• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/interrupt.h>
2 #include <linux/dmar.h>
3 #include <linux/spinlock.h>
4 #include <linux/slab.h>
5 #include <linux/jiffies.h>
6 #include <linux/hpet.h>
7 #include <linux/pci.h>
8 #include <linux/irq.h>
9 #include <linux/intel-iommu.h>
10 #include <linux/acpi.h>
11 #include <asm/io_apic.h>
12 #include <asm/smp.h>
13 #include <asm/cpu.h>
14 #include <asm/irq_remapping.h>
15 #include <asm/pci-direct.h>
16 #include <asm/msidef.h>
17 
18 #include "irq_remapping.h"
19 
20 struct ioapic_scope {
21 	struct intel_iommu *iommu;
22 	unsigned int id;
23 	unsigned int bus;	/* PCI bus number */
24 	unsigned int devfn;	/* PCI devfn number */
25 };
26 
27 struct hpet_scope {
28 	struct intel_iommu *iommu;
29 	u8 id;
30 	unsigned int bus;
31 	unsigned int devfn;
32 };
33 
34 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
35 #define IRTE_DEST(dest) ((x2apic_mode) ? dest : dest << 8)
36 
37 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
38 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
39 static int ir_ioapic_num, ir_hpet_num;
40 
41 /*
42  * Lock ordering:
43  * ->dmar_global_lock
44  *	->irq_2_ir_lock
45  *		->qi->q_lock
46  *	->iommu->register_lock
47  * Note:
48  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
49  * in single-threaded environment with interrupt disabled, so no need to tabke
50  * the dmar_global_lock.
51  */
52 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
53 
54 static int __init parse_ioapics_under_ir(void);
55 
irq_2_iommu(unsigned int irq)56 static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
57 {
58 	struct irq_cfg *cfg = irq_get_chip_data(irq);
59 	return cfg ? &cfg->irq_2_iommu : NULL;
60 }
61 
get_irte(int irq,struct irte * entry)62 static int get_irte(int irq, struct irte *entry)
63 {
64 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
65 	unsigned long flags;
66 	int index;
67 
68 	if (!entry || !irq_iommu)
69 		return -1;
70 
71 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
72 
73 	if (unlikely(!irq_iommu->iommu)) {
74 		raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
75 		return -1;
76 	}
77 
78 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
79 	*entry = *(irq_iommu->iommu->ir_table->base + index);
80 
81 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
82 	return 0;
83 }
84 
alloc_irte(struct intel_iommu * iommu,int irq,u16 count)85 static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
86 {
87 	struct ir_table *table = iommu->ir_table;
88 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
89 	struct irq_cfg *cfg = irq_get_chip_data(irq);
90 	unsigned int mask = 0;
91 	unsigned long flags;
92 	int index;
93 
94 	if (!count || !irq_iommu)
95 		return -1;
96 
97 	if (count > 1) {
98 		count = __roundup_pow_of_two(count);
99 		mask = ilog2(count);
100 	}
101 
102 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
103 		printk(KERN_ERR
104 		       "Requested mask %x exceeds the max invalidation handle"
105 		       " mask value %Lx\n", mask,
106 		       ecap_max_handle_mask(iommu->ecap));
107 		return -1;
108 	}
109 
110 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
111 	index = bitmap_find_free_region(table->bitmap,
112 					INTR_REMAP_TABLE_ENTRIES, mask);
113 	if (index < 0) {
114 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
115 	} else {
116 		cfg->remapped = 1;
117 		irq_iommu->iommu = iommu;
118 		irq_iommu->irte_index =  index;
119 		irq_iommu->sub_handle = 0;
120 		irq_iommu->irte_mask = mask;
121 	}
122 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
123 
124 	return index;
125 }
126 
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)127 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
128 {
129 	struct qi_desc desc;
130 
131 	desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
132 		   | QI_IEC_SELECTIVE;
133 	desc.high = 0;
134 
135 	return qi_submit_sync(&desc, iommu);
136 }
137 
map_irq_to_irte_handle(int irq,u16 * sub_handle)138 static int map_irq_to_irte_handle(int irq, u16 *sub_handle)
139 {
140 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
141 	unsigned long flags;
142 	int index;
143 
144 	if (!irq_iommu)
145 		return -1;
146 
147 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
148 	*sub_handle = irq_iommu->sub_handle;
149 	index = irq_iommu->irte_index;
150 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
151 	return index;
152 }
153 
set_irte_irq(int irq,struct intel_iommu * iommu,u16 index,u16 subhandle)154 static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
155 {
156 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
157 	struct irq_cfg *cfg = irq_get_chip_data(irq);
158 	unsigned long flags;
159 
160 	if (!irq_iommu)
161 		return -1;
162 
163 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
164 
165 	cfg->remapped = 1;
166 	irq_iommu->iommu = iommu;
167 	irq_iommu->irte_index = index;
168 	irq_iommu->sub_handle = subhandle;
169 	irq_iommu->irte_mask = 0;
170 
171 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
172 
173 	return 0;
174 }
175 
modify_irte(int irq,struct irte * irte_modified)176 static int modify_irte(int irq, struct irte *irte_modified)
177 {
178 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
179 	struct intel_iommu *iommu;
180 	unsigned long flags;
181 	struct irte *irte;
182 	int rc, index;
183 
184 	if (!irq_iommu)
185 		return -1;
186 
187 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
188 
189 	iommu = irq_iommu->iommu;
190 
191 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
192 	irte = &iommu->ir_table->base[index];
193 
194 	set_64bit(&irte->low, irte_modified->low);
195 	set_64bit(&irte->high, irte_modified->high);
196 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
197 
198 	rc = qi_flush_iec(iommu, index, 0);
199 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
200 
201 	return rc;
202 }
203 
map_hpet_to_ir(u8 hpet_id)204 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
205 {
206 	int i;
207 
208 	for (i = 0; i < MAX_HPET_TBS; i++)
209 		if (ir_hpet[i].id == hpet_id)
210 			return ir_hpet[i].iommu;
211 	return NULL;
212 }
213 
map_ioapic_to_ir(int apic)214 static struct intel_iommu *map_ioapic_to_ir(int apic)
215 {
216 	int i;
217 
218 	for (i = 0; i < MAX_IO_APICS; i++)
219 		if (ir_ioapic[i].id == apic)
220 			return ir_ioapic[i].iommu;
221 	return NULL;
222 }
223 
map_dev_to_ir(struct pci_dev * dev)224 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
225 {
226 	struct dmar_drhd_unit *drhd;
227 
228 	drhd = dmar_find_matched_drhd_unit(dev);
229 	if (!drhd)
230 		return NULL;
231 
232 	return drhd->iommu;
233 }
234 
clear_entries(struct irq_2_iommu * irq_iommu)235 static int clear_entries(struct irq_2_iommu *irq_iommu)
236 {
237 	struct irte *start, *entry, *end;
238 	struct intel_iommu *iommu;
239 	int index;
240 
241 	if (irq_iommu->sub_handle)
242 		return 0;
243 
244 	iommu = irq_iommu->iommu;
245 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
246 
247 	start = iommu->ir_table->base + index;
248 	end = start + (1 << irq_iommu->irte_mask);
249 
250 	for (entry = start; entry < end; entry++) {
251 		set_64bit(&entry->low, 0);
252 		set_64bit(&entry->high, 0);
253 	}
254 	bitmap_release_region(iommu->ir_table->bitmap, index,
255 			      irq_iommu->irte_mask);
256 
257 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
258 }
259 
free_irte(int irq)260 static int free_irte(int irq)
261 {
262 	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
263 	unsigned long flags;
264 	int rc;
265 
266 	if (!irq_iommu)
267 		return -1;
268 
269 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
270 
271 	rc = clear_entries(irq_iommu);
272 
273 	irq_iommu->iommu = NULL;
274 	irq_iommu->irte_index = 0;
275 	irq_iommu->sub_handle = 0;
276 	irq_iommu->irte_mask = 0;
277 
278 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
279 
280 	return rc;
281 }
282 
283 /*
284  * source validation type
285  */
286 #define SVT_NO_VERIFY		0x0  /* no verification is required */
287 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
288 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
289 
290 /*
291  * source-id qualifier
292  */
293 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
294 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
295 			      * the third least significant bit
296 			      */
297 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
298 			      * the second and third least significant bits
299 			      */
300 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
301 			      * the least three significant bits
302 			      */
303 
304 /*
305  * set SVT, SQ and SID fields of irte to verify
306  * source ids of interrupt requests
307  */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)308 static void set_irte_sid(struct irte *irte, unsigned int svt,
309 			 unsigned int sq, unsigned int sid)
310 {
311 	if (disable_sourceid_checking)
312 		svt = SVT_NO_VERIFY;
313 	irte->svt = svt;
314 	irte->sq = sq;
315 	irte->sid = sid;
316 }
317 
set_ioapic_sid(struct irte * irte,int apic)318 static int set_ioapic_sid(struct irte *irte, int apic)
319 {
320 	int i;
321 	u16 sid = 0;
322 
323 	if (!irte)
324 		return -1;
325 
326 	down_read(&dmar_global_lock);
327 	for (i = 0; i < MAX_IO_APICS; i++) {
328 		if (ir_ioapic[i].id == apic) {
329 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
330 			break;
331 		}
332 	}
333 	up_read(&dmar_global_lock);
334 
335 	if (sid == 0) {
336 		pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
337 		return -1;
338 	}
339 
340 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
341 
342 	return 0;
343 }
344 
set_hpet_sid(struct irte * irte,u8 id)345 static int set_hpet_sid(struct irte *irte, u8 id)
346 {
347 	int i;
348 	u16 sid = 0;
349 
350 	if (!irte)
351 		return -1;
352 
353 	down_read(&dmar_global_lock);
354 	for (i = 0; i < MAX_HPET_TBS; i++) {
355 		if (ir_hpet[i].id == id) {
356 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
357 			break;
358 		}
359 	}
360 	up_read(&dmar_global_lock);
361 
362 	if (sid == 0) {
363 		pr_warning("Failed to set source-id of HPET block (%d)\n", id);
364 		return -1;
365 	}
366 
367 	/*
368 	 * Should really use SQ_ALL_16. Some platforms are broken.
369 	 * While we figure out the right quirks for these broken platforms, use
370 	 * SQ_13_IGNORE_3 for now.
371 	 */
372 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
373 
374 	return 0;
375 }
376 
377 struct set_msi_sid_data {
378 	struct pci_dev *pdev;
379 	u16 alias;
380 };
381 
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)382 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
383 {
384 	struct set_msi_sid_data *data = opaque;
385 
386 	data->pdev = pdev;
387 	data->alias = alias;
388 
389 	return 0;
390 }
391 
set_msi_sid(struct irte * irte,struct pci_dev * dev)392 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
393 {
394 	struct set_msi_sid_data data;
395 
396 	if (!irte || !dev)
397 		return -1;
398 
399 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400 
401 	/*
402 	 * DMA alias provides us with a PCI device and alias.  The only case
403 	 * where the it will return an alias on a different bus than the
404 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
405 	 * the subordinate bus.  In this case we can only verify the bus.
406 	 *
407 	 * If the alias device is on a different bus than our source device
408 	 * then we have a topology based alias, use it.
409 	 *
410 	 * Otherwise, the alias is for a device DMA quirk and we cannot
411 	 * assume that MSI uses the same requester ID.  Therefore use the
412 	 * original device.
413 	 */
414 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
415 		set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
416 			     PCI_DEVID(PCI_BUS_NUM(data.alias),
417 				       dev->bus->number));
418 	else if (data.pdev->bus->number != dev->bus->number)
419 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
420 	else
421 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
422 			     PCI_DEVID(dev->bus->number, dev->devfn));
423 
424 	return 0;
425 }
426 
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)427 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
428 {
429 	u64 addr;
430 	u32 sts;
431 	unsigned long flags;
432 
433 	addr = virt_to_phys((void *)iommu->ir_table->base);
434 
435 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
436 
437 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
438 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
439 
440 	/* Set interrupt-remapping table pointer */
441 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
442 
443 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
444 		      readl, (sts & DMA_GSTS_IRTPS), sts);
445 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
446 
447 	/*
448 	 * global invalidation of interrupt entry cache before enabling
449 	 * interrupt-remapping.
450 	 */
451 	qi_global_iec(iommu);
452 
453 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
454 
455 	/* Enable interrupt-remapping */
456 	iommu->gcmd |= DMA_GCMD_IRE;
457 	iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
458 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
459 
460 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
461 		      readl, (sts & DMA_GSTS_IRES), sts);
462 
463 	/*
464 	 * With CFI clear in the Global Command register, we should be
465 	 * protected from dangerous (i.e. compatibility) interrupts
466 	 * regardless of x2apic status.  Check just to be sure.
467 	 */
468 	if (sts & DMA_GSTS_CFIS)
469 		WARN(1, KERN_WARNING
470 			"Compatibility-format IRQs enabled despite intr remapping;\n"
471 			"you are vulnerable to IRQ injection.\n");
472 
473 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
474 }
475 
476 
intel_setup_irq_remapping(struct intel_iommu * iommu,int mode)477 static int intel_setup_irq_remapping(struct intel_iommu *iommu, int mode)
478 {
479 	struct ir_table *ir_table;
480 	struct page *pages;
481 	unsigned long *bitmap;
482 
483 	ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
484 					     GFP_ATOMIC);
485 
486 	if (!iommu->ir_table)
487 		return -ENOMEM;
488 
489 	pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
490 				 INTR_REMAP_PAGE_ORDER);
491 
492 	if (!pages) {
493 		pr_err("IR%d: failed to allocate pages of order %d\n",
494 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
495 		kfree(iommu->ir_table);
496 		return -ENOMEM;
497 	}
498 
499 	bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
500 			 sizeof(long), GFP_ATOMIC);
501 	if (bitmap == NULL) {
502 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
503 		__free_pages(pages, INTR_REMAP_PAGE_ORDER);
504 		kfree(ir_table);
505 		return -ENOMEM;
506 	}
507 
508 	ir_table->base = page_address(pages);
509 	ir_table->bitmap = bitmap;
510 
511 	iommu_set_irq_remapping(iommu, mode);
512 	return 0;
513 }
514 
515 /*
516  * Disable Interrupt Remapping.
517  */
iommu_disable_irq_remapping(struct intel_iommu * iommu)518 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
519 {
520 	unsigned long flags;
521 	u32 sts;
522 
523 	if (!ecap_ir_support(iommu->ecap))
524 		return;
525 
526 	/*
527 	 * global invalidation of interrupt entry cache before disabling
528 	 * interrupt-remapping.
529 	 */
530 	qi_global_iec(iommu);
531 
532 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
533 
534 	sts = readl(iommu->reg + DMAR_GSTS_REG);
535 	if (!(sts & DMA_GSTS_IRES))
536 		goto end;
537 
538 	iommu->gcmd &= ~DMA_GCMD_IRE;
539 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
540 
541 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
542 		      readl, !(sts & DMA_GSTS_IRES), sts);
543 
544 end:
545 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
546 }
547 
dmar_x2apic_optout(void)548 static int __init dmar_x2apic_optout(void)
549 {
550 	struct acpi_table_dmar *dmar;
551 	dmar = (struct acpi_table_dmar *)dmar_tbl;
552 	if (!dmar || no_x2apic_optout)
553 		return 0;
554 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
555 }
556 
intel_irq_remapping_supported(void)557 static int __init intel_irq_remapping_supported(void)
558 {
559 	struct dmar_drhd_unit *drhd;
560 	struct intel_iommu *iommu;
561 
562 	if (disable_irq_remap)
563 		return 0;
564 	if (irq_remap_broken) {
565 		printk(KERN_WARNING
566 			"This system BIOS has enabled interrupt remapping\n"
567 			"on a chipset that contains an erratum making that\n"
568 			"feature unstable.  To maintain system stability\n"
569 			"interrupt remapping is being disabled.  Please\n"
570 			"contact your BIOS vendor for an update\n");
571 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
572 		disable_irq_remap = 1;
573 		return 0;
574 	}
575 
576 	if (!dmar_ir_support())
577 		return 0;
578 
579 	for_each_iommu(iommu, drhd)
580 		if (!ecap_ir_support(iommu->ecap))
581 			return 0;
582 
583 	return 1;
584 }
585 
intel_enable_irq_remapping(void)586 static int __init intel_enable_irq_remapping(void)
587 {
588 	struct dmar_drhd_unit *drhd;
589 	struct intel_iommu *iommu;
590 	bool x2apic_present;
591 	int setup = 0;
592 	int eim = 0;
593 
594 	x2apic_present = x2apic_supported();
595 
596 	if (parse_ioapics_under_ir() != 1) {
597 		printk(KERN_INFO "Not enable interrupt remapping\n");
598 		goto error;
599 	}
600 
601 	if (x2apic_present) {
602 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
603 
604 		eim = !dmar_x2apic_optout();
605 		if (!eim)
606 			printk(KERN_WARNING
607 				"Your BIOS is broken and requested that x2apic be disabled.\n"
608 				"This will slightly decrease performance.\n"
609 				"Use 'intremap=no_x2apic_optout' to override BIOS request.\n");
610 	}
611 
612 	for_each_iommu(iommu, drhd) {
613 		/*
614 		 * If the queued invalidation is already initialized,
615 		 * shouldn't disable it.
616 		 */
617 		if (iommu->qi)
618 			continue;
619 
620 		/*
621 		 * Clear previous faults.
622 		 */
623 		dmar_fault(-1, iommu);
624 
625 		/*
626 		 * Disable intr remapping and queued invalidation, if already
627 		 * enabled prior to OS handover.
628 		 */
629 		iommu_disable_irq_remapping(iommu);
630 
631 		dmar_disable_qi(iommu);
632 	}
633 
634 	/*
635 	 * check for the Interrupt-remapping support
636 	 */
637 	for_each_iommu(iommu, drhd) {
638 		if (!ecap_ir_support(iommu->ecap))
639 			continue;
640 
641 		if (eim && !ecap_eim_support(iommu->ecap)) {
642 			printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
643 			       " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
644 			goto error;
645 		}
646 	}
647 
648 	/*
649 	 * Enable queued invalidation for all the DRHD's.
650 	 */
651 	for_each_iommu(iommu, drhd) {
652 		int ret = dmar_enable_qi(iommu);
653 
654 		if (ret) {
655 			printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
656 			       " invalidation, ecap %Lx, ret %d\n",
657 			       drhd->reg_base_addr, iommu->ecap, ret);
658 			goto error;
659 		}
660 	}
661 
662 	/*
663 	 * Setup Interrupt-remapping for all the DRHD's now.
664 	 */
665 	for_each_iommu(iommu, drhd) {
666 		if (!ecap_ir_support(iommu->ecap))
667 			continue;
668 
669 		if (intel_setup_irq_remapping(iommu, eim))
670 			goto error;
671 
672 		setup = 1;
673 	}
674 
675 	if (!setup)
676 		goto error;
677 
678 	irq_remapping_enabled = 1;
679 
680 	/*
681 	 * VT-d has a different layout for IO-APIC entries when
682 	 * interrupt remapping is enabled. So it needs a special routine
683 	 * to print IO-APIC entries for debugging purposes too.
684 	 */
685 	x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries;
686 
687 	pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic");
688 
689 	return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
690 
691 error:
692 	/*
693 	 * handle error condition gracefully here!
694 	 */
695 
696 	if (x2apic_present)
697 		pr_warn("Failed to enable irq remapping.  You are vulnerable to irq-injection attacks.\n");
698 
699 	return -1;
700 }
701 
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu)702 static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
703 				      struct intel_iommu *iommu)
704 {
705 	struct acpi_dmar_pci_path *path;
706 	u8 bus;
707 	int count;
708 
709 	bus = scope->bus;
710 	path = (struct acpi_dmar_pci_path *)(scope + 1);
711 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
712 		/ sizeof(struct acpi_dmar_pci_path);
713 
714 	while (--count > 0) {
715 		/*
716 		 * Access PCI directly due to the PCI
717 		 * subsystem isn't initialized yet.
718 		 */
719 		bus = read_pci_config_byte(bus, path->device, path->function,
720 					   PCI_SECONDARY_BUS);
721 		path++;
722 	}
723 	ir_hpet[ir_hpet_num].bus   = bus;
724 	ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->device, path->function);
725 	ir_hpet[ir_hpet_num].iommu = iommu;
726 	ir_hpet[ir_hpet_num].id    = scope->enumeration_id;
727 	ir_hpet_num++;
728 }
729 
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu)730 static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
731 				      struct intel_iommu *iommu)
732 {
733 	struct acpi_dmar_pci_path *path;
734 	u8 bus;
735 	int count;
736 
737 	bus = scope->bus;
738 	path = (struct acpi_dmar_pci_path *)(scope + 1);
739 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
740 		/ sizeof(struct acpi_dmar_pci_path);
741 
742 	while (--count > 0) {
743 		/*
744 		 * Access PCI directly due to the PCI
745 		 * subsystem isn't initialized yet.
746 		 */
747 		bus = read_pci_config_byte(bus, path->device, path->function,
748 					   PCI_SECONDARY_BUS);
749 		path++;
750 	}
751 
752 	ir_ioapic[ir_ioapic_num].bus   = bus;
753 	ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->device, path->function);
754 	ir_ioapic[ir_ioapic_num].iommu = iommu;
755 	ir_ioapic[ir_ioapic_num].id    = scope->enumeration_id;
756 	ir_ioapic_num++;
757 }
758 
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)759 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
760 				      struct intel_iommu *iommu)
761 {
762 	struct acpi_dmar_hardware_unit *drhd;
763 	struct acpi_dmar_device_scope *scope;
764 	void *start, *end;
765 
766 	drhd = (struct acpi_dmar_hardware_unit *)header;
767 
768 	start = (void *)(drhd + 1);
769 	end = ((void *)drhd) + header->length;
770 
771 	while (start < end) {
772 		scope = start;
773 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
774 			if (ir_ioapic_num == MAX_IO_APICS) {
775 				printk(KERN_WARNING "Exceeded Max IO APICS\n");
776 				return -1;
777 			}
778 
779 			printk(KERN_INFO "IOAPIC id %d under DRHD base "
780 			       " 0x%Lx IOMMU %d\n", scope->enumeration_id,
781 			       drhd->address, iommu->seq_id);
782 
783 			ir_parse_one_ioapic_scope(scope, iommu);
784 		} else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) {
785 			if (ir_hpet_num == MAX_HPET_TBS) {
786 				printk(KERN_WARNING "Exceeded Max HPET blocks\n");
787 				return -1;
788 			}
789 
790 			printk(KERN_INFO "HPET id %d under DRHD base"
791 			       " 0x%Lx\n", scope->enumeration_id,
792 			       drhd->address);
793 
794 			ir_parse_one_hpet_scope(scope, iommu);
795 		}
796 		start += scope->length;
797 	}
798 
799 	return 0;
800 }
801 
802 /*
803  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
804  * hardware unit.
805  */
parse_ioapics_under_ir(void)806 static int __init parse_ioapics_under_ir(void)
807 {
808 	struct dmar_drhd_unit *drhd;
809 	struct intel_iommu *iommu;
810 	int ir_supported = 0;
811 	int ioapic_idx;
812 
813 	for_each_iommu(iommu, drhd)
814 		if (ecap_ir_support(iommu->ecap)) {
815 			if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
816 				return -1;
817 
818 			ir_supported = 1;
819 		}
820 
821 	if (!ir_supported)
822 		return 0;
823 
824 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
825 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
826 		if (!map_ioapic_to_ir(ioapic_id)) {
827 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
828 			       "interrupt remapping will be disabled\n",
829 			       ioapic_id);
830 			return -1;
831 		}
832 	}
833 
834 	return 1;
835 }
836 
ir_dev_scope_init(void)837 static int __init ir_dev_scope_init(void)
838 {
839 	int ret;
840 
841 	if (!irq_remapping_enabled)
842 		return 0;
843 
844 	down_write(&dmar_global_lock);
845 	ret = dmar_dev_scope_init();
846 	up_write(&dmar_global_lock);
847 
848 	return ret;
849 }
850 rootfs_initcall(ir_dev_scope_init);
851 
disable_irq_remapping(void)852 static void disable_irq_remapping(void)
853 {
854 	struct dmar_drhd_unit *drhd;
855 	struct intel_iommu *iommu = NULL;
856 
857 	/*
858 	 * Disable Interrupt-remapping for all the DRHD's now.
859 	 */
860 	for_each_iommu(iommu, drhd) {
861 		if (!ecap_ir_support(iommu->ecap))
862 			continue;
863 
864 		iommu_disable_irq_remapping(iommu);
865 	}
866 }
867 
reenable_irq_remapping(int eim)868 static int reenable_irq_remapping(int eim)
869 {
870 	struct dmar_drhd_unit *drhd;
871 	int setup = 0;
872 	struct intel_iommu *iommu = NULL;
873 
874 	for_each_iommu(iommu, drhd)
875 		if (iommu->qi)
876 			dmar_reenable_qi(iommu);
877 
878 	/*
879 	 * Setup Interrupt-remapping for all the DRHD's now.
880 	 */
881 	for_each_iommu(iommu, drhd) {
882 		if (!ecap_ir_support(iommu->ecap))
883 			continue;
884 
885 		/* Set up interrupt remapping for iommu.*/
886 		iommu_set_irq_remapping(iommu, eim);
887 		setup = 1;
888 	}
889 
890 	if (!setup)
891 		goto error;
892 
893 	return 0;
894 
895 error:
896 	/*
897 	 * handle error condition gracefully here!
898 	 */
899 	return -1;
900 }
901 
prepare_irte(struct irte * irte,int vector,unsigned int dest)902 static void prepare_irte(struct irte *irte, int vector,
903 			 unsigned int dest)
904 {
905 	memset(irte, 0, sizeof(*irte));
906 
907 	irte->present = 1;
908 	irte->dst_mode = apic->irq_dest_mode;
909 	/*
910 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
911 	 * actual level or edge trigger will be setup in the IO-APIC
912 	 * RTE. This will help simplify level triggered irq migration.
913 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
914 	 * irq migration in the presence of interrupt-remapping.
915 	*/
916 	irte->trigger_mode = 0;
917 	irte->dlvry_mode = apic->irq_delivery_mode;
918 	irte->vector = vector;
919 	irte->dest_id = IRTE_DEST(dest);
920 	irte->redir_hint = 1;
921 }
922 
intel_setup_ioapic_entry(int irq,struct IO_APIC_route_entry * route_entry,unsigned int destination,int vector,struct io_apic_irq_attr * attr)923 static int intel_setup_ioapic_entry(int irq,
924 				    struct IO_APIC_route_entry *route_entry,
925 				    unsigned int destination, int vector,
926 				    struct io_apic_irq_attr *attr)
927 {
928 	int ioapic_id = mpc_ioapic_id(attr->ioapic);
929 	struct intel_iommu *iommu;
930 	struct IR_IO_APIC_route_entry *entry;
931 	struct irte irte;
932 	int index;
933 
934 	down_read(&dmar_global_lock);
935 	iommu = map_ioapic_to_ir(ioapic_id);
936 	if (!iommu) {
937 		pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
938 		index = -ENODEV;
939 	} else {
940 		index = alloc_irte(iommu, irq, 1);
941 		if (index < 0) {
942 			pr_warn("Failed to allocate IRTE for ioapic %d\n",
943 				ioapic_id);
944 			index = -ENOMEM;
945 		}
946 	}
947 	up_read(&dmar_global_lock);
948 	if (index < 0)
949 		return index;
950 
951 	prepare_irte(&irte, vector, destination);
952 
953 	/* Set source-id of interrupt request */
954 	set_ioapic_sid(&irte, ioapic_id);
955 
956 	modify_irte(irq, &irte);
957 
958 	apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
959 		"Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
960 		"Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
961 		"Avail:%X Vector:%02X Dest:%08X "
962 		"SID:%04X SQ:%X SVT:%X)\n",
963 		attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
964 		irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
965 		irte.avail, irte.vector, irte.dest_id,
966 		irte.sid, irte.sq, irte.svt);
967 
968 	entry = (struct IR_IO_APIC_route_entry *)route_entry;
969 	memset(entry, 0, sizeof(*entry));
970 
971 	entry->index2	= (index >> 15) & 0x1;
972 	entry->zero	= 0;
973 	entry->format	= 1;
974 	entry->index	= (index & 0x7fff);
975 	/*
976 	 * IO-APIC RTE will be configured with virtual vector.
977 	 * irq handler will do the explicit EOI to the io-apic.
978 	 */
979 	entry->vector	= attr->ioapic_pin;
980 	entry->mask	= 0;			/* enable IRQ */
981 	entry->trigger	= attr->trigger;
982 	entry->polarity	= attr->polarity;
983 
984 	/* Mask level triggered irqs.
985 	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
986 	 */
987 	if (attr->trigger)
988 		entry->mask = 1;
989 
990 	return 0;
991 }
992 
993 /*
994  * Migrate the IO-APIC irq in the presence of intr-remapping.
995  *
996  * For both level and edge triggered, irq migration is a simple atomic
997  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
998  *
999  * For level triggered, we eliminate the io-apic RTE modification (with the
1000  * updated vector information), by using a virtual vector (io-apic pin number).
1001  * Real vector that is used for interrupting cpu will be coming from
1002  * the interrupt-remapping table entry.
1003  *
1004  * As the migration is a simple atomic update of IRTE, the same mechanism
1005  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1006  */
1007 static int
intel_ioapic_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1008 intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
1009 			  bool force)
1010 {
1011 	struct irq_cfg *cfg = data->chip_data;
1012 	unsigned int dest, irq = data->irq;
1013 	struct irte irte;
1014 	int err;
1015 
1016 	if (!config_enabled(CONFIG_SMP))
1017 		return -EINVAL;
1018 
1019 	if (!cpumask_intersects(mask, cpu_online_mask))
1020 		return -EINVAL;
1021 
1022 	if (get_irte(irq, &irte))
1023 		return -EBUSY;
1024 
1025 	err = assign_irq_vector(irq, cfg, mask);
1026 	if (err)
1027 		return err;
1028 
1029 	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
1030 	if (err) {
1031 		if (assign_irq_vector(irq, cfg, data->affinity))
1032 			pr_err("Failed to recover vector for irq %d\n", irq);
1033 		return err;
1034 	}
1035 
1036 	irte.vector = cfg->vector;
1037 	irte.dest_id = IRTE_DEST(dest);
1038 
1039 	/*
1040 	 * Atomically updates the IRTE with the new destination, vector
1041 	 * and flushes the interrupt entry cache.
1042 	 */
1043 	modify_irte(irq, &irte);
1044 
1045 	/*
1046 	 * After this point, all the interrupts will start arriving
1047 	 * at the new destination. So, time to cleanup the previous
1048 	 * vector allocation.
1049 	 */
1050 	if (cfg->move_in_progress)
1051 		send_cleanup_vector(cfg);
1052 
1053 	cpumask_copy(data->affinity, mask);
1054 	return 0;
1055 }
1056 
intel_compose_msi_msg(struct pci_dev * pdev,unsigned int irq,unsigned int dest,struct msi_msg * msg,u8 hpet_id)1057 static void intel_compose_msi_msg(struct pci_dev *pdev,
1058 				  unsigned int irq, unsigned int dest,
1059 				  struct msi_msg *msg, u8 hpet_id)
1060 {
1061 	struct irq_cfg *cfg;
1062 	struct irte irte;
1063 	u16 sub_handle = 0;
1064 	int ir_index;
1065 
1066 	cfg = irq_get_chip_data(irq);
1067 
1068 	ir_index = map_irq_to_irte_handle(irq, &sub_handle);
1069 	BUG_ON(ir_index == -1);
1070 
1071 	prepare_irte(&irte, cfg->vector, dest);
1072 
1073 	/* Set source-id of interrupt request */
1074 	if (pdev)
1075 		set_msi_sid(&irte, pdev);
1076 	else
1077 		set_hpet_sid(&irte, hpet_id);
1078 
1079 	modify_irte(irq, &irte);
1080 
1081 	msg->address_hi = MSI_ADDR_BASE_HI;
1082 	msg->data = sub_handle;
1083 	msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1084 			  MSI_ADDR_IR_SHV |
1085 			  MSI_ADDR_IR_INDEX1(ir_index) |
1086 			  MSI_ADDR_IR_INDEX2(ir_index);
1087 }
1088 
1089 /*
1090  * Map the PCI dev to the corresponding remapping hardware unit
1091  * and allocate 'nvec' consecutive interrupt-remapping table entries
1092  * in it.
1093  */
intel_msi_alloc_irq(struct pci_dev * dev,int irq,int nvec)1094 static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec)
1095 {
1096 	struct intel_iommu *iommu;
1097 	int index;
1098 
1099 	down_read(&dmar_global_lock);
1100 	iommu = map_dev_to_ir(dev);
1101 	if (!iommu) {
1102 		printk(KERN_ERR
1103 		       "Unable to map PCI %s to iommu\n", pci_name(dev));
1104 		index = -ENOENT;
1105 	} else {
1106 		index = alloc_irte(iommu, irq, nvec);
1107 		if (index < 0) {
1108 			printk(KERN_ERR
1109 			       "Unable to allocate %d IRTE for PCI %s\n",
1110 			       nvec, pci_name(dev));
1111 			index = -ENOSPC;
1112 		}
1113 	}
1114 	up_read(&dmar_global_lock);
1115 
1116 	return index;
1117 }
1118 
intel_msi_setup_irq(struct pci_dev * pdev,unsigned int irq,int index,int sub_handle)1119 static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
1120 			       int index, int sub_handle)
1121 {
1122 	struct intel_iommu *iommu;
1123 	int ret = -ENOENT;
1124 
1125 	down_read(&dmar_global_lock);
1126 	iommu = map_dev_to_ir(pdev);
1127 	if (iommu) {
1128 		/*
1129 		 * setup the mapping between the irq and the IRTE
1130 		 * base index, the sub_handle pointing to the
1131 		 * appropriate interrupt remap table entry.
1132 		 */
1133 		set_irte_irq(irq, iommu, index, sub_handle);
1134 		ret = 0;
1135 	}
1136 	up_read(&dmar_global_lock);
1137 
1138 	return ret;
1139 }
1140 
intel_alloc_hpet_msi(unsigned int irq,unsigned int id)1141 static int intel_alloc_hpet_msi(unsigned int irq, unsigned int id)
1142 {
1143 	int ret = -1;
1144 	struct intel_iommu *iommu;
1145 	int index;
1146 
1147 	down_read(&dmar_global_lock);
1148 	iommu = map_hpet_to_ir(id);
1149 	if (iommu) {
1150 		index = alloc_irte(iommu, irq, 1);
1151 		if (index >= 0)
1152 			ret = 0;
1153 	}
1154 	up_read(&dmar_global_lock);
1155 
1156 	return ret;
1157 }
1158 
1159 struct irq_remap_ops intel_irq_remap_ops = {
1160 	.supported		= intel_irq_remapping_supported,
1161 	.prepare		= dmar_table_init,
1162 	.enable			= intel_enable_irq_remapping,
1163 	.disable		= disable_irq_remapping,
1164 	.reenable		= reenable_irq_remapping,
1165 	.enable_faulting	= enable_drhd_fault_handling,
1166 	.setup_ioapic_entry	= intel_setup_ioapic_entry,
1167 	.set_affinity		= intel_ioapic_set_affinity,
1168 	.free_irq		= free_irte,
1169 	.compose_msi_msg	= intel_compose_msi_msg,
1170 	.msi_alloc_irq		= intel_msi_alloc_irq,
1171 	.msi_setup_irq		= intel_msi_setup_irq,
1172 	.alloc_hpet_msi		= intel_alloc_hpet_msi,
1173 };
1174