• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Interrupt architecture for the GIC:
9  *
10  * o There is one Interrupt Distributor, which receives interrupts
11  *   from system devices and sends them to the Interrupt Controllers.
12  *
13  * o There is one CPU Interface per CPU, which sends interrupts sent
14  *   by the Distributor, and interrupts generated locally, to the
15  *   associated CPU. The base address of the CPU interface is usually
16  *   aliased so that the same address points to different chips depending
17  *   on the CPU it is accessed from.
18  *
19  * Note that IRQs 0-31 are special - they are local to each CPU.
20  * As such, the enable set/clear, pending set/clear and active bit
21  * registers are banked per-cpu for these sources.
22  */
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/list.h>
28 #include <linux/smp.h>
29 #include <linux/cpu.h>
30 #include <linux/cpu_pm.h>
31 #include <linux/cpumask.h>
32 #include <linux/io.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/irqdomain.h>
37 #include <linux/interrupt.h>
38 #include <linux/percpu.h>
39 #include <linux/slab.h>
40 #include <linux/irqchip/chained_irq.h>
41 #include <linux/irqchip/arm-gic.h>
42 
43 #include <asm/cputype.h>
44 #include <asm/irq.h>
45 #include <asm/exception.h>
46 #include <asm/smp_plat.h>
47 
48 #include "irq-gic-common.h"
49 #include "irqchip.h"
50 
51 union gic_base {
52 	void __iomem *common_base;
53 	void __percpu * __iomem *percpu_base;
54 };
55 
56 struct gic_chip_data {
57 	union gic_base dist_base;
58 	union gic_base cpu_base;
59 #ifdef CONFIG_CPU_PM
60 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
61 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
62 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
63 	u32 __percpu *saved_ppi_enable;
64 	u32 __percpu *saved_ppi_conf;
65 #endif
66 	struct irq_domain *domain;
67 	unsigned int gic_irqs;
68 #ifdef CONFIG_GIC_NON_BANKED
69 	void __iomem *(*get_base)(union gic_base *);
70 #endif
71 };
72 
73 static DEFINE_RAW_SPINLOCK(irq_controller_lock);
74 
75 /*
76  * The GIC mapping of CPU interfaces does not necessarily match
77  * the logical CPU numbering.  Let's use a mapping as returned
78  * by the GIC itself.
79  */
80 #define NR_GIC_CPU_IF 8
81 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
82 
83 /*
84  * Supported arch specific GIC irq extension.
85  * Default make them NULL.
86  */
87 struct irq_chip gic_arch_extn = {
88 	.irq_eoi	= NULL,
89 	.irq_mask	= NULL,
90 	.irq_unmask	= NULL,
91 	.irq_retrigger	= NULL,
92 	.irq_set_type	= NULL,
93 	.irq_set_wake	= NULL,
94 };
95 
96 #ifndef MAX_GIC_NR
97 #define MAX_GIC_NR	1
98 #endif
99 
100 static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
101 
102 #ifdef CONFIG_GIC_NON_BANKED
gic_get_percpu_base(union gic_base * base)103 static void __iomem *gic_get_percpu_base(union gic_base *base)
104 {
105 	return raw_cpu_read(*base->percpu_base);
106 }
107 
gic_get_common_base(union gic_base * base)108 static void __iomem *gic_get_common_base(union gic_base *base)
109 {
110 	return base->common_base;
111 }
112 
gic_data_dist_base(struct gic_chip_data * data)113 static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data)
114 {
115 	return data->get_base(&data->dist_base);
116 }
117 
gic_data_cpu_base(struct gic_chip_data * data)118 static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data)
119 {
120 	return data->get_base(&data->cpu_base);
121 }
122 
gic_set_base_accessor(struct gic_chip_data * data,void __iomem * (* f)(union gic_base *))123 static inline void gic_set_base_accessor(struct gic_chip_data *data,
124 					 void __iomem *(*f)(union gic_base *))
125 {
126 	data->get_base = f;
127 }
128 #else
129 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
130 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
131 #define gic_set_base_accessor(d, f)
132 #endif
133 
gic_dist_base(struct irq_data * d)134 static inline void __iomem *gic_dist_base(struct irq_data *d)
135 {
136 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
137 	return gic_data_dist_base(gic_data);
138 }
139 
gic_cpu_base(struct irq_data * d)140 static inline void __iomem *gic_cpu_base(struct irq_data *d)
141 {
142 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
143 	return gic_data_cpu_base(gic_data);
144 }
145 
gic_irq(struct irq_data * d)146 static inline unsigned int gic_irq(struct irq_data *d)
147 {
148 	return d->hwirq;
149 }
150 
151 /*
152  * Routines to acknowledge, disable and enable interrupts
153  */
gic_mask_irq(struct irq_data * d)154 static void gic_mask_irq(struct irq_data *d)
155 {
156 	u32 mask = 1 << (gic_irq(d) % 32);
157 
158 	raw_spin_lock(&irq_controller_lock);
159 	writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_CLEAR + (gic_irq(d) / 32) * 4);
160 	if (gic_arch_extn.irq_mask)
161 		gic_arch_extn.irq_mask(d);
162 	raw_spin_unlock(&irq_controller_lock);
163 }
164 
gic_unmask_irq(struct irq_data * d)165 static void gic_unmask_irq(struct irq_data *d)
166 {
167 	u32 mask = 1 << (gic_irq(d) % 32);
168 
169 	raw_spin_lock(&irq_controller_lock);
170 	if (gic_arch_extn.irq_unmask)
171 		gic_arch_extn.irq_unmask(d);
172 	writel_relaxed(mask, gic_dist_base(d) + GIC_DIST_ENABLE_SET + (gic_irq(d) / 32) * 4);
173 	raw_spin_unlock(&irq_controller_lock);
174 }
175 
gic_eoi_irq(struct irq_data * d)176 static void gic_eoi_irq(struct irq_data *d)
177 {
178 	if (gic_arch_extn.irq_eoi) {
179 		raw_spin_lock(&irq_controller_lock);
180 		gic_arch_extn.irq_eoi(d);
181 		raw_spin_unlock(&irq_controller_lock);
182 	}
183 
184 	writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI);
185 }
186 
gic_set_type(struct irq_data * d,unsigned int type)187 static int gic_set_type(struct irq_data *d, unsigned int type)
188 {
189 	void __iomem *base = gic_dist_base(d);
190 	unsigned int gicirq = gic_irq(d);
191 
192 	/* Interrupt configuration for SGIs can't be changed */
193 	if (gicirq < 16)
194 		return -EINVAL;
195 
196 	if (type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
197 		return -EINVAL;
198 
199 	raw_spin_lock(&irq_controller_lock);
200 
201 	if (gic_arch_extn.irq_set_type)
202 		gic_arch_extn.irq_set_type(d, type);
203 
204 	gic_configure_irq(gicirq, type, base, NULL);
205 
206 	raw_spin_unlock(&irq_controller_lock);
207 
208 	return 0;
209 }
210 
gic_retrigger(struct irq_data * d)211 static int gic_retrigger(struct irq_data *d)
212 {
213 	if (gic_arch_extn.irq_retrigger)
214 		return gic_arch_extn.irq_retrigger(d);
215 
216 	/* the genirq layer expects 0 if we can't retrigger in hardware */
217 	return 0;
218 }
219 
220 #ifdef CONFIG_SMP
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)221 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
222 			    bool force)
223 {
224 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + (gic_irq(d) & ~3);
225 	unsigned int cpu, shift = (gic_irq(d) % 4) * 8;
226 	u32 val, mask, bit;
227 
228 	if (!force)
229 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
230 	else
231 		cpu = cpumask_first(mask_val);
232 
233 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
234 		return -EINVAL;
235 
236 	raw_spin_lock(&irq_controller_lock);
237 	mask = 0xff << shift;
238 	bit = gic_cpu_map[cpu] << shift;
239 	val = readl_relaxed(reg) & ~mask;
240 	writel_relaxed(val | bit, reg);
241 	raw_spin_unlock(&irq_controller_lock);
242 
243 	return IRQ_SET_MASK_OK;
244 }
245 #endif
246 
247 #ifdef CONFIG_PM
gic_set_wake(struct irq_data * d,unsigned int on)248 static int gic_set_wake(struct irq_data *d, unsigned int on)
249 {
250 	int ret = -ENXIO;
251 
252 	if (gic_arch_extn.irq_set_wake)
253 		ret = gic_arch_extn.irq_set_wake(d, on);
254 
255 	return ret;
256 }
257 
258 #else
259 #define gic_set_wake	NULL
260 #endif
261 
gic_handle_irq(struct pt_regs * regs)262 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
263 {
264 	u32 irqstat, irqnr;
265 	struct gic_chip_data *gic = &gic_data[0];
266 	void __iomem *cpu_base = gic_data_cpu_base(gic);
267 
268 	do {
269 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
270 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
271 
272 		if (likely(irqnr > 15 && irqnr < 1021)) {
273 			handle_domain_irq(gic->domain, irqnr, regs);
274 			continue;
275 		}
276 		if (irqnr < 16) {
277 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
278 #ifdef CONFIG_SMP
279 			/*
280 			 * Ensure any shared data written by the CPU sending
281 			 * the IPI is read after we've read the ACK register
282 			 * on the GIC.
283 			 *
284 			 * Pairs with the write barrier in gic_raise_softirq
285 			 */
286 			smp_rmb();
287 			handle_IPI(irqnr, regs);
288 #endif
289 			continue;
290 		}
291 		break;
292 	} while (1);
293 }
294 
gic_handle_cascade_irq(unsigned int irq,struct irq_desc * desc)295 static void gic_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
296 {
297 	struct gic_chip_data *chip_data = irq_get_handler_data(irq);
298 	struct irq_chip *chip = irq_get_chip(irq);
299 	unsigned int cascade_irq, gic_irq;
300 	unsigned long status;
301 
302 	chained_irq_enter(chip, desc);
303 
304 	raw_spin_lock(&irq_controller_lock);
305 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
306 	raw_spin_unlock(&irq_controller_lock);
307 
308 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
309 	if (gic_irq == GICC_INT_SPURIOUS)
310 		goto out;
311 
312 	cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
313 	if (unlikely(gic_irq < 32 || gic_irq > 1020))
314 		handle_bad_irq(cascade_irq, desc);
315 	else
316 		generic_handle_irq(cascade_irq);
317 
318  out:
319 	chained_irq_exit(chip, desc);
320 }
321 
322 static struct irq_chip gic_chip = {
323 	.name			= "GIC",
324 	.irq_mask		= gic_mask_irq,
325 	.irq_unmask		= gic_unmask_irq,
326 	.irq_eoi		= gic_eoi_irq,
327 	.irq_set_type		= gic_set_type,
328 	.irq_retrigger		= gic_retrigger,
329 #ifdef CONFIG_SMP
330 	.irq_set_affinity	= gic_set_affinity,
331 #endif
332 	.irq_set_wake		= gic_set_wake,
333 };
334 
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)335 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
336 {
337 	if (gic_nr >= MAX_GIC_NR)
338 		BUG();
339 	if (irq_set_handler_data(irq, &gic_data[gic_nr]) != 0)
340 		BUG();
341 	irq_set_chained_handler(irq, gic_handle_cascade_irq);
342 }
343 
gic_get_cpumask(struct gic_chip_data * gic)344 static u8 gic_get_cpumask(struct gic_chip_data *gic)
345 {
346 	void __iomem *base = gic_data_dist_base(gic);
347 	u32 mask, i;
348 
349 	for (i = mask = 0; i < 32; i += 4) {
350 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
351 		mask |= mask >> 16;
352 		mask |= mask >> 8;
353 		if (mask)
354 			break;
355 	}
356 
357 	if (!mask)
358 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
359 
360 	return mask;
361 }
362 
gic_cpu_if_up(void)363 static void gic_cpu_if_up(void)
364 {
365 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
366 	u32 bypass = 0;
367 
368 	/*
369 	* Preserve bypass disable bits to be written back later
370 	*/
371 	bypass = readl(cpu_base + GIC_CPU_CTRL);
372 	bypass &= GICC_DIS_BYPASS_MASK;
373 
374 	writel_relaxed(bypass | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
375 }
376 
377 
gic_dist_init(struct gic_chip_data * gic)378 static void __init gic_dist_init(struct gic_chip_data *gic)
379 {
380 	unsigned int i;
381 	u32 cpumask;
382 	unsigned int gic_irqs = gic->gic_irqs;
383 	void __iomem *base = gic_data_dist_base(gic);
384 
385 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
386 
387 	/*
388 	 * Set all global interrupts to this CPU only.
389 	 */
390 	cpumask = gic_get_cpumask(gic);
391 	cpumask |= cpumask << 8;
392 	cpumask |= cpumask << 16;
393 	for (i = 32; i < gic_irqs; i += 4)
394 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
395 
396 	gic_dist_config(base, gic_irqs, NULL);
397 
398 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
399 }
400 
gic_cpu_init(struct gic_chip_data * gic)401 static void gic_cpu_init(struct gic_chip_data *gic)
402 {
403 	void __iomem *dist_base = gic_data_dist_base(gic);
404 	void __iomem *base = gic_data_cpu_base(gic);
405 	unsigned int cpu_mask, cpu = smp_processor_id();
406 	int i;
407 
408 	/*
409 	 * Get what the GIC says our CPU mask is.
410 	 */
411 	BUG_ON(cpu >= NR_GIC_CPU_IF);
412 	cpu_mask = gic_get_cpumask(gic);
413 	gic_cpu_map[cpu] = cpu_mask;
414 
415 	/*
416 	 * Clear our mask from the other map entries in case they're
417 	 * still undefined.
418 	 */
419 	for (i = 0; i < NR_GIC_CPU_IF; i++)
420 		if (i != cpu)
421 			gic_cpu_map[i] &= ~cpu_mask;
422 
423 	gic_cpu_config(dist_base, NULL);
424 
425 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
426 	gic_cpu_if_up();
427 }
428 
gic_cpu_if_down(void)429 void gic_cpu_if_down(void)
430 {
431 	void __iomem *cpu_base = gic_data_cpu_base(&gic_data[0]);
432 	u32 val = 0;
433 
434 	val = readl(cpu_base + GIC_CPU_CTRL);
435 	val &= ~GICC_ENABLE;
436 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
437 }
438 
439 #ifdef CONFIG_CPU_PM
440 /*
441  * Saves the GIC distributor registers during suspend or idle.  Must be called
442  * with interrupts disabled but before powering down the GIC.  After calling
443  * this function, no interrupts will be delivered by the GIC, and another
444  * platform-specific wakeup source must be enabled.
445  */
gic_dist_save(unsigned int gic_nr)446 static void gic_dist_save(unsigned int gic_nr)
447 {
448 	unsigned int gic_irqs;
449 	void __iomem *dist_base;
450 	int i;
451 
452 	if (gic_nr >= MAX_GIC_NR)
453 		BUG();
454 
455 	gic_irqs = gic_data[gic_nr].gic_irqs;
456 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
457 
458 	if (!dist_base)
459 		return;
460 
461 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
462 		gic_data[gic_nr].saved_spi_conf[i] =
463 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
464 
465 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
466 		gic_data[gic_nr].saved_spi_target[i] =
467 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
468 
469 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
470 		gic_data[gic_nr].saved_spi_enable[i] =
471 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
472 }
473 
474 /*
475  * Restores the GIC distributor registers during resume or when coming out of
476  * idle.  Must be called before enabling interrupts.  If a level interrupt
477  * that occured while the GIC was suspended is still present, it will be
478  * handled normally, but any edge interrupts that occured will not be seen by
479  * the GIC and need to be handled by the platform-specific wakeup source.
480  */
gic_dist_restore(unsigned int gic_nr)481 static void gic_dist_restore(unsigned int gic_nr)
482 {
483 	unsigned int gic_irqs;
484 	unsigned int i;
485 	void __iomem *dist_base;
486 
487 	if (gic_nr >= MAX_GIC_NR)
488 		BUG();
489 
490 	gic_irqs = gic_data[gic_nr].gic_irqs;
491 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
492 
493 	if (!dist_base)
494 		return;
495 
496 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
497 
498 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
499 		writel_relaxed(gic_data[gic_nr].saved_spi_conf[i],
500 			dist_base + GIC_DIST_CONFIG + i * 4);
501 
502 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
503 		writel_relaxed(GICD_INT_DEF_PRI_X4,
504 			dist_base + GIC_DIST_PRI + i * 4);
505 
506 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
507 		writel_relaxed(gic_data[gic_nr].saved_spi_target[i],
508 			dist_base + GIC_DIST_TARGET + i * 4);
509 
510 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
511 		writel_relaxed(gic_data[gic_nr].saved_spi_enable[i],
512 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
513 
514 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
515 }
516 
gic_cpu_save(unsigned int gic_nr)517 static void gic_cpu_save(unsigned int gic_nr)
518 {
519 	int i;
520 	u32 *ptr;
521 	void __iomem *dist_base;
522 	void __iomem *cpu_base;
523 
524 	if (gic_nr >= MAX_GIC_NR)
525 		BUG();
526 
527 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
528 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
529 
530 	if (!dist_base || !cpu_base)
531 		return;
532 
533 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
534 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
535 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
536 
537 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
538 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
539 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
540 
541 }
542 
gic_cpu_restore(unsigned int gic_nr)543 static void gic_cpu_restore(unsigned int gic_nr)
544 {
545 	int i;
546 	u32 *ptr;
547 	void __iomem *dist_base;
548 	void __iomem *cpu_base;
549 
550 	if (gic_nr >= MAX_GIC_NR)
551 		BUG();
552 
553 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
554 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
555 
556 	if (!dist_base || !cpu_base)
557 		return;
558 
559 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_enable);
560 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
561 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
562 
563 	ptr = raw_cpu_ptr(gic_data[gic_nr].saved_ppi_conf);
564 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
565 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
566 
567 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
568 		writel_relaxed(GICD_INT_DEF_PRI_X4,
569 					dist_base + GIC_DIST_PRI + i * 4);
570 
571 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
572 	gic_cpu_if_up();
573 }
574 
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)575 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
576 {
577 	int i;
578 
579 	for (i = 0; i < MAX_GIC_NR; i++) {
580 #ifdef CONFIG_GIC_NON_BANKED
581 		/* Skip over unused GICs */
582 		if (!gic_data[i].get_base)
583 			continue;
584 #endif
585 		switch (cmd) {
586 		case CPU_PM_ENTER:
587 			gic_cpu_save(i);
588 			break;
589 		case CPU_PM_ENTER_FAILED:
590 		case CPU_PM_EXIT:
591 			gic_cpu_restore(i);
592 			break;
593 		case CPU_CLUSTER_PM_ENTER:
594 			gic_dist_save(i);
595 			break;
596 		case CPU_CLUSTER_PM_ENTER_FAILED:
597 		case CPU_CLUSTER_PM_EXIT:
598 			gic_dist_restore(i);
599 			break;
600 		}
601 	}
602 
603 	return NOTIFY_OK;
604 }
605 
606 static struct notifier_block gic_notifier_block = {
607 	.notifier_call = gic_notifier,
608 };
609 
gic_pm_init(struct gic_chip_data * gic)610 static void __init gic_pm_init(struct gic_chip_data *gic)
611 {
612 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
613 		sizeof(u32));
614 	BUG_ON(!gic->saved_ppi_enable);
615 
616 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
617 		sizeof(u32));
618 	BUG_ON(!gic->saved_ppi_conf);
619 
620 	if (gic == &gic_data[0])
621 		cpu_pm_register_notifier(&gic_notifier_block);
622 }
623 #else
gic_pm_init(struct gic_chip_data * gic)624 static void __init gic_pm_init(struct gic_chip_data *gic)
625 {
626 }
627 #endif
628 
629 #ifdef CONFIG_SMP
gic_raise_softirq(const struct cpumask * mask,unsigned int irq)630 static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
631 {
632 	int cpu;
633 	unsigned long flags, map = 0;
634 
635 	raw_spin_lock_irqsave(&irq_controller_lock, flags);
636 
637 	/* Convert our logical CPU mask into a physical one. */
638 	for_each_cpu(cpu, mask)
639 		map |= gic_cpu_map[cpu];
640 
641 	/*
642 	 * Ensure that stores to Normal memory are visible to the
643 	 * other CPUs before they observe us issuing the IPI.
644 	 */
645 	dmb(ishst);
646 
647 	/* this always happens on GIC0 */
648 	writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
649 
650 	raw_spin_unlock_irqrestore(&irq_controller_lock, flags);
651 }
652 #endif
653 
654 #ifdef CONFIG_BL_SWITCHER
655 /*
656  * gic_send_sgi - send a SGI directly to given CPU interface number
657  *
658  * cpu_id: the ID for the destination CPU interface
659  * irq: the IPI number to send a SGI for
660  */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)661 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
662 {
663 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
664 	cpu_id = 1 << cpu_id;
665 	/* this always happens on GIC0 */
666 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
667 }
668 
669 /*
670  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
671  *
672  * @cpu: the logical CPU number to get the GIC ID for.
673  *
674  * Return the CPU interface ID for the given logical CPU number,
675  * or -1 if the CPU number is too large or the interface ID is
676  * unknown (more than one bit set).
677  */
gic_get_cpu_id(unsigned int cpu)678 int gic_get_cpu_id(unsigned int cpu)
679 {
680 	unsigned int cpu_bit;
681 
682 	if (cpu >= NR_GIC_CPU_IF)
683 		return -1;
684 	cpu_bit = gic_cpu_map[cpu];
685 	if (cpu_bit & (cpu_bit - 1))
686 		return -1;
687 	return __ffs(cpu_bit);
688 }
689 
690 /*
691  * gic_migrate_target - migrate IRQs to another CPU interface
692  *
693  * @new_cpu_id: the CPU target ID to migrate IRQs to
694  *
695  * Migrate all peripheral interrupts with a target matching the current CPU
696  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
697  * is also updated.  Targets to other CPU interfaces are unchanged.
698  * This must be called with IRQs locally disabled.
699  */
gic_migrate_target(unsigned int new_cpu_id)700 void gic_migrate_target(unsigned int new_cpu_id)
701 {
702 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
703 	void __iomem *dist_base;
704 	int i, ror_val, cpu = smp_processor_id();
705 	u32 val, cur_target_mask, active_mask;
706 
707 	if (gic_nr >= MAX_GIC_NR)
708 		BUG();
709 
710 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
711 	if (!dist_base)
712 		return;
713 	gic_irqs = gic_data[gic_nr].gic_irqs;
714 
715 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
716 	cur_target_mask = 0x01010101 << cur_cpu_id;
717 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
718 
719 	raw_spin_lock(&irq_controller_lock);
720 
721 	/* Update the target interface for this logical CPU */
722 	gic_cpu_map[cpu] = 1 << new_cpu_id;
723 
724 	/*
725 	 * Find all the peripheral interrupts targetting the current
726 	 * CPU interface and migrate them to the new CPU interface.
727 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
728 	 */
729 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
730 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
731 		active_mask = val & cur_target_mask;
732 		if (active_mask) {
733 			val &= ~active_mask;
734 			val |= ror32(active_mask, ror_val);
735 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
736 		}
737 	}
738 
739 	raw_spin_unlock(&irq_controller_lock);
740 
741 	/*
742 	 * Now let's migrate and clear any potential SGIs that might be
743 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
744 	 * is a banked register, we can only forward the SGI using
745 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
746 	 * doesn't use that information anyway.
747 	 *
748 	 * For the same reason we do not adjust SGI source information
749 	 * for previously sent SGIs by us to other CPUs either.
750 	 */
751 	for (i = 0; i < 16; i += 4) {
752 		int j;
753 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
754 		if (!val)
755 			continue;
756 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
757 		for (j = i; j < i + 4; j++) {
758 			if (val & 0xff)
759 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
760 						dist_base + GIC_DIST_SOFTINT);
761 			val >>= 8;
762 		}
763 	}
764 }
765 
766 /*
767  * gic_get_sgir_physaddr - get the physical address for the SGI register
768  *
769  * REturn the physical address of the SGI register to be used
770  * by some early assembly code when the kernel is not yet available.
771  */
772 static unsigned long gic_dist_physaddr;
773 
gic_get_sgir_physaddr(void)774 unsigned long gic_get_sgir_physaddr(void)
775 {
776 	if (!gic_dist_physaddr)
777 		return 0;
778 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
779 }
780 
gic_init_physaddr(struct device_node * node)781 void __init gic_init_physaddr(struct device_node *node)
782 {
783 	struct resource res;
784 	if (of_address_to_resource(node, 0, &res) == 0) {
785 		gic_dist_physaddr = res.start;
786 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
787 	}
788 }
789 
790 #else
791 #define gic_init_physaddr(node)  do { } while (0)
792 #endif
793 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)794 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
795 				irq_hw_number_t hw)
796 {
797 	if (hw < 32) {
798 		irq_set_percpu_devid(irq);
799 		irq_set_chip_and_handler(irq, &gic_chip,
800 					 handle_percpu_devid_irq);
801 		set_irq_flags(irq, IRQF_VALID | IRQF_NOAUTOEN);
802 	} else {
803 		irq_set_chip_and_handler(irq, &gic_chip,
804 					 handle_fasteoi_irq);
805 		set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
806 
807 		gic_routable_irq_domain_ops->map(d, irq, hw);
808 	}
809 	irq_set_chip_data(irq, d->host_data);
810 	return 0;
811 }
812 
gic_irq_domain_unmap(struct irq_domain * d,unsigned int irq)813 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
814 {
815 	gic_routable_irq_domain_ops->unmap(d, irq);
816 }
817 
gic_irq_domain_xlate(struct irq_domain * d,struct device_node * controller,const u32 * intspec,unsigned int intsize,unsigned long * out_hwirq,unsigned int * out_type)818 static int gic_irq_domain_xlate(struct irq_domain *d,
819 				struct device_node *controller,
820 				const u32 *intspec, unsigned int intsize,
821 				unsigned long *out_hwirq, unsigned int *out_type)
822 {
823 	unsigned long ret = 0;
824 
825 	if (d->of_node != controller)
826 		return -EINVAL;
827 	if (intsize < 3)
828 		return -EINVAL;
829 
830 	/* Get the interrupt number and add 16 to skip over SGIs */
831 	*out_hwirq = intspec[1] + 16;
832 
833 	/* For SPIs, we need to add 16 more to get the GIC irq ID number */
834 	if (!intspec[0]) {
835 		ret = gic_routable_irq_domain_ops->xlate(d, controller,
836 							 intspec,
837 							 intsize,
838 							 out_hwirq,
839 							 out_type);
840 
841 		if (IS_ERR_VALUE(ret))
842 			return ret;
843 	}
844 
845 	*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
846 
847 	return ret;
848 }
849 
850 #ifdef CONFIG_SMP
gic_secondary_init(struct notifier_block * nfb,unsigned long action,void * hcpu)851 static int gic_secondary_init(struct notifier_block *nfb, unsigned long action,
852 			      void *hcpu)
853 {
854 	if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
855 		gic_cpu_init(&gic_data[0]);
856 	return NOTIFY_OK;
857 }
858 
859 /*
860  * Notifier for enabling the GIC CPU interface. Set an arbitrarily high
861  * priority because the GIC needs to be up before the ARM generic timers.
862  */
863 static struct notifier_block gic_cpu_notifier = {
864 	.notifier_call = gic_secondary_init,
865 	.priority = 100,
866 };
867 #endif
868 
869 static const struct irq_domain_ops gic_irq_domain_ops = {
870 	.map = gic_irq_domain_map,
871 	.unmap = gic_irq_domain_unmap,
872 	.xlate = gic_irq_domain_xlate,
873 };
874 
875 /* Default functions for routable irq domain */
gic_routable_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)876 static int gic_routable_irq_domain_map(struct irq_domain *d, unsigned int irq,
877 			      irq_hw_number_t hw)
878 {
879 	return 0;
880 }
881 
gic_routable_irq_domain_unmap(struct irq_domain * d,unsigned int irq)882 static void gic_routable_irq_domain_unmap(struct irq_domain *d,
883 					  unsigned int irq)
884 {
885 }
886 
gic_routable_irq_domain_xlate(struct irq_domain * d,struct device_node * controller,const u32 * intspec,unsigned int intsize,unsigned long * out_hwirq,unsigned int * out_type)887 static int gic_routable_irq_domain_xlate(struct irq_domain *d,
888 				struct device_node *controller,
889 				const u32 *intspec, unsigned int intsize,
890 				unsigned long *out_hwirq,
891 				unsigned int *out_type)
892 {
893 	*out_hwirq += 16;
894 	return 0;
895 }
896 
897 static const struct irq_domain_ops gic_default_routable_irq_domain_ops = {
898 	.map = gic_routable_irq_domain_map,
899 	.unmap = gic_routable_irq_domain_unmap,
900 	.xlate = gic_routable_irq_domain_xlate,
901 };
902 
903 const struct irq_domain_ops *gic_routable_irq_domain_ops =
904 					&gic_default_routable_irq_domain_ops;
905 
gic_init_bases(unsigned int gic_nr,int irq_start,void __iomem * dist_base,void __iomem * cpu_base,u32 percpu_offset,struct device_node * node)906 void __init gic_init_bases(unsigned int gic_nr, int irq_start,
907 			   void __iomem *dist_base, void __iomem *cpu_base,
908 			   u32 percpu_offset, struct device_node *node)
909 {
910 	irq_hw_number_t hwirq_base;
911 	struct gic_chip_data *gic;
912 	int gic_irqs, irq_base, i;
913 	int nr_routable_irqs;
914 
915 	BUG_ON(gic_nr >= MAX_GIC_NR);
916 
917 	gic = &gic_data[gic_nr];
918 #ifdef CONFIG_GIC_NON_BANKED
919 	if (percpu_offset) { /* Frankein-GIC without banked registers... */
920 		unsigned int cpu;
921 
922 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
923 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
924 		if (WARN_ON(!gic->dist_base.percpu_base ||
925 			    !gic->cpu_base.percpu_base)) {
926 			free_percpu(gic->dist_base.percpu_base);
927 			free_percpu(gic->cpu_base.percpu_base);
928 			return;
929 		}
930 
931 		for_each_possible_cpu(cpu) {
932 			u32 mpidr = cpu_logical_map(cpu);
933 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
934 			unsigned long offset = percpu_offset * core_id;
935 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) = dist_base + offset;
936 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = cpu_base + offset;
937 		}
938 
939 		gic_set_base_accessor(gic, gic_get_percpu_base);
940 	} else
941 #endif
942 	{			/* Normal, sane GIC... */
943 		WARN(percpu_offset,
944 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
945 		     percpu_offset);
946 		gic->dist_base.common_base = dist_base;
947 		gic->cpu_base.common_base = cpu_base;
948 		gic_set_base_accessor(gic, gic_get_common_base);
949 	}
950 
951 	/*
952 	 * Initialize the CPU interface map to all CPUs.
953 	 * It will be refined as each CPU probes its ID.
954 	 */
955 	for (i = 0; i < NR_GIC_CPU_IF; i++)
956 		gic_cpu_map[i] = 0xff;
957 
958 	/*
959 	 * For primary GICs, skip over SGIs.
960 	 * For secondary GICs, skip over PPIs, too.
961 	 */
962 	if (gic_nr == 0 && (irq_start & 31) > 0) {
963 		hwirq_base = 16;
964 		if (irq_start != -1)
965 			irq_start = (irq_start & ~31) + 16;
966 	} else {
967 		hwirq_base = 32;
968 	}
969 
970 	/*
971 	 * Find out how many interrupts are supported.
972 	 * The GIC only supports up to 1020 interrupt sources.
973 	 */
974 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
975 	gic_irqs = (gic_irqs + 1) * 32;
976 	if (gic_irqs > 1020)
977 		gic_irqs = 1020;
978 	gic->gic_irqs = gic_irqs;
979 
980 	gic_irqs -= hwirq_base; /* calculate # of irqs to allocate */
981 
982 	if (of_property_read_u32(node, "arm,routable-irqs",
983 				 &nr_routable_irqs)) {
984 		irq_base = irq_alloc_descs(irq_start, 16, gic_irqs,
985 					   numa_node_id());
986 		if (IS_ERR_VALUE(irq_base)) {
987 			WARN(1, "Cannot allocate irq_descs @ IRQ%d, assuming pre-allocated\n",
988 			     irq_start);
989 			irq_base = irq_start;
990 		}
991 
992 		gic->domain = irq_domain_add_legacy(node, gic_irqs, irq_base,
993 					hwirq_base, &gic_irq_domain_ops, gic);
994 	} else {
995 		gic->domain = irq_domain_add_linear(node, nr_routable_irqs,
996 						    &gic_irq_domain_ops,
997 						    gic);
998 	}
999 
1000 	if (WARN_ON(!gic->domain))
1001 		return;
1002 
1003 	if (gic_nr == 0) {
1004 #ifdef CONFIG_SMP
1005 		set_smp_cross_call(gic_raise_softirq);
1006 		register_cpu_notifier(&gic_cpu_notifier);
1007 #endif
1008 		set_handle_irq(gic_handle_irq);
1009 	}
1010 
1011 	gic_chip.flags |= gic_arch_extn.flags;
1012 	gic_dist_init(gic);
1013 	gic_cpu_init(gic);
1014 	gic_pm_init(gic);
1015 }
1016 
1017 #ifdef CONFIG_OF
1018 static int gic_cnt __initdata;
1019 
1020 static int __init
gic_of_init(struct device_node * node,struct device_node * parent)1021 gic_of_init(struct device_node *node, struct device_node *parent)
1022 {
1023 	void __iomem *cpu_base;
1024 	void __iomem *dist_base;
1025 	u32 percpu_offset;
1026 	int irq;
1027 
1028 	if (WARN_ON(!node))
1029 		return -ENODEV;
1030 
1031 	dist_base = of_iomap(node, 0);
1032 	WARN(!dist_base, "unable to map gic dist registers\n");
1033 
1034 	cpu_base = of_iomap(node, 1);
1035 	WARN(!cpu_base, "unable to map gic cpu registers\n");
1036 
1037 	if (of_property_read_u32(node, "cpu-offset", &percpu_offset))
1038 		percpu_offset = 0;
1039 
1040 	gic_init_bases(gic_cnt, -1, dist_base, cpu_base, percpu_offset, node);
1041 	if (!gic_cnt)
1042 		gic_init_physaddr(node);
1043 
1044 	if (parent) {
1045 		irq = irq_of_parse_and_map(node, 0);
1046 		gic_cascade_irq(gic_cnt, irq);
1047 	}
1048 	gic_cnt++;
1049 	return 0;
1050 }
1051 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1052 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1053 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1054 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1055 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1056 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1057 
1058 #endif
1059