• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
3  *
4  *  Copyright (C) 2011 Weinmann Medical GmbH
5  *  Author: Nikolaus Voss <n.voss@weinmann.de>
6  *
7  *  Evolved from original work by:
8  *  Copyright (C) 2004 Rick Bronson
9  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
10  *
11  *  Borrowed heavily from original work by:
12  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or
17  *  (at your option) any later version.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 
35 #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
36 #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
37 #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
38 
39 /* AT91 TWI register definitions */
40 #define	AT91_TWI_CR		0x0000	/* Control Register */
41 #define	AT91_TWI_START		0x0001	/* Send a Start Condition */
42 #define	AT91_TWI_STOP		0x0002	/* Send a Stop Condition */
43 #define	AT91_TWI_MSEN		0x0004	/* Master Transfer Enable */
44 #define	AT91_TWI_SVDIS		0x0020	/* Slave Transfer Disable */
45 #define	AT91_TWI_QUICK		0x0040	/* SMBus quick command */
46 #define	AT91_TWI_SWRST		0x0080	/* Software Reset */
47 
48 #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
49 #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
50 #define	AT91_TWI_MREAD		0x1000	/* Master Read Direction */
51 
52 #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
53 
54 #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
55 
56 #define	AT91_TWI_SR		0x0020	/* Status Register */
57 #define	AT91_TWI_TXCOMP		0x0001	/* Transmission Complete */
58 #define	AT91_TWI_RXRDY		0x0002	/* Receive Holding Register Ready */
59 #define	AT91_TWI_TXRDY		0x0004	/* Transmit Holding Register Ready */
60 
61 #define	AT91_TWI_OVRE		0x0040	/* Overrun Error */
62 #define	AT91_TWI_UNRE		0x0080	/* Underrun Error */
63 #define	AT91_TWI_NACK		0x0100	/* Not Acknowledged */
64 
65 #define	AT91_TWI_INT_MASK \
66 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
67 
68 #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
69 #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
70 #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
71 #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
72 #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
73 
74 struct at91_twi_pdata {
75 	unsigned clk_max_div;
76 	unsigned clk_offset;
77 	bool has_unre_flag;
78 	bool has_dma_support;
79 	struct at_dma_slave dma_slave;
80 };
81 
82 struct at91_twi_dma {
83 	struct dma_chan *chan_rx;
84 	struct dma_chan *chan_tx;
85 	struct scatterlist sg;
86 	struct dma_async_tx_descriptor *data_desc;
87 	enum dma_data_direction direction;
88 	bool buf_mapped;
89 	bool xfer_in_progress;
90 };
91 
92 struct at91_twi_dev {
93 	struct device *dev;
94 	void __iomem *base;
95 	struct completion cmd_complete;
96 	struct clk *clk;
97 	u8 *buf;
98 	size_t buf_len;
99 	struct i2c_msg *msg;
100 	int irq;
101 	unsigned imr;
102 	unsigned transfer_status;
103 	struct i2c_adapter adapter;
104 	unsigned twi_cwgr_reg;
105 	struct at91_twi_pdata *pdata;
106 	bool use_dma;
107 	bool recv_len_abort;
108 	struct at91_twi_dma dma;
109 };
110 
at91_twi_read(struct at91_twi_dev * dev,unsigned reg)111 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
112 {
113 	return readl_relaxed(dev->base + reg);
114 }
115 
at91_twi_write(struct at91_twi_dev * dev,unsigned reg,unsigned val)116 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
117 {
118 	writel_relaxed(val, dev->base + reg);
119 }
120 
at91_disable_twi_interrupts(struct at91_twi_dev * dev)121 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
122 {
123 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
124 }
125 
at91_twi_irq_save(struct at91_twi_dev * dev)126 static void at91_twi_irq_save(struct at91_twi_dev *dev)
127 {
128 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
129 	at91_disable_twi_interrupts(dev);
130 }
131 
at91_twi_irq_restore(struct at91_twi_dev * dev)132 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
133 {
134 	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
135 }
136 
at91_init_twi_bus(struct at91_twi_dev * dev)137 static void at91_init_twi_bus(struct at91_twi_dev *dev)
138 {
139 	at91_disable_twi_interrupts(dev);
140 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
141 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
142 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
143 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
144 }
145 
146 /*
147  * Calculate symmetric clock as stated in datasheet:
148  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
149  */
at91_calc_twi_clock(struct at91_twi_dev * dev,int twi_clk)150 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
151 {
152 	int ckdiv, cdiv, div;
153 	struct at91_twi_pdata *pdata = dev->pdata;
154 	int offset = pdata->clk_offset;
155 	int max_ckdiv = pdata->clk_max_div;
156 
157 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
158 				       2 * twi_clk) - offset);
159 	ckdiv = fls(div >> 8);
160 	cdiv = div >> ckdiv;
161 
162 	if (ckdiv > max_ckdiv) {
163 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
164 			 ckdiv, max_ckdiv);
165 		ckdiv = max_ckdiv;
166 		cdiv = 255;
167 	}
168 
169 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
170 	dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
171 }
172 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)173 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
174 {
175 	struct at91_twi_dma *dma = &dev->dma;
176 
177 	at91_twi_irq_save(dev);
178 
179 	if (dma->xfer_in_progress) {
180 		if (dma->direction == DMA_FROM_DEVICE)
181 			dmaengine_terminate_all(dma->chan_rx);
182 		else
183 			dmaengine_terminate_all(dma->chan_tx);
184 		dma->xfer_in_progress = false;
185 	}
186 	if (dma->buf_mapped) {
187 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg),
188 				 dev->buf_len, dma->direction);
189 		dma->buf_mapped = false;
190 	}
191 
192 	at91_twi_irq_restore(dev);
193 }
194 
at91_twi_write_next_byte(struct at91_twi_dev * dev)195 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
196 {
197 	if (dev->buf_len <= 0)
198 		return;
199 
200 	at91_twi_write(dev, AT91_TWI_THR, *dev->buf);
201 
202 	/* send stop when last byte has been written */
203 	if (--dev->buf_len == 0)
204 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
205 
206 	dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
207 
208 	++dev->buf;
209 }
210 
at91_twi_write_data_dma_callback(void * data)211 static void at91_twi_write_data_dma_callback(void *data)
212 {
213 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
214 
215 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
216 			 dev->buf_len, DMA_TO_DEVICE);
217 
218 	/*
219 	 * When this callback is called, THR/TX FIFO is likely not to be empty
220 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
221 	 * Status Register to be sure that the STOP bit has been sent and the
222 	 * transfer is completed. The NACK interrupt has already been enabled,
223 	 * we just have to enable TXCOMP one.
224 	 */
225 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
226 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
227 }
228 
at91_twi_write_data_dma(struct at91_twi_dev * dev)229 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
230 {
231 	dma_addr_t dma_addr;
232 	struct dma_async_tx_descriptor *txdesc;
233 	struct at91_twi_dma *dma = &dev->dma;
234 	struct dma_chan *chan_tx = dma->chan_tx;
235 
236 	if (dev->buf_len <= 0)
237 		return;
238 
239 	dma->direction = DMA_TO_DEVICE;
240 
241 	at91_twi_irq_save(dev);
242 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
243 				  DMA_TO_DEVICE);
244 	if (dma_mapping_error(dev->dev, dma_addr)) {
245 		dev_err(dev->dev, "dma map failed\n");
246 		return;
247 	}
248 	dma->buf_mapped = true;
249 	at91_twi_irq_restore(dev);
250 	sg_dma_len(&dma->sg) = dev->buf_len;
251 	sg_dma_address(&dma->sg) = dma_addr;
252 
253 	txdesc = dmaengine_prep_slave_sg(chan_tx, &dma->sg, 1, DMA_MEM_TO_DEV,
254 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
255 	if (!txdesc) {
256 		dev_err(dev->dev, "dma prep slave sg failed\n");
257 		goto error;
258 	}
259 
260 	txdesc->callback = at91_twi_write_data_dma_callback;
261 	txdesc->callback_param = dev;
262 
263 	dma->xfer_in_progress = true;
264 	dmaengine_submit(txdesc);
265 	dma_async_issue_pending(chan_tx);
266 
267 	return;
268 
269 error:
270 	at91_twi_dma_cleanup(dev);
271 }
272 
at91_twi_read_next_byte(struct at91_twi_dev * dev)273 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
274 {
275 	if (dev->buf_len <= 0)
276 		return;
277 
278 	*dev->buf = at91_twi_read(dev, AT91_TWI_RHR) & 0xff;
279 	--dev->buf_len;
280 
281 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
282 	if (dev->recv_len_abort)
283 		return;
284 
285 	/* handle I2C_SMBUS_BLOCK_DATA */
286 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
287 		/* ensure length byte is a valid value */
288 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
289 			dev->msg->flags &= ~I2C_M_RECV_LEN;
290 			dev->buf_len += *dev->buf;
291 			dev->msg->len = dev->buf_len + 1;
292 			dev_dbg(dev->dev, "received block length %d\n",
293 					 dev->buf_len);
294 		} else {
295 			/* abort and send the stop by reading one more byte */
296 			dev->recv_len_abort = true;
297 			dev->buf_len = 1;
298 		}
299 	}
300 
301 	/* send stop if second but last byte has been read */
302 	if (dev->buf_len == 1)
303 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
304 
305 	dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
306 
307 	++dev->buf;
308 }
309 
at91_twi_read_data_dma_callback(void * data)310 static void at91_twi_read_data_dma_callback(void *data)
311 {
312 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
313 
314 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
315 			 dev->buf_len, DMA_FROM_DEVICE);
316 
317 	/* The last two bytes have to be read without using dma */
318 	dev->buf += dev->buf_len - 2;
319 	dev->buf_len = 2;
320 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_RXRDY | AT91_TWI_TXCOMP);
321 }
322 
at91_twi_read_data_dma(struct at91_twi_dev * dev)323 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
324 {
325 	dma_addr_t dma_addr;
326 	struct dma_async_tx_descriptor *rxdesc;
327 	struct at91_twi_dma *dma = &dev->dma;
328 	struct dma_chan *chan_rx = dma->chan_rx;
329 
330 	dma->direction = DMA_FROM_DEVICE;
331 
332 	/* Keep in mind that we won't use dma to read the last two bytes */
333 	at91_twi_irq_save(dev);
334 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len - 2,
335 				  DMA_FROM_DEVICE);
336 	if (dma_mapping_error(dev->dev, dma_addr)) {
337 		dev_err(dev->dev, "dma map failed\n");
338 		return;
339 	}
340 	dma->buf_mapped = true;
341 	at91_twi_irq_restore(dev);
342 	dma->sg.dma_address = dma_addr;
343 	sg_dma_len(&dma->sg) = dev->buf_len - 2;
344 
345 	rxdesc = dmaengine_prep_slave_sg(chan_rx, &dma->sg, 1, DMA_DEV_TO_MEM,
346 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
347 	if (!rxdesc) {
348 		dev_err(dev->dev, "dma prep slave sg failed\n");
349 		goto error;
350 	}
351 
352 	rxdesc->callback = at91_twi_read_data_dma_callback;
353 	rxdesc->callback_param = dev;
354 
355 	dma->xfer_in_progress = true;
356 	dmaengine_submit(rxdesc);
357 	dma_async_issue_pending(dma->chan_rx);
358 
359 	return;
360 
361 error:
362 	at91_twi_dma_cleanup(dev);
363 }
364 
atmel_twi_interrupt(int irq,void * dev_id)365 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
366 {
367 	struct at91_twi_dev *dev = dev_id;
368 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
369 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
370 
371 	if (!irqstatus)
372 		return IRQ_NONE;
373 	else if (irqstatus & AT91_TWI_RXRDY)
374 		at91_twi_read_next_byte(dev);
375 	else if (irqstatus & AT91_TWI_TXRDY)
376 		at91_twi_write_next_byte(dev);
377 
378 	/* catch error flags */
379 	dev->transfer_status |= status;
380 
381 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
382 		at91_disable_twi_interrupts(dev);
383 		complete(&dev->cmd_complete);
384 	}
385 
386 	return IRQ_HANDLED;
387 }
388 
at91_do_twi_transfer(struct at91_twi_dev * dev)389 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
390 {
391 	int ret;
392 	bool has_unre_flag = dev->pdata->has_unre_flag;
393 
394 	/*
395 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
396 	 * read flag but shows the state of the transmission at the time the
397 	 * Status Register is read. According to the programmer datasheet,
398 	 * TXCOMP is set when both holding register and internal shifter are
399 	 * empty and STOP condition has been sent.
400 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
401 	 * detect transmission failure.
402 	 *
403 	 * Besides, the TXCOMP bit is already set before the i2c transaction
404 	 * has been started. For read transactions, this bit is cleared when
405 	 * writing the START bit into the Control Register. So the
406 	 * corresponding interrupt can safely be enabled just after.
407 	 * However for write transactions managed by the CPU, we first write
408 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
409 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
410 	 * the interrupt handler would be called immediately and the i2c command
411 	 * would be reported as completed.
412 	 * Also when a write transaction is managed by the DMA controller,
413 	 * enabling the TXCOMP interrupt in this function may lead to a race
414 	 * condition since we don't know whether the TXCOMP interrupt is enabled
415 	 * before or after the DMA has started to write into THR. So the TXCOMP
416 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
417 	 * Immediately after in that DMA callback, we still need to send the
418 	 * STOP condition manually writing the corresponding bit into the
419 	 * Control Register.
420 	 */
421 
422 	dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
423 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
424 
425 	reinit_completion(&dev->cmd_complete);
426 	dev->transfer_status = 0;
427 
428 	if (!dev->buf_len) {
429 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
430 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
431 	} else if (dev->msg->flags & I2C_M_RD) {
432 		unsigned start_flags = AT91_TWI_START;
433 
434 		if (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY) {
435 			dev_err(dev->dev, "RXRDY still set!");
436 			at91_twi_read(dev, AT91_TWI_RHR);
437 		}
438 
439 		/* if only one byte is to be read, immediately stop transfer */
440 		if (dev->buf_len <= 1 && !(dev->msg->flags & I2C_M_RECV_LEN))
441 			start_flags |= AT91_TWI_STOP;
442 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
443 		/*
444 		 * When using dma, the last byte has to be read manually in
445 		 * order to not send the stop command too late and then
446 		 * to receive extra data. In practice, there are some issues
447 		 * if you use the dma to read n-1 bytes because of latency.
448 		 * Reading n-2 bytes with dma and the two last ones manually
449 		 * seems to be the best solution.
450 		 */
451 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
452 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
453 			at91_twi_read_data_dma(dev);
454 		} else {
455 			at91_twi_write(dev, AT91_TWI_IER,
456 				       AT91_TWI_TXCOMP |
457 				       AT91_TWI_NACK |
458 				       AT91_TWI_RXRDY);
459 		}
460 	} else {
461 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
462 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
463 			at91_twi_write_data_dma(dev);
464 		} else {
465 			at91_twi_write_next_byte(dev);
466 			at91_twi_write(dev, AT91_TWI_IER,
467 				       AT91_TWI_TXCOMP |
468 				       AT91_TWI_NACK |
469 				       AT91_TWI_TXRDY);
470 		}
471 	}
472 
473 	ret = wait_for_completion_timeout(&dev->cmd_complete,
474 					     dev->adapter.timeout);
475 	if (ret == 0) {
476 		dev_err(dev->dev, "controller timed out\n");
477 		at91_init_twi_bus(dev);
478 		ret = -ETIMEDOUT;
479 		goto error;
480 	}
481 	if (dev->transfer_status & AT91_TWI_NACK) {
482 		dev_dbg(dev->dev, "received nack\n");
483 		ret = -EREMOTEIO;
484 		goto error;
485 	}
486 	if (dev->transfer_status & AT91_TWI_OVRE) {
487 		dev_err(dev->dev, "overrun while reading\n");
488 		ret = -EIO;
489 		goto error;
490 	}
491 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
492 		dev_err(dev->dev, "underrun while writing\n");
493 		ret = -EIO;
494 		goto error;
495 	}
496 	if (dev->recv_len_abort) {
497 		dev_err(dev->dev, "invalid smbus block length recvd\n");
498 		ret = -EPROTO;
499 		goto error;
500 	}
501 
502 	dev_dbg(dev->dev, "transfer complete\n");
503 
504 	return 0;
505 
506 error:
507 	at91_twi_dma_cleanup(dev);
508 	return ret;
509 }
510 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)511 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
512 {
513 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
514 	int ret;
515 	unsigned int_addr_flag = 0;
516 	struct i2c_msg *m_start = msg;
517 
518 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
519 
520 	/*
521 	 * The hardware can handle at most two messages concatenated by a
522 	 * repeated start via it's internal address feature.
523 	 */
524 	if (num > 2) {
525 		dev_err(dev->dev,
526 			"cannot handle more than two concatenated messages.\n");
527 		return 0;
528 	} else if (num == 2) {
529 		int internal_address = 0;
530 		int i;
531 
532 		if (msg->flags & I2C_M_RD) {
533 			dev_err(dev->dev, "first transfer must be write.\n");
534 			return -EINVAL;
535 		}
536 		if (msg->len > 3) {
537 			dev_err(dev->dev, "first message size must be <= 3.\n");
538 			return -EINVAL;
539 		}
540 
541 		/* 1st msg is put into the internal address, start with 2nd */
542 		m_start = &msg[1];
543 		for (i = 0; i < msg->len; ++i) {
544 			const unsigned addr = msg->buf[msg->len - 1 - i];
545 
546 			internal_address |= addr << (8 * i);
547 			int_addr_flag += AT91_TWI_IADRSZ_1;
548 		}
549 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
550 	}
551 
552 	at91_twi_write(dev, AT91_TWI_MMR, (m_start->addr << 16) | int_addr_flag
553 		       | ((m_start->flags & I2C_M_RD) ? AT91_TWI_MREAD : 0));
554 
555 	dev->buf_len = m_start->len;
556 	dev->buf = m_start->buf;
557 	dev->msg = m_start;
558 	dev->recv_len_abort = false;
559 
560 	ret = at91_do_twi_transfer(dev);
561 
562 	return (ret < 0) ? ret : num;
563 }
564 
at91_twi_func(struct i2c_adapter * adapter)565 static u32 at91_twi_func(struct i2c_adapter *adapter)
566 {
567 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
568 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
569 }
570 
571 static struct i2c_algorithm at91_twi_algorithm = {
572 	.master_xfer	= at91_twi_xfer,
573 	.functionality	= at91_twi_func,
574 };
575 
576 static struct at91_twi_pdata at91rm9200_config = {
577 	.clk_max_div = 5,
578 	.clk_offset = 3,
579 	.has_unre_flag = true,
580 	.has_dma_support = false,
581 };
582 
583 static struct at91_twi_pdata at91sam9261_config = {
584 	.clk_max_div = 5,
585 	.clk_offset = 4,
586 	.has_unre_flag = false,
587 	.has_dma_support = false,
588 };
589 
590 static struct at91_twi_pdata at91sam9260_config = {
591 	.clk_max_div = 7,
592 	.clk_offset = 4,
593 	.has_unre_flag = false,
594 	.has_dma_support = false,
595 };
596 
597 static struct at91_twi_pdata at91sam9g20_config = {
598 	.clk_max_div = 7,
599 	.clk_offset = 4,
600 	.has_unre_flag = false,
601 	.has_dma_support = false,
602 };
603 
604 static struct at91_twi_pdata at91sam9g10_config = {
605 	.clk_max_div = 7,
606 	.clk_offset = 4,
607 	.has_unre_flag = false,
608 	.has_dma_support = false,
609 };
610 
611 static const struct platform_device_id at91_twi_devtypes[] = {
612 	{
613 		.name = "i2c-at91rm9200",
614 		.driver_data = (unsigned long) &at91rm9200_config,
615 	}, {
616 		.name = "i2c-at91sam9261",
617 		.driver_data = (unsigned long) &at91sam9261_config,
618 	}, {
619 		.name = "i2c-at91sam9260",
620 		.driver_data = (unsigned long) &at91sam9260_config,
621 	}, {
622 		.name = "i2c-at91sam9g20",
623 		.driver_data = (unsigned long) &at91sam9g20_config,
624 	}, {
625 		.name = "i2c-at91sam9g10",
626 		.driver_data = (unsigned long) &at91sam9g10_config,
627 	}, {
628 		/* sentinel */
629 	}
630 };
631 
632 #if defined(CONFIG_OF)
633 static struct at91_twi_pdata at91sam9x5_config = {
634 	.clk_max_div = 7,
635 	.clk_offset = 4,
636 	.has_unre_flag = false,
637 	.has_dma_support = true,
638 };
639 
640 static const struct of_device_id atmel_twi_dt_ids[] = {
641 	{
642 		.compatible = "atmel,at91rm9200-i2c",
643 		.data = &at91rm9200_config,
644 	} , {
645 		.compatible = "atmel,at91sam9260-i2c",
646 		.data = &at91sam9260_config,
647 	} , {
648 		.compatible = "atmel,at91sam9261-i2c",
649 		.data = &at91sam9261_config,
650 	} , {
651 		.compatible = "atmel,at91sam9g20-i2c",
652 		.data = &at91sam9g20_config,
653 	} , {
654 		.compatible = "atmel,at91sam9g10-i2c",
655 		.data = &at91sam9g10_config,
656 	}, {
657 		.compatible = "atmel,at91sam9x5-i2c",
658 		.data = &at91sam9x5_config,
659 	}, {
660 		/* sentinel */
661 	}
662 };
663 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
664 #endif
665 
filter(struct dma_chan * chan,void * pdata)666 static bool filter(struct dma_chan *chan, void *pdata)
667 {
668 	struct at91_twi_pdata *sl_pdata = pdata;
669 	struct at_dma_slave *sl;
670 
671 	if (!sl_pdata)
672 		return false;
673 
674 	sl = &sl_pdata->dma_slave;
675 	if (sl && (sl->dma_dev == chan->device->dev)) {
676 		chan->private = sl;
677 		return true;
678 	} else {
679 		return false;
680 	}
681 }
682 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)683 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
684 {
685 	int ret = 0;
686 	struct at91_twi_pdata *pdata = dev->pdata;
687 	struct dma_slave_config slave_config;
688 	struct at91_twi_dma *dma = &dev->dma;
689 	dma_cap_mask_t mask;
690 
691 	memset(&slave_config, 0, sizeof(slave_config));
692 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
693 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
694 	slave_config.src_maxburst = 1;
695 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
696 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
697 	slave_config.dst_maxburst = 1;
698 	slave_config.device_fc = false;
699 
700 	dma_cap_zero(mask);
701 	dma_cap_set(DMA_SLAVE, mask);
702 
703 	dma->chan_tx = dma_request_slave_channel_compat(mask, filter, pdata,
704 							dev->dev, "tx");
705 	if (!dma->chan_tx) {
706 		dev_err(dev->dev, "can't get a DMA channel for tx\n");
707 		ret = -EBUSY;
708 		goto error;
709 	}
710 
711 	dma->chan_rx = dma_request_slave_channel_compat(mask, filter, pdata,
712 							dev->dev, "rx");
713 	if (!dma->chan_rx) {
714 		dev_err(dev->dev, "can't get a DMA channel for rx\n");
715 		ret = -EBUSY;
716 		goto error;
717 	}
718 
719 	slave_config.direction = DMA_MEM_TO_DEV;
720 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
721 		dev_err(dev->dev, "failed to configure tx channel\n");
722 		ret = -EINVAL;
723 		goto error;
724 	}
725 
726 	slave_config.direction = DMA_DEV_TO_MEM;
727 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
728 		dev_err(dev->dev, "failed to configure rx channel\n");
729 		ret = -EINVAL;
730 		goto error;
731 	}
732 
733 	sg_init_table(&dma->sg, 1);
734 	dma->buf_mapped = false;
735 	dma->xfer_in_progress = false;
736 
737 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
738 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
739 
740 	return ret;
741 
742 error:
743 	dev_info(dev->dev, "can't use DMA\n");
744 	if (dma->chan_rx)
745 		dma_release_channel(dma->chan_rx);
746 	if (dma->chan_tx)
747 		dma_release_channel(dma->chan_tx);
748 	return ret;
749 }
750 
at91_twi_get_driver_data(struct platform_device * pdev)751 static struct at91_twi_pdata *at91_twi_get_driver_data(
752 					struct platform_device *pdev)
753 {
754 	if (pdev->dev.of_node) {
755 		const struct of_device_id *match;
756 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
757 		if (!match)
758 			return NULL;
759 		return (struct at91_twi_pdata *)match->data;
760 	}
761 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
762 }
763 
at91_twi_probe(struct platform_device * pdev)764 static int at91_twi_probe(struct platform_device *pdev)
765 {
766 	struct at91_twi_dev *dev;
767 	struct resource *mem;
768 	int rc;
769 	u32 phy_addr;
770 	u32 bus_clk_rate;
771 
772 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
773 	if (!dev)
774 		return -ENOMEM;
775 	init_completion(&dev->cmd_complete);
776 	dev->dev = &pdev->dev;
777 
778 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
779 	if (!mem)
780 		return -ENODEV;
781 	phy_addr = mem->start;
782 
783 	dev->pdata = at91_twi_get_driver_data(pdev);
784 	if (!dev->pdata)
785 		return -ENODEV;
786 
787 	dev->base = devm_ioremap_resource(&pdev->dev, mem);
788 	if (IS_ERR(dev->base))
789 		return PTR_ERR(dev->base);
790 
791 	dev->irq = platform_get_irq(pdev, 0);
792 	if (dev->irq < 0)
793 		return dev->irq;
794 
795 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
796 			 dev_name(dev->dev), dev);
797 	if (rc) {
798 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
799 		return rc;
800 	}
801 
802 	platform_set_drvdata(pdev, dev);
803 
804 	dev->clk = devm_clk_get(dev->dev, NULL);
805 	if (IS_ERR(dev->clk)) {
806 		dev_err(dev->dev, "no clock defined\n");
807 		return -ENODEV;
808 	}
809 	clk_prepare_enable(dev->clk);
810 
811 	if (dev->pdata->has_dma_support) {
812 		if (at91_twi_configure_dma(dev, phy_addr) == 0)
813 			dev->use_dma = true;
814 	}
815 
816 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
817 			&bus_clk_rate);
818 	if (rc)
819 		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
820 
821 	at91_calc_twi_clock(dev, bus_clk_rate);
822 	at91_init_twi_bus(dev);
823 
824 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
825 	i2c_set_adapdata(&dev->adapter, dev);
826 	dev->adapter.owner = THIS_MODULE;
827 	dev->adapter.class = I2C_CLASS_DEPRECATED;
828 	dev->adapter.algo = &at91_twi_algorithm;
829 	dev->adapter.dev.parent = dev->dev;
830 	dev->adapter.nr = pdev->id;
831 	dev->adapter.timeout = AT91_I2C_TIMEOUT;
832 	dev->adapter.dev.of_node = pdev->dev.of_node;
833 
834 	rc = i2c_add_numbered_adapter(&dev->adapter);
835 	if (rc) {
836 		dev_err(dev->dev, "Adapter %s registration failed\n",
837 			dev->adapter.name);
838 		clk_disable_unprepare(dev->clk);
839 		return rc;
840 	}
841 
842 	dev_info(dev->dev, "AT91 i2c bus driver.\n");
843 	return 0;
844 }
845 
at91_twi_remove(struct platform_device * pdev)846 static int at91_twi_remove(struct platform_device *pdev)
847 {
848 	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
849 
850 	i2c_del_adapter(&dev->adapter);
851 	clk_disable_unprepare(dev->clk);
852 
853 	return 0;
854 }
855 
856 #ifdef CONFIG_PM
857 
at91_twi_runtime_suspend(struct device * dev)858 static int at91_twi_runtime_suspend(struct device *dev)
859 {
860 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
861 
862 	clk_disable(twi_dev->clk);
863 
864 	return 0;
865 }
866 
at91_twi_runtime_resume(struct device * dev)867 static int at91_twi_runtime_resume(struct device *dev)
868 {
869 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
870 
871 	return clk_enable(twi_dev->clk);
872 }
873 
874 static const struct dev_pm_ops at91_twi_pm = {
875 	.runtime_suspend	= at91_twi_runtime_suspend,
876 	.runtime_resume		= at91_twi_runtime_resume,
877 };
878 
879 #define at91_twi_pm_ops (&at91_twi_pm)
880 #else
881 #define at91_twi_pm_ops NULL
882 #endif
883 
884 static struct platform_driver at91_twi_driver = {
885 	.probe		= at91_twi_probe,
886 	.remove		= at91_twi_remove,
887 	.id_table	= at91_twi_devtypes,
888 	.driver		= {
889 		.name	= "at91_i2c",
890 		.owner	= THIS_MODULE,
891 		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
892 		.pm	= at91_twi_pm_ops,
893 	},
894 };
895 
at91_twi_init(void)896 static int __init at91_twi_init(void)
897 {
898 	return platform_driver_register(&at91_twi_driver);
899 }
900 
at91_twi_exit(void)901 static void __exit at91_twi_exit(void)
902 {
903 	platform_driver_unregister(&at91_twi_driver);
904 }
905 
906 subsys_initcall(at91_twi_init);
907 module_exit(at91_twi_exit);
908 
909 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
910 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
911 MODULE_LICENSE("GPL");
912 MODULE_ALIAS("platform:at91_i2c");
913