in DataSheet */
76 0x24, /* +12VIN in DataSheet */
77 0x25, /* -12VIN in DataSheet */
78 0x26, /* -5VIN in DataSheet */
79 0xB0, /* 5VSB in DataSheet */
80 0xB1, /* VBAT in DataSheet */
81 0xB2 /* VINR1 in DataSheet */
82 };
83
84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
85 0x2B, /* VCOREA High Limit in DataSheet */
86 0x2D, /* VINR0 High Limit in DataSheet */
87 0x2F, /* +3.3VIN High Limit in DataSheet */
88 0x31, /* VDD5V High Limit in DataSheet */
89 0x33, /* +12VIN High Limit in DataSheet */
90 0x35, /* -12VIN High Limit in DataSheet */
91 0x37, /* -5VIN High Limit in DataSheet */
92 0xB4, /* 5VSB High Limit in DataSheet */
93 0xB6, /* VBAT High Limit in DataSheet */
94 0xB8 /* VINR1 High Limit in DataSheet */
95 };
96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
97 0x2C, /* VCOREA Low Limit in DataSheet */
98 0x2E, /* VINR0 Low Limit in DataSheet */
99 0x30, /* +3.3VIN Low Limit in DataSheet */
100 0x32, /* VDD5V Low Limit in DataSheet */
101 0x34, /* +12VIN Low Limit in DataSheet */
102 0x36, /* -12VIN Low Limit in DataSheet */
103 0x38, /* -5VIN Low Limit in DataSheet */
104 0xB5, /* 5VSB Low Limit in DataSheet */
105 0xB7, /* VBAT Low Limit in DataSheet */
106 0xB9 /* VINR1 Low Limit in DataSheet */
107 };
108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
109 0x28, /* FAN 1 Count in DataSheet */
110 0x29, /* FAN 2 Count in DataSheet */
111 0x2A, /* FAN 3 Count in DataSheet */
112 0xBA, /* FAN 4 Count in DataSheet */
113 0xBB, /* FAN 5 Count in DataSheet */
114 };
115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
116 0x3B, /* FAN 1 Count Low Limit in DataSheet */
117 0x3C, /* FAN 2 Count Low Limit in DataSheet */
118 0x3D, /* FAN 3 Count Low Limit in DataSheet */
119 0xBC, /* FAN 4 Count Low Limit in DataSheet */
120 0xBD, /* FAN 5 Count Low Limit in DataSheet */
121 };
122
123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
124 0x81, /* PWM 1 duty cycle register in DataSheet */
125 0x83, /* PWM 2 duty cycle register in DataSheet */
126 0x94, /* PWM 3 duty cycle register in DataSheet */
127 0xA0, /* PWM 4 duty cycle register in DataSheet */
128 0xA1, /* PWM 5 duty cycle register in DataSheet */
129 };
130
131 static const u8 W83791D_REG_TEMP_TARGET[3] = {
132 0x85, /* PWM 1 target temperature for temp 1 */
133 0x86, /* PWM 2 target temperature for temp 2 */
134 0x96, /* PWM 3 target temperature for temp 3 */
135 };
136
137 static const u8 W83791D_REG_TEMP_TOL[2] = {
138 0x87, /* PWM 1/2 temperature tolerance */
139 0x97, /* PWM 3 temperature tolerance */
140 };
141
142 static const u8 W83791D_REG_FAN_CFG[2] = {
143 0x84, /* FAN 1/2 configuration */
144 0x95, /* FAN 3 configuration */
145 };
146
147 static const u8 W83791D_REG_FAN_DIV[3] = {
148 0x47, /* contains FAN1 and FAN2 Divisor */
149 0x4b, /* contains FAN3 Divisor */
150 0x5C, /* contains FAN4 and FAN5 Divisor */
151 };
152
153 #define W83791D_REG_BANK 0x4E
154 #define W83791D_REG_TEMP2_CONFIG 0xC2
155 #define W83791D_REG_TEMP3_CONFIG 0xCA
156
157 static const u8 W83791D_REG_TEMP1[3] = {
158 0x27, /* TEMP 1 in DataSheet */
159 0x39, /* TEMP 1 Over in DataSheet */
160 0x3A, /* TEMP 1 Hyst in DataSheet */
161 };
162
163 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
164 {0xC0, /* TEMP 2 in DataSheet */
165 0xC1, /* TEMP 2(0.5 deg) in DataSheet */
166 0xC5, /* TEMP 2 Over High part in DataSheet */
167 0xC6, /* TEMP 2 Over Low part in DataSheet */
168 0xC3, /* TEMP 2 Thyst High part in DataSheet */
169 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
170 {0xC8, /* TEMP 3 in DataSheet */
171 0xC9, /* TEMP 3(0.5 deg) in DataSheet */
172 0xCD, /* TEMP 3 Over High part in DataSheet */
173 0xCE, /* TEMP 3 Over Low part in DataSheet */
174 0xCB, /* TEMP 3 Thyst High part in DataSheet */
175 0xCC} /* TEMP 3 Thyst Low part in DataSheet */
176 };
177
178 #define W83791D_REG_BEEP_CONFIG 0x4D
179
180 static const u8 W83791D_REG_BEEP_CTRL[3] = {
181 0x56, /* BEEP Control Register 1 */
182 0x57, /* BEEP Control Register 2 */
183 0xA3, /* BEEP Control Register 3 */
184 };
185
186 #define W83791D_REG_GPIO 0x15
187 #define W83791D_REG_CONFIG 0x40
188 #define W83791D_REG_VID_FANDIV 0x47
189 #define W83791D_REG_DID_VID4 0x49
190 #define W83791D_REG_WCHIPID 0x58
191 #define W83791D_REG_CHIPMAN 0x4F
192 #define W83791D_REG_PIN 0x4B
193 #define W83791D_REG_I2C_SUBADDR 0x4A
194
195 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
196 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
197 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
198
199 #define W83791D_REG_VBAT 0x5D
200 #define W83791D_REG_I2C_ADDR 0x48
201
202 /*
203 * The SMBus locks itself. The Winbond W83791D has a bank select register
204 * (index 0x4e), but the driver only accesses registers in bank 0. Since
205 * we don't switch banks, we don't need any special code to handle
206 * locking access between bank switches
207 */
w83791d_read(struct i2c_client * client,u8 reg)208 static inline int w83791d_read(struct i2c_client *client, u8 reg)
209 {
210 return i2c_smbus_read_byte_data(client, reg);
211 }
212
w83791d_write(struct i2c_client * client,u8 reg,u8 value)213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
214 {
215 return i2c_smbus_write_byte_data(client, reg, value);
216 }
217
218 /*
219 * The analog voltage inputs have 16mV LSB. Since the sysfs output is
220 * in mV as would be measured on the chip input pin, need to just
221 * multiply/divide by 16 to translate from/to register values.
222 */
223 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255))
224 #define IN_FROM_REG(val) ((val) * 16)
225
fan_to_reg(long rpm,int div)226 static u8 fan_to_reg(long rpm, int div)
227 {
228 if (rpm == 0)
229 return 255;
230 rpm = clamp_val(rpm, 1, 1000000);
231 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
232 }
233
234 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
235 ((val) == 255 ? 0 : \
236 1350000 / ((val) * (div))))
237
238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
239 #define TEMP1_FROM_REG(val) ((val) * 1000)
240 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
241 (val) >= 127000 ? 127 : \
242 (val) < 0 ? ((val) - 500) / 1000 : \
243 ((val) + 500) / 1000)
244
245 /*
246 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
247 * Assumes the top 8 bits are the integral amount and the bottom 8 bits
248 * are the fractional amount. Since we only have 0.5 degree resolution,
249 * the bottom 7 bits will always be zero
250 */
251 #define TEMP23_FROM_REG(val) ((val) / 128 * 500)
252 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
253 127500), 500) * 128)
254
255 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
256 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
257 1000)
258
259 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
260 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
261 1000)
262
263 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
264 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
265
266 #define DIV_FROM_REG(val) (1 << (val))
267
div_to_reg(int nr,long val)268 static u8 div_to_reg(int nr, long val)
269 {
270 int i;
271
272 /* fan divisors max out at 128 */
273 val = clamp_val(val, 1, 128) >> 1;
274 for (i = 0; i < 7; i++) {
275 if (val == 0)
276 break;
277 val >>= 1;
278 }
279 return (u8) i;
280 }
281
282 struct w83791d_data {
283 struct device *hwmon_dev;
284 struct mutex update_lock;
285
286 char valid; /* !=0 if following fields are valid */
287 unsigned long last_updated; /* In jiffies */
288
289 /* array of 2 pointers to subclients */
290 struct i2c_client *lm75[2];
291
292 /* volts */
293 u8 in[NUMBER_OF_VIN]; /* Register value */
294 u8 in_max[NUMBER_OF_VIN]; /* Register value */
295 u8 in_min[NUMBER_OF_VIN]; /* Register value */
296
297 /* fans */
298 u8 fan[NUMBER_OF_FANIN]; /* Register value */
299 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
300 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
301
302 /* Temperature sensors */
303
304 s8 temp1[3]; /* current, over, thyst */
305 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
306 * integral part, bottom 8 bits are the
307 * fractional part. We only use the top
308 * 9 bits as the resolution is only
309 * to the 0.5 degree C...
310 * two sensors with three values
311 * (cur, over, hyst)
312 */
313
314 /* PWMs */
315 u8 pwm[5]; /* pwm duty cycle */
316 u8 pwm_enable[3]; /* pwm enable status for fan 1-3
317 * (fan 4-5 only support manual mode)
318 */
319
320 u8 temp_target[3]; /* pwm 1-3 target temperature */
321 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
322
323 /* Misc */
324 u32 alarms; /* realtime status register encoding,combined */
325 u8 beep_enable; /* Global beep enable */
326 u32 beep_mask; /* Mask off specific beeps */
327 u8 vid; /* Register encoding, combined */
328 u8 vrm; /* hwmon-vid */
329 };
330
331 static int w83791d_probe(struct i2c_client *client,
332 const struct i2c_device_id *id);
333 static int w83791d_detect(struct i2c_client *client,
334 struct i2c_board_info *info);
335 static int w83791d_remove(struct i2c_client *client);
336
337 static int w83791d_read(struct i2c_client *client, u8 reg);
338 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
339 static struct w83791d_data *w83791d_update_device(struct device *dev);
340
341 #ifdef DEBUG
342 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
343 #endif
344
345 static void w83791d_init_client(struct i2c_client *client);
346
347 static const struct i2c_device_id w83791d_id[] = {
348 { "w83791d", 0 },
349 { }
350 };
351 MODULE_DEVICE_TABLE(i2c, w83791d_id);
352
353 static struct i2c_driver w83791d_driver = {
354 .class = I2C_CLASS_HWMON,
355 .driver = {
356 .name = "w83791d",
357 },
358 .probe = w83791d_probe,
359 .remove = w83791d_remove,
360 .id_table = w83791d_id,
361 .detect = w83791d_detect,
362 .address_list = normal_i2c,
363 };
364
365 /* following are the sysfs callback functions */
366 #define show_in_reg(reg) \
367 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
368 char *buf) \
369 { \
370 struct sensor_device_attribute *sensor_attr = \
371 to_sensor_dev_attr(attr); \
372 struct w83791d_data *data = w83791d_update_device(dev); \
373 int nr = sensor_attr->index; \
374 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
375 }
376
377 show_in_reg(in);
378 show_in_reg(in_min);
379 show_in_reg(in_max);
380
381 #define store_in_reg(REG, reg) \
382 static ssize_t store_in_##reg(struct device *dev, \
383 struct device_attribute *attr, \
384 const char *buf, size_t count) \
385 { \
386 struct sensor_device_attribute *sensor_attr = \
387 to_sensor_dev_attr(attr); \
388 struct i2c_client *client = to_i2c_client(dev); \
389 struct w83791d_data *data = i2c_get_clientdata(client); \
390 int nr = sensor_attr->index; \
391 unsigned long val; \
392 int err = kstrtoul(buf, 10, &val); \
393 if (err) \
394 return err; \
395 mutex_lock(&data->update_lock); \
396 data->in_##reg[nr] = IN_TO_REG(val); \
397 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
398 mutex_unlock(&data->update_lock); \
399 \
400 return count; \
401 }
402 store_in_reg(MIN, min);
403 store_in_reg(MAX, max);
404
405 static struct sensor_device_attribute sda_in_input[] = {
406 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
407 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
408 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
409 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
410 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
411 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
412 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
413 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
414 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
415 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
416 };
417
418 static struct sensor_device_attribute sda_in_min[] = {
419 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
420 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
421 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
422 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
423 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
424 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
425 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
426 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
427 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
428 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
429 };
430
431 static struct sensor_device_attribute sda_in_max[] = {
432 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
433 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
434 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
435 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
436 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
437 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
438 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
439 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
440 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
441 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
442 };
443
444
show_beep(struct device * dev,struct device_attribute * attr,char * buf)445 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
446 char *buf)
447 {
448 struct sensor_device_attribute *sensor_attr =
449 to_sensor_dev_attr(attr);
450 struct w83791d_data *data = w83791d_update_device(dev);
451 int bitnr = sensor_attr->index;
452
453 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
454 }
455
store_beep(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)456 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
457 const char *buf, size_t count)
458 {
459 struct sensor_device_attribute *sensor_attr =
460 to_sensor_dev_attr(attr);
461 struct i2c_client *client = to_i2c_client(dev);
462 struct w83791d_data *data = i2c_get_clientdata(client);
463 int bitnr = sensor_attr->index;
464 int bytenr = bitnr / 8;
465 unsigned long val;
466 int err;
467
468 err = kstrtoul(buf, 10, &val);
469 if (err)
470 return err;
471
472 val = val ? 1 : 0;
473
474 mutex_lock(&data->update_lock);
475
476 data->beep_mask &= ~(0xff << (bytenr * 8));
477 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
478 << (bytenr * 8);
479
480 data->beep_mask &= ~(1 << bitnr);
481 data->beep_mask |= val << bitnr;
482
483 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
484 (data->beep_mask >> (bytenr * 8)) & 0xff);
485
486 mutex_unlock(&data->update_lock);
487
488 return count;
489 }
490
show_alarm(struct device * dev,struct device_attribute * attr,char * buf)491 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
492 char *buf)
493 {
494 struct sensor_device_attribute *sensor_attr =
495 to_sensor_dev_attr(attr);
496 struct w83791d_data *data = w83791d_update_device(dev);
497 int bitnr = sensor_attr->index;
498
499 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
500 }
501
502 /*
503 * Note: The bitmask for the beep enable/disable is different than
504 * the bitmask for the alarm.
505 */
506 static struct sensor_device_attribute sda_in_beep[] = {
507 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
508 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
509 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
510 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
511 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
512 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
513 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
514 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
515 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
516 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
517 };
518
519 static struct sensor_device_attribute sda_in_alarm[] = {
520 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
521 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
522 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
523 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
524 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
525 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
526 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
527 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
528 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
529 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
530 };
531
532 #define show_fan_reg(reg) \
533 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
534 char *buf) \
535 { \
536 struct sensor_device_attribute *sensor_attr = \
537 to_sensor_dev_attr(attr); \
538 struct w83791d_data *data = w83791d_update_device(dev); \
539 int nr = sensor_attr->index; \
540 return sprintf(buf, "%d\n", \
541 FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
542 }
543
544 show_fan_reg(fan);
545 show_fan_reg(fan_min);
546
store_fan_min(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)547 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
548 const char *buf, size_t count)
549 {
550 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
551 struct i2c_client *client = to_i2c_client(dev);
552 struct w83791d_data *data = i2c_get_clientdata(client);
553 int nr = sensor_attr->index;
554 unsigned long val;
555 int err;
556
557 err = kstrtoul(buf, 10, &val);
558 if (err)
559 return err;
560
561 mutex_lock(&data->update_lock);
562 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
563 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
564 mutex_unlock(&data->update_lock);
565
566 return count;
567 }
568
show_fan_div(struct device * dev,struct device_attribute * attr,char * buf)569 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
570 char *buf)
571 {
572 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
573 int nr = sensor_attr->index;
574 struct w83791d_data *data = w83791d_update_device(dev);
575 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
576 }
577
578 /*
579 * Note: we save and restore the fan minimum here, because its value is
580 * determined in part by the fan divisor. This follows the principle of
581 * least surprise; the user doesn't expect the fan minimum to change just
582 * because the divisor changed.
583 */
store_fan_div(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)584 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
585 const char *buf, size_t count)
586 {
587 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
588 struct i2c_client *client = to_i2c_client(dev);
589 struct w83791d_data *data = i2c_get_clientdata(client);
590 int nr = sensor_attr->index;
591 unsigned long min;
592 u8 tmp_fan_div;
593 u8 fan_div_reg;
594 u8 vbat_reg;
595 int indx = 0;
596 u8 keep_mask = 0;
597 u8 new_shift = 0;
598 unsigned long val;
599 int err;
600
601 err = kstrtoul(buf, 10, &val);
602 if (err)
603 return err;
604
605 /* Save fan_min */
606 min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
607
608 mutex_lock(&data->update_lock);
609 data->fan_div[nr] = div_to_reg(nr, val);
610
611 switch (nr) {
612 case 0:
613 indx = 0;
614 keep_mask = 0xcf;
615 new_shift = 4;
616 break;
617 case 1:
618 indx = 0;
619 keep_mask = 0x3f;
620 new_shift = 6;
621 break;
622 case 2:
623 indx = 1;
624 keep_mask = 0x3f;
625 new_shift = 6;
626 break;
627 case 3:
628 indx = 2;
629 keep_mask = 0xf8;
630 new_shift = 0;
631 break;
632 case 4:
633 indx = 2;
634 keep_mask = 0x8f;
635 new_shift = 4;
636 break;
637 #ifdef DEBUG
638 default:
639 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
640 count = -EINVAL;
641 goto err_exit;
642 #endif
643 }
644
645 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
646 & keep_mask;
647 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
648
649 w83791d_write(client, W83791D_REG_FAN_DIV[indx],
650 fan_div_reg | tmp_fan_div);
651
652 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
653 if (nr < 3) {
654 keep_mask = ~(1 << (nr + 5));
655 vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
656 & keep_mask;
657 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
658 w83791d_write(client, W83791D_REG_VBAT,
659 vbat_reg | tmp_fan_div);
660 }
661
662 /* Restore fan_min */
663 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
664 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
665
666 #ifdef DEBUG
667 err_exit:
668 #endif
669 mutex_unlock(&data->update_lock);
670
671 return count;
672 }
673
674 static struct sensor_device_attribute sda_fan_input[] = {
675 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
676 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
677 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
678 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
679 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
680 };
681
682 static struct sensor_device_attribute sda_fan_min[] = {
683 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
684 show_fan_min, store_fan_min, 0),
685 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
686 show_fan_min, store_fan_min, 1),
687 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
688 show_fan_min, store_fan_min, 2),
689 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
690 show_fan_min, store_fan_min, 3),
691 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
692 show_fan_min, store_fan_min, 4),
693 };
694
695 static struct sensor_device_attribute sda_fan_div[] = {
696 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
697 show_fan_div, store_fan_div, 0),
698 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
699 show_fan_div, store_fan_div, 1),
700 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
701 show_fan_div, store_fan_div, 2),
702 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
703 show_fan_div, store_fan_div, 3),
704 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
705 show_fan_div, store_fan_div, 4),
706 };
707
708 static struct sensor_device_attribute sda_fan_beep[] = {
709 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
710 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
711 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
712 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
713 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
714 };
715
716 static struct sensor_device_attribute sda_fan_alarm[] = {
717 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
718 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
719 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
720 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
721 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
722 };
723
724 /* read/write PWMs */
show_pwm(struct device * dev,struct device_attribute * attr,char * buf)725 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
726 char *buf)
727 {
728 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
729 int nr = sensor_attr->index;
730 struct w83791d_data *data = w83791d_update_device(dev);
731 return sprintf(buf, "%u\n", data->pwm[nr]);
732 }
733
store_pwm(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)734 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
735 const char *buf, size_t count)
736 {
737 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
738 struct i2c_client *client = to_i2c_client(dev);
739 struct w83791d_data *data = i2c_get_clientdata(client);
740 int nr = sensor_attr->index;
741 unsigned long val;
742
743 if (kstrtoul(buf, 10, &val))
744 return -EINVAL;
745
746 mutex_lock(&data->update_lock);
747 data->pwm[nr] = clamp_val(val, 0, 255);
748 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
749 mutex_unlock(&data->update_lock);
750 return count;
751 }
752
753 static struct sensor_device_attribute sda_pwm[] = {
754 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
755 show_pwm, store_pwm, 0),
756 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
757 show_pwm, store_pwm, 1),
758 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
759 show_pwm, store_pwm, 2),
760 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
761 show_pwm, store_pwm, 3),
762 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
763 show_pwm, store_pwm, 4),
764 };
765
show_pwmenable(struct device * dev,struct device_attribute * attr,char * buf)766 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
767 char *buf)
768 {
769 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
770 int nr = sensor_attr->index;
771 struct w83791d_data *data = w83791d_update_device(dev);
772 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
773 }
774
store_pwmenable(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)775 static ssize_t store_pwmenable(struct device *dev,
776 struct device_attribute *attr, const char *buf, size_t count)
777 {
778 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
779 struct i2c_client *client = to_i2c_client(dev);
780 struct w83791d_data *data = i2c_get_clientdata(client);
781 int nr = sensor_attr->index;
782 unsigned long val;
783 u8 reg_cfg_tmp;
784 u8 reg_idx = 0;
785 u8 val_shift = 0;
786 u8 keep_mask = 0;
787
788 int ret = kstrtoul(buf, 10, &val);
789
790 if (ret || val < 1 || val > 3)
791 return -EINVAL;
792
793 mutex_lock(&data->update_lock);
794 data->pwm_enable[nr] = val - 1;
795 switch (nr) {
796 case 0:
797 reg_idx = 0;
798 val_shift = 2;
799 keep_mask = 0xf3;
800 break;
801 case 1:
802 reg_idx = 0;
803 val_shift = 4;
804 keep_mask = 0xcf;
805 break;
806 case 2:
807 reg_idx = 1;
808 val_shift = 2;
809 keep_mask = 0xf3;
810 break;
811 }
812
813 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
814 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
815 data->pwm_enable[nr] << val_shift;
816
817 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
818 mutex_unlock(&data->update_lock);
819
820 return count;
821 }
822 static struct sensor_device_attribute sda_pwmenable[] = {
823 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
824 show_pwmenable, store_pwmenable, 0),
825 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
826 show_pwmenable, store_pwmenable, 1),
827 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
828 show_pwmenable, store_pwmenable, 2),
829 };
830
831 /* For Smart Fan I / Thermal Cruise */
show_temp_target(struct device * dev,struct device_attribute * attr,char * buf)832 static ssize_t show_temp_target(struct device *dev,
833 struct device_attribute *attr, char *buf)
834 {
835 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
836 struct w83791d_data *data = w83791d_update_device(dev);
837 int nr = sensor_attr->index;
838 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
839 }
840
store_temp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)841 static ssize_t store_temp_target(struct device *dev,
842 struct device_attribute *attr, const char *buf, size_t count)
843 {
844 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
845 struct i2c_client *client = to_i2c_client(dev);
846 struct w83791d_data *data = i2c_get_clientdata(client);
847 int nr = sensor_attr->index;
848 long val;
849 u8 target_mask;
850
851 if (kstrtol(buf, 10, &val))
852 return -EINVAL;
853
854 mutex_lock(&data->update_lock);
855 data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
856 target_mask = w83791d_read(client,
857 W83791D_REG_TEMP_TARGET[nr]) & 0x80;
858 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
859 data->temp_target[nr] | target_mask);
860 mutex_unlock(&data->update_lock);
861 return count;
862 }
863
864 static struct sensor_device_attribute sda_temp_target[] = {
865 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
866 show_temp_target, store_temp_target, 0),
867 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
868 show_temp_target, store_temp_target, 1),
869 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
870 show_temp_target, store_temp_target, 2),
871 };
872
show_temp_tolerance(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t show_temp_tolerance(struct device *dev,
874 struct device_attribute *attr, char *buf)
875 {
876 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
877 struct w83791d_data *data = w83791d_update_device(dev);
878 int nr = sensor_attr->index;
879 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
880 }
881
store_temp_tolerance(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)882 static ssize_t store_temp_tolerance(struct device *dev,
883 struct device_attribute *attr, const char *buf, size_t count)
884 {
885 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
886 struct i2c_client *client = to_i2c_client(dev);
887 struct w83791d_data *data = i2c_get_clientdata(client);
888 int nr = sensor_attr->index;
889 unsigned long val;
890 u8 target_mask;
891 u8 reg_idx = 0;
892 u8 val_shift = 0;
893 u8 keep_mask = 0;
894
895 if (kstrtoul(buf, 10, &val))
896 return -EINVAL;
897
898 switch (nr) {
899 case 0:
900 reg_idx = 0;
901 val_shift = 0;
902 keep_mask = 0xf0;
903 break;
904 case 1:
905 reg_idx = 0;
906 val_shift = 4;
907 keep_mask = 0x0f;
908 break;
909 case 2:
910 reg_idx = 1;
911 val_shift = 0;
912 keep_mask = 0xf0;
913 break;
914 }
915
916 mutex_lock(&data->update_lock);
917 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
918 target_mask = w83791d_read(client,
919 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
920 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
921 (data->temp_tolerance[nr] << val_shift) | target_mask);
922 mutex_unlock(&data->update_lock);
923 return count;
924 }
925
926 static struct sensor_device_attribute sda_temp_tolerance[] = {
927 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
928 show_temp_tolerance, store_temp_tolerance, 0),
929 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
930 show_temp_tolerance, store_temp_tolerance, 1),
931 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
932 show_temp_tolerance, store_temp_tolerance, 2),
933 };
934
935 /* read/write the temperature1, includes measured value and limits */
show_temp1(struct device * dev,struct device_attribute * devattr,char * buf)936 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
937 char *buf)
938 {
939 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
940 struct w83791d_data *data = w83791d_update_device(dev);
941 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
942 }
943
store_temp1(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)944 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
945 const char *buf, size_t count)
946 {
947 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
948 struct i2c_client *client = to_i2c_client(dev);
949 struct w83791d_data *data = i2c_get_clientdata(client);
950 int nr = attr->index;
951 long val;
952 int err;
953
954 err = kstrtol(buf, 10, &val);
955 if (err)
956 return err;
957
958 mutex_lock(&data->update_lock);
959 data->temp1[nr] = TEMP1_TO_REG(val);
960 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
961 mutex_unlock(&data->update_lock);
962 return count;
963 }
964
965 /* read/write temperature2-3, includes measured value and limits */
show_temp23(struct device * dev,struct device_attribute * devattr,char * buf)966 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
967 char *buf)
968 {
969 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
970 struct w83791d_data *data = w83791d_update_device(dev);
971 int nr = attr->nr;
972 int index = attr->index;
973 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
974 }
975
store_temp23(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)976 static ssize_t store_temp23(struct device *dev,
977 struct device_attribute *devattr,
978 const char *buf, size_t count)
979 {
980 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
981 struct i2c_client *client = to_i2c_client(dev);
982 struct w83791d_data *data = i2c_get_clientdata(client);
983 long val;
984 int err;
985 int nr = attr->nr;
986 int index = attr->index;
987
988 err = kstrtol(buf, 10, &val);
989 if (err)
990 return err;
991
992 mutex_lock(&data->update_lock);
993 data->temp_add[nr][index] = TEMP23_TO_REG(val);
994 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
995 data->temp_add[nr][index] >> 8);
996 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
997 data->temp_add[nr][index] & 0x80);
998 mutex_unlock(&data->update_lock);
999
1000 return count;
1001 }
1002
1003 static struct sensor_device_attribute_2 sda_temp_input[] = {
1004 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
1005 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
1006 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
1007 };
1008
1009 static struct sensor_device_attribute_2 sda_temp_max[] = {
1010 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
1011 show_temp1, store_temp1, 0, 1),
1012 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1013 show_temp23, store_temp23, 0, 1),
1014 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1015 show_temp23, store_temp23, 1, 1),
1016 };
1017
1018 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1019 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1020 show_temp1, store_temp1, 0, 2),
1021 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1022 show_temp23, store_temp23, 0, 2),
1023 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1024 show_temp23, store_temp23, 1, 2),
1025 };
1026
1027 /*
1028 * Note: The bitmask for the beep enable/disable is different than
1029 * the bitmask for the alarm.
1030 */
1031 static struct sensor_device_attribute sda_temp_beep[] = {
1032 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1033 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1034 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1035 };
1036
1037 static struct sensor_device_attribute sda_temp_alarm[] = {
1038 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1039 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1040 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1041 };
1042
1043 /* get realtime status of all sensors items: voltage, temp, fan */
show_alarms_reg(struct device * dev,struct device_attribute * attr,char * buf)1044 static ssize_t show_alarms_reg(struct device *dev,
1045 struct device_attribute *attr, char *buf)
1046 {
1047 struct w83791d_data *data = w83791d_update_device(dev);
1048 return sprintf(buf, "%u\n", data->alarms);
1049 }
1050
1051 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
1052
1053 /* Beep control */
1054
1055 #define GLOBAL_BEEP_ENABLE_SHIFT 15
1056 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
1057
show_beep_enable(struct device * dev,struct device_attribute * attr,char * buf)1058 static ssize_t show_beep_enable(struct device *dev,
1059 struct device_attribute *attr, char *buf)
1060 {
1061 struct w83791d_data *data = w83791d_update_device(dev);
1062 return sprintf(buf, "%d\n", data->beep_enable);
1063 }
1064
show_beep_mask(struct device * dev,struct device_attribute * attr,char * buf)1065 static ssize_t show_beep_mask(struct device *dev,
1066 struct device_attribute *attr, char *buf)
1067 {
1068 struct w83791d_data *data = w83791d_update_device(dev);
1069 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1070 }
1071
1072
store_beep_mask(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1073 static ssize_t store_beep_mask(struct device *dev,
1074 struct device_attribute *attr,
1075 const char *buf, size_t count)
1076 {
1077 struct i2c_client *client = to_i2c_client(dev);
1078 struct w83791d_data *data = i2c_get_clientdata(client);
1079 int i;
1080 long val;
1081 int err;
1082
1083 err = kstrtol(buf, 10, &val);
1084 if (err)
1085 return err;
1086
1087 mutex_lock(&data->update_lock);
1088
1089 /*
1090 * The beep_enable state overrides any enabling request from
1091 * the masks
1092 */
1093 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1094 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1095
1096 val = data->beep_mask;
1097
1098 for (i = 0; i < 3; i++) {
1099 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1100 val >>= 8;
1101 }
1102
1103 mutex_unlock(&data->update_lock);
1104
1105 return count;
1106 }
1107
store_beep_enable(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1108 static ssize_t store_beep_enable(struct device *dev,
1109 struct device_attribute *attr,
1110 const char *buf, size_t count)
1111 {
1112 struct i2c_client *client = to_i2c_client(dev);
1113 struct w83791d_data *data = i2c_get_clientdata(client);
1114 long val;
1115 int err;
1116
1117 err = kstrtol(buf, 10, &val);
1118 if (err)
1119 return err;
1120
1121 mutex_lock(&data->update_lock);
1122
1123 data->beep_enable = val ? 1 : 0;
1124
1125 /* Keep the full mask value in sync with the current enable */
1126 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1127 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1128
1129 /*
1130 * The global control is in the second beep control register
1131 * so only need to update that register
1132 */
1133 val = (data->beep_mask >> 8) & 0xff;
1134
1135 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1136
1137 mutex_unlock(&data->update_lock);
1138
1139 return count;
1140 }
1141
1142 static struct sensor_device_attribute sda_beep_ctrl[] = {
1143 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1144 show_beep_enable, store_beep_enable, 0),
1145 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1146 show_beep_mask, store_beep_mask, 1)
1147 };
1148
1149 /* cpu voltage regulation information */
show_vid_reg(struct device * dev,struct device_attribute * attr,char * buf)1150 static ssize_t show_vid_reg(struct device *dev,
1151 struct device_attribute *attr, char *buf)
1152 {
1153 struct w83791d_data *data = w83791d_update_device(dev);
1154 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1155 }
1156
1157 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
1158
show_vrm_reg(struct device * dev,struct device_attribute * attr,char * buf)1159 static ssize_t show_vrm_reg(struct device *dev,
1160 struct device_attribute *attr, char *buf)
1161 {
1162 struct w83791d_data *data = dev_get_drvdata(dev);
1163 return sprintf(buf, "%d\n", data->vrm);
1164 }
1165
store_vrm_reg(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1166 static ssize_t store_vrm_reg(struct device *dev,
1167 struct device_attribute *attr,
1168 const char *buf, size_t count)
1169 {
1170 struct w83791d_data *data = dev_get_drvdata(dev);
1171 unsigned long val;
1172 int err;
1173
1174 /*
1175 * No lock needed as vrm is internal to the driver
1176 * (not read from a chip register) and so is not
1177 * updated in w83791d_update_device()
1178 */
1179
1180 err = kstrtoul(buf, 10, &val);
1181 if (err)
1182 return err;
1183
1184 if (val > 255)
1185 return -EINVAL;
1186
1187 data->vrm = val;
1188 return count;
1189 }
1190
1191 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
1192
1193 #define IN_UNIT_ATTRS(X) \
1194 &sda_in_input[X].dev_attr.attr, \
1195 &sda_in_min[X].dev_attr.attr, \
1196 &sda_in_max[X].dev_attr.attr, \
1197 &sda_in_beep[X].dev_attr.attr, \
1198 &sda_in_alarm[X].dev_attr.attr
1199
1200 #define FAN_UNIT_ATTRS(X) \
1201 &sda_fan_input[X].dev_attr.attr, \
1202 &sda_fan_min[X].dev_attr.attr, \
1203 &sda_fan_div[X].dev_attr.attr, \
1204 &sda_fan_beep[X].dev_attr.attr, \
1205 &sda_fan_alarm[X].dev_attr.attr
1206
1207 #define TEMP_UNIT_ATTRS(X) \
1208 &sda_temp_input[X].dev_attr.attr, \
1209 &sda_temp_max[X].dev_attr.attr, \
1210 &sda_temp_max_hyst[X].dev_attr.attr, \
1211 &sda_temp_beep[X].dev_attr.attr, \
1212 &sda_temp_alarm[X].dev_attr.attr
1213
1214 static struct attribute *w83791d_attributes[] = {
1215 IN_UNIT_ATTRS(0),
1216 IN_UNIT_ATTRS(1),
1217 IN_UNIT_ATTRS(2),
1218 IN_UNIT_ATTRS(3),
1219 IN_UNIT_ATTRS(4),
1220 IN_UNIT_ATTRS(5),
1221 IN_UNIT_ATTRS(6),
1222 IN_UNIT_ATTRS(7),
1223 IN_UNIT_ATTRS(8),
1224 IN_UNIT_ATTRS(9),
1225 FAN_UNIT_ATTRS(0),
1226 FAN_UNIT_ATTRS(1),
1227 FAN_UNIT_ATTRS(2),
1228 TEMP_UNIT_ATTRS(0),
1229 TEMP_UNIT_ATTRS(1),
1230 TEMP_UNIT_ATTRS(2),
1231 &dev_attr_alarms.attr,
1232 &sda_beep_ctrl[0].dev_attr.attr,
1233 &sda_beep_ctrl[1].dev_attr.attr,
1234 &dev_attr_cpu0_vid.attr,
1235 &dev_attr_vrm.attr,
1236 &sda_pwm[0].dev_attr.attr,
1237 &sda_pwm[1].dev_attr.attr,
1238 &sda_pwm[2].dev_attr.attr,
1239 &sda_pwmenable[0].dev_attr.attr,
1240 &sda_pwmenable[1].dev_attr.attr,
1241 &sda_pwmenable[2].dev_attr.attr,
1242 &sda_temp_target[0].dev_attr.attr,
1243 &sda_temp_target[1].dev_attr.attr,
1244 &sda_temp_target[2].dev_attr.attr,
1245 &sda_temp_tolerance[0].dev_attr.attr,
1246 &sda_temp_tolerance[1].dev_attr.attr,
1247 &sda_temp_tolerance[2].dev_attr.attr,
1248 NULL
1249 };
1250
1251 static const struct attribute_group w83791d_group = {
1252 .attrs = w83791d_attributes,
1253 };
1254
1255 /*
1256 * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1257 * in use for GPIO in which case their sysfs-interface should not be made
1258 * available
1259 */
1260 static struct attribute *w83791d_attributes_fanpwm45[] = {
1261 FAN_UNIT_ATTRS(3),
1262 FAN_UNIT_ATTRS(4),
1263 &sda_pwm[3].dev_attr.attr,
1264 &sda_pwm[4].dev_attr.attr,
1265 NULL
1266 };
1267
1268 static const struct attribute_group w83791d_group_fanpwm45 = {
1269 .attrs = w83791d_attributes_fanpwm45,
1270 };
1271
w83791d_detect_subclients(struct i2c_client * client)1272 static int w83791d_detect_subclients(struct i2c_client *client)
1273 {
1274 struct i2c_adapter *adapter = client->adapter;
1275 struct w83791d_data *data = i2c_get_clientdata(client);
1276 int address = client->addr;
1277 int i, id, err;
1278 u8 val;
1279
1280 id = i2c_adapter_id(adapter);
1281 if (force_subclients[0] == id && force_subclients[1] == address) {
1282 for (i = 2; i <= 3; i++) {
1283 if (force_subclients[i] < 0x48 ||
1284 force_subclients[i] > 0x4f) {
1285 dev_err(&client->dev,
1286 "invalid subclient "
1287 "address %d; must be 0x48-0x4f\n",
1288 force_subclients[i]);
1289 err = -ENODEV;
1290 goto error_sc_0;
1291 }
1292 }
1293 w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1294 (force_subclients[2] & 0x07) |
1295 ((force_subclients[3] & 0x07) << 4));
1296 }
1297
1298 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1299 if (!(val & 0x08))
1300 data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
1301 if (!(val & 0x80)) {
1302 if ((data->lm75[0] != NULL) &&
1303 ((val & 0x7) == ((val >> 4) & 0x7))) {
1304 dev_err(&client->dev,
1305 "duplicate addresses 0x%x, "
1306 "use force_subclient\n",
1307 data->lm75[0]->addr);
1308 err = -ENODEV;
1309 goto error_sc_1;
1310 }
1311 data->lm75[1] = i2c_new_dummy(adapter,
1312 0x48 + ((val >> 4) & 0x7));
1313 }
1314
1315 return 0;
1316
1317 /* Undo inits in case of errors */
1318
1319 error_sc_1:
1320 if (data->lm75[0] != NULL)
1321 i2c_unregister_device(data->lm75[0]);
1322 error_sc_0:
1323 return err;
1324 }
1325
1326
1327 /* Return 0 if detection is successful, -ENODEV otherwise */
w83791d_detect(struct i2c_client * client,struct i2c_board_info * info)1328 static int w83791d_detect(struct i2c_client *client,
1329 struct i2c_board_info *info)
1330 {
1331 struct i2c_adapter *adapter = client->adapter;
1332 int val1, val2;
1333 unsigned short address = client->addr;
1334
1335 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1336 return -ENODEV;
1337
1338 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1339 return -ENODEV;
1340
1341 val1 = w83791d_read(client, W83791D_REG_BANK);
1342 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1343 /* Check for Winbond ID if in bank 0 */
1344 if (!(val1 & 0x07)) {
1345 if ((!(val1 & 0x80) && val2 != 0xa3) ||
1346 ((val1 & 0x80) && val2 != 0x5c)) {
1347 return -ENODEV;
1348 }
1349 }
1350 /*
1351 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1352 * should match
1353 */
1354 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1355 return -ENODEV;
1356
1357 /* We want bank 0 and Vendor ID high byte */
1358 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1359 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1360
1361 /* Verify it is a Winbond w83791d */
1362 val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1363 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1364 if (val1 != 0x71 || val2 != 0x5c)
1365 return -ENODEV;
1366
1367 strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1368
1369 return 0;
1370 }
1371
w83791d_probe(struct i2c_client * client,const struct i2c_device_id * id)1372 static int w83791d_probe(struct i2c_client *client,
1373 const struct i2c_device_id *id)
1374 {
1375 struct w83791d_data *data;
1376 struct device *dev = &client->dev;
1377 int i, err;
1378 u8 has_fanpwm45;
1379
1380 #ifdef DEBUG
1381 int val1;
1382 val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1383 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1384 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1385 #endif
1386
1387 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1388 GFP_KERNEL);
1389 if (!data)
1390 return -ENOMEM;
1391
1392 i2c_set_clientdata(client, data);
1393 mutex_init(&data->update_lock);
1394
1395 err = w83791d_detect_subclients(client);
1396 if (err)
1397 return err;
1398
1399 /* Initialize the chip */
1400 w83791d_init_client(client);
1401
1402 /*
1403 * If the fan_div is changed, make sure there is a rational
1404 * fan_min in place
1405 */
1406 for (i = 0; i < NUMBER_OF_FANIN; i++)
1407 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1408
1409 /* Register sysfs hooks */
1410 err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1411 if (err)
1412 goto error3;
1413
1414 /* Check if pins of fan/pwm 4-5 are in use as GPIO */
1415 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1416 if (has_fanpwm45) {
1417 err = sysfs_create_group(&client->dev.kobj,
1418 &w83791d_group_fanpwm45);
1419 if (err)
1420 goto error4;
1421 }
1422
1423 /* Everything is ready, now register the working device */
1424 data->hwmon_dev = hwmon_device_register(dev);
1425 if (IS_ERR(data->hwmon_dev)) {
1426 err = PTR_ERR(data->hwmon_dev);
1427 goto error5;
1428 }
1429
1430 return 0;
1431
1432 error5:
1433 if (has_fanpwm45)
1434 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1435 error4:
1436 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1437 error3:
1438 if (data->lm75[0] != NULL)
1439 i2c_unregister_device(data->lm75[0]);
1440 if (data->lm75[1] != NULL)
1441 i2c_unregister_device(data->lm75[1]);
1442 return err;
1443 }
1444
w83791d_remove(struct i2c_client * client)1445 static int w83791d_remove(struct i2c_client *client)
1446 {
1447 struct w83791d_data *data = i2c_get_clientdata(client);
1448
1449 hwmon_device_unregister(data->hwmon_dev);
1450 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1451
1452 if (data->lm75[0] != NULL)
1453 i2c_unregister_device(data->lm75[0]);
1454 if (data->lm75[1] != NULL)
1455 i2c_unregister_device(data->lm75[1]);
1456
1457 return 0;
1458 }
1459
w83791d_init_client(struct i2c_client * client)1460 static void w83791d_init_client(struct i2c_client *client)
1461 {
1462 struct w83791d_data *data = i2c_get_clientdata(client);
1463 u8 tmp;
1464 u8 old_beep;
1465
1466 /*
1467 * The difference between reset and init is that reset
1468 * does a hard reset of the chip via index 0x40, bit 7,
1469 * but init simply forces certain registers to have "sane"
1470 * values. The hope is that the BIOS has done the right
1471 * thing (which is why the default is reset=0, init=0),
1472 * but if not, reset is the hard hammer and init
1473 * is the soft mallet both of which are trying to whack
1474 * things into place...
1475 * NOTE: The data sheet makes a distinction between
1476 * "power on defaults" and "reset by MR". As far as I can tell,
1477 * the hard reset puts everything into a power-on state so I'm
1478 * not sure what "reset by MR" means or how it can happen.
1479 */
1480 if (reset || init) {
1481 /* keep some BIOS settings when we... */
1482 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1483
1484 if (reset) {
1485 /* ... reset the chip and ... */
1486 w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1487 }
1488
1489 /* ... disable power-on abnormal beep */
1490 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1491
1492 /* disable the global beep (not done by hard reset) */
1493 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1494 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1495
1496 if (init) {
1497 /* Make sure monitoring is turned on for add-ons */
1498 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1499 if (tmp & 1) {
1500 w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1501 tmp & 0xfe);
1502 }
1503
1504 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1505 if (tmp & 1) {
1506 w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1507 tmp & 0xfe);
1508 }
1509
1510 /* Start monitoring */
1511 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1512 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1513 }
1514 }
1515
1516 data->vrm = vid_which_vrm();
1517 }
1518
w83791d_update_device(struct device * dev)1519 static struct w83791d_data *w83791d_update_device(struct device *dev)
1520 {
1521 struct i2c_client *client = to_i2c_client(dev);
1522 struct w83791d_data *data = i2c_get_clientdata(client);
1523 int i, j;
1524 u8 reg_array_tmp[3];
1525 u8 vbat_reg;
1526
1527 mutex_lock(&data->update_lock);
1528
1529 if (time_after(jiffies, data->last_updated + (HZ * 3))
1530 || !data->valid) {
1531 dev_dbg(dev, "Starting w83791d device update\n");
1532
1533 /* Update the voltages measured value and limits */
1534 for (i = 0; i < NUMBER_OF_VIN; i++) {
1535 data->in[i] = w83791d_read(client,
1536 W83791D_REG_IN[i]);
1537 data->in_max[i] = w83791d_read(client,
1538 W83791D_REG_IN_MAX[i]);
1539 data->in_min[i] = w83791d_read(client,
1540 W83791D_REG_IN_MIN[i]);
1541 }
1542
1543 /* Update the fan counts and limits */
1544 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1545 /* Update the Fan measured value and limits */
1546 data->fan[i] = w83791d_read(client,
1547 W83791D_REG_FAN[i]);
1548 data->fan_min[i] = w83791d_read(client,
1549 W83791D_REG_FAN_MIN[i]);
1550 }
1551
1552 /* Update the fan divisor */
1553 for (i = 0; i < 3; i++) {
1554 reg_array_tmp[i] = w83791d_read(client,
1555 W83791D_REG_FAN_DIV[i]);
1556 }
1557 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1558 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1559 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1560 data->fan_div[3] = reg_array_tmp[2] & 0x07;
1561 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1562
1563 /*
1564 * The fan divisor for fans 0-2 get bit 2 from
1565 * bits 5-7 respectively of vbat register
1566 */
1567 vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1568 for (i = 0; i < 3; i++)
1569 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1570
1571 /* Update PWM duty cycle */
1572 for (i = 0; i < NUMBER_OF_PWM; i++) {
1573 data->pwm[i] = w83791d_read(client,
1574 W83791D_REG_PWM[i]);
1575 }
1576
1577 /* Update PWM enable status */
1578 for (i = 0; i < 2; i++) {
1579 reg_array_tmp[i] = w83791d_read(client,
1580 W83791D_REG_FAN_CFG[i]);
1581 }
1582 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1583 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1584 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1585
1586 /* Update PWM target temperature */
1587 for (i = 0; i < 3; i++) {
1588 data->temp_target[i] = w83791d_read(client,
1589 W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1590 }
1591
1592 /* Update PWM temperature tolerance */
1593 for (i = 0; i < 2; i++) {
1594 reg_array_tmp[i] = w83791d_read(client,
1595 W83791D_REG_TEMP_TOL[i]);
1596 }
1597 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1598 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1599 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1600
1601 /* Update the first temperature sensor */
1602 for (i = 0; i < 3; i++) {
1603 data->temp1[i] = w83791d_read(client,
1604 W83791D_REG_TEMP1[i]);
1605 }
1606
1607 /* Update the rest of the temperature sensors */
1608 for (i = 0; i < 2; i++) {
1609 for (j = 0; j < 3; j++) {
1610 data->temp_add[i][j] =
1611 (w83791d_read(client,
1612 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1613 w83791d_read(client,
1614 W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1615 }
1616 }
1617
1618 /* Update the realtime status */
1619 data->alarms =
1620 w83791d_read(client, W83791D_REG_ALARM1) +
1621 (w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1622 (w83791d_read(client, W83791D_REG_ALARM3) << 16);
1623
1624 /* Update the beep configuration information */
1625 data->beep_mask =
1626 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1627 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1628 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1629
1630 /* Extract global beep enable flag */
1631 data->beep_enable =
1632 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1633
1634 /* Update the cpu voltage information */
1635 i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1636 data->vid = i & 0x0f;
1637 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1638 << 4;
1639
1640 data->last_updated = jiffies;
1641 data->valid = 1;
1642 }
1643
1644 mutex_unlock(&data->update_lock);
1645
1646 #ifdef DEBUG
1647 w83791d_print_debug(data, dev);
1648 #endif
1649
1650 return data;
1651 }
1652
1653 #ifdef DEBUG
w83791d_print_debug(struct w83791d_data * data,struct device * dev)1654 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1655 {
1656 int i = 0, j = 0;
1657
1658 dev_dbg(dev, "======Start of w83791d debug values======\n");
1659 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1660 for (i = 0; i < NUMBER_OF_VIN; i++) {
1661 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
1662 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1663 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1664 }
1665 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1666 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1667 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
1668 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1669 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1670 }
1671
1672 /*
1673 * temperature math is signed, but only print out the
1674 * bits that matter
1675 */
1676 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1677 for (i = 0; i < 3; i++)
1678 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1679 for (i = 0; i < 2; i++) {
1680 for (j = 0; j < 3; j++) {
1681 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1682 (u16) data->temp_add[i][j]);
1683 }
1684 }
1685
1686 dev_dbg(dev, "Misc Information: ===>\n");
1687 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
1688 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1689 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1690 dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1691 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1692 dev_dbg(dev, "=======End of w83791d debug values========\n");
1693 dev_dbg(dev, "\n");
1694 }
1695 #endif
1696
1697 module_i2c_driver(w83791d_driver);
1698
1699 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1700 MODULE_DESCRIPTION("W83791D driver");
1701 MODULE_LICENSE("GPL");
1702