• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:400
2  * This contains run_guest() which actually calls into the Host<->Guest
3  * Switcher and analyzes the return, such as determining if the Guest wants the
4  * Host to do something.  This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <asm/paravirt.h>
17 #include <asm/pgtable.h>
18 #include <asm/uaccess.h>
19 #include <asm/poll.h>
20 #include <asm/asm-offsets.h>
21 #include "lg.h"
22 
23 unsigned long switcher_addr;
24 struct page **lg_switcher_pages;
25 static struct vm_struct *switcher_vma;
26 
27 /* This One Big lock protects all inter-guest data structures. */
28 DEFINE_MUTEX(lguest_lock);
29 
30 /*H:010
31  * We need to set up the Switcher at a high virtual address.  Remember the
32  * Switcher is a few hundred bytes of assembler code which actually changes the
33  * CPU to run the Guest, and then changes back to the Host when a trap or
34  * interrupt happens.
35  *
36  * The Switcher code must be at the same virtual address in the Guest as the
37  * Host since it will be running as the switchover occurs.
38  *
39  * Trying to map memory at a particular address is an unusual thing to do, so
40  * it's not a simple one-liner.
41  */
map_switcher(void)42 static __init int map_switcher(void)
43 {
44 	int i, err;
45 
46 	/*
47 	 * Map the Switcher in to high memory.
48 	 *
49 	 * It turns out that if we choose the address 0xFFC00000 (4MB under the
50 	 * top virtual address), it makes setting up the page tables really
51 	 * easy.
52 	 */
53 
54 	/* We assume Switcher text fits into a single page. */
55 	if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
56 		printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
57 		       end_switcher_text - start_switcher_text);
58 		return -EINVAL;
59 	}
60 
61 	/*
62 	 * We allocate an array of struct page pointers.  map_vm_area() wants
63 	 * this, rather than just an array of pages.
64 	 */
65 	lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
66 				    * TOTAL_SWITCHER_PAGES,
67 				    GFP_KERNEL);
68 	if (!lg_switcher_pages) {
69 		err = -ENOMEM;
70 		goto out;
71 	}
72 
73 	/*
74 	 * Now we actually allocate the pages.  The Guest will see these pages,
75 	 * so we make sure they're zeroed.
76 	 */
77 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
78 		lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
79 		if (!lg_switcher_pages[i]) {
80 			err = -ENOMEM;
81 			goto free_some_pages;
82 		}
83 	}
84 
85 	/*
86 	 * We place the Switcher underneath the fixmap area, which is the
87 	 * highest virtual address we can get.  This is important, since we
88 	 * tell the Guest it can't access this memory, so we want its ceiling
89 	 * as high as possible.
90 	 */
91 	switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
92 
93 	/*
94 	 * Now we reserve the "virtual memory area" we want.  We might
95 	 * not get it in theory, but in practice it's worked so far.
96 	 * The end address needs +1 because __get_vm_area allocates an
97 	 * extra guard page, so we need space for that.
98 	 */
99 	switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
100 				     VM_ALLOC, switcher_addr, switcher_addr
101 				     + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
102 	if (!switcher_vma) {
103 		err = -ENOMEM;
104 		printk("lguest: could not map switcher pages high\n");
105 		goto free_pages;
106 	}
107 
108 	/*
109 	 * This code actually sets up the pages we've allocated to appear at
110 	 * switcher_addr.  map_vm_area() takes the vma we allocated above, the
111 	 * kind of pages we're mapping (kernel pages), and a pointer to our
112 	 * array of struct pages.
113 	 */
114 	err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, lg_switcher_pages);
115 	if (err) {
116 		printk("lguest: map_vm_area failed: %i\n", err);
117 		goto free_vma;
118 	}
119 
120 	/*
121 	 * Now the Switcher is mapped at the right address, we can't fail!
122 	 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
123 	 */
124 	memcpy(switcher_vma->addr, start_switcher_text,
125 	       end_switcher_text - start_switcher_text);
126 
127 	printk(KERN_INFO "lguest: mapped switcher at %p\n",
128 	       switcher_vma->addr);
129 	/* And we succeeded... */
130 	return 0;
131 
132 free_vma:
133 	vunmap(switcher_vma->addr);
134 free_pages:
135 	i = TOTAL_SWITCHER_PAGES;
136 free_some_pages:
137 	for (--i; i >= 0; i--)
138 		__free_pages(lg_switcher_pages[i], 0);
139 	kfree(lg_switcher_pages);
140 out:
141 	return err;
142 }
143 /*:*/
144 
145 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
unmap_switcher(void)146 static void unmap_switcher(void)
147 {
148 	unsigned int i;
149 
150 	/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
151 	vunmap(switcher_vma->addr);
152 	/* Now we just need to free the pages we copied the switcher into */
153 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
154 		__free_pages(lg_switcher_pages[i], 0);
155 	kfree(lg_switcher_pages);
156 }
157 
158 /*H:032
159  * Dealing With Guest Memory.
160  *
161  * Before we go too much further into the Host, we need to grok the routines
162  * we use to deal with Guest memory.
163  *
164  * When the Guest gives us (what it thinks is) a physical address, we can use
165  * the normal copy_from_user() & copy_to_user() on the corresponding place in
166  * the memory region allocated by the Launcher.
167  *
168  * But we can't trust the Guest: it might be trying to access the Launcher
169  * code.  We have to check that the range is below the pfn_limit the Launcher
170  * gave us.  We have to make sure that addr + len doesn't give us a false
171  * positive by overflowing, too.
172  */
lguest_address_ok(const struct lguest * lg,unsigned long addr,unsigned long len)173 bool lguest_address_ok(const struct lguest *lg,
174 		       unsigned long addr, unsigned long len)
175 {
176 	return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
177 }
178 
179 /*
180  * This routine copies memory from the Guest.  Here we can see how useful the
181  * kill_lguest() routine we met in the Launcher can be: we return a random
182  * value (all zeroes) instead of needing to return an error.
183  */
__lgread(struct lg_cpu * cpu,void * b,unsigned long addr,unsigned bytes)184 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
185 {
186 	if (!lguest_address_ok(cpu->lg, addr, bytes)
187 	    || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
188 		/* copy_from_user should do this, but as we rely on it... */
189 		memset(b, 0, bytes);
190 		kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
191 	}
192 }
193 
194 /* This is the write (copy into Guest) version. */
__lgwrite(struct lg_cpu * cpu,unsigned long addr,const void * b,unsigned bytes)195 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
196 	       unsigned bytes)
197 {
198 	if (!lguest_address_ok(cpu->lg, addr, bytes)
199 	    || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
200 		kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
201 }
202 /*:*/
203 
204 /*H:030
205  * Let's jump straight to the the main loop which runs the Guest.
206  * Remember, this is called by the Launcher reading /dev/lguest, and we keep
207  * going around and around until something interesting happens.
208  */
run_guest(struct lg_cpu * cpu,unsigned long __user * user)209 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
210 {
211 	/* We stop running once the Guest is dead. */
212 	while (!cpu->lg->dead) {
213 		unsigned int irq;
214 		bool more;
215 
216 		/* First we run any hypercalls the Guest wants done. */
217 		if (cpu->hcall)
218 			do_hypercalls(cpu);
219 
220 		/*
221 		 * It's possible the Guest did a NOTIFY hypercall to the
222 		 * Launcher.
223 		 */
224 		if (cpu->pending_notify) {
225 			/*
226 			 * Does it just needs to write to a registered
227 			 * eventfd (ie. the appropriate virtqueue thread)?
228 			 */
229 			if (!send_notify_to_eventfd(cpu)) {
230 				/* OK, we tell the main Launcher. */
231 				if (put_user(cpu->pending_notify, user))
232 					return -EFAULT;
233 				return sizeof(cpu->pending_notify);
234 			}
235 		}
236 
237 		/*
238 		 * All long-lived kernel loops need to check with this horrible
239 		 * thing called the freezer.  If the Host is trying to suspend,
240 		 * it stops us.
241 		 */
242 		try_to_freeze();
243 
244 		/* Check for signals */
245 		if (signal_pending(current))
246 			return -ERESTARTSYS;
247 
248 		/*
249 		 * Check if there are any interrupts which can be delivered now:
250 		 * if so, this sets up the hander to be executed when we next
251 		 * run the Guest.
252 		 */
253 		irq = interrupt_pending(cpu, &more);
254 		if (irq < LGUEST_IRQS)
255 			try_deliver_interrupt(cpu, irq, more);
256 
257 		/*
258 		 * Just make absolutely sure the Guest is still alive.  One of
259 		 * those hypercalls could have been fatal, for example.
260 		 */
261 		if (cpu->lg->dead)
262 			break;
263 
264 		/*
265 		 * If the Guest asked to be stopped, we sleep.  The Guest's
266 		 * clock timer will wake us.
267 		 */
268 		if (cpu->halted) {
269 			set_current_state(TASK_INTERRUPTIBLE);
270 			/*
271 			 * Just before we sleep, make sure no interrupt snuck in
272 			 * which we should be doing.
273 			 */
274 			if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
275 				set_current_state(TASK_RUNNING);
276 			else
277 				schedule();
278 			continue;
279 		}
280 
281 		/*
282 		 * OK, now we're ready to jump into the Guest.  First we put up
283 		 * the "Do Not Disturb" sign:
284 		 */
285 		local_irq_disable();
286 
287 		/* Actually run the Guest until something happens. */
288 		lguest_arch_run_guest(cpu);
289 
290 		/* Now we're ready to be interrupted or moved to other CPUs */
291 		local_irq_enable();
292 
293 		/* Now we deal with whatever happened to the Guest. */
294 		lguest_arch_handle_trap(cpu);
295 	}
296 
297 	/* Special case: Guest is 'dead' but wants a reboot. */
298 	if (cpu->lg->dead == ERR_PTR(-ERESTART))
299 		return -ERESTART;
300 
301 	/* The Guest is dead => "No such file or directory" */
302 	return -ENOENT;
303 }
304 
305 /*H:000
306  * Welcome to the Host!
307  *
308  * By this point your brain has been tickled by the Guest code and numbed by
309  * the Launcher code; prepare for it to be stretched by the Host code.  This is
310  * the heart.  Let's begin at the initialization routine for the Host's lg
311  * module.
312  */
init(void)313 static int __init init(void)
314 {
315 	int err;
316 
317 	/* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
318 	if (get_kernel_rpl() != 0) {
319 		printk("lguest is afraid of being a guest\n");
320 		return -EPERM;
321 	}
322 
323 	/* First we put the Switcher up in very high virtual memory. */
324 	err = map_switcher();
325 	if (err)
326 		goto out;
327 
328 	/* We might need to reserve an interrupt vector. */
329 	err = init_interrupts();
330 	if (err)
331 		goto unmap;
332 
333 	/* /dev/lguest needs to be registered. */
334 	err = lguest_device_init();
335 	if (err)
336 		goto free_interrupts;
337 
338 	/* Finally we do some architecture-specific setup. */
339 	lguest_arch_host_init();
340 
341 	/* All good! */
342 	return 0;
343 
344 free_interrupts:
345 	free_interrupts();
346 unmap:
347 	unmap_switcher();
348 out:
349 	return err;
350 }
351 
352 /* Cleaning up is just the same code, backwards.  With a little French. */
fini(void)353 static void __exit fini(void)
354 {
355 	lguest_device_remove();
356 	free_interrupts();
357 	unmap_switcher();
358 
359 	lguest_arch_host_fini();
360 }
361 /*:*/
362 
363 /*
364  * The Host side of lguest can be a module.  This is a nice way for people to
365  * play with it.
366  */
367 module_init(init);
368 module_exit(fini);
369 MODULE_LICENSE("GPL");
370 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
371