• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *	- SMMUv1 and v2 implementations
23  *	- Stream-matching and stream-indexing
24  *	- v7/v8 long-descriptor format
25  *	- Non-secure access to the SMMU
26  *	- 4k and 64k pages, with contiguous pte hints.
27  *	- Up to 48-bit addressing (dependent on VA_BITS)
28  *	- Context fault reporting
29  */
30 
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32 
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46 
47 #include <linux/amba/bus.h>
48 
49 #include <asm/pgalloc.h>
50 
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
53 
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS		128
56 
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS		128
59 
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu)		((smmu)->base)
62 #define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63 
64 /*
65  * SMMU global address space with conditional offset to access secure
66  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67  * nsGFSYNR0: 0x450)
68  */
69 #define ARM_SMMU_GR0_NS(smmu)						\
70 	((smmu)->base +							\
71 		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
72 			? 0x400 : 0))
73 
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN			(((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
82 
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES	16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES	32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES	1
89 #endif
90 
91 #define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))
93 
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
98 #define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)
99 
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)
107 
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0		0x0
110 #define sCR0_CLIENTPD			(1 << 0)
111 #define sCR0_GFRE			(1 << 1)
112 #define sCR0_GFIE			(1 << 2)
113 #define sCR0_GCFGFRE			(1 << 4)
114 #define sCR0_GCFGFIE			(1 << 5)
115 #define sCR0_USFCFG			(1 << 10)
116 #define sCR0_VMIDPNE			(1 << 11)
117 #define sCR0_PTM			(1 << 12)
118 #define sCR0_FB				(1 << 13)
119 #define sCR0_BSU_SHIFT			14
120 #define sCR0_BSU_MASK			0x3
121 
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0		0x20
124 #define ARM_SMMU_GR0_ID1		0x24
125 #define ARM_SMMU_GR0_ID2		0x28
126 #define ARM_SMMU_GR0_ID3		0x2c
127 #define ARM_SMMU_GR0_ID4		0x30
128 #define ARM_SMMU_GR0_ID5		0x34
129 #define ARM_SMMU_GR0_ID6		0x38
130 #define ARM_SMMU_GR0_ID7		0x3c
131 #define ARM_SMMU_GR0_sGFSR		0x48
132 #define ARM_SMMU_GR0_sGFSYNR0		0x50
133 #define ARM_SMMU_GR0_sGFSYNR1		0x54
134 #define ARM_SMMU_GR0_sGFSYNR2		0x58
135 #define ARM_SMMU_GR0_PIDR0		0xfe0
136 #define ARM_SMMU_GR0_PIDR1		0xfe4
137 #define ARM_SMMU_GR0_PIDR2		0xfe8
138 
139 #define ID0_S1TS			(1 << 30)
140 #define ID0_S2TS			(1 << 29)
141 #define ID0_NTS				(1 << 28)
142 #define ID0_SMS				(1 << 27)
143 #define ID0_PTFS_SHIFT			24
144 #define ID0_PTFS_MASK			0x2
145 #define ID0_PTFS_V8_ONLY		0x2
146 #define ID0_CTTW			(1 << 14)
147 #define ID0_NUMIRPT_SHIFT		16
148 #define ID0_NUMIRPT_MASK		0xff
149 #define ID0_NUMSIDB_SHIFT		9
150 #define ID0_NUMSIDB_MASK		0xf
151 #define ID0_NUMSMRG_SHIFT		0
152 #define ID0_NUMSMRG_MASK		0xff
153 
154 #define ID1_PAGESIZE			(1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT		28
156 #define ID1_NUMPAGENDXB_MASK		7
157 #define ID1_NUMS2CB_SHIFT		16
158 #define ID1_NUMS2CB_MASK		0xff
159 #define ID1_NUMCB_SHIFT			0
160 #define ID1_NUMCB_MASK			0xff
161 
162 #define ID2_OAS_SHIFT			4
163 #define ID2_OAS_MASK			0xf
164 #define ID2_IAS_SHIFT			0
165 #define ID2_IAS_MASK			0xf
166 #define ID2_UBS_SHIFT			8
167 #define ID2_UBS_MASK			0xf
168 #define ID2_PTFS_4K			(1 << 12)
169 #define ID2_PTFS_16K			(1 << 13)
170 #define ID2_PTFS_64K			(1 << 14)
171 
172 #define PIDR2_ARCH_SHIFT		4
173 #define PIDR2_ARCH_MASK			0xf
174 
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL		0x60
177 #define ARM_SMMU_GR0_TLBIVMID		0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH	0x68
179 #define ARM_SMMU_GR0_TLBIALLH		0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC		0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS	0x74
182 #define sTLBGSTATUS_GSACTIVE		(1 << 0)
183 #define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
184 
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
187 #define SMR_VALID			(1 << 31)
188 #define SMR_MASK_SHIFT			16
189 #define SMR_MASK_MASK			0x7fff
190 #define SMR_ID_SHIFT			0
191 #define SMR_ID_MASK			0x7fff
192 
193 #define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT		0
195 #define S2CR_CBNDX_MASK			0xff
196 #define S2CR_TYPE_SHIFT			16
197 #define S2CR_TYPE_MASK			0x3
198 #define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)
201 
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT			0
205 #define CBAR_VMID_MASK			0xff
206 #define CBAR_S1_BPSHCFG_SHIFT		8
207 #define CBAR_S1_BPSHCFG_MASK		3
208 #define CBAR_S1_BPSHCFG_NSH		3
209 #define CBAR_S1_MEMATTR_SHIFT		12
210 #define CBAR_S1_MEMATTR_MASK		0xf
211 #define CBAR_S1_MEMATTR_WB		0xf
212 #define CBAR_TYPE_SHIFT			16
213 #define CBAR_TYPE_MASK			0x3
214 #define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT		24
219 #define CBAR_IRPTNDX_MASK		0xff
220 
221 #define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT		(0 << 0)
223 #define CBA2R_RW64_64BIT		(1 << 0)
224 
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
228 
229 #define ARM_SMMU_CB_SCTLR		0x0
230 #define ARM_SMMU_CB_RESUME		0x8
231 #define ARM_SMMU_CB_TTBCR2		0x10
232 #define ARM_SMMU_CB_TTBR0_LO		0x20
233 #define ARM_SMMU_CB_TTBR0_HI		0x24
234 #define ARM_SMMU_CB_TTBCR		0x30
235 #define ARM_SMMU_CB_S1_MAIR0		0x38
236 #define ARM_SMMU_CB_FSR			0x58
237 #define ARM_SMMU_CB_FAR_LO		0x60
238 #define ARM_SMMU_CB_FAR_HI		0x64
239 #define ARM_SMMU_CB_FSYNR0		0x68
240 #define ARM_SMMU_CB_S1_TLBIASID		0x610
241 
242 #define SCTLR_S1_ASIDPNE		(1 << 12)
243 #define SCTLR_CFCFG			(1 << 7)
244 #define SCTLR_CFIE			(1 << 6)
245 #define SCTLR_CFRE			(1 << 5)
246 #define SCTLR_E				(1 << 4)
247 #define SCTLR_AFE			(1 << 2)
248 #define SCTLR_TRE			(1 << 1)
249 #define SCTLR_M				(1 << 0)
250 #define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)
251 
252 #define RESUME_RETRY			(0 << 0)
253 #define RESUME_TERMINATE		(1 << 0)
254 
255 #define TTBCR_EAE			(1 << 31)
256 
257 #define TTBCR_PASIZE_SHIFT		16
258 #define TTBCR_PASIZE_MASK		0x7
259 
260 #define TTBCR_TG0_4K			(0 << 14)
261 #define TTBCR_TG0_64K			(1 << 14)
262 
263 #define TTBCR_SH0_SHIFT			12
264 #define TTBCR_SH0_MASK			0x3
265 #define TTBCR_SH_NS			0
266 #define TTBCR_SH_OS			2
267 #define TTBCR_SH_IS			3
268 
269 #define TTBCR_ORGN0_SHIFT		10
270 #define TTBCR_IRGN0_SHIFT		8
271 #define TTBCR_RGN_MASK			0x3
272 #define TTBCR_RGN_NC			0
273 #define TTBCR_RGN_WBWA			1
274 #define TTBCR_RGN_WT			2
275 #define TTBCR_RGN_WB			3
276 
277 #define TTBCR_SL0_SHIFT			6
278 #define TTBCR_SL0_MASK			0x3
279 #define TTBCR_SL0_LVL_2			0
280 #define TTBCR_SL0_LVL_1			1
281 
282 #define TTBCR_T1SZ_SHIFT		16
283 #define TTBCR_T0SZ_SHIFT		0
284 #define TTBCR_SZ_MASK			0xf
285 
286 #define TTBCR2_SEP_SHIFT		15
287 #define TTBCR2_SEP_MASK			0x7
288 
289 #define TTBCR2_PASIZE_SHIFT		0
290 #define TTBCR2_PASIZE_MASK		0x7
291 
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32			0
294 #define TTBCR2_ADDR_36			1
295 #define TTBCR2_ADDR_40			2
296 #define TTBCR2_ADDR_42			3
297 #define TTBCR2_ADDR_44			4
298 #define TTBCR2_ADDR_48			5
299 
300 #define TTBRn_HI_ASID_SHIFT		16
301 
302 #define MAIR_ATTR_SHIFT(n)		((n) << 3)
303 #define MAIR_ATTR_MASK			0xff
304 #define MAIR_ATTR_DEVICE		0x04
305 #define MAIR_ATTR_NC			0x44
306 #define MAIR_ATTR_WBRWA			0xff
307 #define MAIR_ATTR_IDX_NC		0
308 #define MAIR_ATTR_IDX_CACHE		1
309 #define MAIR_ATTR_IDX_DEV		2
310 
311 #define FSR_MULTI			(1 << 31)
312 #define FSR_SS				(1 << 30)
313 #define FSR_UUT				(1 << 8)
314 #define FSR_ASF				(1 << 7)
315 #define FSR_TLBLKF			(1 << 6)
316 #define FSR_TLBMCF			(1 << 5)
317 #define FSR_EF				(1 << 4)
318 #define FSR_PF				(1 << 3)
319 #define FSR_AFF				(1 << 2)
320 #define FSR_TF				(1 << 1)
321 
322 #define FSR_IGN				(FSR_AFF | FSR_ASF | \
323 					 FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
325 					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326 
327 #define FSYNR0_WNR			(1 << 4)
328 
329 static int force_stage;
330 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331 MODULE_PARM_DESC(force_stage,
332 	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333 
334 enum arm_smmu_arch_version {
335 	ARM_SMMU_V1 = 1,
336 	ARM_SMMU_V2,
337 };
338 
339 struct arm_smmu_smr {
340 	u8				idx;
341 	u16				mask;
342 	u16				id;
343 };
344 
345 struct arm_smmu_master_cfg {
346 	int				num_streamids;
347 	u16				streamids[MAX_MASTER_STREAMIDS];
348 	struct arm_smmu_smr		*smrs;
349 };
350 
351 struct arm_smmu_master {
352 	struct device_node		*of_node;
353 	struct rb_node			node;
354 	struct arm_smmu_master_cfg	cfg;
355 };
356 
357 struct arm_smmu_device {
358 	struct device			*dev;
359 
360 	void __iomem			*base;
361 	unsigned long			size;
362 	unsigned long			pgshift;
363 
364 #define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
365 #define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
366 #define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
367 #define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
368 #define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
369 	u32				features;
370 
371 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
372 	u32				options;
373 	enum arm_smmu_arch_version	version;
374 
375 	u32				num_context_banks;
376 	u32				num_s2_context_banks;
377 	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
378 	atomic_t			irptndx;
379 
380 	u32				num_mapping_groups;
381 	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
382 
383 	unsigned long			s1_input_size;
384 	unsigned long			s1_output_size;
385 	unsigned long			s2_input_size;
386 	unsigned long			s2_output_size;
387 
388 	u32				num_global_irqs;
389 	u32				num_context_irqs;
390 	unsigned int			*irqs;
391 
392 	struct list_head		list;
393 	struct rb_root			masters;
394 };
395 
396 struct arm_smmu_cfg {
397 	u8				cbndx;
398 	u8				irptndx;
399 	u32				cbar;
400 	pgd_t				*pgd;
401 };
402 #define INVALID_IRPTNDX			0xff
403 
404 #define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
405 #define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)
406 
407 struct arm_smmu_domain {
408 	struct arm_smmu_device		*smmu;
409 	struct arm_smmu_cfg		cfg;
410 	spinlock_t			lock;
411 };
412 
413 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
414 static LIST_HEAD(arm_smmu_devices);
415 
416 struct arm_smmu_option_prop {
417 	u32 opt;
418 	const char *prop;
419 };
420 
421 static struct arm_smmu_option_prop arm_smmu_options[] = {
422 	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
423 	{ 0, NULL},
424 };
425 
parse_driver_options(struct arm_smmu_device * smmu)426 static void parse_driver_options(struct arm_smmu_device *smmu)
427 {
428 	int i = 0;
429 
430 	do {
431 		if (of_property_read_bool(smmu->dev->of_node,
432 						arm_smmu_options[i].prop)) {
433 			smmu->options |= arm_smmu_options[i].opt;
434 			dev_notice(smmu->dev, "option %s\n",
435 				arm_smmu_options[i].prop);
436 		}
437 	} while (arm_smmu_options[++i].opt);
438 }
439 
dev_get_dev_node(struct device * dev)440 static struct device_node *dev_get_dev_node(struct device *dev)
441 {
442 	if (dev_is_pci(dev)) {
443 		struct pci_bus *bus = to_pci_dev(dev)->bus;
444 
445 		while (!pci_is_root_bus(bus))
446 			bus = bus->parent;
447 		return bus->bridge->parent->of_node;
448 	}
449 
450 	return dev->of_node;
451 }
452 
find_smmu_master(struct arm_smmu_device * smmu,struct device_node * dev_node)453 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
454 						struct device_node *dev_node)
455 {
456 	struct rb_node *node = smmu->masters.rb_node;
457 
458 	while (node) {
459 		struct arm_smmu_master *master;
460 
461 		master = container_of(node, struct arm_smmu_master, node);
462 
463 		if (dev_node < master->of_node)
464 			node = node->rb_left;
465 		else if (dev_node > master->of_node)
466 			node = node->rb_right;
467 		else
468 			return master;
469 	}
470 
471 	return NULL;
472 }
473 
474 static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device * dev)475 find_smmu_master_cfg(struct device *dev)
476 {
477 	struct arm_smmu_master_cfg *cfg = NULL;
478 	struct iommu_group *group = iommu_group_get(dev);
479 
480 	if (group) {
481 		cfg = iommu_group_get_iommudata(group);
482 		iommu_group_put(group);
483 	}
484 
485 	return cfg;
486 }
487 
insert_smmu_master(struct arm_smmu_device * smmu,struct arm_smmu_master * master)488 static int insert_smmu_master(struct arm_smmu_device *smmu,
489 			      struct arm_smmu_master *master)
490 {
491 	struct rb_node **new, *parent;
492 
493 	new = &smmu->masters.rb_node;
494 	parent = NULL;
495 	while (*new) {
496 		struct arm_smmu_master *this
497 			= container_of(*new, struct arm_smmu_master, node);
498 
499 		parent = *new;
500 		if (master->of_node < this->of_node)
501 			new = &((*new)->rb_left);
502 		else if (master->of_node > this->of_node)
503 			new = &((*new)->rb_right);
504 		else
505 			return -EEXIST;
506 	}
507 
508 	rb_link_node(&master->node, parent, new);
509 	rb_insert_color(&master->node, &smmu->masters);
510 	return 0;
511 }
512 
register_smmu_master(struct arm_smmu_device * smmu,struct device * dev,struct of_phandle_args * masterspec)513 static int register_smmu_master(struct arm_smmu_device *smmu,
514 				struct device *dev,
515 				struct of_phandle_args *masterspec)
516 {
517 	int i;
518 	struct arm_smmu_master *master;
519 
520 	master = find_smmu_master(smmu, masterspec->np);
521 	if (master) {
522 		dev_err(dev,
523 			"rejecting multiple registrations for master device %s\n",
524 			masterspec->np->name);
525 		return -EBUSY;
526 	}
527 
528 	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
529 		dev_err(dev,
530 			"reached maximum number (%d) of stream IDs for master device %s\n",
531 			MAX_MASTER_STREAMIDS, masterspec->np->name);
532 		return -ENOSPC;
533 	}
534 
535 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
536 	if (!master)
537 		return -ENOMEM;
538 
539 	master->of_node			= masterspec->np;
540 	master->cfg.num_streamids	= masterspec->args_count;
541 
542 	for (i = 0; i < master->cfg.num_streamids; ++i) {
543 		u16 streamid = masterspec->args[i];
544 
545 		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
546 		     (streamid >= smmu->num_mapping_groups)) {
547 			dev_err(dev,
548 				"stream ID for master device %s greater than maximum allowed (%d)\n",
549 				masterspec->np->name, smmu->num_mapping_groups);
550 			return -ERANGE;
551 		}
552 		master->cfg.streamids[i] = streamid;
553 	}
554 	return insert_smmu_master(smmu, master);
555 }
556 
find_smmu_for_device(struct device * dev)557 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
558 {
559 	struct arm_smmu_device *smmu;
560 	struct arm_smmu_master *master = NULL;
561 	struct device_node *dev_node = dev_get_dev_node(dev);
562 
563 	spin_lock(&arm_smmu_devices_lock);
564 	list_for_each_entry(smmu, &arm_smmu_devices, list) {
565 		master = find_smmu_master(smmu, dev_node);
566 		if (master)
567 			break;
568 	}
569 	spin_unlock(&arm_smmu_devices_lock);
570 
571 	return master ? smmu : NULL;
572 }
573 
__arm_smmu_alloc_bitmap(unsigned long * map,int start,int end)574 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
575 {
576 	int idx;
577 
578 	do {
579 		idx = find_next_zero_bit(map, end, start);
580 		if (idx == end)
581 			return -ENOSPC;
582 	} while (test_and_set_bit(idx, map));
583 
584 	return idx;
585 }
586 
__arm_smmu_free_bitmap(unsigned long * map,int idx)587 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
588 {
589 	clear_bit(idx, map);
590 }
591 
592 /* Wait for any pending TLB invalidations to complete */
arm_smmu_tlb_sync(struct arm_smmu_device * smmu)593 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
594 {
595 	int count = 0;
596 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
597 
598 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
599 	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
600 	       & sTLBGSTATUS_GSACTIVE) {
601 		cpu_relax();
602 		if (++count == TLB_LOOP_TIMEOUT) {
603 			dev_err_ratelimited(smmu->dev,
604 			"TLB sync timed out -- SMMU may be deadlocked\n");
605 			return;
606 		}
607 		udelay(1);
608 	}
609 }
610 
arm_smmu_tlb_inv_context(struct arm_smmu_domain * smmu_domain)611 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
612 {
613 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
614 	struct arm_smmu_device *smmu = smmu_domain->smmu;
615 	void __iomem *base = ARM_SMMU_GR0(smmu);
616 	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
617 
618 	if (stage1) {
619 		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
620 		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
621 			       base + ARM_SMMU_CB_S1_TLBIASID);
622 	} else {
623 		base = ARM_SMMU_GR0(smmu);
624 		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
625 			       base + ARM_SMMU_GR0_TLBIVMID);
626 	}
627 
628 	arm_smmu_tlb_sync(smmu);
629 }
630 
arm_smmu_context_fault(int irq,void * dev)631 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
632 {
633 	int flags, ret;
634 	u32 fsr, far, fsynr, resume;
635 	unsigned long iova;
636 	struct iommu_domain *domain = dev;
637 	struct arm_smmu_domain *smmu_domain = domain->priv;
638 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639 	struct arm_smmu_device *smmu = smmu_domain->smmu;
640 	void __iomem *cb_base;
641 
642 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
643 	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
644 
645 	if (!(fsr & FSR_FAULT))
646 		return IRQ_NONE;
647 
648 	if (fsr & FSR_IGN)
649 		dev_err_ratelimited(smmu->dev,
650 				    "Unexpected context fault (fsr 0x%x)\n",
651 				    fsr);
652 
653 	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
654 	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
655 
656 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
657 	iova = far;
658 #ifdef CONFIG_64BIT
659 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
660 	iova |= ((unsigned long)far << 32);
661 #endif
662 
663 	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
664 		ret = IRQ_HANDLED;
665 		resume = RESUME_RETRY;
666 	} else {
667 		dev_err_ratelimited(smmu->dev,
668 		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
669 		    iova, fsynr, cfg->cbndx);
670 		ret = IRQ_NONE;
671 		resume = RESUME_TERMINATE;
672 	}
673 
674 	/* Clear the faulting FSR */
675 	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
676 
677 	/* Retry or terminate any stalled transactions */
678 	if (fsr & FSR_SS)
679 		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
680 
681 	return ret;
682 }
683 
arm_smmu_global_fault(int irq,void * dev)684 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
685 {
686 	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
687 	struct arm_smmu_device *smmu = dev;
688 	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
689 
690 	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
691 	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
692 	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
693 	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
694 
695 	if (!gfsr)
696 		return IRQ_NONE;
697 
698 	dev_err_ratelimited(smmu->dev,
699 		"Unexpected global fault, this could be serious\n");
700 	dev_err_ratelimited(smmu->dev,
701 		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
702 		gfsr, gfsynr0, gfsynr1, gfsynr2);
703 
704 	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
705 	return IRQ_HANDLED;
706 }
707 
arm_smmu_flush_pgtable(struct arm_smmu_device * smmu,void * addr,size_t size)708 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
709 				   size_t size)
710 {
711 	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
712 
713 
714 	/* Ensure new page tables are visible to the hardware walker */
715 	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
716 		dsb(ishst);
717 	} else {
718 		/*
719 		 * If the SMMU can't walk tables in the CPU caches, treat them
720 		 * like non-coherent DMA since we need to flush the new entries
721 		 * all the way out to memory. There's no possibility of
722 		 * recursion here as the SMMU table walker will not be wired
723 		 * through another SMMU.
724 		 */
725 		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
726 				DMA_TO_DEVICE);
727 	}
728 }
729 
arm_smmu_init_context_bank(struct arm_smmu_domain * smmu_domain)730 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
731 {
732 	u32 reg;
733 	bool stage1;
734 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
735 	struct arm_smmu_device *smmu = smmu_domain->smmu;
736 	void __iomem *cb_base, *gr0_base, *gr1_base;
737 
738 	gr0_base = ARM_SMMU_GR0(smmu);
739 	gr1_base = ARM_SMMU_GR1(smmu);
740 	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
741 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
742 
743 	/* CBAR */
744 	reg = cfg->cbar;
745 	if (smmu->version == ARM_SMMU_V1)
746 		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
747 
748 	/*
749 	 * Use the weakest shareability/memory types, so they are
750 	 * overridden by the ttbcr/pte.
751 	 */
752 	if (stage1) {
753 		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
754 			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
755 	} else {
756 		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
757 	}
758 	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
759 
760 	if (smmu->version > ARM_SMMU_V1) {
761 		/* CBA2R */
762 #ifdef CONFIG_64BIT
763 		reg = CBA2R_RW64_64BIT;
764 #else
765 		reg = CBA2R_RW64_32BIT;
766 #endif
767 		writel_relaxed(reg,
768 			       gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
769 
770 		/* TTBCR2 */
771 		switch (smmu->s1_input_size) {
772 		case 32:
773 			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
774 			break;
775 		case 36:
776 			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
777 			break;
778 		case 39:
779 		case 40:
780 			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
781 			break;
782 		case 42:
783 			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
784 			break;
785 		case 44:
786 			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
787 			break;
788 		case 48:
789 			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
790 			break;
791 		}
792 
793 		switch (smmu->s1_output_size) {
794 		case 32:
795 			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
796 			break;
797 		case 36:
798 			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
799 			break;
800 		case 39:
801 		case 40:
802 			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
803 			break;
804 		case 42:
805 			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
806 			break;
807 		case 44:
808 			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
809 			break;
810 		case 48:
811 			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
812 			break;
813 		}
814 
815 		if (stage1)
816 			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
817 	}
818 
819 	/* TTBR0 */
820 	arm_smmu_flush_pgtable(smmu, cfg->pgd,
821 			       PTRS_PER_PGD * sizeof(pgd_t));
822 	reg = __pa(cfg->pgd);
823 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
824 	reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
825 	if (stage1)
826 		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
827 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
828 
829 	/*
830 	 * TTBCR
831 	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
832 	 */
833 	if (smmu->version > ARM_SMMU_V1) {
834 		if (PAGE_SIZE == SZ_4K)
835 			reg = TTBCR_TG0_4K;
836 		else
837 			reg = TTBCR_TG0_64K;
838 
839 		if (!stage1) {
840 			reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
841 
842 			switch (smmu->s2_output_size) {
843 			case 32:
844 				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
845 				break;
846 			case 36:
847 				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
848 				break;
849 			case 40:
850 				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
851 				break;
852 			case 42:
853 				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
854 				break;
855 			case 44:
856 				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
857 				break;
858 			case 48:
859 				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
860 				break;
861 			}
862 		} else {
863 			reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
864 		}
865 	} else {
866 		reg = 0;
867 	}
868 
869 	reg |= TTBCR_EAE |
870 	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
871 	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
872 	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
873 
874 	if (!stage1)
875 		reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
876 
877 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
878 
879 	/* MAIR0 (stage-1 only) */
880 	if (stage1) {
881 		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
882 		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
883 		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
884 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
885 	}
886 
887 	/* SCTLR */
888 	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
889 	if (stage1)
890 		reg |= SCTLR_S1_ASIDPNE;
891 #ifdef __BIG_ENDIAN
892 	reg |= SCTLR_E;
893 #endif
894 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
895 }
896 
arm_smmu_init_domain_context(struct iommu_domain * domain,struct arm_smmu_device * smmu)897 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
898 					struct arm_smmu_device *smmu)
899 {
900 	int irq, start, ret = 0;
901 	unsigned long flags;
902 	struct arm_smmu_domain *smmu_domain = domain->priv;
903 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
904 
905 	spin_lock_irqsave(&smmu_domain->lock, flags);
906 	if (smmu_domain->smmu)
907 		goto out_unlock;
908 
909 	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
910 		/*
911 		 * We will likely want to change this if/when KVM gets
912 		 * involved.
913 		 */
914 		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
915 		start = smmu->num_s2_context_banks;
916 	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
917 		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
918 		start = smmu->num_s2_context_banks;
919 	} else {
920 		cfg->cbar = CBAR_TYPE_S2_TRANS;
921 		start = 0;
922 	}
923 
924 	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
925 				      smmu->num_context_banks);
926 	if (IS_ERR_VALUE(ret))
927 		goto out_unlock;
928 
929 	cfg->cbndx = ret;
930 	if (smmu->version == ARM_SMMU_V1) {
931 		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
932 		cfg->irptndx %= smmu->num_context_irqs;
933 	} else {
934 		cfg->irptndx = cfg->cbndx;
935 	}
936 
937 	ACCESS_ONCE(smmu_domain->smmu) = smmu;
938 	arm_smmu_init_context_bank(smmu_domain);
939 	spin_unlock_irqrestore(&smmu_domain->lock, flags);
940 
941 	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
942 	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
943 			  "arm-smmu-context-fault", domain);
944 	if (IS_ERR_VALUE(ret)) {
945 		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
946 			cfg->irptndx, irq);
947 		cfg->irptndx = INVALID_IRPTNDX;
948 	}
949 
950 	return 0;
951 
952 out_unlock:
953 	spin_unlock_irqrestore(&smmu_domain->lock, flags);
954 	return ret;
955 }
956 
arm_smmu_destroy_domain_context(struct iommu_domain * domain)957 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
958 {
959 	struct arm_smmu_domain *smmu_domain = domain->priv;
960 	struct arm_smmu_device *smmu = smmu_domain->smmu;
961 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
962 	void __iomem *cb_base;
963 	int irq;
964 
965 	if (!smmu)
966 		return;
967 
968 	/* Disable the context bank and nuke the TLB before freeing it. */
969 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
970 	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
971 	arm_smmu_tlb_inv_context(smmu_domain);
972 
973 	if (cfg->irptndx != INVALID_IRPTNDX) {
974 		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
975 		free_irq(irq, domain);
976 	}
977 
978 	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
979 }
980 
arm_smmu_domain_init(struct iommu_domain * domain)981 static int arm_smmu_domain_init(struct iommu_domain *domain)
982 {
983 	struct arm_smmu_domain *smmu_domain;
984 	pgd_t *pgd;
985 
986 	/*
987 	 * Allocate the domain and initialise some of its data structures.
988 	 * We can't really do anything meaningful until we've added a
989 	 * master.
990 	 */
991 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
992 	if (!smmu_domain)
993 		return -ENOMEM;
994 
995 	pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
996 	if (!pgd)
997 		goto out_free_domain;
998 	smmu_domain->cfg.pgd = pgd;
999 
1000 	spin_lock_init(&smmu_domain->lock);
1001 	domain->priv = smmu_domain;
1002 	return 0;
1003 
1004 out_free_domain:
1005 	kfree(smmu_domain);
1006 	return -ENOMEM;
1007 }
1008 
arm_smmu_free_ptes(pmd_t * pmd)1009 static void arm_smmu_free_ptes(pmd_t *pmd)
1010 {
1011 	pgtable_t table = pmd_pgtable(*pmd);
1012 
1013 	__free_page(table);
1014 }
1015 
arm_smmu_free_pmds(pud_t * pud)1016 static void arm_smmu_free_pmds(pud_t *pud)
1017 {
1018 	int i;
1019 	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1020 
1021 	pmd = pmd_base;
1022 	for (i = 0; i < PTRS_PER_PMD; ++i) {
1023 		if (pmd_none(*pmd))
1024 			continue;
1025 
1026 		arm_smmu_free_ptes(pmd);
1027 		pmd++;
1028 	}
1029 
1030 	pmd_free(NULL, pmd_base);
1031 }
1032 
arm_smmu_free_puds(pgd_t * pgd)1033 static void arm_smmu_free_puds(pgd_t *pgd)
1034 {
1035 	int i;
1036 	pud_t *pud, *pud_base = pud_offset(pgd, 0);
1037 
1038 	pud = pud_base;
1039 	for (i = 0; i < PTRS_PER_PUD; ++i) {
1040 		if (pud_none(*pud))
1041 			continue;
1042 
1043 		arm_smmu_free_pmds(pud);
1044 		pud++;
1045 	}
1046 
1047 	pud_free(NULL, pud_base);
1048 }
1049 
arm_smmu_free_pgtables(struct arm_smmu_domain * smmu_domain)1050 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1051 {
1052 	int i;
1053 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1054 	pgd_t *pgd, *pgd_base = cfg->pgd;
1055 
1056 	/*
1057 	 * Recursively free the page tables for this domain. We don't
1058 	 * care about speculative TLB filling because the tables should
1059 	 * not be active in any context bank at this point (SCTLR.M is 0).
1060 	 */
1061 	pgd = pgd_base;
1062 	for (i = 0; i < PTRS_PER_PGD; ++i) {
1063 		if (pgd_none(*pgd))
1064 			continue;
1065 		arm_smmu_free_puds(pgd);
1066 		pgd++;
1067 	}
1068 
1069 	kfree(pgd_base);
1070 }
1071 
arm_smmu_domain_destroy(struct iommu_domain * domain)1072 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1073 {
1074 	struct arm_smmu_domain *smmu_domain = domain->priv;
1075 
1076 	/*
1077 	 * Free the domain resources. We assume that all devices have
1078 	 * already been detached.
1079 	 */
1080 	arm_smmu_destroy_domain_context(domain);
1081 	arm_smmu_free_pgtables(smmu_domain);
1082 	kfree(smmu_domain);
1083 }
1084 
arm_smmu_master_configure_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)1085 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1086 					  struct arm_smmu_master_cfg *cfg)
1087 {
1088 	int i;
1089 	struct arm_smmu_smr *smrs;
1090 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1091 
1092 	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1093 		return 0;
1094 
1095 	if (cfg->smrs)
1096 		return -EEXIST;
1097 
1098 	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1099 	if (!smrs) {
1100 		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1101 			cfg->num_streamids);
1102 		return -ENOMEM;
1103 	}
1104 
1105 	/* Allocate the SMRs on the SMMU */
1106 	for (i = 0; i < cfg->num_streamids; ++i) {
1107 		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1108 						  smmu->num_mapping_groups);
1109 		if (IS_ERR_VALUE(idx)) {
1110 			dev_err(smmu->dev, "failed to allocate free SMR\n");
1111 			goto err_free_smrs;
1112 		}
1113 
1114 		smrs[i] = (struct arm_smmu_smr) {
1115 			.idx	= idx,
1116 			.mask	= 0, /* We don't currently share SMRs */
1117 			.id	= cfg->streamids[i],
1118 		};
1119 	}
1120 
1121 	/* It worked! Now, poke the actual hardware */
1122 	for (i = 0; i < cfg->num_streamids; ++i) {
1123 		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1124 			  smrs[i].mask << SMR_MASK_SHIFT;
1125 		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1126 	}
1127 
1128 	cfg->smrs = smrs;
1129 	return 0;
1130 
1131 err_free_smrs:
1132 	while (--i >= 0)
1133 		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1134 	kfree(smrs);
1135 	return -ENOSPC;
1136 }
1137 
arm_smmu_master_free_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)1138 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1139 				      struct arm_smmu_master_cfg *cfg)
1140 {
1141 	int i;
1142 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1143 	struct arm_smmu_smr *smrs = cfg->smrs;
1144 
1145 	if (!smrs)
1146 		return;
1147 
1148 	/* Invalidate the SMRs before freeing back to the allocator */
1149 	for (i = 0; i < cfg->num_streamids; ++i) {
1150 		u8 idx = smrs[i].idx;
1151 
1152 		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1153 		__arm_smmu_free_bitmap(smmu->smr_map, idx);
1154 	}
1155 
1156 	cfg->smrs = NULL;
1157 	kfree(smrs);
1158 }
1159 
arm_smmu_domain_add_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1160 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1161 				      struct arm_smmu_master_cfg *cfg)
1162 {
1163 	int i, ret;
1164 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1165 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1166 
1167 	/* Devices in an IOMMU group may already be configured */
1168 	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1169 	if (ret)
1170 		return ret == -EEXIST ? 0 : ret;
1171 
1172 	for (i = 0; i < cfg->num_streamids; ++i) {
1173 		u32 idx, s2cr;
1174 
1175 		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1176 		s2cr = S2CR_TYPE_TRANS |
1177 		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1178 		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1179 	}
1180 
1181 	return 0;
1182 }
1183 
arm_smmu_domain_remove_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1184 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1185 					  struct arm_smmu_master_cfg *cfg)
1186 {
1187 	int i;
1188 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1189 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1190 
1191 	/* An IOMMU group is torn down by the first device to be removed */
1192 	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1193 		return;
1194 
1195 	/*
1196 	 * We *must* clear the S2CR first, because freeing the SMR means
1197 	 * that it can be re-allocated immediately.
1198 	 */
1199 	for (i = 0; i < cfg->num_streamids; ++i) {
1200 		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1201 
1202 		writel_relaxed(S2CR_TYPE_BYPASS,
1203 			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
1204 	}
1205 
1206 	arm_smmu_master_free_smrs(smmu, cfg);
1207 }
1208 
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)1209 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1210 {
1211 	int ret;
1212 	struct arm_smmu_domain *smmu_domain = domain->priv;
1213 	struct arm_smmu_device *smmu, *dom_smmu;
1214 	struct arm_smmu_master_cfg *cfg;
1215 
1216 	smmu = find_smmu_for_device(dev);
1217 	if (!smmu) {
1218 		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1219 		return -ENXIO;
1220 	}
1221 
1222 	if (dev->archdata.iommu) {
1223 		dev_err(dev, "already attached to IOMMU domain\n");
1224 		return -EEXIST;
1225 	}
1226 
1227 	/*
1228 	 * Sanity check the domain. We don't support domains across
1229 	 * different SMMUs.
1230 	 */
1231 	dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1232 	if (!dom_smmu) {
1233 		/* Now that we have a master, we can finalise the domain */
1234 		ret = arm_smmu_init_domain_context(domain, smmu);
1235 		if (IS_ERR_VALUE(ret))
1236 			return ret;
1237 
1238 		dom_smmu = smmu_domain->smmu;
1239 	}
1240 
1241 	if (dom_smmu != smmu) {
1242 		dev_err(dev,
1243 			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1244 			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1245 		return -EINVAL;
1246 	}
1247 
1248 	/* Looks ok, so add the device to the domain */
1249 	cfg = find_smmu_master_cfg(dev);
1250 	if (!cfg)
1251 		return -ENODEV;
1252 
1253 	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1254 	if (!ret)
1255 		dev->archdata.iommu = domain;
1256 	return ret;
1257 }
1258 
arm_smmu_detach_dev(struct iommu_domain * domain,struct device * dev)1259 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1260 {
1261 	struct arm_smmu_domain *smmu_domain = domain->priv;
1262 	struct arm_smmu_master_cfg *cfg;
1263 
1264 	cfg = find_smmu_master_cfg(dev);
1265 	if (!cfg)
1266 		return;
1267 
1268 	dev->archdata.iommu = NULL;
1269 	arm_smmu_domain_remove_master(smmu_domain, cfg);
1270 }
1271 
arm_smmu_pte_is_contiguous_range(unsigned long addr,unsigned long end)1272 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1273 					     unsigned long end)
1274 {
1275 	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1276 		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1277 }
1278 
arm_smmu_alloc_init_pte(struct arm_smmu_device * smmu,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,int prot,int stage)1279 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1280 				   unsigned long addr, unsigned long end,
1281 				   unsigned long pfn, int prot, int stage)
1282 {
1283 	pte_t *pte, *start;
1284 	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1285 
1286 	if (pmd_none(*pmd)) {
1287 		/* Allocate a new set of tables */
1288 		pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1289 
1290 		if (!table)
1291 			return -ENOMEM;
1292 
1293 		arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1294 		pmd_populate(NULL, pmd, table);
1295 		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1296 	}
1297 
1298 	if (stage == 1) {
1299 		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1300 		if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1301 			pteval |= ARM_SMMU_PTE_AP_RDONLY;
1302 
1303 		if (prot & IOMMU_CACHE)
1304 			pteval |= (MAIR_ATTR_IDX_CACHE <<
1305 				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
1306 	} else {
1307 		pteval |= ARM_SMMU_PTE_HAP_FAULT;
1308 		if (prot & IOMMU_READ)
1309 			pteval |= ARM_SMMU_PTE_HAP_READ;
1310 		if (prot & IOMMU_WRITE)
1311 			pteval |= ARM_SMMU_PTE_HAP_WRITE;
1312 		if (prot & IOMMU_CACHE)
1313 			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1314 		else
1315 			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1316 	}
1317 
1318 	/* If no access, create a faulting entry to avoid TLB fills */
1319 	if (prot & IOMMU_EXEC)
1320 		pteval &= ~ARM_SMMU_PTE_XN;
1321 	else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1322 		pteval &= ~ARM_SMMU_PTE_PAGE;
1323 
1324 	pteval |= ARM_SMMU_PTE_SH_IS;
1325 	start = pmd_page_vaddr(*pmd) + pte_index(addr);
1326 	pte = start;
1327 
1328 	/*
1329 	 * Install the page table entries. This is fairly complicated
1330 	 * since we attempt to make use of the contiguous hint in the
1331 	 * ptes where possible. The contiguous hint indicates a series
1332 	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1333 	 * contiguous region with the following constraints:
1334 	 *
1335 	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1336 	 *   - Each pte in the region has the contiguous hint bit set
1337 	 *
1338 	 * This complicates unmapping (also handled by this code, when
1339 	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1340 	 * possible, yet highly unlikely, that a client may unmap only
1341 	 * part of a contiguous range. This requires clearing of the
1342 	 * contiguous hint bits in the range before installing the new
1343 	 * faulting entries.
1344 	 *
1345 	 * Note that re-mapping an address range without first unmapping
1346 	 * it is not supported, so TLB invalidation is not required here
1347 	 * and is instead performed at unmap and domain-init time.
1348 	 */
1349 	do {
1350 		int i = 1;
1351 
1352 		pteval &= ~ARM_SMMU_PTE_CONT;
1353 
1354 		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1355 			i = ARM_SMMU_PTE_CONT_ENTRIES;
1356 			pteval |= ARM_SMMU_PTE_CONT;
1357 		} else if (pte_val(*pte) &
1358 			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1359 			int j;
1360 			pte_t *cont_start;
1361 			unsigned long idx = pte_index(addr);
1362 
1363 			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1364 			cont_start = pmd_page_vaddr(*pmd) + idx;
1365 			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1366 				pte_val(*(cont_start + j)) &=
1367 					~ARM_SMMU_PTE_CONT;
1368 
1369 			arm_smmu_flush_pgtable(smmu, cont_start,
1370 					       sizeof(*pte) *
1371 					       ARM_SMMU_PTE_CONT_ENTRIES);
1372 		}
1373 
1374 		do {
1375 			*pte = pfn_pte(pfn, __pgprot(pteval));
1376 		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
1377 	} while (addr != end);
1378 
1379 	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1380 	return 0;
1381 }
1382 
arm_smmu_alloc_init_pmd(struct arm_smmu_device * smmu,pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,int prot,int stage)1383 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1384 				   unsigned long addr, unsigned long end,
1385 				   phys_addr_t phys, int prot, int stage)
1386 {
1387 	int ret;
1388 	pmd_t *pmd;
1389 	unsigned long next, pfn = __phys_to_pfn(phys);
1390 
1391 #ifndef __PAGETABLE_PMD_FOLDED
1392 	if (pud_none(*pud)) {
1393 		pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1394 		if (!pmd)
1395 			return -ENOMEM;
1396 
1397 		arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1398 		pud_populate(NULL, pud, pmd);
1399 		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1400 
1401 		pmd += pmd_index(addr);
1402 	} else
1403 #endif
1404 		pmd = pmd_offset(pud, addr);
1405 
1406 	do {
1407 		next = pmd_addr_end(addr, end);
1408 		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1409 					      prot, stage);
1410 		phys += next - addr;
1411 		pfn = __phys_to_pfn(phys);
1412 	} while (pmd++, addr = next, addr < end);
1413 
1414 	return ret;
1415 }
1416 
arm_smmu_alloc_init_pud(struct arm_smmu_device * smmu,pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,int prot,int stage)1417 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1418 				   unsigned long addr, unsigned long end,
1419 				   phys_addr_t phys, int prot, int stage)
1420 {
1421 	int ret = 0;
1422 	pud_t *pud;
1423 	unsigned long next;
1424 
1425 #ifndef __PAGETABLE_PUD_FOLDED
1426 	if (pgd_none(*pgd)) {
1427 		pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1428 		if (!pud)
1429 			return -ENOMEM;
1430 
1431 		arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1432 		pgd_populate(NULL, pgd, pud);
1433 		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1434 
1435 		pud += pud_index(addr);
1436 	} else
1437 #endif
1438 		pud = pud_offset(pgd, addr);
1439 
1440 	do {
1441 		next = pud_addr_end(addr, end);
1442 		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1443 					      prot, stage);
1444 		phys += next - addr;
1445 	} while (pud++, addr = next, addr < end);
1446 
1447 	return ret;
1448 }
1449 
arm_smmu_handle_mapping(struct arm_smmu_domain * smmu_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1450 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1451 				   unsigned long iova, phys_addr_t paddr,
1452 				   size_t size, int prot)
1453 {
1454 	int ret, stage;
1455 	unsigned long end;
1456 	phys_addr_t input_mask, output_mask;
1457 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1458 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1459 	pgd_t *pgd = cfg->pgd;
1460 	unsigned long flags;
1461 
1462 	if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1463 		stage = 2;
1464 		input_mask = (1ULL << smmu->s2_input_size) - 1;
1465 		output_mask = (1ULL << smmu->s2_output_size) - 1;
1466 	} else {
1467 		stage = 1;
1468 		input_mask = (1ULL << smmu->s1_input_size) - 1;
1469 		output_mask = (1ULL << smmu->s1_output_size) - 1;
1470 	}
1471 
1472 	if (!pgd)
1473 		return -EINVAL;
1474 
1475 	if (size & ~PAGE_MASK)
1476 		return -EINVAL;
1477 
1478 	if ((phys_addr_t)iova & ~input_mask)
1479 		return -ERANGE;
1480 
1481 	if (paddr & ~output_mask)
1482 		return -ERANGE;
1483 
1484 	spin_lock_irqsave(&smmu_domain->lock, flags);
1485 	pgd += pgd_index(iova);
1486 	end = iova + size;
1487 	do {
1488 		unsigned long next = pgd_addr_end(iova, end);
1489 
1490 		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1491 					      prot, stage);
1492 		if (ret)
1493 			goto out_unlock;
1494 
1495 		paddr += next - iova;
1496 		iova = next;
1497 	} while (pgd++, iova != end);
1498 
1499 out_unlock:
1500 	spin_unlock_irqrestore(&smmu_domain->lock, flags);
1501 
1502 	return ret;
1503 }
1504 
arm_smmu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1505 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1506 			phys_addr_t paddr, size_t size, int prot)
1507 {
1508 	struct arm_smmu_domain *smmu_domain = domain->priv;
1509 
1510 	if (!smmu_domain)
1511 		return -ENODEV;
1512 
1513 	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1514 }
1515 
arm_smmu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)1516 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1517 			     size_t size)
1518 {
1519 	int ret;
1520 	struct arm_smmu_domain *smmu_domain = domain->priv;
1521 
1522 	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1523 	arm_smmu_tlb_inv_context(smmu_domain);
1524 	return ret ? 0 : size;
1525 }
1526 
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)1527 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1528 					 dma_addr_t iova)
1529 {
1530 	pgd_t *pgdp, pgd;
1531 	pud_t pud;
1532 	pmd_t pmd;
1533 	pte_t pte;
1534 	struct arm_smmu_domain *smmu_domain = domain->priv;
1535 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1536 
1537 	pgdp = cfg->pgd;
1538 	if (!pgdp)
1539 		return 0;
1540 
1541 	pgd = *(pgdp + pgd_index(iova));
1542 	if (pgd_none(pgd))
1543 		return 0;
1544 
1545 	pud = *pud_offset(&pgd, iova);
1546 	if (pud_none(pud))
1547 		return 0;
1548 
1549 	pmd = *pmd_offset(&pud, iova);
1550 	if (pmd_none(pmd))
1551 		return 0;
1552 
1553 	pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1554 	if (pte_none(pte))
1555 		return 0;
1556 
1557 	return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1558 }
1559 
arm_smmu_capable(enum iommu_cap cap)1560 static bool arm_smmu_capable(enum iommu_cap cap)
1561 {
1562 	switch (cap) {
1563 	case IOMMU_CAP_CACHE_COHERENCY:
1564 		/*
1565 		 * Return true here as the SMMU can always send out coherent
1566 		 * requests.
1567 		 */
1568 		return true;
1569 	case IOMMU_CAP_INTR_REMAP:
1570 		return true; /* MSIs are just memory writes */
1571 	default:
1572 		return false;
1573 	}
1574 }
1575 
__arm_smmu_get_pci_sid(struct pci_dev * pdev,u16 alias,void * data)1576 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1577 {
1578 	*((u16 *)data) = alias;
1579 	return 0; /* Continue walking */
1580 }
1581 
__arm_smmu_release_pci_iommudata(void * data)1582 static void __arm_smmu_release_pci_iommudata(void *data)
1583 {
1584 	kfree(data);
1585 }
1586 
arm_smmu_add_device(struct device * dev)1587 static int arm_smmu_add_device(struct device *dev)
1588 {
1589 	struct arm_smmu_device *smmu;
1590 	struct arm_smmu_master_cfg *cfg;
1591 	struct iommu_group *group;
1592 	void (*releasefn)(void *) = NULL;
1593 	int ret;
1594 
1595 	smmu = find_smmu_for_device(dev);
1596 	if (!smmu)
1597 		return -ENODEV;
1598 
1599 	group = iommu_group_alloc();
1600 	if (IS_ERR(group)) {
1601 		dev_err(dev, "Failed to allocate IOMMU group\n");
1602 		return PTR_ERR(group);
1603 	}
1604 
1605 	if (dev_is_pci(dev)) {
1606 		struct pci_dev *pdev = to_pci_dev(dev);
1607 
1608 		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1609 		if (!cfg) {
1610 			ret = -ENOMEM;
1611 			goto out_put_group;
1612 		}
1613 
1614 		cfg->num_streamids = 1;
1615 		/*
1616 		 * Assume Stream ID == Requester ID for now.
1617 		 * We need a way to describe the ID mappings in FDT.
1618 		 */
1619 		pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1620 				       &cfg->streamids[0]);
1621 		releasefn = __arm_smmu_release_pci_iommudata;
1622 	} else {
1623 		struct arm_smmu_master *master;
1624 
1625 		master = find_smmu_master(smmu, dev->of_node);
1626 		if (!master) {
1627 			ret = -ENODEV;
1628 			goto out_put_group;
1629 		}
1630 
1631 		cfg = &master->cfg;
1632 	}
1633 
1634 	iommu_group_set_iommudata(group, cfg, releasefn);
1635 	ret = iommu_group_add_device(group, dev);
1636 
1637 out_put_group:
1638 	iommu_group_put(group);
1639 	return ret;
1640 }
1641 
arm_smmu_remove_device(struct device * dev)1642 static void arm_smmu_remove_device(struct device *dev)
1643 {
1644 	iommu_group_remove_device(dev);
1645 }
1646 
1647 static const struct iommu_ops arm_smmu_ops = {
1648 	.capable	= arm_smmu_capable,
1649 	.domain_init	= arm_smmu_domain_init,
1650 	.domain_destroy	= arm_smmu_domain_destroy,
1651 	.attach_dev	= arm_smmu_attach_dev,
1652 	.detach_dev	= arm_smmu_detach_dev,
1653 	.map		= arm_smmu_map,
1654 	.unmap		= arm_smmu_unmap,
1655 	.iova_to_phys	= arm_smmu_iova_to_phys,
1656 	.add_device	= arm_smmu_add_device,
1657 	.remove_device	= arm_smmu_remove_device,
1658 	.pgsize_bitmap	= (SECTION_SIZE |
1659 			   ARM_SMMU_PTE_CONT_SIZE |
1660 			   PAGE_SIZE),
1661 };
1662 
arm_smmu_device_reset(struct arm_smmu_device * smmu)1663 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1664 {
1665 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1666 	void __iomem *cb_base;
1667 	int i = 0;
1668 	u32 reg;
1669 
1670 	/* clear global FSR */
1671 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1672 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1673 
1674 	/* Mark all SMRn as invalid and all S2CRn as bypass */
1675 	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1676 		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1677 		writel_relaxed(S2CR_TYPE_BYPASS,
1678 			gr0_base + ARM_SMMU_GR0_S2CR(i));
1679 	}
1680 
1681 	/* Make sure all context banks are disabled and clear CB_FSR  */
1682 	for (i = 0; i < smmu->num_context_banks; ++i) {
1683 		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1684 		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1685 		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1686 	}
1687 
1688 	/* Invalidate the TLB, just in case */
1689 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1690 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1691 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1692 
1693 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1694 
1695 	/* Enable fault reporting */
1696 	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1697 
1698 	/* Disable TLB broadcasting. */
1699 	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1700 
1701 	/* Enable client access, but bypass when no mapping is found */
1702 	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1703 
1704 	/* Disable forced broadcasting */
1705 	reg &= ~sCR0_FB;
1706 
1707 	/* Don't upgrade barriers */
1708 	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1709 
1710 	/* Push the button */
1711 	arm_smmu_tlb_sync(smmu);
1712 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1713 }
1714 
arm_smmu_id_size_to_bits(int size)1715 static int arm_smmu_id_size_to_bits(int size)
1716 {
1717 	switch (size) {
1718 	case 0:
1719 		return 32;
1720 	case 1:
1721 		return 36;
1722 	case 2:
1723 		return 40;
1724 	case 3:
1725 		return 42;
1726 	case 4:
1727 		return 44;
1728 	case 5:
1729 	default:
1730 		return 48;
1731 	}
1732 }
1733 
arm_smmu_device_cfg_probe(struct arm_smmu_device * smmu)1734 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1735 {
1736 	unsigned long size;
1737 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1738 	u32 id;
1739 
1740 	dev_notice(smmu->dev, "probing hardware configuration...\n");
1741 	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1742 
1743 	/* ID0 */
1744 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1745 #ifndef CONFIG_64BIT
1746 	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1747 		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1748 		return -ENODEV;
1749 	}
1750 #endif
1751 
1752 	/* Restrict available stages based on module parameter */
1753 	if (force_stage == 1)
1754 		id &= ~(ID0_S2TS | ID0_NTS);
1755 	else if (force_stage == 2)
1756 		id &= ~(ID0_S1TS | ID0_NTS);
1757 
1758 	if (id & ID0_S1TS) {
1759 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1760 		dev_notice(smmu->dev, "\tstage 1 translation\n");
1761 	}
1762 
1763 	if (id & ID0_S2TS) {
1764 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1765 		dev_notice(smmu->dev, "\tstage 2 translation\n");
1766 	}
1767 
1768 	if (id & ID0_NTS) {
1769 		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1770 		dev_notice(smmu->dev, "\tnested translation\n");
1771 	}
1772 
1773 	if (!(smmu->features &
1774 		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1775 		dev_err(smmu->dev, "\tno translation support!\n");
1776 		return -ENODEV;
1777 	}
1778 
1779 	if (id & ID0_CTTW) {
1780 		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1781 		dev_notice(smmu->dev, "\tcoherent table walk\n");
1782 	}
1783 
1784 	if (id & ID0_SMS) {
1785 		u32 smr, sid, mask;
1786 
1787 		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1788 		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1789 					   ID0_NUMSMRG_MASK;
1790 		if (smmu->num_mapping_groups == 0) {
1791 			dev_err(smmu->dev,
1792 				"stream-matching supported, but no SMRs present!\n");
1793 			return -ENODEV;
1794 		}
1795 
1796 		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1797 		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1798 		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1799 		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1800 
1801 		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1802 		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1803 		if ((mask & sid) != sid) {
1804 			dev_err(smmu->dev,
1805 				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1806 				mask, sid);
1807 			return -ENODEV;
1808 		}
1809 
1810 		dev_notice(smmu->dev,
1811 			   "\tstream matching with %u register groups, mask 0x%x",
1812 			   smmu->num_mapping_groups, mask);
1813 	} else {
1814 		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1815 					   ID0_NUMSIDB_MASK;
1816 	}
1817 
1818 	/* ID1 */
1819 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1820 	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1821 
1822 	/* Check for size mismatch of SMMU address space from mapped region */
1823 	size = 1 <<
1824 		(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1825 	size *= 2 << smmu->pgshift;
1826 	if (smmu->size != size)
1827 		dev_warn(smmu->dev,
1828 			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1829 			size, smmu->size);
1830 
1831 	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1832 				      ID1_NUMS2CB_MASK;
1833 	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1834 	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1835 		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1836 		return -ENODEV;
1837 	}
1838 	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1839 		   smmu->num_context_banks, smmu->num_s2_context_banks);
1840 
1841 	/* ID2 */
1842 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1843 	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1844 	smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1845 
1846 	/* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1847 #ifdef CONFIG_64BIT
1848 	smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1849 #else
1850 	smmu->s2_input_size = min(32UL, size);
1851 #endif
1852 
1853 	/* The stage-2 output mask is also applied for bypass */
1854 	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1855 	smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1856 
1857 	if (smmu->version == ARM_SMMU_V1) {
1858 		smmu->s1_input_size = 32;
1859 	} else {
1860 #ifdef CONFIG_64BIT
1861 		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1862 		size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1863 #else
1864 		size = 32;
1865 #endif
1866 		smmu->s1_input_size = size;
1867 
1868 		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1869 		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1870 		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1871 			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1872 				PAGE_SIZE);
1873 			return -ENODEV;
1874 		}
1875 	}
1876 
1877 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1878 		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1879 			   smmu->s1_input_size, smmu->s1_output_size);
1880 
1881 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1882 		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1883 			   smmu->s2_input_size, smmu->s2_output_size);
1884 
1885 	return 0;
1886 }
1887 
1888 static const struct of_device_id arm_smmu_of_match[] = {
1889 	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1890 	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1891 	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1892 	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1893 	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1894 	{ },
1895 };
1896 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1897 
arm_smmu_device_dt_probe(struct platform_device * pdev)1898 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1899 {
1900 	const struct of_device_id *of_id;
1901 	struct resource *res;
1902 	struct arm_smmu_device *smmu;
1903 	struct device *dev = &pdev->dev;
1904 	struct rb_node *node;
1905 	struct of_phandle_args masterspec;
1906 	int num_irqs, i, err;
1907 
1908 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1909 	if (!smmu) {
1910 		dev_err(dev, "failed to allocate arm_smmu_device\n");
1911 		return -ENOMEM;
1912 	}
1913 	smmu->dev = dev;
1914 
1915 	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1916 	smmu->version = (enum arm_smmu_arch_version)of_id->data;
1917 
1918 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1919 	smmu->base = devm_ioremap_resource(dev, res);
1920 	if (IS_ERR(smmu->base))
1921 		return PTR_ERR(smmu->base);
1922 	smmu->size = resource_size(res);
1923 
1924 	if (of_property_read_u32(dev->of_node, "#global-interrupts",
1925 				 &smmu->num_global_irqs)) {
1926 		dev_err(dev, "missing #global-interrupts property\n");
1927 		return -ENODEV;
1928 	}
1929 
1930 	num_irqs = 0;
1931 	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1932 		num_irqs++;
1933 		if (num_irqs > smmu->num_global_irqs)
1934 			smmu->num_context_irqs++;
1935 	}
1936 
1937 	if (!smmu->num_context_irqs) {
1938 		dev_err(dev, "found %d interrupts but expected at least %d\n",
1939 			num_irqs, smmu->num_global_irqs + 1);
1940 		return -ENODEV;
1941 	}
1942 
1943 	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1944 				  GFP_KERNEL);
1945 	if (!smmu->irqs) {
1946 		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1947 		return -ENOMEM;
1948 	}
1949 
1950 	for (i = 0; i < num_irqs; ++i) {
1951 		int irq = platform_get_irq(pdev, i);
1952 
1953 		if (irq < 0) {
1954 			dev_err(dev, "failed to get irq index %d\n", i);
1955 			return -ENODEV;
1956 		}
1957 		smmu->irqs[i] = irq;
1958 	}
1959 
1960 	err = arm_smmu_device_cfg_probe(smmu);
1961 	if (err)
1962 		return err;
1963 
1964 	i = 0;
1965 	smmu->masters = RB_ROOT;
1966 	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1967 					   "#stream-id-cells", i,
1968 					   &masterspec)) {
1969 		err = register_smmu_master(smmu, dev, &masterspec);
1970 		if (err) {
1971 			dev_err(dev, "failed to add master %s\n",
1972 				masterspec.np->name);
1973 			goto out_put_masters;
1974 		}
1975 
1976 		i++;
1977 	}
1978 	dev_notice(dev, "registered %d master devices\n", i);
1979 
1980 	parse_driver_options(smmu);
1981 
1982 	if (smmu->version > ARM_SMMU_V1 &&
1983 	    smmu->num_context_banks != smmu->num_context_irqs) {
1984 		dev_err(dev,
1985 			"found only %d context interrupt(s) but %d required\n",
1986 			smmu->num_context_irqs, smmu->num_context_banks);
1987 		err = -ENODEV;
1988 		goto out_put_masters;
1989 	}
1990 
1991 	for (i = 0; i < smmu->num_global_irqs; ++i) {
1992 		err = request_irq(smmu->irqs[i],
1993 				  arm_smmu_global_fault,
1994 				  IRQF_SHARED,
1995 				  "arm-smmu global fault",
1996 				  smmu);
1997 		if (err) {
1998 			dev_err(dev, "failed to request global IRQ %d (%u)\n",
1999 				i, smmu->irqs[i]);
2000 			goto out_free_irqs;
2001 		}
2002 	}
2003 
2004 	INIT_LIST_HEAD(&smmu->list);
2005 	spin_lock(&arm_smmu_devices_lock);
2006 	list_add(&smmu->list, &arm_smmu_devices);
2007 	spin_unlock(&arm_smmu_devices_lock);
2008 
2009 	arm_smmu_device_reset(smmu);
2010 	return 0;
2011 
2012 out_free_irqs:
2013 	while (i--)
2014 		free_irq(smmu->irqs[i], smmu);
2015 
2016 out_put_masters:
2017 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2018 		struct arm_smmu_master *master
2019 			= container_of(node, struct arm_smmu_master, node);
2020 		of_node_put(master->of_node);
2021 	}
2022 
2023 	return err;
2024 }
2025 
arm_smmu_device_remove(struct platform_device * pdev)2026 static int arm_smmu_device_remove(struct platform_device *pdev)
2027 {
2028 	int i;
2029 	struct device *dev = &pdev->dev;
2030 	struct arm_smmu_device *curr, *smmu = NULL;
2031 	struct rb_node *node;
2032 
2033 	spin_lock(&arm_smmu_devices_lock);
2034 	list_for_each_entry(curr, &arm_smmu_devices, list) {
2035 		if (curr->dev == dev) {
2036 			smmu = curr;
2037 			list_del(&smmu->list);
2038 			break;
2039 		}
2040 	}
2041 	spin_unlock(&arm_smmu_devices_lock);
2042 
2043 	if (!smmu)
2044 		return -ENODEV;
2045 
2046 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2047 		struct arm_smmu_master *master
2048 			= container_of(node, struct arm_smmu_master, node);
2049 		of_node_put(master->of_node);
2050 	}
2051 
2052 	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2053 		dev_err(dev, "removing device with active domains!\n");
2054 
2055 	for (i = 0; i < smmu->num_global_irqs; ++i)
2056 		free_irq(smmu->irqs[i], smmu);
2057 
2058 	/* Turn the thing off */
2059 	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2060 	return 0;
2061 }
2062 
2063 static struct platform_driver arm_smmu_driver = {
2064 	.driver	= {
2065 		.owner		= THIS_MODULE,
2066 		.name		= "arm-smmu",
2067 		.of_match_table	= of_match_ptr(arm_smmu_of_match),
2068 	},
2069 	.probe	= arm_smmu_device_dt_probe,
2070 	.remove	= arm_smmu_device_remove,
2071 };
2072 
arm_smmu_init(void)2073 static int __init arm_smmu_init(void)
2074 {
2075 	int ret;
2076 
2077 	ret = platform_driver_register(&arm_smmu_driver);
2078 	if (ret)
2079 		return ret;
2080 
2081 	/* Oh, for a proper bus abstraction */
2082 	if (!iommu_present(&platform_bus_type))
2083 		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2084 
2085 #ifdef CONFIG_ARM_AMBA
2086 	if (!iommu_present(&amba_bustype))
2087 		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2088 #endif
2089 
2090 #ifdef CONFIG_PCI
2091 	if (!iommu_present(&pci_bus_type))
2092 		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2093 #endif
2094 
2095 	return 0;
2096 }
2097 
arm_smmu_exit(void)2098 static void __exit arm_smmu_exit(void)
2099 {
2100 	return platform_driver_unregister(&arm_smmu_driver);
2101 }
2102 
2103 subsys_initcall(arm_smmu_init);
2104 module_exit(arm_smmu_exit);
2105 
2106 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2107 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2108 MODULE_LICENSE("GPL v2");
2109