1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
srpt_get_u64_x(char * buffer,struct kernel_param * kp)85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103 static inline
opposite_dma_dir(enum dma_data_direction dir)104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111 }
112
113 /**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
srpt_sdev_name(struct srpt_device * sdev)118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 return sdev->device->name;
121 }
122
srpt_get_ch_state(struct srpt_rdma_ch * ch)123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132 }
133
134 static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new_state)135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145 }
146
147 /**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152 static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state old,enum rdma_ch_state new)153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155 {
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165 }
166
167 /**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)175 static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177 {
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 case IB_EVENT_GID_CHANGE:
202 /* Refresh port data asynchronously. */
203 if (event->element.port_num <= sdev->device->phys_port_cnt) {
204 sport = &sdev->port[event->element.port_num - 1];
205 if (!sport->lid && !sport->sm_lid)
206 schedule_work(&sport->work);
207 }
208 break;
209 default:
210 printk(KERN_ERR "received unrecognized IB event %d\n",
211 event->event);
212 break;
213 }
214 }
215
216 /**
217 * srpt_srq_event() - SRQ event callback function.
218 */
srpt_srq_event(struct ib_event * event,void * ctx)219 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 {
221 printk(KERN_INFO "SRQ event %d\n", event->event);
222 }
223
224 /**
225 * srpt_qp_event() - QP event callback function.
226 */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 {
229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231
232 switch (event->event) {
233 case IB_EVENT_COMM_EST:
234 ib_cm_notify(ch->cm_id, event->event);
235 break;
236 case IB_EVENT_QP_LAST_WQE_REACHED:
237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238 CH_RELEASING))
239 srpt_release_channel(ch);
240 else
241 pr_debug("%s: state %d - ignored LAST_WQE.\n",
242 ch->sess_name, srpt_get_ch_state(ch));
243 break;
244 default:
245 printk(KERN_ERR "received unrecognized IB QP event %d\n",
246 event->event);
247 break;
248 }
249 }
250
251 /**
252 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253 *
254 * @slot: one-based slot number.
255 * @value: four-bit value.
256 *
257 * Copies the lowest four bits of value in element slot of the array of four
258 * bit elements called c_list (controller list). The index slot is one-based.
259 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
261 {
262 u16 id;
263 u8 tmp;
264
265 id = (slot - 1) / 2;
266 if (slot & 0x1) {
267 tmp = c_list[id] & 0xf;
268 c_list[id] = (value << 4) | tmp;
269 } else {
270 tmp = c_list[id] & 0xf0;
271 c_list[id] = (value & 0xf) | tmp;
272 }
273 }
274
275 /**
276 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277 *
278 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
279 * Specification.
280 */
srpt_get_class_port_info(struct ib_dm_mad * mad)281 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
282 {
283 struct ib_class_port_info *cif;
284
285 cif = (struct ib_class_port_info *)mad->data;
286 memset(cif, 0, sizeof *cif);
287 cif->base_version = 1;
288 cif->class_version = 1;
289 cif->resp_time_value = 20;
290
291 mad->mad_hdr.status = 0;
292 }
293
294 /**
295 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296 *
297 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
298 * Specification. See also section B.7, table B.6 in the SRP r16a document.
299 */
srpt_get_iou(struct ib_dm_mad * mad)300 static void srpt_get_iou(struct ib_dm_mad *mad)
301 {
302 struct ib_dm_iou_info *ioui;
303 u8 slot;
304 int i;
305
306 ioui = (struct ib_dm_iou_info *)mad->data;
307 ioui->change_id = __constant_cpu_to_be16(1);
308 ioui->max_controllers = 16;
309
310 /* set present for slot 1 and empty for the rest */
311 srpt_set_ioc(ioui->controller_list, 1, 1);
312 for (i = 1, slot = 2; i < 16; i++, slot++)
313 srpt_set_ioc(ioui->controller_list, slot, 0);
314
315 mad->mad_hdr.status = 0;
316 }
317
318 /**
319 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320 *
321 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
322 * Architecture Specification. See also section B.7, table B.7 in the SRP
323 * r16a document.
324 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
326 struct ib_dm_mad *mad)
327 {
328 struct srpt_device *sdev = sport->sdev;
329 struct ib_dm_ioc_profile *iocp;
330
331 iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333 if (!slot || slot > 16) {
334 mad->mad_hdr.status
335 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 return;
337 }
338
339 if (slot > 2) {
340 mad->mad_hdr.status
341 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 return;
343 }
344
345 memset(iocp, 0, sizeof *iocp);
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 1U << 24));
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366 mad->mad_hdr.status = 0;
367 }
368
369 /**
370 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371 *
372 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
373 * Specification. See also section B.7, table B.8 in the SRP r16a document.
374 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)375 static void srpt_get_svc_entries(u64 ioc_guid,
376 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
377 {
378 struct ib_dm_svc_entries *svc_entries;
379
380 WARN_ON(!ioc_guid);
381
382 if (!slot || slot > 16) {
383 mad->mad_hdr.status
384 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
385 return;
386 }
387
388 if (slot > 2 || lo > hi || hi > 1) {
389 mad->mad_hdr.status
390 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
391 return;
392 }
393
394 svc_entries = (struct ib_dm_svc_entries *)mad->data;
395 memset(svc_entries, 0, sizeof *svc_entries);
396 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
397 snprintf(svc_entries->service_entries[0].name,
398 sizeof(svc_entries->service_entries[0].name),
399 "%s%016llx",
400 SRP_SERVICE_NAME_PREFIX,
401 ioc_guid);
402
403 mad->mad_hdr.status = 0;
404 }
405
406 /**
407 * srpt_mgmt_method_get() - Process a received management datagram.
408 * @sp: source port through which the MAD has been received.
409 * @rq_mad: received MAD.
410 * @rsp_mad: response MAD.
411 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
413 struct ib_dm_mad *rsp_mad)
414 {
415 u16 attr_id;
416 u32 slot;
417 u8 hi, lo;
418
419 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
420 switch (attr_id) {
421 case DM_ATTR_CLASS_PORT_INFO:
422 srpt_get_class_port_info(rsp_mad);
423 break;
424 case DM_ATTR_IOU_INFO:
425 srpt_get_iou(rsp_mad);
426 break;
427 case DM_ATTR_IOC_PROFILE:
428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 srpt_get_ioc(sp, slot, rsp_mad);
430 break;
431 case DM_ATTR_SVC_ENTRIES:
432 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
433 hi = (u8) ((slot >> 8) & 0xff);
434 lo = (u8) (slot & 0xff);
435 slot = (u16) ((slot >> 16) & 0xffff);
436 srpt_get_svc_entries(srpt_service_guid,
437 slot, hi, lo, rsp_mad);
438 break;
439 default:
440 rsp_mad->mad_hdr.status =
441 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
442 break;
443 }
444 }
445
446 /**
447 * srpt_mad_send_handler() - Post MAD-send callback function.
448 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
450 struct ib_mad_send_wc *mad_wc)
451 {
452 ib_destroy_ah(mad_wc->send_buf->ah);
453 ib_free_send_mad(mad_wc->send_buf);
454 }
455
456 /**
457 * srpt_mad_recv_handler() - MAD reception callback function.
458 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_recv_wc * mad_wc)459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
460 struct ib_mad_recv_wc *mad_wc)
461 {
462 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
463 struct ib_ah *ah;
464 struct ib_mad_send_buf *rsp;
465 struct ib_dm_mad *dm_mad;
466
467 if (!mad_wc || !mad_wc->recv_buf.mad)
468 return;
469
470 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
471 mad_wc->recv_buf.grh, mad_agent->port_num);
472 if (IS_ERR(ah))
473 goto err;
474
475 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
476
477 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
478 mad_wc->wc->pkey_index, 0,
479 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
480 GFP_KERNEL);
481 if (IS_ERR(rsp))
482 goto err_rsp;
483
484 rsp->ah = ah;
485
486 dm_mad = rsp->mad;
487 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
488 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
489 dm_mad->mad_hdr.status = 0;
490
491 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
492 case IB_MGMT_METHOD_GET:
493 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
494 break;
495 case IB_MGMT_METHOD_SET:
496 dm_mad->mad_hdr.status =
497 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
498 break;
499 default:
500 dm_mad->mad_hdr.status =
501 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
502 break;
503 }
504
505 if (!ib_post_send_mad(rsp, NULL)) {
506 ib_free_recv_mad(mad_wc);
507 /* will destroy_ah & free_send_mad in send completion */
508 return;
509 }
510
511 ib_free_send_mad(rsp);
512
513 err_rsp:
514 ib_destroy_ah(ah);
515 err:
516 ib_free_recv_mad(mad_wc);
517 }
518
519 /**
520 * srpt_refresh_port() - Configure a HCA port.
521 *
522 * Enable InfiniBand management datagram processing, update the cached sm_lid,
523 * lid and gid values, and register a callback function for processing MADs
524 * on the specified port.
525 *
526 * Note: It is safe to call this function more than once for the same port.
527 */
srpt_refresh_port(struct srpt_port * sport)528 static int srpt_refresh_port(struct srpt_port *sport)
529 {
530 struct ib_mad_reg_req reg_req;
531 struct ib_port_modify port_modify;
532 struct ib_port_attr port_attr;
533 int ret;
534
535 memset(&port_modify, 0, sizeof port_modify);
536 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
537 port_modify.clr_port_cap_mask = 0;
538
539 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
540 if (ret)
541 goto err_mod_port;
542
543 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
544 if (ret)
545 goto err_query_port;
546
547 sport->sm_lid = port_attr.sm_lid;
548 sport->lid = port_attr.lid;
549
550 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
551 if (ret)
552 goto err_query_port;
553
554 if (!sport->mad_agent) {
555 memset(®_req, 0, sizeof reg_req);
556 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
557 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
558 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
559 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
560
561 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
562 sport->port,
563 IB_QPT_GSI,
564 ®_req, 0,
565 srpt_mad_send_handler,
566 srpt_mad_recv_handler,
567 sport, 0);
568 if (IS_ERR(sport->mad_agent)) {
569 ret = PTR_ERR(sport->mad_agent);
570 sport->mad_agent = NULL;
571 goto err_query_port;
572 }
573 }
574
575 return 0;
576
577 err_query_port:
578
579 port_modify.set_port_cap_mask = 0;
580 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
582
583 err_mod_port:
584
585 return ret;
586 }
587
588 /**
589 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590 *
591 * Note: It is safe to call this function more than once for the same device.
592 */
srpt_unregister_mad_agent(struct srpt_device * sdev)593 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
594 {
595 struct ib_port_modify port_modify = {
596 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
597 };
598 struct srpt_port *sport;
599 int i;
600
601 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
602 sport = &sdev->port[i - 1];
603 WARN_ON(sport->port != i);
604 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
605 printk(KERN_ERR "disabling MAD processing failed.\n");
606 if (sport->mad_agent) {
607 ib_unregister_mad_agent(sport->mad_agent);
608 sport->mad_agent = NULL;
609 }
610 }
611 }
612
613 /**
614 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,int dma_size,enum dma_data_direction dir)616 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
617 int ioctx_size, int dma_size,
618 enum dma_data_direction dir)
619 {
620 struct srpt_ioctx *ioctx;
621
622 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
623 if (!ioctx)
624 goto err;
625
626 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
627 if (!ioctx->buf)
628 goto err_free_ioctx;
629
630 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
631 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
632 goto err_free_buf;
633
634 return ioctx;
635
636 err_free_buf:
637 kfree(ioctx->buf);
638 err_free_ioctx:
639 kfree(ioctx);
640 err:
641 return NULL;
642 }
643
644 /**
645 * srpt_free_ioctx() - Free an SRPT I/O context structure.
646 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,int dma_size,enum dma_data_direction dir)647 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
648 int dma_size, enum dma_data_direction dir)
649 {
650 if (!ioctx)
651 return;
652
653 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
654 kfree(ioctx->buf);
655 kfree(ioctx);
656 }
657
658 /**
659 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
660 * @sdev: Device to allocate the I/O context ring for.
661 * @ring_size: Number of elements in the I/O context ring.
662 * @ioctx_size: I/O context size.
663 * @dma_size: DMA buffer size.
664 * @dir: DMA data direction.
665 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,int dma_size,enum dma_data_direction dir)666 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
667 int ring_size, int ioctx_size,
668 int dma_size, enum dma_data_direction dir)
669 {
670 struct srpt_ioctx **ring;
671 int i;
672
673 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
674 && ioctx_size != sizeof(struct srpt_send_ioctx));
675
676 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
677 if (!ring)
678 goto out;
679 for (i = 0; i < ring_size; ++i) {
680 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
681 if (!ring[i])
682 goto err;
683 ring[i]->index = i;
684 }
685 goto out;
686
687 err:
688 while (--i >= 0)
689 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
690 kfree(ring);
691 ring = NULL;
692 out:
693 return ring;
694 }
695
696 /**
697 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,int dma_size,enum dma_data_direction dir)699 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
700 struct srpt_device *sdev, int ring_size,
701 int dma_size, enum dma_data_direction dir)
702 {
703 int i;
704
705 for (i = 0; i < ring_size; ++i)
706 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
707 kfree(ioctx_ring);
708 }
709
710 /**
711 * srpt_get_cmd_state() - Get the state of a SCSI command.
712 */
srpt_get_cmd_state(struct srpt_send_ioctx * ioctx)713 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
714 {
715 enum srpt_command_state state;
716 unsigned long flags;
717
718 BUG_ON(!ioctx);
719
720 spin_lock_irqsave(&ioctx->spinlock, flags);
721 state = ioctx->state;
722 spin_unlock_irqrestore(&ioctx->spinlock, flags);
723 return state;
724 }
725
726 /**
727 * srpt_set_cmd_state() - Set the state of a SCSI command.
728 *
729 * Does not modify the state of aborted commands. Returns the previous command
730 * state.
731 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)732 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
733 enum srpt_command_state new)
734 {
735 enum srpt_command_state previous;
736 unsigned long flags;
737
738 BUG_ON(!ioctx);
739
740 spin_lock_irqsave(&ioctx->spinlock, flags);
741 previous = ioctx->state;
742 if (previous != SRPT_STATE_DONE)
743 ioctx->state = new;
744 spin_unlock_irqrestore(&ioctx->spinlock, flags);
745
746 return previous;
747 }
748
749 /**
750 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751 *
752 * Returns true if and only if the previous command state was equal to 'old'.
753 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)754 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
755 enum srpt_command_state old,
756 enum srpt_command_state new)
757 {
758 enum srpt_command_state previous;
759 unsigned long flags;
760
761 WARN_ON(!ioctx);
762 WARN_ON(old == SRPT_STATE_DONE);
763 WARN_ON(new == SRPT_STATE_NEW);
764
765 spin_lock_irqsave(&ioctx->spinlock, flags);
766 previous = ioctx->state;
767 if (previous == old)
768 ioctx->state = new;
769 spin_unlock_irqrestore(&ioctx->spinlock, flags);
770 return previous == old;
771 }
772
773 /**
774 * srpt_post_recv() - Post an IB receive request.
775 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_recv_ioctx * ioctx)776 static int srpt_post_recv(struct srpt_device *sdev,
777 struct srpt_recv_ioctx *ioctx)
778 {
779 struct ib_sge list;
780 struct ib_recv_wr wr, *bad_wr;
781
782 BUG_ON(!sdev);
783 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
784
785 list.addr = ioctx->ioctx.dma;
786 list.length = srp_max_req_size;
787 list.lkey = sdev->mr->lkey;
788
789 wr.next = NULL;
790 wr.sg_list = &list;
791 wr.num_sge = 1;
792
793 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
794 }
795
796 /**
797 * srpt_post_send() - Post an IB send request.
798 *
799 * Returns zero upon success and a non-zero value upon failure.
800 */
srpt_post_send(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,int len)801 static int srpt_post_send(struct srpt_rdma_ch *ch,
802 struct srpt_send_ioctx *ioctx, int len)
803 {
804 struct ib_sge list;
805 struct ib_send_wr wr, *bad_wr;
806 struct srpt_device *sdev = ch->sport->sdev;
807 int ret;
808
809 atomic_inc(&ch->req_lim);
810
811 ret = -ENOMEM;
812 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
813 printk(KERN_WARNING "IB send queue full (needed 1)\n");
814 goto out;
815 }
816
817 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
818 DMA_TO_DEVICE);
819
820 list.addr = ioctx->ioctx.dma;
821 list.length = len;
822 list.lkey = sdev->mr->lkey;
823
824 wr.next = NULL;
825 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
826 wr.sg_list = &list;
827 wr.num_sge = 1;
828 wr.opcode = IB_WR_SEND;
829 wr.send_flags = IB_SEND_SIGNALED;
830
831 ret = ib_post_send(ch->qp, &wr, &bad_wr);
832
833 out:
834 if (ret < 0) {
835 atomic_inc(&ch->sq_wr_avail);
836 atomic_dec(&ch->req_lim);
837 }
838 return ret;
839 }
840
841 /**
842 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
843 * @ioctx: Pointer to the I/O context associated with the request.
844 * @srp_cmd: Pointer to the SRP_CMD request data.
845 * @dir: Pointer to the variable to which the transfer direction will be
846 * written.
847 * @data_len: Pointer to the variable to which the total data length of all
848 * descriptors in the SRP_CMD request will be written.
849 *
850 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851 *
852 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
853 * -ENOMEM when memory allocation fails and zero upon success.
854 */
srpt_get_desc_tbl(struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,u64 * data_len)855 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
856 struct srp_cmd *srp_cmd,
857 enum dma_data_direction *dir, u64 *data_len)
858 {
859 struct srp_indirect_buf *idb;
860 struct srp_direct_buf *db;
861 unsigned add_cdb_offset;
862 int ret;
863
864 /*
865 * The pointer computations below will only be compiled correctly
866 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
867 * whether srp_cmd::add_data has been declared as a byte pointer.
868 */
869 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
870 && !__same_type(srp_cmd->add_data[0], (u8)0));
871
872 BUG_ON(!dir);
873 BUG_ON(!data_len);
874
875 ret = 0;
876 *data_len = 0;
877
878 /*
879 * The lower four bits of the buffer format field contain the DATA-IN
880 * buffer descriptor format, and the highest four bits contain the
881 * DATA-OUT buffer descriptor format.
882 */
883 *dir = DMA_NONE;
884 if (srp_cmd->buf_fmt & 0xf)
885 /* DATA-IN: transfer data from target to initiator (read). */
886 *dir = DMA_FROM_DEVICE;
887 else if (srp_cmd->buf_fmt >> 4)
888 /* DATA-OUT: transfer data from initiator to target (write). */
889 *dir = DMA_TO_DEVICE;
890
891 /*
892 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
893 * CDB LENGTH' field are reserved and the size in bytes of this field
894 * is four times the value specified in bits 3..7. Hence the "& ~3".
895 */
896 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
897 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
898 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
899 ioctx->n_rbuf = 1;
900 ioctx->rbufs = &ioctx->single_rbuf;
901
902 db = (struct srp_direct_buf *)(srp_cmd->add_data
903 + add_cdb_offset);
904 memcpy(ioctx->rbufs, db, sizeof *db);
905 *data_len = be32_to_cpu(db->len);
906 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
907 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
908 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
909 + add_cdb_offset);
910
911 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
912
913 if (ioctx->n_rbuf >
914 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
915 printk(KERN_ERR "received unsupported SRP_CMD request"
916 " type (%u out + %u in != %u / %zu)\n",
917 srp_cmd->data_out_desc_cnt,
918 srp_cmd->data_in_desc_cnt,
919 be32_to_cpu(idb->table_desc.len),
920 sizeof(*db));
921 ioctx->n_rbuf = 0;
922 ret = -EINVAL;
923 goto out;
924 }
925
926 if (ioctx->n_rbuf == 1)
927 ioctx->rbufs = &ioctx->single_rbuf;
928 else {
929 ioctx->rbufs =
930 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
931 if (!ioctx->rbufs) {
932 ioctx->n_rbuf = 0;
933 ret = -ENOMEM;
934 goto out;
935 }
936 }
937
938 db = idb->desc_list;
939 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
940 *data_len = be32_to_cpu(idb->len);
941 }
942 out:
943 return ret;
944 }
945
946 /**
947 * srpt_init_ch_qp() - Initialize queue pair attributes.
948 *
949 * Initialized the attributes of queue pair 'qp' by allowing local write,
950 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)952 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
953 {
954 struct ib_qp_attr *attr;
955 int ret;
956
957 attr = kzalloc(sizeof *attr, GFP_KERNEL);
958 if (!attr)
959 return -ENOMEM;
960
961 attr->qp_state = IB_QPS_INIT;
962 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972 }
973
974 /**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001 return ret;
1002 }
1003
1004 /**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031 return ret;
1032 }
1033
1034 /**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050 {
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073 }
1074
1075 /**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
srpt_map_sg_to_ib_sge(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080 {
1081 struct ib_device *dev = ch->sport->sdev->device;
1082 struct se_cmd *cmd;
1083 struct scatterlist *sg, *sg_orig;
1084 int sg_cnt;
1085 enum dma_data_direction dir;
1086 struct rdma_iu *riu;
1087 struct srp_direct_buf *db;
1088 dma_addr_t dma_addr;
1089 struct ib_sge *sge;
1090 u64 raddr;
1091 u32 rsize;
1092 u32 tsize;
1093 u32 dma_len;
1094 int count, nrdma;
1095 int i, j, k;
1096
1097 BUG_ON(!ch);
1098 BUG_ON(!ioctx);
1099 cmd = &ioctx->cmd;
1100 dir = cmd->data_direction;
1101 BUG_ON(dir == DMA_NONE);
1102
1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 opposite_dma_dir(dir));
1108 if (unlikely(!count))
1109 return -EAGAIN;
1110
1111 ioctx->mapped_sg_count = count;
1112
1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 nrdma = ioctx->n_rdma_ius;
1115 else {
1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 + ioctx->n_rbuf;
1118
1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 if (!ioctx->rdma_ius)
1121 goto free_mem;
1122
1123 ioctx->n_rdma_ius = nrdma;
1124 }
1125
1126 db = ioctx->rbufs;
1127 tsize = cmd->data_length;
1128 dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 riu = ioctx->rdma_ius;
1130
1131 /*
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1135 * else
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 * another rdma wr
1138 */
1139 for (i = 0, j = 0;
1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 rsize = be32_to_cpu(db->len);
1142 raddr = be64_to_cpu(db->va);
1143 riu->raddr = raddr;
1144 riu->rkey = be32_to_cpu(db->key);
1145 riu->sge_cnt = 0;
1146
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize > 0 && tsize > 0) {
1149
1150 if (rsize >= dma_len) {
1151 tsize -= dma_len;
1152 rsize -= dma_len;
1153 raddr += dma_len;
1154
1155 if (tsize > 0) {
1156 ++j;
1157 if (j < count) {
1158 sg = sg_next(sg);
1159 dma_len = ib_sg_dma_len(
1160 dev, sg);
1161 }
1162 }
1163 } else {
1164 tsize -= rsize;
1165 dma_len -= rsize;
1166 rsize = 0;
1167 }
1168
1169 ++riu->sge_cnt;
1170
1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172 ++ioctx->n_rdma;
1173 riu->sge =
1174 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175 GFP_KERNEL);
1176 if (!riu->sge)
1177 goto free_mem;
1178
1179 ++riu;
1180 riu->sge_cnt = 0;
1181 riu->raddr = raddr;
1182 riu->rkey = be32_to_cpu(db->key);
1183 }
1184 }
1185
1186 ++ioctx->n_rdma;
1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188 GFP_KERNEL);
1189 if (!riu->sge)
1190 goto free_mem;
1191 }
1192
1193 db = ioctx->rbufs;
1194 tsize = cmd->data_length;
1195 riu = ioctx->rdma_ius;
1196 sg = sg_orig;
1197 dma_len = ib_sg_dma_len(dev, &sg[0]);
1198 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 for (i = 0, j = 0;
1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203 rsize = be32_to_cpu(db->len);
1204 sge = riu->sge;
1205 k = 0;
1206
1207 while (rsize > 0 && tsize > 0) {
1208 sge->addr = dma_addr;
1209 sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211 if (rsize >= dma_len) {
1212 sge->length =
1213 (tsize < dma_len) ? tsize : dma_len;
1214 tsize -= dma_len;
1215 rsize -= dma_len;
1216
1217 if (tsize > 0) {
1218 ++j;
1219 if (j < count) {
1220 sg = sg_next(sg);
1221 dma_len = ib_sg_dma_len(
1222 dev, sg);
1223 dma_addr = ib_sg_dma_address(
1224 dev, sg);
1225 }
1226 }
1227 } else {
1228 sge->length = (tsize < rsize) ? tsize : rsize;
1229 tsize -= rsize;
1230 dma_len -= rsize;
1231 dma_addr += rsize;
1232 rsize = 0;
1233 }
1234
1235 ++k;
1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237 ++riu;
1238 sge = riu->sge;
1239 k = 0;
1240 } else if (rsize > 0 && tsize > 0)
1241 ++sge;
1242 }
1243 }
1244
1245 return 0;
1246
1247 free_mem:
1248 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250 return -ENOMEM;
1251 }
1252
1253 /**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258 struct srpt_send_ioctx *ioctx;
1259 unsigned long flags;
1260
1261 BUG_ON(!ch);
1262
1263 ioctx = NULL;
1264 spin_lock_irqsave(&ch->spinlock, flags);
1265 if (!list_empty(&ch->free_list)) {
1266 ioctx = list_first_entry(&ch->free_list,
1267 struct srpt_send_ioctx, free_list);
1268 list_del(&ioctx->free_list);
1269 }
1270 spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272 if (!ioctx)
1273 return ioctx;
1274
1275 BUG_ON(ioctx->ch != ch);
1276 spin_lock_init(&ioctx->spinlock);
1277 ioctx->state = SRPT_STATE_NEW;
1278 ioctx->n_rbuf = 0;
1279 ioctx->rbufs = NULL;
1280 ioctx->n_rdma = 0;
1281 ioctx->n_rdma_ius = 0;
1282 ioctx->rdma_ius = NULL;
1283 ioctx->mapped_sg_count = 0;
1284 init_completion(&ioctx->tx_done);
1285 ioctx->queue_status_only = false;
1286 /*
1287 * transport_init_se_cmd() does not initialize all fields, so do it
1288 * here.
1289 */
1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293 return ioctx;
1294 }
1295
1296 /**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx: I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303 enum srpt_command_state state;
1304 unsigned long flags;
1305
1306 BUG_ON(!ioctx);
1307
1308 /*
1309 * If the command is in a state where the target core is waiting for
1310 * the ib_srpt driver, change the state to the next state. Changing
1311 * the state of the command from SRPT_STATE_NEED_DATA to
1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 * function a second time.
1314 */
1315
1316 spin_lock_irqsave(&ioctx->spinlock, flags);
1317 state = ioctx->state;
1318 switch (state) {
1319 case SRPT_STATE_NEED_DATA:
1320 ioctx->state = SRPT_STATE_DATA_IN;
1321 break;
1322 case SRPT_STATE_DATA_IN:
1323 case SRPT_STATE_CMD_RSP_SENT:
1324 case SRPT_STATE_MGMT_RSP_SENT:
1325 ioctx->state = SRPT_STATE_DONE;
1326 break;
1327 default:
1328 break;
1329 }
1330 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332 if (state == SRPT_STATE_DONE) {
1333 struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335 BUG_ON(ch->sess == NULL);
1336
1337 target_put_sess_cmd(&ioctx->cmd);
1338 goto out;
1339 }
1340
1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342 ioctx->tag);
1343
1344 switch (state) {
1345 case SRPT_STATE_NEW:
1346 case SRPT_STATE_DATA_IN:
1347 case SRPT_STATE_MGMT:
1348 /*
1349 * Do nothing - defer abort processing until
1350 * srpt_queue_response() is invoked.
1351 */
1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353 break;
1354 case SRPT_STATE_NEED_DATA:
1355 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357 /* XXX(hch): this is a horrible layering violation.. */
1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361 break;
1362 case SRPT_STATE_CMD_RSP_SENT:
1363 /*
1364 * SRP_RSP sending failed or the SRP_RSP send completion has
1365 * not been received in time.
1366 */
1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368 target_put_sess_cmd(&ioctx->cmd);
1369 break;
1370 case SRPT_STATE_MGMT_RSP_SENT:
1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372 target_put_sess_cmd(&ioctx->cmd);
1373 break;
1374 default:
1375 WARN(1, "Unexpected command state (%d)", state);
1376 break;
1377 }
1378
1379 out:
1380 return state;
1381 }
1382
1383 /**
1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 */
srpt_handle_send_err_comp(struct srpt_rdma_ch * ch,u64 wr_id)1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 {
1388 struct srpt_send_ioctx *ioctx;
1389 enum srpt_command_state state;
1390 struct se_cmd *cmd;
1391 u32 index;
1392
1393 atomic_inc(&ch->sq_wr_avail);
1394
1395 index = idx_from_wr_id(wr_id);
1396 ioctx = ch->ioctx_ring[index];
1397 state = srpt_get_cmd_state(ioctx);
1398 cmd = &ioctx->cmd;
1399
1400 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1401 && state != SRPT_STATE_MGMT_RSP_SENT
1402 && state != SRPT_STATE_NEED_DATA
1403 && state != SRPT_STATE_DONE);
1404
1405 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1406 if (state == SRPT_STATE_CMD_RSP_SENT
1407 || state == SRPT_STATE_MGMT_RSP_SENT)
1408 atomic_dec(&ch->req_lim);
1409
1410 srpt_abort_cmd(ioctx);
1411 }
1412
1413 /**
1414 * srpt_handle_send_comp() - Process an IB send completion notification.
1415 */
srpt_handle_send_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1417 struct srpt_send_ioctx *ioctx)
1418 {
1419 enum srpt_command_state state;
1420
1421 atomic_inc(&ch->sq_wr_avail);
1422
1423 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1424
1425 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1426 && state != SRPT_STATE_MGMT_RSP_SENT
1427 && state != SRPT_STATE_DONE))
1428 pr_debug("state = %d\n", state);
1429
1430 if (state != SRPT_STATE_DONE) {
1431 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1432 transport_generic_free_cmd(&ioctx->cmd, 0);
1433 } else {
1434 printk(KERN_ERR "IB completion has been received too late for"
1435 " wr_id = %u.\n", ioctx->ioctx.index);
1436 }
1437 }
1438
1439 /**
1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1441 *
1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1443 * the data that has been transferred via IB RDMA had to be postponed until the
1444 * check_stop_free() callback. None of this is necessary anymore and needs to
1445 * be cleaned up.
1446 */
srpt_handle_rdma_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1448 struct srpt_send_ioctx *ioctx,
1449 enum srpt_opcode opcode)
1450 {
1451 WARN_ON(ioctx->n_rdma <= 0);
1452 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1453
1454 if (opcode == SRPT_RDMA_READ_LAST) {
1455 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1456 SRPT_STATE_DATA_IN))
1457 target_execute_cmd(&ioctx->cmd);
1458 else
1459 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1460 __LINE__, srpt_get_cmd_state(ioctx));
1461 } else if (opcode == SRPT_RDMA_ABORT) {
1462 ioctx->rdma_aborted = true;
1463 } else {
1464 WARN(true, "unexpected opcode %d\n", opcode);
1465 }
1466 }
1467
1468 /**
1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1470 */
srpt_handle_rdma_err_comp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,enum srpt_opcode opcode)1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1472 struct srpt_send_ioctx *ioctx,
1473 enum srpt_opcode opcode)
1474 {
1475 struct se_cmd *cmd;
1476 enum srpt_command_state state;
1477
1478 cmd = &ioctx->cmd;
1479 state = srpt_get_cmd_state(ioctx);
1480 switch (opcode) {
1481 case SRPT_RDMA_READ_LAST:
1482 if (ioctx->n_rdma <= 0) {
1483 printk(KERN_ERR "Received invalid RDMA read"
1484 " error completion with idx %d\n",
1485 ioctx->ioctx.index);
1486 break;
1487 }
1488 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1489 if (state == SRPT_STATE_NEED_DATA)
1490 srpt_abort_cmd(ioctx);
1491 else
1492 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1493 __func__, __LINE__, state);
1494 break;
1495 case SRPT_RDMA_WRITE_LAST:
1496 break;
1497 default:
1498 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1499 __LINE__, opcode);
1500 break;
1501 }
1502 }
1503
1504 /**
1505 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1506 * @ch: RDMA channel through which the request has been received.
1507 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1508 * be built in the buffer ioctx->buf points at and hence this function will
1509 * overwrite the request data.
1510 * @tag: tag of the request for which this response is being generated.
1511 * @status: value for the STATUS field of the SRP_RSP information unit.
1512 *
1513 * Returns the size in bytes of the SRP_RSP response.
1514 *
1515 * An SRP_RSP response contains a SCSI status or service response. See also
1516 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1517 * response. See also SPC-2 for more information about sense data.
1518 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1519 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1520 struct srpt_send_ioctx *ioctx, u64 tag,
1521 int status)
1522 {
1523 struct srp_rsp *srp_rsp;
1524 const u8 *sense_data;
1525 int sense_data_len, max_sense_len;
1526
1527 /*
1528 * The lowest bit of all SAM-3 status codes is zero (see also
1529 * paragraph 5.3 in SAM-3).
1530 */
1531 WARN_ON(status & 1);
1532
1533 srp_rsp = ioctx->ioctx.buf;
1534 BUG_ON(!srp_rsp);
1535
1536 sense_data = ioctx->sense_data;
1537 sense_data_len = ioctx->cmd.scsi_sense_length;
1538 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1539
1540 memset(srp_rsp, 0, sizeof *srp_rsp);
1541 srp_rsp->opcode = SRP_RSP;
1542 srp_rsp->req_lim_delta =
1543 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1544 srp_rsp->tag = tag;
1545 srp_rsp->status = status;
1546
1547 if (sense_data_len) {
1548 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1549 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1550 if (sense_data_len > max_sense_len) {
1551 printk(KERN_WARNING "truncated sense data from %d to %d"
1552 " bytes\n", sense_data_len, max_sense_len);
1553 sense_data_len = max_sense_len;
1554 }
1555
1556 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1557 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1558 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1559 }
1560
1561 return sizeof(*srp_rsp) + sense_data_len;
1562 }
1563
1564 /**
1565 * srpt_build_tskmgmt_rsp() - Build a task management response.
1566 * @ch: RDMA channel through which the request has been received.
1567 * @ioctx: I/O context in which the SRP_RSP response will be built.
1568 * @rsp_code: RSP_CODE that will be stored in the response.
1569 * @tag: Tag of the request for which this response is being generated.
1570 *
1571 * Returns the size in bytes of the SRP_RSP response.
1572 *
1573 * An SRP_RSP response contains a SCSI status or service response. See also
1574 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1575 * response.
1576 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1577 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1578 struct srpt_send_ioctx *ioctx,
1579 u8 rsp_code, u64 tag)
1580 {
1581 struct srp_rsp *srp_rsp;
1582 int resp_data_len;
1583 int resp_len;
1584
1585 resp_data_len = 4;
1586 resp_len = sizeof(*srp_rsp) + resp_data_len;
1587
1588 srp_rsp = ioctx->ioctx.buf;
1589 BUG_ON(!srp_rsp);
1590 memset(srp_rsp, 0, sizeof *srp_rsp);
1591
1592 srp_rsp->opcode = SRP_RSP;
1593 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1594 + atomic_xchg(&ch->req_lim_delta, 0));
1595 srp_rsp->tag = tag;
1596
1597 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1598 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1599 srp_rsp->data[3] = rsp_code;
1600
1601 return resp_len;
1602 }
1603
1604 #define NO_SUCH_LUN ((uint64_t)-1LL)
1605
1606 /*
1607 * SCSI LUN addressing method. See also SAM-2 and the section about
1608 * eight byte LUNs.
1609 */
1610 enum scsi_lun_addr_method {
1611 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1612 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1613 SCSI_LUN_ADDR_METHOD_LUN = 2,
1614 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1615 };
1616
1617 /*
1618 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1619 *
1620 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1621 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1622 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1623 */
srpt_unpack_lun(const uint8_t * lun,int len)1624 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1625 {
1626 uint64_t res = NO_SUCH_LUN;
1627 int addressing_method;
1628
1629 if (unlikely(len < 2)) {
1630 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1631 "more", len);
1632 goto out;
1633 }
1634
1635 switch (len) {
1636 case 8:
1637 if ((*((__be64 *)lun) &
1638 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1639 goto out_err;
1640 break;
1641 case 4:
1642 if (*((__be16 *)&lun[2]) != 0)
1643 goto out_err;
1644 break;
1645 case 6:
1646 if (*((__be32 *)&lun[2]) != 0)
1647 goto out_err;
1648 break;
1649 case 2:
1650 break;
1651 default:
1652 goto out_err;
1653 }
1654
1655 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1656 switch (addressing_method) {
1657 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1658 case SCSI_LUN_ADDR_METHOD_FLAT:
1659 case SCSI_LUN_ADDR_METHOD_LUN:
1660 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1661 break;
1662
1663 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1664 default:
1665 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1666 addressing_method);
1667 break;
1668 }
1669
1670 out:
1671 return res;
1672
1673 out_err:
1674 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1675 " implemented");
1676 goto out;
1677 }
1678
srpt_check_stop_free(struct se_cmd * cmd)1679 static int srpt_check_stop_free(struct se_cmd *cmd)
1680 {
1681 struct srpt_send_ioctx *ioctx = container_of(cmd,
1682 struct srpt_send_ioctx, cmd);
1683
1684 return target_put_sess_cmd(&ioctx->cmd);
1685 }
1686
1687 /**
1688 * srpt_handle_cmd() - Process SRP_CMD.
1689 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1690 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1691 struct srpt_recv_ioctx *recv_ioctx,
1692 struct srpt_send_ioctx *send_ioctx)
1693 {
1694 struct se_cmd *cmd;
1695 struct srp_cmd *srp_cmd;
1696 uint64_t unpacked_lun;
1697 u64 data_len;
1698 enum dma_data_direction dir;
1699 sense_reason_t ret;
1700 int rc;
1701
1702 BUG_ON(!send_ioctx);
1703
1704 srp_cmd = recv_ioctx->ioctx.buf;
1705 cmd = &send_ioctx->cmd;
1706 send_ioctx->tag = srp_cmd->tag;
1707
1708 switch (srp_cmd->task_attr) {
1709 case SRP_CMD_SIMPLE_Q:
1710 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1711 break;
1712 case SRP_CMD_ORDERED_Q:
1713 default:
1714 cmd->sam_task_attr = MSG_ORDERED_TAG;
1715 break;
1716 case SRP_CMD_HEAD_OF_Q:
1717 cmd->sam_task_attr = MSG_HEAD_TAG;
1718 break;
1719 case SRP_CMD_ACA:
1720 cmd->sam_task_attr = MSG_ACA_TAG;
1721 break;
1722 }
1723
1724 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1725 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1726 srp_cmd->tag);
1727 ret = TCM_INVALID_CDB_FIELD;
1728 goto send_sense;
1729 }
1730
1731 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1732 sizeof(srp_cmd->lun));
1733 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1734 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1735 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1736 if (rc != 0) {
1737 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1738 goto send_sense;
1739 }
1740 return 0;
1741
1742 send_sense:
1743 transport_send_check_condition_and_sense(cmd, ret, 0);
1744 return -1;
1745 }
1746
srp_tmr_to_tcm(int fn)1747 static int srp_tmr_to_tcm(int fn)
1748 {
1749 switch (fn) {
1750 case SRP_TSK_ABORT_TASK:
1751 return TMR_ABORT_TASK;
1752 case SRP_TSK_ABORT_TASK_SET:
1753 return TMR_ABORT_TASK_SET;
1754 case SRP_TSK_CLEAR_TASK_SET:
1755 return TMR_CLEAR_TASK_SET;
1756 case SRP_TSK_LUN_RESET:
1757 return TMR_LUN_RESET;
1758 case SRP_TSK_CLEAR_ACA:
1759 return TMR_CLEAR_ACA;
1760 default:
1761 return -1;
1762 }
1763 }
1764
1765 /**
1766 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1767 *
1768 * Returns 0 if and only if the request will be processed by the target core.
1769 *
1770 * For more information about SRP_TSK_MGMT information units, see also section
1771 * 6.7 in the SRP r16a document.
1772 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1773 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1774 struct srpt_recv_ioctx *recv_ioctx,
1775 struct srpt_send_ioctx *send_ioctx)
1776 {
1777 struct srp_tsk_mgmt *srp_tsk;
1778 struct se_cmd *cmd;
1779 struct se_session *sess = ch->sess;
1780 uint64_t unpacked_lun;
1781 int tcm_tmr;
1782 int rc;
1783
1784 BUG_ON(!send_ioctx);
1785
1786 srp_tsk = recv_ioctx->ioctx.buf;
1787 cmd = &send_ioctx->cmd;
1788
1789 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1790 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1791 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1792
1793 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1794 send_ioctx->tag = srp_tsk->tag;
1795 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1796 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1797 sizeof(srp_tsk->lun));
1798 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1799 srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1800 TARGET_SCF_ACK_KREF);
1801 if (rc != 0) {
1802 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1803 goto fail;
1804 }
1805 return;
1806 fail:
1807 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1808 }
1809
1810 /**
1811 * srpt_handle_new_iu() - Process a newly received information unit.
1812 * @ch: RDMA channel through which the information unit has been received.
1813 * @ioctx: SRPT I/O context associated with the information unit.
1814 */
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1815 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1816 struct srpt_recv_ioctx *recv_ioctx,
1817 struct srpt_send_ioctx *send_ioctx)
1818 {
1819 struct srp_cmd *srp_cmd;
1820 enum rdma_ch_state ch_state;
1821
1822 BUG_ON(!ch);
1823 BUG_ON(!recv_ioctx);
1824
1825 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1826 recv_ioctx->ioctx.dma, srp_max_req_size,
1827 DMA_FROM_DEVICE);
1828
1829 ch_state = srpt_get_ch_state(ch);
1830 if (unlikely(ch_state == CH_CONNECTING)) {
1831 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1832 goto out;
1833 }
1834
1835 if (unlikely(ch_state != CH_LIVE))
1836 goto out;
1837
1838 srp_cmd = recv_ioctx->ioctx.buf;
1839 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1840 if (!send_ioctx)
1841 send_ioctx = srpt_get_send_ioctx(ch);
1842 if (unlikely(!send_ioctx)) {
1843 list_add_tail(&recv_ioctx->wait_list,
1844 &ch->cmd_wait_list);
1845 goto out;
1846 }
1847 }
1848
1849 switch (srp_cmd->opcode) {
1850 case SRP_CMD:
1851 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1852 break;
1853 case SRP_TSK_MGMT:
1854 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1855 break;
1856 case SRP_I_LOGOUT:
1857 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1858 break;
1859 case SRP_CRED_RSP:
1860 pr_debug("received SRP_CRED_RSP\n");
1861 break;
1862 case SRP_AER_RSP:
1863 pr_debug("received SRP_AER_RSP\n");
1864 break;
1865 case SRP_RSP:
1866 printk(KERN_ERR "Received SRP_RSP\n");
1867 break;
1868 default:
1869 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1870 srp_cmd->opcode);
1871 break;
1872 }
1873
1874 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1875 out:
1876 return;
1877 }
1878
srpt_process_rcv_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1879 static void srpt_process_rcv_completion(struct ib_cq *cq,
1880 struct srpt_rdma_ch *ch,
1881 struct ib_wc *wc)
1882 {
1883 struct srpt_device *sdev = ch->sport->sdev;
1884 struct srpt_recv_ioctx *ioctx;
1885 u32 index;
1886
1887 index = idx_from_wr_id(wc->wr_id);
1888 if (wc->status == IB_WC_SUCCESS) {
1889 int req_lim;
1890
1891 req_lim = atomic_dec_return(&ch->req_lim);
1892 if (unlikely(req_lim < 0))
1893 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1894 ioctx = sdev->ioctx_ring[index];
1895 srpt_handle_new_iu(ch, ioctx, NULL);
1896 } else {
1897 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1898 index, wc->status);
1899 }
1900 }
1901
1902 /**
1903 * srpt_process_send_completion() - Process an IB send completion.
1904 *
1905 * Note: Although this has not yet been observed during tests, at least in
1906 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1907 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1908 * value in each response is set to one, and it is possible that this response
1909 * makes the initiator send a new request before the send completion for that
1910 * response has been processed. This could e.g. happen if the call to
1911 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1912 * if IB retransmission causes generation of the send completion to be
1913 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1914 * are queued on cmd_wait_list. The code below processes these delayed
1915 * requests one at a time.
1916 */
srpt_process_send_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch,struct ib_wc * wc)1917 static void srpt_process_send_completion(struct ib_cq *cq,
1918 struct srpt_rdma_ch *ch,
1919 struct ib_wc *wc)
1920 {
1921 struct srpt_send_ioctx *send_ioctx;
1922 uint32_t index;
1923 enum srpt_opcode opcode;
1924
1925 index = idx_from_wr_id(wc->wr_id);
1926 opcode = opcode_from_wr_id(wc->wr_id);
1927 send_ioctx = ch->ioctx_ring[index];
1928 if (wc->status == IB_WC_SUCCESS) {
1929 if (opcode == SRPT_SEND)
1930 srpt_handle_send_comp(ch, send_ioctx);
1931 else {
1932 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1933 wc->opcode != IB_WC_RDMA_READ);
1934 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1935 }
1936 } else {
1937 if (opcode == SRPT_SEND) {
1938 printk(KERN_INFO "sending response for idx %u failed"
1939 " with status %d\n", index, wc->status);
1940 srpt_handle_send_err_comp(ch, wc->wr_id);
1941 } else if (opcode != SRPT_RDMA_MID) {
1942 printk(KERN_INFO "RDMA t %d for idx %u failed with"
1943 " status %d", opcode, index, wc->status);
1944 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1945 }
1946 }
1947
1948 while (unlikely(opcode == SRPT_SEND
1949 && !list_empty(&ch->cmd_wait_list)
1950 && srpt_get_ch_state(ch) == CH_LIVE
1951 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1952 struct srpt_recv_ioctx *recv_ioctx;
1953
1954 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1955 struct srpt_recv_ioctx,
1956 wait_list);
1957 list_del(&recv_ioctx->wait_list);
1958 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1959 }
1960 }
1961
srpt_process_completion(struct ib_cq * cq,struct srpt_rdma_ch * ch)1962 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1963 {
1964 struct ib_wc *const wc = ch->wc;
1965 int i, n;
1966
1967 WARN_ON(cq != ch->cq);
1968
1969 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1970 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1971 for (i = 0; i < n; i++) {
1972 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1973 srpt_process_rcv_completion(cq, ch, &wc[i]);
1974 else
1975 srpt_process_send_completion(cq, ch, &wc[i]);
1976 }
1977 }
1978 }
1979
1980 /**
1981 * srpt_completion() - IB completion queue callback function.
1982 *
1983 * Notes:
1984 * - It is guaranteed that a completion handler will never be invoked
1985 * concurrently on two different CPUs for the same completion queue. See also
1986 * Documentation/infiniband/core_locking.txt and the implementation of
1987 * handle_edge_irq() in kernel/irq/chip.c.
1988 * - When threaded IRQs are enabled, completion handlers are invoked in thread
1989 * context instead of interrupt context.
1990 */
srpt_completion(struct ib_cq * cq,void * ctx)1991 static void srpt_completion(struct ib_cq *cq, void *ctx)
1992 {
1993 struct srpt_rdma_ch *ch = ctx;
1994
1995 wake_up_interruptible(&ch->wait_queue);
1996 }
1997
srpt_compl_thread(void * arg)1998 static int srpt_compl_thread(void *arg)
1999 {
2000 struct srpt_rdma_ch *ch;
2001
2002 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2003 current->flags |= PF_NOFREEZE;
2004
2005 ch = arg;
2006 BUG_ON(!ch);
2007 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2008 ch->sess_name, ch->thread->comm, current->pid);
2009 while (!kthread_should_stop()) {
2010 wait_event_interruptible(ch->wait_queue,
2011 (srpt_process_completion(ch->cq, ch),
2012 kthread_should_stop()));
2013 }
2014 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2015 ch->sess_name, ch->thread->comm, current->pid);
2016 return 0;
2017 }
2018
2019 /**
2020 * srpt_create_ch_ib() - Create receive and send completion queues.
2021 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)2022 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2023 {
2024 struct ib_qp_init_attr *qp_init;
2025 struct srpt_port *sport = ch->sport;
2026 struct srpt_device *sdev = sport->sdev;
2027 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2028 int ret;
2029
2030 WARN_ON(ch->rq_size < 1);
2031
2032 ret = -ENOMEM;
2033 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2034 if (!qp_init)
2035 goto out;
2036
2037 retry:
2038 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2039 ch->rq_size + srp_sq_size, 0);
2040 if (IS_ERR(ch->cq)) {
2041 ret = PTR_ERR(ch->cq);
2042 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2043 ch->rq_size + srp_sq_size, ret);
2044 goto out;
2045 }
2046
2047 qp_init->qp_context = (void *)ch;
2048 qp_init->event_handler
2049 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2050 qp_init->send_cq = ch->cq;
2051 qp_init->recv_cq = ch->cq;
2052 qp_init->srq = sdev->srq;
2053 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2054 qp_init->qp_type = IB_QPT_RC;
2055 qp_init->cap.max_send_wr = srp_sq_size;
2056 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2057
2058 ch->qp = ib_create_qp(sdev->pd, qp_init);
2059 if (IS_ERR(ch->qp)) {
2060 ret = PTR_ERR(ch->qp);
2061 if (ret == -ENOMEM) {
2062 srp_sq_size /= 2;
2063 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2064 ib_destroy_cq(ch->cq);
2065 goto retry;
2066 }
2067 }
2068 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2069 goto err_destroy_cq;
2070 }
2071
2072 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2073
2074 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2075 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2076 qp_init->cap.max_send_wr, ch->cm_id);
2077
2078 ret = srpt_init_ch_qp(ch, ch->qp);
2079 if (ret)
2080 goto err_destroy_qp;
2081
2082 init_waitqueue_head(&ch->wait_queue);
2083
2084 pr_debug("creating thread for session %s\n", ch->sess_name);
2085
2086 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2087 if (IS_ERR(ch->thread)) {
2088 printk(KERN_ERR "failed to create kernel thread %ld\n",
2089 PTR_ERR(ch->thread));
2090 ch->thread = NULL;
2091 goto err_destroy_qp;
2092 }
2093
2094 out:
2095 kfree(qp_init);
2096 return ret;
2097
2098 err_destroy_qp:
2099 ib_destroy_qp(ch->qp);
2100 err_destroy_cq:
2101 ib_destroy_cq(ch->cq);
2102 goto out;
2103 }
2104
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)2105 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2106 {
2107 if (ch->thread)
2108 kthread_stop(ch->thread);
2109
2110 ib_destroy_qp(ch->qp);
2111 ib_destroy_cq(ch->cq);
2112 }
2113
2114 /**
2115 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2116 *
2117 * Reset the QP and make sure all resources associated with the channel will
2118 * be deallocated at an appropriate time.
2119 *
2120 * Note: The caller must hold ch->sport->sdev->spinlock.
2121 */
__srpt_close_ch(struct srpt_rdma_ch * ch)2122 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2123 {
2124 struct srpt_device *sdev;
2125 enum rdma_ch_state prev_state;
2126 unsigned long flags;
2127
2128 sdev = ch->sport->sdev;
2129
2130 spin_lock_irqsave(&ch->spinlock, flags);
2131 prev_state = ch->state;
2132 switch (prev_state) {
2133 case CH_CONNECTING:
2134 case CH_LIVE:
2135 ch->state = CH_DISCONNECTING;
2136 break;
2137 default:
2138 break;
2139 }
2140 spin_unlock_irqrestore(&ch->spinlock, flags);
2141
2142 switch (prev_state) {
2143 case CH_CONNECTING:
2144 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2145 NULL, 0);
2146 /* fall through */
2147 case CH_LIVE:
2148 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2149 printk(KERN_ERR "sending CM DREQ failed.\n");
2150 break;
2151 case CH_DISCONNECTING:
2152 break;
2153 case CH_DRAINING:
2154 case CH_RELEASING:
2155 break;
2156 }
2157 }
2158
2159 /**
2160 * srpt_close_ch() - Close an RDMA channel.
2161 */
srpt_close_ch(struct srpt_rdma_ch * ch)2162 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2163 {
2164 struct srpt_device *sdev;
2165
2166 sdev = ch->sport->sdev;
2167 spin_lock_irq(&sdev->spinlock);
2168 __srpt_close_ch(ch);
2169 spin_unlock_irq(&sdev->spinlock);
2170 }
2171
2172 /**
2173 * srpt_shutdown_session() - Whether or not a session may be shut down.
2174 */
srpt_shutdown_session(struct se_session * se_sess)2175 static int srpt_shutdown_session(struct se_session *se_sess)
2176 {
2177 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2178 unsigned long flags;
2179
2180 spin_lock_irqsave(&ch->spinlock, flags);
2181 if (ch->in_shutdown) {
2182 spin_unlock_irqrestore(&ch->spinlock, flags);
2183 return true;
2184 }
2185
2186 ch->in_shutdown = true;
2187 target_sess_cmd_list_set_waiting(se_sess);
2188 spin_unlock_irqrestore(&ch->spinlock, flags);
2189
2190 return true;
2191 }
2192
2193 /**
2194 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2195 * @cm_id: Pointer to the CM ID of the channel to be drained.
2196 *
2197 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2198 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2199 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2200 * waits until all target sessions for the associated IB device have been
2201 * unregistered and target session registration involves a call to
2202 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2203 * this function has finished).
2204 */
srpt_drain_channel(struct ib_cm_id * cm_id)2205 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2206 {
2207 struct srpt_device *sdev;
2208 struct srpt_rdma_ch *ch;
2209 int ret;
2210 bool do_reset = false;
2211
2212 WARN_ON_ONCE(irqs_disabled());
2213
2214 sdev = cm_id->context;
2215 BUG_ON(!sdev);
2216 spin_lock_irq(&sdev->spinlock);
2217 list_for_each_entry(ch, &sdev->rch_list, list) {
2218 if (ch->cm_id == cm_id) {
2219 do_reset = srpt_test_and_set_ch_state(ch,
2220 CH_CONNECTING, CH_DRAINING) ||
2221 srpt_test_and_set_ch_state(ch,
2222 CH_LIVE, CH_DRAINING) ||
2223 srpt_test_and_set_ch_state(ch,
2224 CH_DISCONNECTING, CH_DRAINING);
2225 break;
2226 }
2227 }
2228 spin_unlock_irq(&sdev->spinlock);
2229
2230 if (do_reset) {
2231 if (ch->sess)
2232 srpt_shutdown_session(ch->sess);
2233
2234 ret = srpt_ch_qp_err(ch);
2235 if (ret < 0)
2236 printk(KERN_ERR "Setting queue pair in error state"
2237 " failed: %d\n", ret);
2238 }
2239 }
2240
2241 /**
2242 * srpt_find_channel() - Look up an RDMA channel.
2243 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2244 *
2245 * Return NULL if no matching RDMA channel has been found.
2246 */
srpt_find_channel(struct srpt_device * sdev,struct ib_cm_id * cm_id)2247 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2248 struct ib_cm_id *cm_id)
2249 {
2250 struct srpt_rdma_ch *ch;
2251 bool found;
2252
2253 WARN_ON_ONCE(irqs_disabled());
2254 BUG_ON(!sdev);
2255
2256 found = false;
2257 spin_lock_irq(&sdev->spinlock);
2258 list_for_each_entry(ch, &sdev->rch_list, list) {
2259 if (ch->cm_id == cm_id) {
2260 found = true;
2261 break;
2262 }
2263 }
2264 spin_unlock_irq(&sdev->spinlock);
2265
2266 return found ? ch : NULL;
2267 }
2268
2269 /**
2270 * srpt_release_channel() - Release channel resources.
2271 *
2272 * Schedules the actual release because:
2273 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2274 * trigger a deadlock.
2275 * - It is not safe to call TCM transport_* functions from interrupt context.
2276 */
srpt_release_channel(struct srpt_rdma_ch * ch)2277 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2278 {
2279 schedule_work(&ch->release_work);
2280 }
2281
srpt_release_channel_work(struct work_struct * w)2282 static void srpt_release_channel_work(struct work_struct *w)
2283 {
2284 struct srpt_rdma_ch *ch;
2285 struct srpt_device *sdev;
2286 struct se_session *se_sess;
2287
2288 ch = container_of(w, struct srpt_rdma_ch, release_work);
2289 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2290 ch->release_done);
2291
2292 sdev = ch->sport->sdev;
2293 BUG_ON(!sdev);
2294
2295 se_sess = ch->sess;
2296 BUG_ON(!se_sess);
2297
2298 target_wait_for_sess_cmds(se_sess);
2299
2300 transport_deregister_session_configfs(se_sess);
2301 transport_deregister_session(se_sess);
2302 ch->sess = NULL;
2303
2304 ib_destroy_cm_id(ch->cm_id);
2305
2306 srpt_destroy_ch_ib(ch);
2307
2308 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2309 ch->sport->sdev, ch->rq_size,
2310 ch->rsp_size, DMA_TO_DEVICE);
2311
2312 spin_lock_irq(&sdev->spinlock);
2313 list_del(&ch->list);
2314 spin_unlock_irq(&sdev->spinlock);
2315
2316 if (ch->release_done)
2317 complete(ch->release_done);
2318
2319 wake_up(&sdev->ch_releaseQ);
2320
2321 kfree(ch);
2322 }
2323
__srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2324 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2325 u8 i_port_id[16])
2326 {
2327 struct srpt_node_acl *nacl;
2328
2329 list_for_each_entry(nacl, &sport->port_acl_list, list)
2330 if (memcmp(nacl->i_port_id, i_port_id,
2331 sizeof(nacl->i_port_id)) == 0)
2332 return nacl;
2333
2334 return NULL;
2335 }
2336
srpt_lookup_acl(struct srpt_port * sport,u8 i_port_id[16])2337 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2338 u8 i_port_id[16])
2339 {
2340 struct srpt_node_acl *nacl;
2341
2342 spin_lock_irq(&sport->port_acl_lock);
2343 nacl = __srpt_lookup_acl(sport, i_port_id);
2344 spin_unlock_irq(&sport->port_acl_lock);
2345
2346 return nacl;
2347 }
2348
2349 /**
2350 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2351 *
2352 * Ownership of the cm_id is transferred to the target session if this
2353 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2354 */
srpt_cm_req_recv(struct ib_cm_id * cm_id,struct ib_cm_req_event_param * param,void * private_data)2355 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2356 struct ib_cm_req_event_param *param,
2357 void *private_data)
2358 {
2359 struct srpt_device *sdev = cm_id->context;
2360 struct srpt_port *sport = &sdev->port[param->port - 1];
2361 struct srp_login_req *req;
2362 struct srp_login_rsp *rsp;
2363 struct srp_login_rej *rej;
2364 struct ib_cm_rep_param *rep_param;
2365 struct srpt_rdma_ch *ch, *tmp_ch;
2366 struct srpt_node_acl *nacl;
2367 u32 it_iu_len;
2368 int i;
2369 int ret = 0;
2370
2371 WARN_ON_ONCE(irqs_disabled());
2372
2373 if (WARN_ON(!sdev || !private_data))
2374 return -EINVAL;
2375
2376 req = (struct srp_login_req *)private_data;
2377
2378 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2379
2380 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2381 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2382 " (guid=0x%llx:0x%llx)\n",
2383 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2384 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2385 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2386 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2387 it_iu_len,
2388 param->port,
2389 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2390 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2391
2392 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2393 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2394 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2395
2396 if (!rsp || !rej || !rep_param) {
2397 ret = -ENOMEM;
2398 goto out;
2399 }
2400
2401 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2402 rej->reason = __constant_cpu_to_be32(
2403 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2404 ret = -EINVAL;
2405 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2406 " length (%d bytes) is out of range (%d .. %d)\n",
2407 it_iu_len, 64, srp_max_req_size);
2408 goto reject;
2409 }
2410
2411 if (!sport->enabled) {
2412 rej->reason = __constant_cpu_to_be32(
2413 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2414 ret = -EINVAL;
2415 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2416 " has not yet been enabled\n");
2417 goto reject;
2418 }
2419
2420 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2421 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2422
2423 spin_lock_irq(&sdev->spinlock);
2424
2425 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2426 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2427 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2428 && param->port == ch->sport->port
2429 && param->listen_id == ch->sport->sdev->cm_id
2430 && ch->cm_id) {
2431 enum rdma_ch_state ch_state;
2432
2433 ch_state = srpt_get_ch_state(ch);
2434 if (ch_state != CH_CONNECTING
2435 && ch_state != CH_LIVE)
2436 continue;
2437
2438 /* found an existing channel */
2439 pr_debug("Found existing channel %s"
2440 " cm_id= %p state= %d\n",
2441 ch->sess_name, ch->cm_id, ch_state);
2442
2443 __srpt_close_ch(ch);
2444
2445 rsp->rsp_flags =
2446 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2447 }
2448 }
2449
2450 spin_unlock_irq(&sdev->spinlock);
2451
2452 } else
2453 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2454
2455 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2456 || *(__be64 *)(req->target_port_id + 8) !=
2457 cpu_to_be64(srpt_service_guid)) {
2458 rej->reason = __constant_cpu_to_be32(
2459 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2460 ret = -ENOMEM;
2461 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2462 " has an invalid target port identifier.\n");
2463 goto reject;
2464 }
2465
2466 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2467 if (!ch) {
2468 rej->reason = __constant_cpu_to_be32(
2469 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2470 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2471 ret = -ENOMEM;
2472 goto reject;
2473 }
2474
2475 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2476 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2477 memcpy(ch->t_port_id, req->target_port_id, 16);
2478 ch->sport = &sdev->port[param->port - 1];
2479 ch->cm_id = cm_id;
2480 /*
2481 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2482 * for the SRP protocol to the command queue size.
2483 */
2484 ch->rq_size = SRPT_RQ_SIZE;
2485 spin_lock_init(&ch->spinlock);
2486 ch->state = CH_CONNECTING;
2487 INIT_LIST_HEAD(&ch->cmd_wait_list);
2488 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2489
2490 ch->ioctx_ring = (struct srpt_send_ioctx **)
2491 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2492 sizeof(*ch->ioctx_ring[0]),
2493 ch->rsp_size, DMA_TO_DEVICE);
2494 if (!ch->ioctx_ring)
2495 goto free_ch;
2496
2497 INIT_LIST_HEAD(&ch->free_list);
2498 for (i = 0; i < ch->rq_size; i++) {
2499 ch->ioctx_ring[i]->ch = ch;
2500 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2501 }
2502
2503 ret = srpt_create_ch_ib(ch);
2504 if (ret) {
2505 rej->reason = __constant_cpu_to_be32(
2506 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2507 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2508 " a new RDMA channel failed.\n");
2509 goto free_ring;
2510 }
2511
2512 ret = srpt_ch_qp_rtr(ch, ch->qp);
2513 if (ret) {
2514 rej->reason = __constant_cpu_to_be32(
2515 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2516 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2517 " RTR failed (error code = %d)\n", ret);
2518 goto destroy_ib;
2519 }
2520 /*
2521 * Use the initator port identifier as the session name.
2522 */
2523 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2524 be64_to_cpu(*(__be64 *)ch->i_port_id),
2525 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2526
2527 pr_debug("registering session %s\n", ch->sess_name);
2528
2529 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2530 if (!nacl) {
2531 printk(KERN_INFO "Rejected login because no ACL has been"
2532 " configured yet for initiator %s.\n", ch->sess_name);
2533 rej->reason = __constant_cpu_to_be32(
2534 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2535 goto destroy_ib;
2536 }
2537
2538 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2539 if (IS_ERR(ch->sess)) {
2540 rej->reason = __constant_cpu_to_be32(
2541 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2542 pr_debug("Failed to create session\n");
2543 goto deregister_session;
2544 }
2545 ch->sess->se_node_acl = &nacl->nacl;
2546 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2547
2548 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2549 ch->sess_name, ch->cm_id);
2550
2551 /* create srp_login_response */
2552 rsp->opcode = SRP_LOGIN_RSP;
2553 rsp->tag = req->tag;
2554 rsp->max_it_iu_len = req->req_it_iu_len;
2555 rsp->max_ti_iu_len = req->req_it_iu_len;
2556 ch->max_ti_iu_len = it_iu_len;
2557 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2558 | SRP_BUF_FORMAT_INDIRECT);
2559 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2560 atomic_set(&ch->req_lim, ch->rq_size);
2561 atomic_set(&ch->req_lim_delta, 0);
2562
2563 /* create cm reply */
2564 rep_param->qp_num = ch->qp->qp_num;
2565 rep_param->private_data = (void *)rsp;
2566 rep_param->private_data_len = sizeof *rsp;
2567 rep_param->rnr_retry_count = 7;
2568 rep_param->flow_control = 1;
2569 rep_param->failover_accepted = 0;
2570 rep_param->srq = 1;
2571 rep_param->responder_resources = 4;
2572 rep_param->initiator_depth = 4;
2573
2574 ret = ib_send_cm_rep(cm_id, rep_param);
2575 if (ret) {
2576 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2577 " (error code = %d)\n", ret);
2578 goto release_channel;
2579 }
2580
2581 spin_lock_irq(&sdev->spinlock);
2582 list_add_tail(&ch->list, &sdev->rch_list);
2583 spin_unlock_irq(&sdev->spinlock);
2584
2585 goto out;
2586
2587 release_channel:
2588 srpt_set_ch_state(ch, CH_RELEASING);
2589 transport_deregister_session_configfs(ch->sess);
2590
2591 deregister_session:
2592 transport_deregister_session(ch->sess);
2593 ch->sess = NULL;
2594
2595 destroy_ib:
2596 srpt_destroy_ch_ib(ch);
2597
2598 free_ring:
2599 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2600 ch->sport->sdev, ch->rq_size,
2601 ch->rsp_size, DMA_TO_DEVICE);
2602 free_ch:
2603 kfree(ch);
2604
2605 reject:
2606 rej->opcode = SRP_LOGIN_REJ;
2607 rej->tag = req->tag;
2608 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2609 | SRP_BUF_FORMAT_INDIRECT);
2610
2611 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2612 (void *)rej, sizeof *rej);
2613
2614 out:
2615 kfree(rep_param);
2616 kfree(rsp);
2617 kfree(rej);
2618
2619 return ret;
2620 }
2621
srpt_cm_rej_recv(struct ib_cm_id * cm_id)2622 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2623 {
2624 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2625 srpt_drain_channel(cm_id);
2626 }
2627
2628 /**
2629 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2630 *
2631 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2632 * and that the recipient may begin transmitting (RTU = ready to use).
2633 */
srpt_cm_rtu_recv(struct ib_cm_id * cm_id)2634 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2635 {
2636 struct srpt_rdma_ch *ch;
2637 int ret;
2638
2639 ch = srpt_find_channel(cm_id->context, cm_id);
2640 BUG_ON(!ch);
2641
2642 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2643 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2644
2645 ret = srpt_ch_qp_rts(ch, ch->qp);
2646
2647 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2648 wait_list) {
2649 list_del(&ioctx->wait_list);
2650 srpt_handle_new_iu(ch, ioctx, NULL);
2651 }
2652 if (ret)
2653 srpt_close_ch(ch);
2654 }
2655 }
2656
srpt_cm_timewait_exit(struct ib_cm_id * cm_id)2657 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2658 {
2659 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2660 srpt_drain_channel(cm_id);
2661 }
2662
srpt_cm_rep_error(struct ib_cm_id * cm_id)2663 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2664 {
2665 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2666 srpt_drain_channel(cm_id);
2667 }
2668
2669 /**
2670 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2671 */
srpt_cm_dreq_recv(struct ib_cm_id * cm_id)2672 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2673 {
2674 struct srpt_rdma_ch *ch;
2675 unsigned long flags;
2676 bool send_drep = false;
2677
2678 ch = srpt_find_channel(cm_id->context, cm_id);
2679 BUG_ON(!ch);
2680
2681 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2682
2683 spin_lock_irqsave(&ch->spinlock, flags);
2684 switch (ch->state) {
2685 case CH_CONNECTING:
2686 case CH_LIVE:
2687 send_drep = true;
2688 ch->state = CH_DISCONNECTING;
2689 break;
2690 case CH_DISCONNECTING:
2691 case CH_DRAINING:
2692 case CH_RELEASING:
2693 WARN(true, "unexpected channel state %d\n", ch->state);
2694 break;
2695 }
2696 spin_unlock_irqrestore(&ch->spinlock, flags);
2697
2698 if (send_drep) {
2699 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2700 printk(KERN_ERR "Sending IB DREP failed.\n");
2701 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2702 ch->sess_name);
2703 }
2704 }
2705
2706 /**
2707 * srpt_cm_drep_recv() - Process reception of a DREP message.
2708 */
srpt_cm_drep_recv(struct ib_cm_id * cm_id)2709 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2710 {
2711 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2712 cm_id);
2713 srpt_drain_channel(cm_id);
2714 }
2715
2716 /**
2717 * srpt_cm_handler() - IB connection manager callback function.
2718 *
2719 * A non-zero return value will cause the caller destroy the CM ID.
2720 *
2721 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2722 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2723 * a non-zero value in any other case will trigger a race with the
2724 * ib_destroy_cm_id() call in srpt_release_channel().
2725 */
srpt_cm_handler(struct ib_cm_id * cm_id,struct ib_cm_event * event)2726 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2727 {
2728 int ret;
2729
2730 ret = 0;
2731 switch (event->event) {
2732 case IB_CM_REQ_RECEIVED:
2733 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2734 event->private_data);
2735 break;
2736 case IB_CM_REJ_RECEIVED:
2737 srpt_cm_rej_recv(cm_id);
2738 break;
2739 case IB_CM_RTU_RECEIVED:
2740 case IB_CM_USER_ESTABLISHED:
2741 srpt_cm_rtu_recv(cm_id);
2742 break;
2743 case IB_CM_DREQ_RECEIVED:
2744 srpt_cm_dreq_recv(cm_id);
2745 break;
2746 case IB_CM_DREP_RECEIVED:
2747 srpt_cm_drep_recv(cm_id);
2748 break;
2749 case IB_CM_TIMEWAIT_EXIT:
2750 srpt_cm_timewait_exit(cm_id);
2751 break;
2752 case IB_CM_REP_ERROR:
2753 srpt_cm_rep_error(cm_id);
2754 break;
2755 case IB_CM_DREQ_ERROR:
2756 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2757 break;
2758 case IB_CM_MRA_RECEIVED:
2759 printk(KERN_INFO "Received IB MRA event\n");
2760 break;
2761 default:
2762 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2763 event->event);
2764 break;
2765 }
2766
2767 return ret;
2768 }
2769
2770 /**
2771 * srpt_perform_rdmas() - Perform IB RDMA.
2772 *
2773 * Returns zero upon success or a negative number upon failure.
2774 */
srpt_perform_rdmas(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2775 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2776 struct srpt_send_ioctx *ioctx)
2777 {
2778 struct ib_send_wr wr;
2779 struct ib_send_wr *bad_wr;
2780 struct rdma_iu *riu;
2781 int i;
2782 int ret;
2783 int sq_wr_avail;
2784 enum dma_data_direction dir;
2785 const int n_rdma = ioctx->n_rdma;
2786
2787 dir = ioctx->cmd.data_direction;
2788 if (dir == DMA_TO_DEVICE) {
2789 /* write */
2790 ret = -ENOMEM;
2791 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2792 if (sq_wr_avail < 0) {
2793 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2794 n_rdma);
2795 goto out;
2796 }
2797 }
2798
2799 ioctx->rdma_aborted = false;
2800 ret = 0;
2801 riu = ioctx->rdma_ius;
2802 memset(&wr, 0, sizeof wr);
2803
2804 for (i = 0; i < n_rdma; ++i, ++riu) {
2805 if (dir == DMA_FROM_DEVICE) {
2806 wr.opcode = IB_WR_RDMA_WRITE;
2807 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2808 SRPT_RDMA_WRITE_LAST :
2809 SRPT_RDMA_MID,
2810 ioctx->ioctx.index);
2811 } else {
2812 wr.opcode = IB_WR_RDMA_READ;
2813 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2814 SRPT_RDMA_READ_LAST :
2815 SRPT_RDMA_MID,
2816 ioctx->ioctx.index);
2817 }
2818 wr.next = NULL;
2819 wr.wr.rdma.remote_addr = riu->raddr;
2820 wr.wr.rdma.rkey = riu->rkey;
2821 wr.num_sge = riu->sge_cnt;
2822 wr.sg_list = riu->sge;
2823
2824 /* only get completion event for the last rdma write */
2825 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2826 wr.send_flags = IB_SEND_SIGNALED;
2827
2828 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2829 if (ret)
2830 break;
2831 }
2832
2833 if (ret)
2834 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2835 __func__, __LINE__, ret, i, n_rdma);
2836 if (ret && i > 0) {
2837 wr.num_sge = 0;
2838 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2839 wr.send_flags = IB_SEND_SIGNALED;
2840 while (ch->state == CH_LIVE &&
2841 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2842 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2843 ioctx->ioctx.index);
2844 msleep(1000);
2845 }
2846 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2847 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2848 ioctx->ioctx.index);
2849 msleep(1000);
2850 }
2851 }
2852 out:
2853 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2854 atomic_add(n_rdma, &ch->sq_wr_avail);
2855 return ret;
2856 }
2857
2858 /**
2859 * srpt_xfer_data() - Start data transfer from initiator to target.
2860 */
srpt_xfer_data(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)2861 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2862 struct srpt_send_ioctx *ioctx)
2863 {
2864 int ret;
2865
2866 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2867 if (ret) {
2868 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2869 goto out;
2870 }
2871
2872 ret = srpt_perform_rdmas(ch, ioctx);
2873 if (ret) {
2874 if (ret == -EAGAIN || ret == -ENOMEM)
2875 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2876 __func__, __LINE__, ret);
2877 else
2878 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2879 __func__, __LINE__, ret);
2880 goto out_unmap;
2881 }
2882
2883 out:
2884 return ret;
2885 out_unmap:
2886 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2887 goto out;
2888 }
2889
srpt_write_pending_status(struct se_cmd * se_cmd)2890 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2891 {
2892 struct srpt_send_ioctx *ioctx;
2893
2894 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2895 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2896 }
2897
2898 /*
2899 * srpt_write_pending() - Start data transfer from initiator to target (write).
2900 */
srpt_write_pending(struct se_cmd * se_cmd)2901 static int srpt_write_pending(struct se_cmd *se_cmd)
2902 {
2903 struct srpt_rdma_ch *ch;
2904 struct srpt_send_ioctx *ioctx;
2905 enum srpt_command_state new_state;
2906 enum rdma_ch_state ch_state;
2907 int ret;
2908
2909 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2910
2911 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2912 WARN_ON(new_state == SRPT_STATE_DONE);
2913
2914 ch = ioctx->ch;
2915 BUG_ON(!ch);
2916
2917 ch_state = srpt_get_ch_state(ch);
2918 switch (ch_state) {
2919 case CH_CONNECTING:
2920 WARN(true, "unexpected channel state %d\n", ch_state);
2921 ret = -EINVAL;
2922 goto out;
2923 case CH_LIVE:
2924 break;
2925 case CH_DISCONNECTING:
2926 case CH_DRAINING:
2927 case CH_RELEASING:
2928 pr_debug("cmd with tag %lld: channel disconnecting\n",
2929 ioctx->tag);
2930 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2931 ret = -EINVAL;
2932 goto out;
2933 }
2934 ret = srpt_xfer_data(ch, ioctx);
2935
2936 out:
2937 return ret;
2938 }
2939
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2940 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2941 {
2942 switch (tcm_mgmt_status) {
2943 case TMR_FUNCTION_COMPLETE:
2944 return SRP_TSK_MGMT_SUCCESS;
2945 case TMR_FUNCTION_REJECTED:
2946 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2947 }
2948 return SRP_TSK_MGMT_FAILED;
2949 }
2950
2951 /**
2952 * srpt_queue_response() - Transmits the response to a SCSI command.
2953 *
2954 * Callback function called by the TCM core. Must not block since it can be
2955 * invoked on the context of the IB completion handler.
2956 */
srpt_queue_response(struct se_cmd * cmd)2957 static void srpt_queue_response(struct se_cmd *cmd)
2958 {
2959 struct srpt_rdma_ch *ch;
2960 struct srpt_send_ioctx *ioctx;
2961 enum srpt_command_state state;
2962 unsigned long flags;
2963 int ret;
2964 enum dma_data_direction dir;
2965 int resp_len;
2966 u8 srp_tm_status;
2967
2968 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2969 ch = ioctx->ch;
2970 BUG_ON(!ch);
2971
2972 spin_lock_irqsave(&ioctx->spinlock, flags);
2973 state = ioctx->state;
2974 switch (state) {
2975 case SRPT_STATE_NEW:
2976 case SRPT_STATE_DATA_IN:
2977 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2978 break;
2979 case SRPT_STATE_MGMT:
2980 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2981 break;
2982 default:
2983 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2984 ch, ioctx->ioctx.index, ioctx->state);
2985 break;
2986 }
2987 spin_unlock_irqrestore(&ioctx->spinlock, flags);
2988
2989 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2990 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2991 atomic_inc(&ch->req_lim_delta);
2992 srpt_abort_cmd(ioctx);
2993 return;
2994 }
2995
2996 dir = ioctx->cmd.data_direction;
2997
2998 /* For read commands, transfer the data to the initiator. */
2999 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3000 !ioctx->queue_status_only) {
3001 ret = srpt_xfer_data(ch, ioctx);
3002 if (ret) {
3003 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3004 ioctx->tag);
3005 return;
3006 }
3007 }
3008
3009 if (state != SRPT_STATE_MGMT)
3010 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3011 cmd->scsi_status);
3012 else {
3013 srp_tm_status
3014 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3015 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3016 ioctx->tag);
3017 }
3018 ret = srpt_post_send(ch, ioctx, resp_len);
3019 if (ret) {
3020 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3021 ioctx->tag);
3022 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3023 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3024 target_put_sess_cmd(&ioctx->cmd);
3025 }
3026 }
3027
srpt_queue_data_in(struct se_cmd * cmd)3028 static int srpt_queue_data_in(struct se_cmd *cmd)
3029 {
3030 srpt_queue_response(cmd);
3031 return 0;
3032 }
3033
srpt_queue_tm_rsp(struct se_cmd * cmd)3034 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3035 {
3036 srpt_queue_response(cmd);
3037 }
3038
srpt_aborted_task(struct se_cmd * cmd)3039 static void srpt_aborted_task(struct se_cmd *cmd)
3040 {
3041 struct srpt_send_ioctx *ioctx = container_of(cmd,
3042 struct srpt_send_ioctx, cmd);
3043
3044 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3045 }
3046
srpt_queue_status(struct se_cmd * cmd)3047 static int srpt_queue_status(struct se_cmd *cmd)
3048 {
3049 struct srpt_send_ioctx *ioctx;
3050
3051 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3052 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3053 if (cmd->se_cmd_flags &
3054 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3055 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3056 ioctx->queue_status_only = true;
3057 srpt_queue_response(cmd);
3058 return 0;
3059 }
3060
srpt_refresh_port_work(struct work_struct * work)3061 static void srpt_refresh_port_work(struct work_struct *work)
3062 {
3063 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3064
3065 srpt_refresh_port(sport);
3066 }
3067
srpt_ch_list_empty(struct srpt_device * sdev)3068 static int srpt_ch_list_empty(struct srpt_device *sdev)
3069 {
3070 int res;
3071
3072 spin_lock_irq(&sdev->spinlock);
3073 res = list_empty(&sdev->rch_list);
3074 spin_unlock_irq(&sdev->spinlock);
3075
3076 return res;
3077 }
3078
3079 /**
3080 * srpt_release_sdev() - Free the channel resources associated with a target.
3081 */
srpt_release_sdev(struct srpt_device * sdev)3082 static int srpt_release_sdev(struct srpt_device *sdev)
3083 {
3084 struct srpt_rdma_ch *ch, *tmp_ch;
3085 int res;
3086
3087 WARN_ON_ONCE(irqs_disabled());
3088
3089 BUG_ON(!sdev);
3090
3091 spin_lock_irq(&sdev->spinlock);
3092 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3093 __srpt_close_ch(ch);
3094 spin_unlock_irq(&sdev->spinlock);
3095
3096 res = wait_event_interruptible(sdev->ch_releaseQ,
3097 srpt_ch_list_empty(sdev));
3098 if (res)
3099 printk(KERN_ERR "%s: interrupted.\n", __func__);
3100
3101 return 0;
3102 }
3103
__srpt_lookup_port(const char * name)3104 static struct srpt_port *__srpt_lookup_port(const char *name)
3105 {
3106 struct ib_device *dev;
3107 struct srpt_device *sdev;
3108 struct srpt_port *sport;
3109 int i;
3110
3111 list_for_each_entry(sdev, &srpt_dev_list, list) {
3112 dev = sdev->device;
3113 if (!dev)
3114 continue;
3115
3116 for (i = 0; i < dev->phys_port_cnt; i++) {
3117 sport = &sdev->port[i];
3118
3119 if (!strcmp(sport->port_guid, name))
3120 return sport;
3121 }
3122 }
3123
3124 return NULL;
3125 }
3126
srpt_lookup_port(const char * name)3127 static struct srpt_port *srpt_lookup_port(const char *name)
3128 {
3129 struct srpt_port *sport;
3130
3131 spin_lock(&srpt_dev_lock);
3132 sport = __srpt_lookup_port(name);
3133 spin_unlock(&srpt_dev_lock);
3134
3135 return sport;
3136 }
3137
3138 /**
3139 * srpt_add_one() - Infiniband device addition callback function.
3140 */
srpt_add_one(struct ib_device * device)3141 static void srpt_add_one(struct ib_device *device)
3142 {
3143 struct srpt_device *sdev;
3144 struct srpt_port *sport;
3145 struct ib_srq_init_attr srq_attr;
3146 int i;
3147
3148 pr_debug("device = %p, device->dma_ops = %p\n", device,
3149 device->dma_ops);
3150
3151 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3152 if (!sdev)
3153 goto err;
3154
3155 sdev->device = device;
3156 INIT_LIST_HEAD(&sdev->rch_list);
3157 init_waitqueue_head(&sdev->ch_releaseQ);
3158 spin_lock_init(&sdev->spinlock);
3159
3160 if (ib_query_device(device, &sdev->dev_attr))
3161 goto free_dev;
3162
3163 sdev->pd = ib_alloc_pd(device);
3164 if (IS_ERR(sdev->pd))
3165 goto free_dev;
3166
3167 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3168 if (IS_ERR(sdev->mr))
3169 goto err_pd;
3170
3171 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3172
3173 srq_attr.event_handler = srpt_srq_event;
3174 srq_attr.srq_context = (void *)sdev;
3175 srq_attr.attr.max_wr = sdev->srq_size;
3176 srq_attr.attr.max_sge = 1;
3177 srq_attr.attr.srq_limit = 0;
3178 srq_attr.srq_type = IB_SRQT_BASIC;
3179
3180 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3181 if (IS_ERR(sdev->srq))
3182 goto err_mr;
3183
3184 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3185 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3186 device->name);
3187
3188 if (!srpt_service_guid)
3189 srpt_service_guid = be64_to_cpu(device->node_guid);
3190
3191 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3192 if (IS_ERR(sdev->cm_id))
3193 goto err_srq;
3194
3195 /* print out target login information */
3196 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3197 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3198 srpt_service_guid, srpt_service_guid);
3199
3200 /*
3201 * We do not have a consistent service_id (ie. also id_ext of target_id)
3202 * to identify this target. We currently use the guid of the first HCA
3203 * in the system as service_id; therefore, the target_id will change
3204 * if this HCA is gone bad and replaced by different HCA
3205 */
3206 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3207 goto err_cm;
3208
3209 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3210 srpt_event_handler);
3211 if (ib_register_event_handler(&sdev->event_handler))
3212 goto err_cm;
3213
3214 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3215 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3216 sizeof(*sdev->ioctx_ring[0]),
3217 srp_max_req_size, DMA_FROM_DEVICE);
3218 if (!sdev->ioctx_ring)
3219 goto err_event;
3220
3221 for (i = 0; i < sdev->srq_size; ++i)
3222 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3223
3224 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3225
3226 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3227 sport = &sdev->port[i - 1];
3228 sport->sdev = sdev;
3229 sport->port = i;
3230 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3231 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3232 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3233 INIT_WORK(&sport->work, srpt_refresh_port_work);
3234 INIT_LIST_HEAD(&sport->port_acl_list);
3235 spin_lock_init(&sport->port_acl_lock);
3236
3237 if (srpt_refresh_port(sport)) {
3238 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3239 srpt_sdev_name(sdev), i);
3240 goto err_ring;
3241 }
3242 snprintf(sport->port_guid, sizeof(sport->port_guid),
3243 "0x%016llx%016llx",
3244 be64_to_cpu(sport->gid.global.subnet_prefix),
3245 be64_to_cpu(sport->gid.global.interface_id));
3246 }
3247
3248 spin_lock(&srpt_dev_lock);
3249 list_add_tail(&sdev->list, &srpt_dev_list);
3250 spin_unlock(&srpt_dev_lock);
3251
3252 out:
3253 ib_set_client_data(device, &srpt_client, sdev);
3254 pr_debug("added %s.\n", device->name);
3255 return;
3256
3257 err_ring:
3258 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3259 sdev->srq_size, srp_max_req_size,
3260 DMA_FROM_DEVICE);
3261 err_event:
3262 ib_unregister_event_handler(&sdev->event_handler);
3263 err_cm:
3264 ib_destroy_cm_id(sdev->cm_id);
3265 err_srq:
3266 ib_destroy_srq(sdev->srq);
3267 err_mr:
3268 ib_dereg_mr(sdev->mr);
3269 err_pd:
3270 ib_dealloc_pd(sdev->pd);
3271 free_dev:
3272 kfree(sdev);
3273 err:
3274 sdev = NULL;
3275 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3276 goto out;
3277 }
3278
3279 /**
3280 * srpt_remove_one() - InfiniBand device removal callback function.
3281 */
srpt_remove_one(struct ib_device * device)3282 static void srpt_remove_one(struct ib_device *device)
3283 {
3284 struct srpt_device *sdev;
3285 int i;
3286
3287 sdev = ib_get_client_data(device, &srpt_client);
3288 if (!sdev) {
3289 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3290 device->name);
3291 return;
3292 }
3293
3294 srpt_unregister_mad_agent(sdev);
3295
3296 ib_unregister_event_handler(&sdev->event_handler);
3297
3298 /* Cancel any work queued by the just unregistered IB event handler. */
3299 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3300 cancel_work_sync(&sdev->port[i].work);
3301
3302 ib_destroy_cm_id(sdev->cm_id);
3303
3304 /*
3305 * Unregistering a target must happen after destroying sdev->cm_id
3306 * such that no new SRP_LOGIN_REQ information units can arrive while
3307 * destroying the target.
3308 */
3309 spin_lock(&srpt_dev_lock);
3310 list_del(&sdev->list);
3311 spin_unlock(&srpt_dev_lock);
3312 srpt_release_sdev(sdev);
3313
3314 ib_destroy_srq(sdev->srq);
3315 ib_dereg_mr(sdev->mr);
3316 ib_dealloc_pd(sdev->pd);
3317
3318 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3319 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3320 sdev->ioctx_ring = NULL;
3321 kfree(sdev);
3322 }
3323
3324 static struct ib_client srpt_client = {
3325 .name = DRV_NAME,
3326 .add = srpt_add_one,
3327 .remove = srpt_remove_one
3328 };
3329
srpt_check_true(struct se_portal_group * se_tpg)3330 static int srpt_check_true(struct se_portal_group *se_tpg)
3331 {
3332 return 1;
3333 }
3334
srpt_check_false(struct se_portal_group * se_tpg)3335 static int srpt_check_false(struct se_portal_group *se_tpg)
3336 {
3337 return 0;
3338 }
3339
srpt_get_fabric_name(void)3340 static char *srpt_get_fabric_name(void)
3341 {
3342 return "srpt";
3343 }
3344
srpt_get_fabric_proto_ident(struct se_portal_group * se_tpg)3345 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3346 {
3347 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3348 }
3349
srpt_get_fabric_wwn(struct se_portal_group * tpg)3350 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3351 {
3352 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3353
3354 return sport->port_guid;
3355 }
3356
srpt_get_tag(struct se_portal_group * tpg)3357 static u16 srpt_get_tag(struct se_portal_group *tpg)
3358 {
3359 return 1;
3360 }
3361
srpt_get_default_depth(struct se_portal_group * se_tpg)3362 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3363 {
3364 return 1;
3365 }
3366
srpt_get_pr_transport_id(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct t10_pr_registration * pr_reg,int * format_code,unsigned char * buf)3367 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3368 struct se_node_acl *se_nacl,
3369 struct t10_pr_registration *pr_reg,
3370 int *format_code, unsigned char *buf)
3371 {
3372 struct srpt_node_acl *nacl;
3373 struct spc_rdma_transport_id *tr_id;
3374
3375 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3376 tr_id = (void *)buf;
3377 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3378 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3379 return sizeof(*tr_id);
3380 }
3381
srpt_get_pr_transport_id_len(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct t10_pr_registration * pr_reg,int * format_code)3382 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3383 struct se_node_acl *se_nacl,
3384 struct t10_pr_registration *pr_reg,
3385 int *format_code)
3386 {
3387 *format_code = 0;
3388 return sizeof(struct spc_rdma_transport_id);
3389 }
3390
srpt_parse_pr_out_transport_id(struct se_portal_group * se_tpg,const char * buf,u32 * out_tid_len,char ** port_nexus_ptr)3391 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3392 const char *buf, u32 *out_tid_len,
3393 char **port_nexus_ptr)
3394 {
3395 struct spc_rdma_transport_id *tr_id;
3396
3397 *port_nexus_ptr = NULL;
3398 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3399 tr_id = (void *)buf;
3400 return (char *)tr_id->i_port_id;
3401 }
3402
srpt_alloc_fabric_acl(struct se_portal_group * se_tpg)3403 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3404 {
3405 struct srpt_node_acl *nacl;
3406
3407 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3408 if (!nacl) {
3409 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3410 return NULL;
3411 }
3412
3413 return &nacl->nacl;
3414 }
3415
srpt_release_fabric_acl(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl)3416 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3417 struct se_node_acl *se_nacl)
3418 {
3419 struct srpt_node_acl *nacl;
3420
3421 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3422 kfree(nacl);
3423 }
3424
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3425 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3426 {
3427 return 1;
3428 }
3429
srpt_release_cmd(struct se_cmd * se_cmd)3430 static void srpt_release_cmd(struct se_cmd *se_cmd)
3431 {
3432 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3433 struct srpt_send_ioctx, cmd);
3434 struct srpt_rdma_ch *ch = ioctx->ch;
3435 unsigned long flags;
3436
3437 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3438 WARN_ON(ioctx->mapped_sg_count != 0);
3439
3440 if (ioctx->n_rbuf > 1) {
3441 kfree(ioctx->rbufs);
3442 ioctx->rbufs = NULL;
3443 ioctx->n_rbuf = 0;
3444 }
3445
3446 spin_lock_irqsave(&ch->spinlock, flags);
3447 list_add(&ioctx->free_list, &ch->free_list);
3448 spin_unlock_irqrestore(&ch->spinlock, flags);
3449 }
3450
3451 /**
3452 * srpt_close_session() - Forcibly close a session.
3453 *
3454 * Callback function invoked by the TCM core to clean up sessions associated
3455 * with a node ACL when the user invokes
3456 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3457 */
srpt_close_session(struct se_session * se_sess)3458 static void srpt_close_session(struct se_session *se_sess)
3459 {
3460 DECLARE_COMPLETION_ONSTACK(release_done);
3461 struct srpt_rdma_ch *ch;
3462 struct srpt_device *sdev;
3463 int res;
3464
3465 ch = se_sess->fabric_sess_ptr;
3466 WARN_ON(ch->sess != se_sess);
3467
3468 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3469
3470 sdev = ch->sport->sdev;
3471 spin_lock_irq(&sdev->spinlock);
3472 BUG_ON(ch->release_done);
3473 ch->release_done = &release_done;
3474 __srpt_close_ch(ch);
3475 spin_unlock_irq(&sdev->spinlock);
3476
3477 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3478 WARN_ON(res <= 0);
3479 }
3480
3481 /**
3482 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3483 *
3484 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3485 * This object represents an arbitrary integer used to uniquely identify a
3486 * particular attached remote initiator port to a particular SCSI target port
3487 * within a particular SCSI target device within a particular SCSI instance.
3488 */
srpt_sess_get_index(struct se_session * se_sess)3489 static u32 srpt_sess_get_index(struct se_session *se_sess)
3490 {
3491 return 0;
3492 }
3493
srpt_set_default_node_attrs(struct se_node_acl * nacl)3494 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3495 {
3496 }
3497
srpt_get_task_tag(struct se_cmd * se_cmd)3498 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3499 {
3500 struct srpt_send_ioctx *ioctx;
3501
3502 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3503 return ioctx->tag;
3504 }
3505
3506 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3507 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3508 {
3509 struct srpt_send_ioctx *ioctx;
3510
3511 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3512 return srpt_get_cmd_state(ioctx);
3513 }
3514
3515 /**
3516 * srpt_parse_i_port_id() - Parse an initiator port ID.
3517 * @name: ASCII representation of a 128-bit initiator port ID.
3518 * @i_port_id: Binary 128-bit port ID.
3519 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3520 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3521 {
3522 const char *p;
3523 unsigned len, count, leading_zero_bytes;
3524 int ret;
3525
3526 p = name;
3527 if (strncasecmp(p, "0x", 2) == 0)
3528 p += 2;
3529 ret = -EINVAL;
3530 len = strlen(p);
3531 if (len % 2)
3532 goto out;
3533 count = min(len / 2, 16U);
3534 leading_zero_bytes = 16 - count;
3535 memset(i_port_id, 0, leading_zero_bytes);
3536 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3537 if (ret < 0)
3538 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret);
3539 out:
3540 return ret;
3541 }
3542
3543 /*
3544 * configfs callback function invoked for
3545 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3546 */
srpt_make_nodeacl(struct se_portal_group * tpg,struct config_group * group,const char * name)3547 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3548 struct config_group *group,
3549 const char *name)
3550 {
3551 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3552 struct se_node_acl *se_nacl, *se_nacl_new;
3553 struct srpt_node_acl *nacl;
3554 int ret = 0;
3555 u32 nexus_depth = 1;
3556 u8 i_port_id[16];
3557
3558 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3559 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3560 ret = -EINVAL;
3561 goto err;
3562 }
3563
3564 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3565 if (!se_nacl_new) {
3566 ret = -ENOMEM;
3567 goto err;
3568 }
3569 /*
3570 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3571 * when converting a node ACL from demo mode to explict
3572 */
3573 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3574 nexus_depth);
3575 if (IS_ERR(se_nacl)) {
3576 ret = PTR_ERR(se_nacl);
3577 goto err;
3578 }
3579 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3580 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3581 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3582 nacl->sport = sport;
3583
3584 spin_lock_irq(&sport->port_acl_lock);
3585 list_add_tail(&nacl->list, &sport->port_acl_list);
3586 spin_unlock_irq(&sport->port_acl_lock);
3587
3588 return se_nacl;
3589 err:
3590 return ERR_PTR(ret);
3591 }
3592
3593 /*
3594 * configfs callback function invoked for
3595 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3596 */
srpt_drop_nodeacl(struct se_node_acl * se_nacl)3597 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3598 {
3599 struct srpt_node_acl *nacl;
3600 struct srpt_device *sdev;
3601 struct srpt_port *sport;
3602
3603 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3604 sport = nacl->sport;
3605 sdev = sport->sdev;
3606 spin_lock_irq(&sport->port_acl_lock);
3607 list_del(&nacl->list);
3608 spin_unlock_irq(&sport->port_acl_lock);
3609 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3610 srpt_release_fabric_acl(NULL, se_nacl);
3611 }
3612
srpt_tpg_attrib_show_srp_max_rdma_size(struct se_portal_group * se_tpg,char * page)3613 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3614 struct se_portal_group *se_tpg,
3615 char *page)
3616 {
3617 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3618
3619 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3620 }
3621
srpt_tpg_attrib_store_srp_max_rdma_size(struct se_portal_group * se_tpg,const char * page,size_t count)3622 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3623 struct se_portal_group *se_tpg,
3624 const char *page,
3625 size_t count)
3626 {
3627 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3628 unsigned long val;
3629 int ret;
3630
3631 ret = kstrtoul(page, 0, &val);
3632 if (ret < 0) {
3633 pr_err("kstrtoul() failed with ret: %d\n", ret);
3634 return -EINVAL;
3635 }
3636 if (val > MAX_SRPT_RDMA_SIZE) {
3637 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3638 MAX_SRPT_RDMA_SIZE);
3639 return -EINVAL;
3640 }
3641 if (val < DEFAULT_MAX_RDMA_SIZE) {
3642 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3643 val, DEFAULT_MAX_RDMA_SIZE);
3644 return -EINVAL;
3645 }
3646 sport->port_attrib.srp_max_rdma_size = val;
3647
3648 return count;
3649 }
3650
3651 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3652
srpt_tpg_attrib_show_srp_max_rsp_size(struct se_portal_group * se_tpg,char * page)3653 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3654 struct se_portal_group *se_tpg,
3655 char *page)
3656 {
3657 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3658
3659 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3660 }
3661
srpt_tpg_attrib_store_srp_max_rsp_size(struct se_portal_group * se_tpg,const char * page,size_t count)3662 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3663 struct se_portal_group *se_tpg,
3664 const char *page,
3665 size_t count)
3666 {
3667 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3668 unsigned long val;
3669 int ret;
3670
3671 ret = kstrtoul(page, 0, &val);
3672 if (ret < 0) {
3673 pr_err("kstrtoul() failed with ret: %d\n", ret);
3674 return -EINVAL;
3675 }
3676 if (val > MAX_SRPT_RSP_SIZE) {
3677 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3678 MAX_SRPT_RSP_SIZE);
3679 return -EINVAL;
3680 }
3681 if (val < MIN_MAX_RSP_SIZE) {
3682 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3683 MIN_MAX_RSP_SIZE);
3684 return -EINVAL;
3685 }
3686 sport->port_attrib.srp_max_rsp_size = val;
3687
3688 return count;
3689 }
3690
3691 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3692
srpt_tpg_attrib_show_srp_sq_size(struct se_portal_group * se_tpg,char * page)3693 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3694 struct se_portal_group *se_tpg,
3695 char *page)
3696 {
3697 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3698
3699 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3700 }
3701
srpt_tpg_attrib_store_srp_sq_size(struct se_portal_group * se_tpg,const char * page,size_t count)3702 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3703 struct se_portal_group *se_tpg,
3704 const char *page,
3705 size_t count)
3706 {
3707 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3708 unsigned long val;
3709 int ret;
3710
3711 ret = kstrtoul(page, 0, &val);
3712 if (ret < 0) {
3713 pr_err("kstrtoul() failed with ret: %d\n", ret);
3714 return -EINVAL;
3715 }
3716 if (val > MAX_SRPT_SRQ_SIZE) {
3717 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3718 MAX_SRPT_SRQ_SIZE);
3719 return -EINVAL;
3720 }
3721 if (val < MIN_SRPT_SRQ_SIZE) {
3722 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3723 MIN_SRPT_SRQ_SIZE);
3724 return -EINVAL;
3725 }
3726 sport->port_attrib.srp_sq_size = val;
3727
3728 return count;
3729 }
3730
3731 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3732
3733 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3734 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3735 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3736 &srpt_tpg_attrib_srp_sq_size.attr,
3737 NULL,
3738 };
3739
srpt_tpg_show_enable(struct se_portal_group * se_tpg,char * page)3740 static ssize_t srpt_tpg_show_enable(
3741 struct se_portal_group *se_tpg,
3742 char *page)
3743 {
3744 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3745
3746 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3747 }
3748
srpt_tpg_store_enable(struct se_portal_group * se_tpg,const char * page,size_t count)3749 static ssize_t srpt_tpg_store_enable(
3750 struct se_portal_group *se_tpg,
3751 const char *page,
3752 size_t count)
3753 {
3754 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3755 unsigned long tmp;
3756 int ret;
3757
3758 ret = kstrtoul(page, 0, &tmp);
3759 if (ret < 0) {
3760 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3761 return -EINVAL;
3762 }
3763
3764 if ((tmp != 0) && (tmp != 1)) {
3765 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3766 return -EINVAL;
3767 }
3768 if (tmp == 1)
3769 sport->enabled = true;
3770 else
3771 sport->enabled = false;
3772
3773 return count;
3774 }
3775
3776 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3777
3778 static struct configfs_attribute *srpt_tpg_attrs[] = {
3779 &srpt_tpg_enable.attr,
3780 NULL,
3781 };
3782
3783 /**
3784 * configfs callback invoked for
3785 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3786 */
srpt_make_tpg(struct se_wwn * wwn,struct config_group * group,const char * name)3787 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3788 struct config_group *group,
3789 const char *name)
3790 {
3791 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3792 int res;
3793
3794 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3795 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3796 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3797 if (res)
3798 return ERR_PTR(res);
3799
3800 return &sport->port_tpg_1;
3801 }
3802
3803 /**
3804 * configfs callback invoked for
3805 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3806 */
srpt_drop_tpg(struct se_portal_group * tpg)3807 static void srpt_drop_tpg(struct se_portal_group *tpg)
3808 {
3809 struct srpt_port *sport = container_of(tpg,
3810 struct srpt_port, port_tpg_1);
3811
3812 sport->enabled = false;
3813 core_tpg_deregister(&sport->port_tpg_1);
3814 }
3815
3816 /**
3817 * configfs callback invoked for
3818 * mkdir /sys/kernel/config/target/$driver/$port
3819 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3820 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3821 struct config_group *group,
3822 const char *name)
3823 {
3824 struct srpt_port *sport;
3825 int ret;
3826
3827 sport = srpt_lookup_port(name);
3828 pr_debug("make_tport(%s)\n", name);
3829 ret = -EINVAL;
3830 if (!sport)
3831 goto err;
3832
3833 return &sport->port_wwn;
3834
3835 err:
3836 return ERR_PTR(ret);
3837 }
3838
3839 /**
3840 * configfs callback invoked for
3841 * rmdir /sys/kernel/config/target/$driver/$port
3842 */
srpt_drop_tport(struct se_wwn * wwn)3843 static void srpt_drop_tport(struct se_wwn *wwn)
3844 {
3845 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3846
3847 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3848 }
3849
srpt_wwn_show_attr_version(struct target_fabric_configfs * tf,char * buf)3850 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3851 char *buf)
3852 {
3853 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3854 }
3855
3856 TF_WWN_ATTR_RO(srpt, version);
3857
3858 static struct configfs_attribute *srpt_wwn_attrs[] = {
3859 &srpt_wwn_version.attr,
3860 NULL,
3861 };
3862
3863 static struct target_core_fabric_ops srpt_template = {
3864 .get_fabric_name = srpt_get_fabric_name,
3865 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3866 .tpg_get_wwn = srpt_get_fabric_wwn,
3867 .tpg_get_tag = srpt_get_tag,
3868 .tpg_get_default_depth = srpt_get_default_depth,
3869 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3870 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3871 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3872 .tpg_check_demo_mode = srpt_check_false,
3873 .tpg_check_demo_mode_cache = srpt_check_true,
3874 .tpg_check_demo_mode_write_protect = srpt_check_true,
3875 .tpg_check_prod_mode_write_protect = srpt_check_false,
3876 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3877 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3878 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3879 .release_cmd = srpt_release_cmd,
3880 .check_stop_free = srpt_check_stop_free,
3881 .shutdown_session = srpt_shutdown_session,
3882 .close_session = srpt_close_session,
3883 .sess_get_index = srpt_sess_get_index,
3884 .sess_get_initiator_sid = NULL,
3885 .write_pending = srpt_write_pending,
3886 .write_pending_status = srpt_write_pending_status,
3887 .set_default_node_attributes = srpt_set_default_node_attrs,
3888 .get_task_tag = srpt_get_task_tag,
3889 .get_cmd_state = srpt_get_tcm_cmd_state,
3890 .queue_data_in = srpt_queue_data_in,
3891 .queue_status = srpt_queue_status,
3892 .queue_tm_rsp = srpt_queue_tm_rsp,
3893 .aborted_task = srpt_aborted_task,
3894 /*
3895 * Setup function pointers for generic logic in
3896 * target_core_fabric_configfs.c
3897 */
3898 .fabric_make_wwn = srpt_make_tport,
3899 .fabric_drop_wwn = srpt_drop_tport,
3900 .fabric_make_tpg = srpt_make_tpg,
3901 .fabric_drop_tpg = srpt_drop_tpg,
3902 .fabric_post_link = NULL,
3903 .fabric_pre_unlink = NULL,
3904 .fabric_make_np = NULL,
3905 .fabric_drop_np = NULL,
3906 .fabric_make_nodeacl = srpt_make_nodeacl,
3907 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3908 };
3909
3910 /**
3911 * srpt_init_module() - Kernel module initialization.
3912 *
3913 * Note: Since ib_register_client() registers callback functions, and since at
3914 * least one of these callback functions (srpt_add_one()) calls target core
3915 * functions, this driver must be registered with the target core before
3916 * ib_register_client() is called.
3917 */
srpt_init_module(void)3918 static int __init srpt_init_module(void)
3919 {
3920 int ret;
3921
3922 ret = -EINVAL;
3923 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3924 printk(KERN_ERR "invalid value %d for kernel module parameter"
3925 " srp_max_req_size -- must be at least %d.\n",
3926 srp_max_req_size, MIN_MAX_REQ_SIZE);
3927 goto out;
3928 }
3929
3930 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3931 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3932 printk(KERN_ERR "invalid value %d for kernel module parameter"
3933 " srpt_srq_size -- must be in the range [%d..%d].\n",
3934 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3935 goto out;
3936 }
3937
3938 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3939 if (IS_ERR(srpt_target)) {
3940 printk(KERN_ERR "couldn't register\n");
3941 ret = PTR_ERR(srpt_target);
3942 goto out;
3943 }
3944
3945 srpt_target->tf_ops = srpt_template;
3946
3947 /*
3948 * Set up default attribute lists.
3949 */
3950 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
3951 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
3952 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
3953 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
3954 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
3955 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
3956 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
3957 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
3958 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
3959
3960 ret = target_fabric_configfs_register(srpt_target);
3961 if (ret < 0) {
3962 printk(KERN_ERR "couldn't register\n");
3963 goto out_free_target;
3964 }
3965
3966 ret = ib_register_client(&srpt_client);
3967 if (ret) {
3968 printk(KERN_ERR "couldn't register IB client\n");
3969 goto out_unregister_target;
3970 }
3971
3972 return 0;
3973
3974 out_unregister_target:
3975 target_fabric_configfs_deregister(srpt_target);
3976 srpt_target = NULL;
3977 out_free_target:
3978 if (srpt_target)
3979 target_fabric_configfs_free(srpt_target);
3980 out:
3981 return ret;
3982 }
3983
srpt_cleanup_module(void)3984 static void __exit srpt_cleanup_module(void)
3985 {
3986 ib_unregister_client(&srpt_client);
3987 target_fabric_configfs_deregister(srpt_target);
3988 srpt_target = NULL;
3989 }
3990
3991 module_init(srpt_init_module);
3992 module_exit(srpt_cleanup_module);
3993