1 /*
2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
3 *
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
6 *
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
10 *
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 */
19
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34
35 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
36 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
37 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
38
39 /* AT91 TWI register definitions */
40 #define AT91_TWI_CR 0x0000 /* Control Register */
41 #define AT91_TWI_START 0x0001 /* Send a Start Condition */
42 #define AT91_TWI_STOP 0x0002 /* Send a Stop Condition */
43 #define AT91_TWI_MSEN 0x0004 /* Master Transfer Enable */
44 #define AT91_TWI_SVDIS 0x0020 /* Slave Transfer Disable */
45 #define AT91_TWI_QUICK 0x0040 /* SMBus quick command */
46 #define AT91_TWI_SWRST 0x0080 /* Software Reset */
47
48 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
49 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
50 #define AT91_TWI_MREAD 0x1000 /* Master Read Direction */
51
52 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
53
54 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
55
56 #define AT91_TWI_SR 0x0020 /* Status Register */
57 #define AT91_TWI_TXCOMP 0x0001 /* Transmission Complete */
58 #define AT91_TWI_RXRDY 0x0002 /* Receive Holding Register Ready */
59 #define AT91_TWI_TXRDY 0x0004 /* Transmit Holding Register Ready */
60
61 #define AT91_TWI_OVRE 0x0040 /* Overrun Error */
62 #define AT91_TWI_UNRE 0x0080 /* Underrun Error */
63 #define AT91_TWI_NACK 0x0100 /* Not Acknowledged */
64
65 #define AT91_TWI_INT_MASK \
66 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
67
68 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
69 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
70 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
71 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
72 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
73
74 struct at91_twi_pdata {
75 unsigned clk_max_div;
76 unsigned clk_offset;
77 bool has_unre_flag;
78 bool has_dma_support;
79 struct at_dma_slave dma_slave;
80 };
81
82 struct at91_twi_dma {
83 struct dma_chan *chan_rx;
84 struct dma_chan *chan_tx;
85 struct scatterlist sg;
86 struct dma_async_tx_descriptor *data_desc;
87 enum dma_data_direction direction;
88 bool buf_mapped;
89 bool xfer_in_progress;
90 };
91
92 struct at91_twi_dev {
93 struct device *dev;
94 void __iomem *base;
95 struct completion cmd_complete;
96 struct clk *clk;
97 u8 *buf;
98 size_t buf_len;
99 struct i2c_msg *msg;
100 int irq;
101 unsigned imr;
102 unsigned transfer_status;
103 struct i2c_adapter adapter;
104 unsigned twi_cwgr_reg;
105 struct at91_twi_pdata *pdata;
106 bool use_dma;
107 bool recv_len_abort;
108 struct at91_twi_dma dma;
109 };
110
at91_twi_read(struct at91_twi_dev * dev,unsigned reg)111 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
112 {
113 return readl_relaxed(dev->base + reg);
114 }
115
at91_twi_write(struct at91_twi_dev * dev,unsigned reg,unsigned val)116 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
117 {
118 writel_relaxed(val, dev->base + reg);
119 }
120
at91_disable_twi_interrupts(struct at91_twi_dev * dev)121 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
122 {
123 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
124 }
125
at91_twi_irq_save(struct at91_twi_dev * dev)126 static void at91_twi_irq_save(struct at91_twi_dev *dev)
127 {
128 dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
129 at91_disable_twi_interrupts(dev);
130 }
131
at91_twi_irq_restore(struct at91_twi_dev * dev)132 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
133 {
134 at91_twi_write(dev, AT91_TWI_IER, dev->imr);
135 }
136
at91_init_twi_bus(struct at91_twi_dev * dev)137 static void at91_init_twi_bus(struct at91_twi_dev *dev)
138 {
139 at91_disable_twi_interrupts(dev);
140 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
141 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
142 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
143 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
144 }
145
146 /*
147 * Calculate symmetric clock as stated in datasheet:
148 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
149 */
at91_calc_twi_clock(struct at91_twi_dev * dev,int twi_clk)150 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
151 {
152 int ckdiv, cdiv, div;
153 struct at91_twi_pdata *pdata = dev->pdata;
154 int offset = pdata->clk_offset;
155 int max_ckdiv = pdata->clk_max_div;
156
157 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
158 2 * twi_clk) - offset);
159 ckdiv = fls(div >> 8);
160 cdiv = div >> ckdiv;
161
162 if (ckdiv > max_ckdiv) {
163 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
164 ckdiv, max_ckdiv);
165 ckdiv = max_ckdiv;
166 cdiv = 255;
167 }
168
169 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
170 dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
171 }
172
at91_twi_dma_cleanup(struct at91_twi_dev * dev)173 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
174 {
175 struct at91_twi_dma *dma = &dev->dma;
176
177 at91_twi_irq_save(dev);
178
179 if (dma->xfer_in_progress) {
180 if (dma->direction == DMA_FROM_DEVICE)
181 dmaengine_terminate_all(dma->chan_rx);
182 else
183 dmaengine_terminate_all(dma->chan_tx);
184 dma->xfer_in_progress = false;
185 }
186 if (dma->buf_mapped) {
187 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg),
188 dev->buf_len, dma->direction);
189 dma->buf_mapped = false;
190 }
191
192 at91_twi_irq_restore(dev);
193 }
194
at91_twi_write_next_byte(struct at91_twi_dev * dev)195 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
196 {
197 if (dev->buf_len <= 0)
198 return;
199
200 at91_twi_write(dev, AT91_TWI_THR, *dev->buf);
201
202 /* send stop when last byte has been written */
203 if (--dev->buf_len == 0)
204 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
205
206 dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
207
208 ++dev->buf;
209 }
210
at91_twi_write_data_dma_callback(void * data)211 static void at91_twi_write_data_dma_callback(void *data)
212 {
213 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
214
215 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
216 dev->buf_len, DMA_TO_DEVICE);
217
218 /*
219 * When this callback is called, THR/TX FIFO is likely not to be empty
220 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
221 * Status Register to be sure that the STOP bit has been sent and the
222 * transfer is completed. The NACK interrupt has already been enabled,
223 * we just have to enable TXCOMP one.
224 */
225 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
226 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
227 }
228
at91_twi_write_data_dma(struct at91_twi_dev * dev)229 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
230 {
231 dma_addr_t dma_addr;
232 struct dma_async_tx_descriptor *txdesc;
233 struct at91_twi_dma *dma = &dev->dma;
234 struct dma_chan *chan_tx = dma->chan_tx;
235
236 if (dev->buf_len <= 0)
237 return;
238
239 dma->direction = DMA_TO_DEVICE;
240
241 at91_twi_irq_save(dev);
242 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
243 DMA_TO_DEVICE);
244 if (dma_mapping_error(dev->dev, dma_addr)) {
245 dev_err(dev->dev, "dma map failed\n");
246 return;
247 }
248 dma->buf_mapped = true;
249 at91_twi_irq_restore(dev);
250 sg_dma_len(&dma->sg) = dev->buf_len;
251 sg_dma_address(&dma->sg) = dma_addr;
252
253 txdesc = dmaengine_prep_slave_sg(chan_tx, &dma->sg, 1, DMA_MEM_TO_DEV,
254 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
255 if (!txdesc) {
256 dev_err(dev->dev, "dma prep slave sg failed\n");
257 goto error;
258 }
259
260 txdesc->callback = at91_twi_write_data_dma_callback;
261 txdesc->callback_param = dev;
262
263 dma->xfer_in_progress = true;
264 dmaengine_submit(txdesc);
265 dma_async_issue_pending(chan_tx);
266
267 return;
268
269 error:
270 at91_twi_dma_cleanup(dev);
271 }
272
at91_twi_read_next_byte(struct at91_twi_dev * dev)273 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
274 {
275 if (dev->buf_len <= 0)
276 return;
277
278 *dev->buf = at91_twi_read(dev, AT91_TWI_RHR) & 0xff;
279 --dev->buf_len;
280
281 /* return if aborting, we only needed to read RHR to clear RXRDY*/
282 if (dev->recv_len_abort)
283 return;
284
285 /* handle I2C_SMBUS_BLOCK_DATA */
286 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
287 /* ensure length byte is a valid value */
288 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
289 dev->msg->flags &= ~I2C_M_RECV_LEN;
290 dev->buf_len += *dev->buf;
291 dev->msg->len = dev->buf_len + 1;
292 dev_dbg(dev->dev, "received block length %d\n",
293 dev->buf_len);
294 } else {
295 /* abort and send the stop by reading one more byte */
296 dev->recv_len_abort = true;
297 dev->buf_len = 1;
298 }
299 }
300
301 /* send stop if second but last byte has been read */
302 if (dev->buf_len == 1)
303 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
304
305 dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
306
307 ++dev->buf;
308 }
309
at91_twi_read_data_dma_callback(void * data)310 static void at91_twi_read_data_dma_callback(void *data)
311 {
312 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
313
314 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
315 dev->buf_len, DMA_FROM_DEVICE);
316
317 /* The last two bytes have to be read without using dma */
318 dev->buf += dev->buf_len - 2;
319 dev->buf_len = 2;
320 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_RXRDY | AT91_TWI_TXCOMP);
321 }
322
at91_twi_read_data_dma(struct at91_twi_dev * dev)323 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
324 {
325 dma_addr_t dma_addr;
326 struct dma_async_tx_descriptor *rxdesc;
327 struct at91_twi_dma *dma = &dev->dma;
328 struct dma_chan *chan_rx = dma->chan_rx;
329
330 dma->direction = DMA_FROM_DEVICE;
331
332 /* Keep in mind that we won't use dma to read the last two bytes */
333 at91_twi_irq_save(dev);
334 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len - 2,
335 DMA_FROM_DEVICE);
336 if (dma_mapping_error(dev->dev, dma_addr)) {
337 dev_err(dev->dev, "dma map failed\n");
338 return;
339 }
340 dma->buf_mapped = true;
341 at91_twi_irq_restore(dev);
342 dma->sg.dma_address = dma_addr;
343 sg_dma_len(&dma->sg) = dev->buf_len - 2;
344
345 rxdesc = dmaengine_prep_slave_sg(chan_rx, &dma->sg, 1, DMA_DEV_TO_MEM,
346 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
347 if (!rxdesc) {
348 dev_err(dev->dev, "dma prep slave sg failed\n");
349 goto error;
350 }
351
352 rxdesc->callback = at91_twi_read_data_dma_callback;
353 rxdesc->callback_param = dev;
354
355 dma->xfer_in_progress = true;
356 dmaengine_submit(rxdesc);
357 dma_async_issue_pending(dma->chan_rx);
358
359 return;
360
361 error:
362 at91_twi_dma_cleanup(dev);
363 }
364
atmel_twi_interrupt(int irq,void * dev_id)365 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
366 {
367 struct at91_twi_dev *dev = dev_id;
368 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
369 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
370
371 if (!irqstatus)
372 return IRQ_NONE;
373 else if (irqstatus & AT91_TWI_RXRDY)
374 at91_twi_read_next_byte(dev);
375 else if (irqstatus & AT91_TWI_TXRDY)
376 at91_twi_write_next_byte(dev);
377
378 /* catch error flags */
379 dev->transfer_status |= status;
380
381 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
382 at91_disable_twi_interrupts(dev);
383 complete(&dev->cmd_complete);
384 }
385
386 return IRQ_HANDLED;
387 }
388
at91_do_twi_transfer(struct at91_twi_dev * dev)389 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
390 {
391 int ret;
392 bool has_unre_flag = dev->pdata->has_unre_flag;
393
394 /*
395 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
396 * read flag but shows the state of the transmission at the time the
397 * Status Register is read. According to the programmer datasheet,
398 * TXCOMP is set when both holding register and internal shifter are
399 * empty and STOP condition has been sent.
400 * Consequently, we should enable NACK interrupt rather than TXCOMP to
401 * detect transmission failure.
402 *
403 * Besides, the TXCOMP bit is already set before the i2c transaction
404 * has been started. For read transactions, this bit is cleared when
405 * writing the START bit into the Control Register. So the
406 * corresponding interrupt can safely be enabled just after.
407 * However for write transactions managed by the CPU, we first write
408 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
409 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
410 * the interrupt handler would be called immediately and the i2c command
411 * would be reported as completed.
412 * Also when a write transaction is managed by the DMA controller,
413 * enabling the TXCOMP interrupt in this function may lead to a race
414 * condition since we don't know whether the TXCOMP interrupt is enabled
415 * before or after the DMA has started to write into THR. So the TXCOMP
416 * interrupt is enabled later by at91_twi_write_data_dma_callback().
417 * Immediately after in that DMA callback, we still need to send the
418 * STOP condition manually writing the corresponding bit into the
419 * Control Register.
420 */
421
422 dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
423 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
424
425 reinit_completion(&dev->cmd_complete);
426 dev->transfer_status = 0;
427
428 if (!dev->buf_len) {
429 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
430 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
431 } else if (dev->msg->flags & I2C_M_RD) {
432 unsigned start_flags = AT91_TWI_START;
433
434 if (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY) {
435 dev_err(dev->dev, "RXRDY still set!");
436 at91_twi_read(dev, AT91_TWI_RHR);
437 }
438
439 /* if only one byte is to be read, immediately stop transfer */
440 if (dev->buf_len <= 1 && !(dev->msg->flags & I2C_M_RECV_LEN))
441 start_flags |= AT91_TWI_STOP;
442 at91_twi_write(dev, AT91_TWI_CR, start_flags);
443 /*
444 * When using dma, the last byte has to be read manually in
445 * order to not send the stop command too late and then
446 * to receive extra data. In practice, there are some issues
447 * if you use the dma to read n-1 bytes because of latency.
448 * Reading n-2 bytes with dma and the two last ones manually
449 * seems to be the best solution.
450 */
451 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
452 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
453 at91_twi_read_data_dma(dev);
454 } else {
455 at91_twi_write(dev, AT91_TWI_IER,
456 AT91_TWI_TXCOMP |
457 AT91_TWI_NACK |
458 AT91_TWI_RXRDY);
459 }
460 } else {
461 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
462 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
463 at91_twi_write_data_dma(dev);
464 } else {
465 at91_twi_write_next_byte(dev);
466 at91_twi_write(dev, AT91_TWI_IER,
467 AT91_TWI_TXCOMP |
468 AT91_TWI_NACK |
469 AT91_TWI_TXRDY);
470 }
471 }
472
473 ret = wait_for_completion_timeout(&dev->cmd_complete,
474 dev->adapter.timeout);
475 if (ret == 0) {
476 dev_err(dev->dev, "controller timed out\n");
477 at91_init_twi_bus(dev);
478 ret = -ETIMEDOUT;
479 goto error;
480 }
481 if (dev->transfer_status & AT91_TWI_NACK) {
482 dev_dbg(dev->dev, "received nack\n");
483 ret = -EREMOTEIO;
484 goto error;
485 }
486 if (dev->transfer_status & AT91_TWI_OVRE) {
487 dev_err(dev->dev, "overrun while reading\n");
488 ret = -EIO;
489 goto error;
490 }
491 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
492 dev_err(dev->dev, "underrun while writing\n");
493 ret = -EIO;
494 goto error;
495 }
496 if (dev->recv_len_abort) {
497 dev_err(dev->dev, "invalid smbus block length recvd\n");
498 ret = -EPROTO;
499 goto error;
500 }
501
502 dev_dbg(dev->dev, "transfer complete\n");
503
504 return 0;
505
506 error:
507 at91_twi_dma_cleanup(dev);
508 return ret;
509 }
510
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)511 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
512 {
513 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
514 int ret;
515 unsigned int_addr_flag = 0;
516 struct i2c_msg *m_start = msg;
517
518 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
519
520 /*
521 * The hardware can handle at most two messages concatenated by a
522 * repeated start via it's internal address feature.
523 */
524 if (num > 2) {
525 dev_err(dev->dev,
526 "cannot handle more than two concatenated messages.\n");
527 return 0;
528 } else if (num == 2) {
529 int internal_address = 0;
530 int i;
531
532 if (msg->flags & I2C_M_RD) {
533 dev_err(dev->dev, "first transfer must be write.\n");
534 return -EINVAL;
535 }
536 if (msg->len > 3) {
537 dev_err(dev->dev, "first message size must be <= 3.\n");
538 return -EINVAL;
539 }
540
541 /* 1st msg is put into the internal address, start with 2nd */
542 m_start = &msg[1];
543 for (i = 0; i < msg->len; ++i) {
544 const unsigned addr = msg->buf[msg->len - 1 - i];
545
546 internal_address |= addr << (8 * i);
547 int_addr_flag += AT91_TWI_IADRSZ_1;
548 }
549 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
550 }
551
552 at91_twi_write(dev, AT91_TWI_MMR, (m_start->addr << 16) | int_addr_flag
553 | ((m_start->flags & I2C_M_RD) ? AT91_TWI_MREAD : 0));
554
555 dev->buf_len = m_start->len;
556 dev->buf = m_start->buf;
557 dev->msg = m_start;
558 dev->recv_len_abort = false;
559
560 ret = at91_do_twi_transfer(dev);
561
562 return (ret < 0) ? ret : num;
563 }
564
at91_twi_func(struct i2c_adapter * adapter)565 static u32 at91_twi_func(struct i2c_adapter *adapter)
566 {
567 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
568 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
569 }
570
571 static struct i2c_algorithm at91_twi_algorithm = {
572 .master_xfer = at91_twi_xfer,
573 .functionality = at91_twi_func,
574 };
575
576 static struct at91_twi_pdata at91rm9200_config = {
577 .clk_max_div = 5,
578 .clk_offset = 3,
579 .has_unre_flag = true,
580 .has_dma_support = false,
581 };
582
583 static struct at91_twi_pdata at91sam9261_config = {
584 .clk_max_div = 5,
585 .clk_offset = 4,
586 .has_unre_flag = false,
587 .has_dma_support = false,
588 };
589
590 static struct at91_twi_pdata at91sam9260_config = {
591 .clk_max_div = 7,
592 .clk_offset = 4,
593 .has_unre_flag = false,
594 .has_dma_support = false,
595 };
596
597 static struct at91_twi_pdata at91sam9g20_config = {
598 .clk_max_div = 7,
599 .clk_offset = 4,
600 .has_unre_flag = false,
601 .has_dma_support = false,
602 };
603
604 static struct at91_twi_pdata at91sam9g10_config = {
605 .clk_max_div = 7,
606 .clk_offset = 4,
607 .has_unre_flag = false,
608 .has_dma_support = false,
609 };
610
611 static const struct platform_device_id at91_twi_devtypes[] = {
612 {
613 .name = "i2c-at91rm9200",
614 .driver_data = (unsigned long) &at91rm9200_config,
615 }, {
616 .name = "i2c-at91sam9261",
617 .driver_data = (unsigned long) &at91sam9261_config,
618 }, {
619 .name = "i2c-at91sam9260",
620 .driver_data = (unsigned long) &at91sam9260_config,
621 }, {
622 .name = "i2c-at91sam9g20",
623 .driver_data = (unsigned long) &at91sam9g20_config,
624 }, {
625 .name = "i2c-at91sam9g10",
626 .driver_data = (unsigned long) &at91sam9g10_config,
627 }, {
628 /* sentinel */
629 }
630 };
631
632 #if defined(CONFIG_OF)
633 static struct at91_twi_pdata at91sam9x5_config = {
634 .clk_max_div = 7,
635 .clk_offset = 4,
636 .has_unre_flag = false,
637 .has_dma_support = true,
638 };
639
640 static const struct of_device_id atmel_twi_dt_ids[] = {
641 {
642 .compatible = "atmel,at91rm9200-i2c",
643 .data = &at91rm9200_config,
644 } , {
645 .compatible = "atmel,at91sam9260-i2c",
646 .data = &at91sam9260_config,
647 } , {
648 .compatible = "atmel,at91sam9261-i2c",
649 .data = &at91sam9261_config,
650 } , {
651 .compatible = "atmel,at91sam9g20-i2c",
652 .data = &at91sam9g20_config,
653 } , {
654 .compatible = "atmel,at91sam9g10-i2c",
655 .data = &at91sam9g10_config,
656 }, {
657 .compatible = "atmel,at91sam9x5-i2c",
658 .data = &at91sam9x5_config,
659 }, {
660 /* sentinel */
661 }
662 };
663 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
664 #endif
665
filter(struct dma_chan * chan,void * pdata)666 static bool filter(struct dma_chan *chan, void *pdata)
667 {
668 struct at91_twi_pdata *sl_pdata = pdata;
669 struct at_dma_slave *sl;
670
671 if (!sl_pdata)
672 return false;
673
674 sl = &sl_pdata->dma_slave;
675 if (sl && (sl->dma_dev == chan->device->dev)) {
676 chan->private = sl;
677 return true;
678 } else {
679 return false;
680 }
681 }
682
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)683 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
684 {
685 int ret = 0;
686 struct at91_twi_pdata *pdata = dev->pdata;
687 struct dma_slave_config slave_config;
688 struct at91_twi_dma *dma = &dev->dma;
689 dma_cap_mask_t mask;
690
691 memset(&slave_config, 0, sizeof(slave_config));
692 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
693 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
694 slave_config.src_maxburst = 1;
695 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
696 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
697 slave_config.dst_maxburst = 1;
698 slave_config.device_fc = false;
699
700 dma_cap_zero(mask);
701 dma_cap_set(DMA_SLAVE, mask);
702
703 dma->chan_tx = dma_request_slave_channel_compat(mask, filter, pdata,
704 dev->dev, "tx");
705 if (!dma->chan_tx) {
706 dev_err(dev->dev, "can't get a DMA channel for tx\n");
707 ret = -EBUSY;
708 goto error;
709 }
710
711 dma->chan_rx = dma_request_slave_channel_compat(mask, filter, pdata,
712 dev->dev, "rx");
713 if (!dma->chan_rx) {
714 dev_err(dev->dev, "can't get a DMA channel for rx\n");
715 ret = -EBUSY;
716 goto error;
717 }
718
719 slave_config.direction = DMA_MEM_TO_DEV;
720 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
721 dev_err(dev->dev, "failed to configure tx channel\n");
722 ret = -EINVAL;
723 goto error;
724 }
725
726 slave_config.direction = DMA_DEV_TO_MEM;
727 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
728 dev_err(dev->dev, "failed to configure rx channel\n");
729 ret = -EINVAL;
730 goto error;
731 }
732
733 sg_init_table(&dma->sg, 1);
734 dma->buf_mapped = false;
735 dma->xfer_in_progress = false;
736
737 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
738 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
739
740 return ret;
741
742 error:
743 dev_info(dev->dev, "can't use DMA\n");
744 if (dma->chan_rx)
745 dma_release_channel(dma->chan_rx);
746 if (dma->chan_tx)
747 dma_release_channel(dma->chan_tx);
748 return ret;
749 }
750
at91_twi_get_driver_data(struct platform_device * pdev)751 static struct at91_twi_pdata *at91_twi_get_driver_data(
752 struct platform_device *pdev)
753 {
754 if (pdev->dev.of_node) {
755 const struct of_device_id *match;
756 match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
757 if (!match)
758 return NULL;
759 return (struct at91_twi_pdata *)match->data;
760 }
761 return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
762 }
763
at91_twi_probe(struct platform_device * pdev)764 static int at91_twi_probe(struct platform_device *pdev)
765 {
766 struct at91_twi_dev *dev;
767 struct resource *mem;
768 int rc;
769 u32 phy_addr;
770 u32 bus_clk_rate;
771
772 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
773 if (!dev)
774 return -ENOMEM;
775 init_completion(&dev->cmd_complete);
776 dev->dev = &pdev->dev;
777
778 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
779 if (!mem)
780 return -ENODEV;
781 phy_addr = mem->start;
782
783 dev->pdata = at91_twi_get_driver_data(pdev);
784 if (!dev->pdata)
785 return -ENODEV;
786
787 dev->base = devm_ioremap_resource(&pdev->dev, mem);
788 if (IS_ERR(dev->base))
789 return PTR_ERR(dev->base);
790
791 dev->irq = platform_get_irq(pdev, 0);
792 if (dev->irq < 0)
793 return dev->irq;
794
795 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
796 dev_name(dev->dev), dev);
797 if (rc) {
798 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
799 return rc;
800 }
801
802 platform_set_drvdata(pdev, dev);
803
804 dev->clk = devm_clk_get(dev->dev, NULL);
805 if (IS_ERR(dev->clk)) {
806 dev_err(dev->dev, "no clock defined\n");
807 return -ENODEV;
808 }
809 clk_prepare_enable(dev->clk);
810
811 if (dev->pdata->has_dma_support) {
812 if (at91_twi_configure_dma(dev, phy_addr) == 0)
813 dev->use_dma = true;
814 }
815
816 rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
817 &bus_clk_rate);
818 if (rc)
819 bus_clk_rate = DEFAULT_TWI_CLK_HZ;
820
821 at91_calc_twi_clock(dev, bus_clk_rate);
822 at91_init_twi_bus(dev);
823
824 snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
825 i2c_set_adapdata(&dev->adapter, dev);
826 dev->adapter.owner = THIS_MODULE;
827 dev->adapter.class = I2C_CLASS_DEPRECATED;
828 dev->adapter.algo = &at91_twi_algorithm;
829 dev->adapter.dev.parent = dev->dev;
830 dev->adapter.nr = pdev->id;
831 dev->adapter.timeout = AT91_I2C_TIMEOUT;
832 dev->adapter.dev.of_node = pdev->dev.of_node;
833
834 rc = i2c_add_numbered_adapter(&dev->adapter);
835 if (rc) {
836 dev_err(dev->dev, "Adapter %s registration failed\n",
837 dev->adapter.name);
838 clk_disable_unprepare(dev->clk);
839 return rc;
840 }
841
842 dev_info(dev->dev, "AT91 i2c bus driver.\n");
843 return 0;
844 }
845
at91_twi_remove(struct platform_device * pdev)846 static int at91_twi_remove(struct platform_device *pdev)
847 {
848 struct at91_twi_dev *dev = platform_get_drvdata(pdev);
849
850 i2c_del_adapter(&dev->adapter);
851 clk_disable_unprepare(dev->clk);
852
853 return 0;
854 }
855
856 #ifdef CONFIG_PM
857
at91_twi_runtime_suspend(struct device * dev)858 static int at91_twi_runtime_suspend(struct device *dev)
859 {
860 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
861
862 clk_disable(twi_dev->clk);
863
864 return 0;
865 }
866
at91_twi_runtime_resume(struct device * dev)867 static int at91_twi_runtime_resume(struct device *dev)
868 {
869 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
870
871 return clk_enable(twi_dev->clk);
872 }
873
874 static const struct dev_pm_ops at91_twi_pm = {
875 .runtime_suspend = at91_twi_runtime_suspend,
876 .runtime_resume = at91_twi_runtime_resume,
877 };
878
879 #define at91_twi_pm_ops (&at91_twi_pm)
880 #else
881 #define at91_twi_pm_ops NULL
882 #endif
883
884 static struct platform_driver at91_twi_driver = {
885 .probe = at91_twi_probe,
886 .remove = at91_twi_remove,
887 .id_table = at91_twi_devtypes,
888 .driver = {
889 .name = "at91_i2c",
890 .owner = THIS_MODULE,
891 .of_match_table = of_match_ptr(atmel_twi_dt_ids),
892 .pm = at91_twi_pm_ops,
893 },
894 };
895
at91_twi_init(void)896 static int __init at91_twi_init(void)
897 {
898 return platform_driver_register(&at91_twi_driver);
899 }
900
at91_twi_exit(void)901 static void __exit at91_twi_exit(void)
902 {
903 platform_driver_unregister(&at91_twi_driver);
904 }
905
906 subsys_initcall(at91_twi_init);
907 module_exit(at91_twi_exit);
908
909 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
910 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
911 MODULE_LICENSE("GPL");
912 MODULE_ALIAS("platform:at91_i2c");
913