• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
3  * Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  * NON INFRINGEMENT.  See the GNU General Public License for more
14  * details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 /*P:450
21  * This file contains the x86-specific lguest code.  It used to be all
22  * mixed in with drivers/lguest/core.c but several foolhardy code slashers
23  * wrestled most of the dependencies out to here in preparation for porting
24  * lguest to other architectures (see what I mean by foolhardy?).
25  *
26  * This also contains a couple of non-obvious setup and teardown pieces which
27  * were implemented after days of debugging pain.
28 :*/
29 #include <linux/kernel.h>
30 #include <linux/start_kernel.h>
31 #include <linux/string.h>
32 #include <linux/console.h>
33 #include <linux/screen_info.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/clocksource.h>
37 #include <linux/clockchips.h>
38 #include <linux/cpu.h>
39 #include <linux/lguest.h>
40 #include <linux/lguest_launcher.h>
41 #include <asm/paravirt.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/desc.h>
46 #include <asm/setup.h>
47 #include <asm/lguest.h>
48 #include <asm/uaccess.h>
49 #include <asm/i387.h>
50 #include <asm/tlbflush.h>
51 #include "../lg.h"
52 
53 static int cpu_had_pge;
54 
55 static struct {
56 	unsigned long offset;
57 	unsigned short segment;
58 } lguest_entry;
59 
60 /* Offset from where switcher.S was compiled to where we've copied it */
switcher_offset(void)61 static unsigned long switcher_offset(void)
62 {
63 	return switcher_addr - (unsigned long)start_switcher_text;
64 }
65 
66 /* This cpu's struct lguest_pages (after the Switcher text page) */
lguest_pages(unsigned int cpu)67 static struct lguest_pages *lguest_pages(unsigned int cpu)
68 {
69 	return &(((struct lguest_pages *)(switcher_addr + PAGE_SIZE))[cpu]);
70 }
71 
72 static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
73 
74 /*S:010
75  * We approach the Switcher.
76  *
77  * Remember that each CPU has two pages which are visible to the Guest when it
78  * runs on that CPU.  This has to contain the state for that Guest: we copy the
79  * state in just before we run the Guest.
80  *
81  * Each Guest has "changed" flags which indicate what has changed in the Guest
82  * since it last ran.  We saw this set in interrupts_and_traps.c and
83  * segments.c.
84  */
copy_in_guest_info(struct lg_cpu * cpu,struct lguest_pages * pages)85 static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
86 {
87 	/*
88 	 * Copying all this data can be quite expensive.  We usually run the
89 	 * same Guest we ran last time (and that Guest hasn't run anywhere else
90 	 * meanwhile).  If that's not the case, we pretend everything in the
91 	 * Guest has changed.
92 	 */
93 	if (__this_cpu_read(lg_last_cpu) != cpu || cpu->last_pages != pages) {
94 		__this_cpu_write(lg_last_cpu, cpu);
95 		cpu->last_pages = pages;
96 		cpu->changed = CHANGED_ALL;
97 	}
98 
99 	/*
100 	 * These copies are pretty cheap, so we do them unconditionally: */
101 	/* Save the current Host top-level page directory.
102 	 */
103 	pages->state.host_cr3 = __pa(current->mm->pgd);
104 	/*
105 	 * Set up the Guest's page tables to see this CPU's pages (and no
106 	 * other CPU's pages).
107 	 */
108 	map_switcher_in_guest(cpu, pages);
109 	/*
110 	 * Set up the two "TSS" members which tell the CPU what stack to use
111 	 * for traps which do directly into the Guest (ie. traps at privilege
112 	 * level 1).
113 	 */
114 	pages->state.guest_tss.sp1 = cpu->esp1;
115 	pages->state.guest_tss.ss1 = cpu->ss1;
116 
117 	/* Copy direct-to-Guest trap entries. */
118 	if (cpu->changed & CHANGED_IDT)
119 		copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
120 
121 	/* Copy all GDT entries which the Guest can change. */
122 	if (cpu->changed & CHANGED_GDT)
123 		copy_gdt(cpu, pages->state.guest_gdt);
124 	/* If only the TLS entries have changed, copy them. */
125 	else if (cpu->changed & CHANGED_GDT_TLS)
126 		copy_gdt_tls(cpu, pages->state.guest_gdt);
127 
128 	/* Mark the Guest as unchanged for next time. */
129 	cpu->changed = 0;
130 }
131 
132 /* Finally: the code to actually call into the Switcher to run the Guest. */
run_guest_once(struct lg_cpu * cpu,struct lguest_pages * pages)133 static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
134 {
135 	/* This is a dummy value we need for GCC's sake. */
136 	unsigned int clobber;
137 
138 	/*
139 	 * Copy the guest-specific information into this CPU's "struct
140 	 * lguest_pages".
141 	 */
142 	copy_in_guest_info(cpu, pages);
143 
144 	/*
145 	 * Set the trap number to 256 (impossible value).  If we fault while
146 	 * switching to the Guest (bad segment registers or bug), this will
147 	 * cause us to abort the Guest.
148 	 */
149 	cpu->regs->trapnum = 256;
150 
151 	/*
152 	 * Now: we push the "eflags" register on the stack, then do an "lcall".
153 	 * This is how we change from using the kernel code segment to using
154 	 * the dedicated lguest code segment, as well as jumping into the
155 	 * Switcher.
156 	 *
157 	 * The lcall also pushes the old code segment (KERNEL_CS) onto the
158 	 * stack, then the address of this call.  This stack layout happens to
159 	 * exactly match the stack layout created by an interrupt...
160 	 */
161 	asm volatile("pushf; lcall *%4"
162 		     /*
163 		      * This is how we tell GCC that %eax ("a") and %ebx ("b")
164 		      * are changed by this routine.  The "=" means output.
165 		      */
166 		     : "=a"(clobber), "=b"(clobber)
167 		     /*
168 		      * %eax contains the pages pointer.  ("0" refers to the
169 		      * 0-th argument above, ie "a").  %ebx contains the
170 		      * physical address of the Guest's top-level page
171 		      * directory.
172 		      */
173 		     : "0"(pages),
174 		       "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir)),
175 		       "m"(lguest_entry)
176 		     /*
177 		      * We tell gcc that all these registers could change,
178 		      * which means we don't have to save and restore them in
179 		      * the Switcher.
180 		      */
181 		     : "memory", "%edx", "%ecx", "%edi", "%esi");
182 }
183 /*:*/
184 
185 /*M:002
186  * There are hooks in the scheduler which we can register to tell when we
187  * get kicked off the CPU (preempt_notifier_register()).  This would allow us
188  * to lazily disable SYSENTER which would regain some performance, and should
189  * also simplify copy_in_guest_info().  Note that we'd still need to restore
190  * things when we exit to Launcher userspace, but that's fairly easy.
191  *
192  * We could also try using these hooks for PGE, but that might be too expensive.
193  *
194  * The hooks were designed for KVM, but we can also put them to good use.
195 :*/
196 
197 /*H:040
198  * This is the i386-specific code to setup and run the Guest.  Interrupts
199  * are disabled: we own the CPU.
200  */
lguest_arch_run_guest(struct lg_cpu * cpu)201 void lguest_arch_run_guest(struct lg_cpu *cpu)
202 {
203 	/*
204 	 * Remember the awfully-named TS bit?  If the Guest has asked to set it
205 	 * we set it now, so we can trap and pass that trap to the Guest if it
206 	 * uses the FPU.
207 	 */
208 	if (cpu->ts && user_has_fpu())
209 		stts();
210 
211 	/*
212 	 * SYSENTER is an optimized way of doing system calls.  We can't allow
213 	 * it because it always jumps to privilege level 0.  A normal Guest
214 	 * won't try it because we don't advertise it in CPUID, but a malicious
215 	 * Guest (or malicious Guest userspace program) could, so we tell the
216 	 * CPU to disable it before running the Guest.
217 	 */
218 	if (boot_cpu_has(X86_FEATURE_SEP))
219 		wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
220 
221 	/*
222 	 * Now we actually run the Guest.  It will return when something
223 	 * interesting happens, and we can examine its registers to see what it
224 	 * was doing.
225 	 */
226 	run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
227 
228 	/*
229 	 * Note that the "regs" structure contains two extra entries which are
230 	 * not really registers: a trap number which says what interrupt or
231 	 * trap made the switcher code come back, and an error code which some
232 	 * traps set.
233 	 */
234 
235 	 /* Restore SYSENTER if it's supposed to be on. */
236 	 if (boot_cpu_has(X86_FEATURE_SEP))
237 		wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
238 
239 	/* Clear the host TS bit if it was set above. */
240 	if (cpu->ts && user_has_fpu())
241 		clts();
242 
243 	/*
244 	 * If the Guest page faulted, then the cr2 register will tell us the
245 	 * bad virtual address.  We have to grab this now, because once we
246 	 * re-enable interrupts an interrupt could fault and thus overwrite
247 	 * cr2, or we could even move off to a different CPU.
248 	 */
249 	if (cpu->regs->trapnum == 14)
250 		cpu->arch.last_pagefault = read_cr2();
251 	/*
252 	 * Similarly, if we took a trap because the Guest used the FPU,
253 	 * we have to restore the FPU it expects to see.
254 	 * math_state_restore() may sleep and we may even move off to
255 	 * a different CPU. So all the critical stuff should be done
256 	 * before this.
257 	 */
258 	else if (cpu->regs->trapnum == 7 && !user_has_fpu())
259 		math_state_restore();
260 }
261 
262 /*H:130
263  * Now we've examined the hypercall code; our Guest can make requests.
264  * Our Guest is usually so well behaved; it never tries to do things it isn't
265  * allowed to, and uses hypercalls instead.  Unfortunately, Linux's paravirtual
266  * infrastructure isn't quite complete, because it doesn't contain replacements
267  * for the Intel I/O instructions.  As a result, the Guest sometimes fumbles
268  * across one during the boot process as it probes for various things which are
269  * usually attached to a PC.
270  *
271  * When the Guest uses one of these instructions, we get a trap (General
272  * Protection Fault) and come here.  We see if it's one of those troublesome
273  * instructions and skip over it.  We return true if we did.
274  */
emulate_insn(struct lg_cpu * cpu)275 static int emulate_insn(struct lg_cpu *cpu)
276 {
277 	u8 insn;
278 	unsigned int insnlen = 0, in = 0, small_operand = 0;
279 	/*
280 	 * The eip contains the *virtual* address of the Guest's instruction:
281 	 * walk the Guest's page tables to find the "physical" address.
282 	 */
283 	unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
284 
285 	/*
286 	 * This must be the Guest kernel trying to do something, not userspace!
287 	 * The bottom two bits of the CS segment register are the privilege
288 	 * level.
289 	 */
290 	if ((cpu->regs->cs & 3) != GUEST_PL)
291 		return 0;
292 
293 	/* Decoding x86 instructions is icky. */
294 	insn = lgread(cpu, physaddr, u8);
295 
296 	/*
297 	 * Around 2.6.33, the kernel started using an emulation for the
298 	 * cmpxchg8b instruction in early boot on many configurations.  This
299 	 * code isn't paravirtualized, and it tries to disable interrupts.
300 	 * Ignore it, which will Mostly Work.
301 	 */
302 	if (insn == 0xfa) {
303 		/* "cli", or Clear Interrupt Enable instruction.  Skip it. */
304 		cpu->regs->eip++;
305 		return 1;
306 	}
307 
308 	/*
309 	 * 0x66 is an "operand prefix".  It means a 16, not 32 bit in/out.
310 	 */
311 	if (insn == 0x66) {
312 		small_operand = 1;
313 		/* The instruction is 1 byte so far, read the next byte. */
314 		insnlen = 1;
315 		insn = lgread(cpu, physaddr + insnlen, u8);
316 	}
317 
318 	/*
319 	 * We can ignore the lower bit for the moment and decode the 4 opcodes
320 	 * we need to emulate.
321 	 */
322 	switch (insn & 0xFE) {
323 	case 0xE4: /* in     <next byte>,%al */
324 		insnlen += 2;
325 		in = 1;
326 		break;
327 	case 0xEC: /* in     (%dx),%al */
328 		insnlen += 1;
329 		in = 1;
330 		break;
331 	case 0xE6: /* out    %al,<next byte> */
332 		insnlen += 2;
333 		break;
334 	case 0xEE: /* out    %al,(%dx) */
335 		insnlen += 1;
336 		break;
337 	default:
338 		/* OK, we don't know what this is, can't emulate. */
339 		return 0;
340 	}
341 
342 	/*
343 	 * If it was an "IN" instruction, they expect the result to be read
344 	 * into %eax, so we change %eax.  We always return all-ones, which
345 	 * traditionally means "there's nothing there".
346 	 */
347 	if (in) {
348 		/* Lower bit tells means it's a 32/16 bit access */
349 		if (insn & 0x1) {
350 			if (small_operand)
351 				cpu->regs->eax |= 0xFFFF;
352 			else
353 				cpu->regs->eax = 0xFFFFFFFF;
354 		} else
355 			cpu->regs->eax |= 0xFF;
356 	}
357 	/* Finally, we've "done" the instruction, so move past it. */
358 	cpu->regs->eip += insnlen;
359 	/* Success! */
360 	return 1;
361 }
362 
363 /*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
lguest_arch_handle_trap(struct lg_cpu * cpu)364 void lguest_arch_handle_trap(struct lg_cpu *cpu)
365 {
366 	switch (cpu->regs->trapnum) {
367 	case 13: /* We've intercepted a General Protection Fault. */
368 		/*
369 		 * Check if this was one of those annoying IN or OUT
370 		 * instructions which we need to emulate.  If so, we just go
371 		 * back into the Guest after we've done it.
372 		 */
373 		if (cpu->regs->errcode == 0) {
374 			if (emulate_insn(cpu))
375 				return;
376 		}
377 		break;
378 	case 14: /* We've intercepted a Page Fault. */
379 		/*
380 		 * The Guest accessed a virtual address that wasn't mapped.
381 		 * This happens a lot: we don't actually set up most of the page
382 		 * tables for the Guest at all when we start: as it runs it asks
383 		 * for more and more, and we set them up as required. In this
384 		 * case, we don't even tell the Guest that the fault happened.
385 		 *
386 		 * The errcode tells whether this was a read or a write, and
387 		 * whether kernel or userspace code.
388 		 */
389 		if (demand_page(cpu, cpu->arch.last_pagefault,
390 				cpu->regs->errcode))
391 			return;
392 
393 		/*
394 		 * OK, it's really not there (or not OK): the Guest needs to
395 		 * know.  We write out the cr2 value so it knows where the
396 		 * fault occurred.
397 		 *
398 		 * Note that if the Guest were really messed up, this could
399 		 * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
400 		 * lg->lguest_data could be NULL
401 		 */
402 		if (cpu->lg->lguest_data &&
403 		    put_user(cpu->arch.last_pagefault,
404 			     &cpu->lg->lguest_data->cr2))
405 			kill_guest(cpu, "Writing cr2");
406 		break;
407 	case 7: /* We've intercepted a Device Not Available fault. */
408 		/*
409 		 * If the Guest doesn't want to know, we already restored the
410 		 * Floating Point Unit, so we just continue without telling it.
411 		 */
412 		if (!cpu->ts)
413 			return;
414 		break;
415 	case 32 ... 255:
416 		/*
417 		 * These values mean a real interrupt occurred, in which case
418 		 * the Host handler has already been run. We just do a
419 		 * friendly check if another process should now be run, then
420 		 * return to run the Guest again.
421 		 */
422 		cond_resched();
423 		return;
424 	case LGUEST_TRAP_ENTRY:
425 		/*
426 		 * Our 'struct hcall_args' maps directly over our regs: we set
427 		 * up the pointer now to indicate a hypercall is pending.
428 		 */
429 		cpu->hcall = (struct hcall_args *)cpu->regs;
430 		return;
431 	}
432 
433 	/* We didn't handle the trap, so it needs to go to the Guest. */
434 	if (!deliver_trap(cpu, cpu->regs->trapnum))
435 		/*
436 		 * If the Guest doesn't have a handler (either it hasn't
437 		 * registered any yet, or it's one of the faults we don't let
438 		 * it handle), it dies with this cryptic error message.
439 		 */
440 		kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
441 			   cpu->regs->trapnum, cpu->regs->eip,
442 			   cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
443 			   : cpu->regs->errcode);
444 }
445 
446 /*
447  * Now we can look at each of the routines this calls, in increasing order of
448  * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
449  * deliver_trap() and demand_page().  After all those, we'll be ready to
450  * examine the Switcher, and our philosophical understanding of the Host/Guest
451  * duality will be complete.
452 :*/
adjust_pge(void * on)453 static void adjust_pge(void *on)
454 {
455 	if (on)
456 		cr4_set_bits(X86_CR4_PGE);
457 	else
458 		cr4_clear_bits(X86_CR4_PGE);
459 }
460 
461 /*H:020
462  * Now the Switcher is mapped and every thing else is ready, we need to do
463  * some more i386-specific initialization.
464  */
lguest_arch_host_init(void)465 void __init lguest_arch_host_init(void)
466 {
467 	int i;
468 
469 	/*
470 	 * Most of the x86/switcher_32.S doesn't care that it's been moved; on
471 	 * Intel, jumps are relative, and it doesn't access any references to
472 	 * external code or data.
473 	 *
474 	 * The only exception is the interrupt handlers in switcher.S: their
475 	 * addresses are placed in a table (default_idt_entries), so we need to
476 	 * update the table with the new addresses.  switcher_offset() is a
477 	 * convenience function which returns the distance between the
478 	 * compiled-in switcher code and the high-mapped copy we just made.
479 	 */
480 	for (i = 0; i < IDT_ENTRIES; i++)
481 		default_idt_entries[i] += switcher_offset();
482 
483 	/*
484 	 * Set up the Switcher's per-cpu areas.
485 	 *
486 	 * Each CPU gets two pages of its own within the high-mapped region
487 	 * (aka. "struct lguest_pages").  Much of this can be initialized now,
488 	 * but some depends on what Guest we are running (which is set up in
489 	 * copy_in_guest_info()).
490 	 */
491 	for_each_possible_cpu(i) {
492 		/* lguest_pages() returns this CPU's two pages. */
493 		struct lguest_pages *pages = lguest_pages(i);
494 		/* This is a convenience pointer to make the code neater. */
495 		struct lguest_ro_state *state = &pages->state;
496 
497 		/*
498 		 * The Global Descriptor Table: the Host has a different one
499 		 * for each CPU.  We keep a descriptor for the GDT which says
500 		 * where it is and how big it is (the size is actually the last
501 		 * byte, not the size, hence the "-1").
502 		 */
503 		state->host_gdt_desc.size = GDT_SIZE-1;
504 		state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
505 
506 		/*
507 		 * All CPUs on the Host use the same Interrupt Descriptor
508 		 * Table, so we just use store_idt(), which gets this CPU's IDT
509 		 * descriptor.
510 		 */
511 		store_idt(&state->host_idt_desc);
512 
513 		/*
514 		 * The descriptors for the Guest's GDT and IDT can be filled
515 		 * out now, too.  We copy the GDT & IDT into ->guest_gdt and
516 		 * ->guest_idt before actually running the Guest.
517 		 */
518 		state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
519 		state->guest_idt_desc.address = (long)&state->guest_idt;
520 		state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
521 		state->guest_gdt_desc.address = (long)&state->guest_gdt;
522 
523 		/*
524 		 * We know where we want the stack to be when the Guest enters
525 		 * the Switcher: in pages->regs.  The stack grows upwards, so
526 		 * we start it at the end of that structure.
527 		 */
528 		state->guest_tss.sp0 = (long)(&pages->regs + 1);
529 		/*
530 		 * And this is the GDT entry to use for the stack: we keep a
531 		 * couple of special LGUEST entries.
532 		 */
533 		state->guest_tss.ss0 = LGUEST_DS;
534 
535 		/*
536 		 * x86 can have a finegrained bitmap which indicates what I/O
537 		 * ports the process can use.  We set it to the end of our
538 		 * structure, meaning "none".
539 		 */
540 		state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
541 
542 		/*
543 		 * Some GDT entries are the same across all Guests, so we can
544 		 * set them up now.
545 		 */
546 		setup_default_gdt_entries(state);
547 		/* Most IDT entries are the same for all Guests, too.*/
548 		setup_default_idt_entries(state, default_idt_entries);
549 
550 		/*
551 		 * The Host needs to be able to use the LGUEST segments on this
552 		 * CPU, too, so put them in the Host GDT.
553 		 */
554 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
555 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
556 	}
557 
558 	/*
559 	 * In the Switcher, we want the %cs segment register to use the
560 	 * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
561 	 * it will be undisturbed when we switch.  To change %cs and jump we
562 	 * need this structure to feed to Intel's "lcall" instruction.
563 	 */
564 	lguest_entry.offset = (long)switch_to_guest + switcher_offset();
565 	lguest_entry.segment = LGUEST_CS;
566 
567 	/*
568 	 * Finally, we need to turn off "Page Global Enable".  PGE is an
569 	 * optimization where page table entries are specially marked to show
570 	 * they never change.  The Host kernel marks all the kernel pages this
571 	 * way because it's always present, even when userspace is running.
572 	 *
573 	 * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
574 	 * switch to the Guest kernel.  If you don't disable this on all CPUs,
575 	 * you'll get really weird bugs that you'll chase for two days.
576 	 *
577 	 * I used to turn PGE off every time we switched to the Guest and back
578 	 * on when we return, but that slowed the Switcher down noticibly.
579 	 */
580 
581 	/*
582 	 * We don't need the complexity of CPUs coming and going while we're
583 	 * doing this.
584 	 */
585 	get_online_cpus();
586 	if (cpu_has_pge) { /* We have a broader idea of "global". */
587 		/* Remember that this was originally set (for cleanup). */
588 		cpu_had_pge = 1;
589 		/*
590 		 * adjust_pge is a helper function which sets or unsets the PGE
591 		 * bit on its CPU, depending on the argument (0 == unset).
592 		 */
593 		on_each_cpu(adjust_pge, (void *)0, 1);
594 		/* Turn off the feature in the global feature set. */
595 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
596 	}
597 	put_online_cpus();
598 }
599 /*:*/
600 
lguest_arch_host_fini(void)601 void __exit lguest_arch_host_fini(void)
602 {
603 	/* If we had PGE before we started, turn it back on now. */
604 	get_online_cpus();
605 	if (cpu_had_pge) {
606 		set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
607 		/* adjust_pge's argument "1" means set PGE. */
608 		on_each_cpu(adjust_pge, (void *)1, 1);
609 	}
610 	put_online_cpus();
611 }
612 
613 
614 /*H:122 The i386-specific hypercalls simply farm out to the right functions. */
lguest_arch_do_hcall(struct lg_cpu * cpu,struct hcall_args * args)615 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
616 {
617 	switch (args->arg0) {
618 	case LHCALL_LOAD_GDT_ENTRY:
619 		load_guest_gdt_entry(cpu, args->arg1, args->arg2, args->arg3);
620 		break;
621 	case LHCALL_LOAD_IDT_ENTRY:
622 		load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
623 		break;
624 	case LHCALL_LOAD_TLS:
625 		guest_load_tls(cpu, args->arg1);
626 		break;
627 	default:
628 		/* Bad Guest.  Bad! */
629 		return -EIO;
630 	}
631 	return 0;
632 }
633 
634 /*H:126 i386-specific hypercall initialization: */
lguest_arch_init_hypercalls(struct lg_cpu * cpu)635 int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
636 {
637 	u32 tsc_speed;
638 
639 	/*
640 	 * The pointer to the Guest's "struct lguest_data" is the only argument.
641 	 * We check that address now.
642 	 */
643 	if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
644 			       sizeof(*cpu->lg->lguest_data)))
645 		return -EFAULT;
646 
647 	/*
648 	 * Having checked it, we simply set lg->lguest_data to point straight
649 	 * into the Launcher's memory at the right place and then use
650 	 * copy_to_user/from_user from now on, instead of lgread/write.  I put
651 	 * this in to show that I'm not immune to writing stupid
652 	 * optimizations.
653 	 */
654 	cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
655 
656 	/*
657 	 * We insist that the Time Stamp Counter exist and doesn't change with
658 	 * cpu frequency.  Some devious chip manufacturers decided that TSC
659 	 * changes could be handled in software.  I decided that time going
660 	 * backwards might be good for benchmarks, but it's bad for users.
661 	 *
662 	 * We also insist that the TSC be stable: the kernel detects unreliable
663 	 * TSCs for its own purposes, and we use that here.
664 	 */
665 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
666 		tsc_speed = tsc_khz;
667 	else
668 		tsc_speed = 0;
669 	if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
670 		return -EFAULT;
671 
672 	/* The interrupt code might not like the system call vector. */
673 	if (!check_syscall_vector(cpu->lg))
674 		kill_guest(cpu, "bad syscall vector");
675 
676 	return 0;
677 }
678 /*:*/
679 
680 /*L:030
681  * Most of the Guest's registers are left alone: we used get_zeroed_page() to
682  * allocate the structure, so they will be 0.
683  */
lguest_arch_setup_regs(struct lg_cpu * cpu,unsigned long start)684 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
685 {
686 	struct lguest_regs *regs = cpu->regs;
687 
688 	/*
689 	 * There are four "segment" registers which the Guest needs to boot:
690 	 * The "code segment" register (cs) refers to the kernel code segment
691 	 * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
692 	 * refer to the kernel data segment __KERNEL_DS.
693 	 *
694 	 * The privilege level is packed into the lower bits.  The Guest runs
695 	 * at privilege level 1 (GUEST_PL).
696 	 */
697 	regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
698 	regs->cs = __KERNEL_CS|GUEST_PL;
699 
700 	/*
701 	 * The "eflags" register contains miscellaneous flags.  Bit 1 (0x002)
702 	 * is supposed to always be "1".  Bit 9 (0x200) controls whether
703 	 * interrupts are enabled.  We always leave interrupts enabled while
704 	 * running the Guest.
705 	 */
706 	regs->eflags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
707 
708 	/*
709 	 * The "Extended Instruction Pointer" register says where the Guest is
710 	 * running.
711 	 */
712 	regs->eip = start;
713 
714 	/*
715 	 * %esi points to our boot information, at physical address 0, so don't
716 	 * touch it.
717 	 */
718 
719 	/* There are a couple of GDT entries the Guest expects at boot. */
720 	setup_guest_gdt(cpu);
721 }
722