• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/mount.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 
23 #define DM_MSG_PREFIX "table"
24 
25 #define MAX_DEPTH 16
26 #define NODE_SIZE L1_CACHE_BYTES
27 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
28 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 
30 struct dm_table {
31 	struct mapped_device *md;
32 	unsigned type;
33 
34 	/* btree table */
35 	unsigned int depth;
36 	unsigned int counts[MAX_DEPTH];	/* in nodes */
37 	sector_t *index[MAX_DEPTH];
38 
39 	unsigned int num_targets;
40 	unsigned int num_allocated;
41 	sector_t *highs;
42 	struct dm_target *targets;
43 
44 	struct target_type *immutable_target_type;
45 	unsigned integrity_supported:1;
46 	unsigned singleton:1;
47 
48 	/*
49 	 * Indicates the rw permissions for the new logical
50 	 * device.  This should be a combination of FMODE_READ
51 	 * and FMODE_WRITE.
52 	 */
53 	fmode_t mode;
54 
55 	/* a list of devices used by this table */
56 	struct list_head devices;
57 
58 	/* events get handed up using this callback */
59 	void (*event_fn)(void *);
60 	void *event_context;
61 
62 	struct dm_md_mempools *mempools;
63 
64 	struct list_head target_callbacks;
65 };
66 
67 /*
68  * Similar to ceiling(log_size(n))
69  */
int_log(unsigned int n,unsigned int base)70 static unsigned int int_log(unsigned int n, unsigned int base)
71 {
72 	int result = 0;
73 
74 	while (n > 1) {
75 		n = dm_div_up(n, base);
76 		result++;
77 	}
78 
79 	return result;
80 }
81 
82 /*
83  * Calculate the index of the child node of the n'th node k'th key.
84  */
get_child(unsigned int n,unsigned int k)85 static inline unsigned int get_child(unsigned int n, unsigned int k)
86 {
87 	return (n * CHILDREN_PER_NODE) + k;
88 }
89 
90 /*
91  * Return the n'th node of level l from table t.
92  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)93 static inline sector_t *get_node(struct dm_table *t,
94 				 unsigned int l, unsigned int n)
95 {
96 	return t->index[l] + (n * KEYS_PER_NODE);
97 }
98 
99 /*
100  * Return the highest key that you could lookup from the n'th
101  * node on level l of the btree.
102  */
high(struct dm_table * t,unsigned int l,unsigned int n)103 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
104 {
105 	for (; l < t->depth - 1; l++)
106 		n = get_child(n, CHILDREN_PER_NODE - 1);
107 
108 	if (n >= t->counts[l])
109 		return (sector_t) - 1;
110 
111 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
112 }
113 
114 /*
115  * Fills in a level of the btree based on the highs of the level
116  * below it.
117  */
setup_btree_index(unsigned int l,struct dm_table * t)118 static int setup_btree_index(unsigned int l, struct dm_table *t)
119 {
120 	unsigned int n, k;
121 	sector_t *node;
122 
123 	for (n = 0U; n < t->counts[l]; n++) {
124 		node = get_node(t, l, n);
125 
126 		for (k = 0U; k < KEYS_PER_NODE; k++)
127 			node[k] = high(t, l + 1, get_child(n, k));
128 	}
129 
130 	return 0;
131 }
132 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)133 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
134 {
135 	unsigned long size;
136 	void *addr;
137 
138 	/*
139 	 * Check that we're not going to overflow.
140 	 */
141 	if (nmemb > (ULONG_MAX / elem_size))
142 		return NULL;
143 
144 	size = nmemb * elem_size;
145 	addr = vzalloc(size);
146 
147 	return addr;
148 }
149 EXPORT_SYMBOL(dm_vcalloc);
150 
151 /*
152  * highs, and targets are managed as dynamic arrays during a
153  * table load.
154  */
alloc_targets(struct dm_table * t,unsigned int num)155 static int alloc_targets(struct dm_table *t, unsigned int num)
156 {
157 	sector_t *n_highs;
158 	struct dm_target *n_targets;
159 
160 	/*
161 	 * Allocate both the target array and offset array at once.
162 	 * Append an empty entry to catch sectors beyond the end of
163 	 * the device.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	memset(n_highs, -1, sizeof(*n_highs) * num);
173 	vfree(t->highs);
174 
175 	t->num_allocated = num;
176 	t->highs = n_highs;
177 	t->targets = n_targets;
178 
179 	return 0;
180 }
181 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)182 int dm_table_create(struct dm_table **result, fmode_t mode,
183 		    unsigned num_targets, struct mapped_device *md)
184 {
185 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186 
187 	if (!t)
188 		return -ENOMEM;
189 
190 	INIT_LIST_HEAD(&t->devices);
191 	INIT_LIST_HEAD(&t->target_callbacks);
192 
193 	if (!num_targets)
194 		num_targets = KEYS_PER_NODE;
195 
196 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
197 
198 	if (!num_targets) {
199 		kfree(t);
200 		return -ENOMEM;
201 	}
202 
203 	if (alloc_targets(t, num_targets)) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	t->mode = mode;
209 	t->md = md;
210 	*result = t;
211 	return 0;
212 }
213 
free_devices(struct list_head * devices,struct mapped_device * md)214 static void free_devices(struct list_head *devices, struct mapped_device *md)
215 {
216 	struct list_head *tmp, *next;
217 
218 	list_for_each_safe(tmp, next, devices) {
219 		struct dm_dev_internal *dd =
220 		    list_entry(tmp, struct dm_dev_internal, list);
221 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 		       dm_device_name(md), dd->dm_dev->name);
223 		dm_put_table_device(md, dd->dm_dev);
224 		kfree(dd);
225 	}
226 }
227 
dm_table_destroy(struct dm_table * t)228 void dm_table_destroy(struct dm_table *t)
229 {
230 	unsigned int i;
231 
232 	if (!t)
233 		return;
234 
235 	/* free the indexes */
236 	if (t->depth >= 2)
237 		vfree(t->index[t->depth - 2]);
238 
239 	/* free the targets */
240 	for (i = 0; i < t->num_targets; i++) {
241 		struct dm_target *tgt = t->targets + i;
242 
243 		if (tgt->type->dtr)
244 			tgt->type->dtr(tgt);
245 
246 		dm_put_target_type(tgt->type);
247 	}
248 
249 	vfree(t->highs);
250 
251 	/* free the device list */
252 	free_devices(&t->devices, t->md);
253 
254 	dm_free_md_mempools(t->mempools);
255 
256 	kfree(t);
257 }
258 
259 /*
260  * See if we've already got a device in the list.
261  */
find_device(struct list_head * l,dev_t dev)262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263 {
264 	struct dm_dev_internal *dd;
265 
266 	list_for_each_entry (dd, l, list)
267 		if (dd->dm_dev->bdev->bd_dev == dev)
268 			return dd;
269 
270 	return NULL;
271 }
272 
273 /*
274  * If possible, this checks an area of a destination device is invalid.
275  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 				  sector_t start, sector_t len, void *data)
278 {
279 	struct request_queue *q;
280 	struct queue_limits *limits = data;
281 	struct block_device *bdev = dev->bdev;
282 	sector_t dev_size =
283 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
284 	unsigned short logical_block_size_sectors =
285 		limits->logical_block_size >> SECTOR_SHIFT;
286 	char b[BDEVNAME_SIZE];
287 
288 	/*
289 	 * Some devices exist without request functions,
290 	 * such as loop devices not yet bound to backing files.
291 	 * Forbid the use of such devices.
292 	 */
293 	q = bdev_get_queue(bdev);
294 	if (!q || !q->make_request_fn) {
295 		DMWARN("%s: %s is not yet initialised: "
296 		       "start=%llu, len=%llu, dev_size=%llu",
297 		       dm_device_name(ti->table->md), bdevname(bdev, b),
298 		       (unsigned long long)start,
299 		       (unsigned long long)len,
300 		       (unsigned long long)dev_size);
301 		return 1;
302 	}
303 
304 	if (!dev_size)
305 		return 0;
306 
307 	if ((start >= dev_size) || (start + len > dev_size)) {
308 		DMWARN("%s: %s too small for target: "
309 		       "start=%llu, len=%llu, dev_size=%llu",
310 		       dm_device_name(ti->table->md), bdevname(bdev, b),
311 		       (unsigned long long)start,
312 		       (unsigned long long)len,
313 		       (unsigned long long)dev_size);
314 		return 1;
315 	}
316 
317 	if (logical_block_size_sectors <= 1)
318 		return 0;
319 
320 	if (start & (logical_block_size_sectors - 1)) {
321 		DMWARN("%s: start=%llu not aligned to h/w "
322 		       "logical block size %u of %s",
323 		       dm_device_name(ti->table->md),
324 		       (unsigned long long)start,
325 		       limits->logical_block_size, bdevname(bdev, b));
326 		return 1;
327 	}
328 
329 	if (len & (logical_block_size_sectors - 1)) {
330 		DMWARN("%s: len=%llu not aligned to h/w "
331 		       "logical block size %u of %s",
332 		       dm_device_name(ti->table->md),
333 		       (unsigned long long)len,
334 		       limits->logical_block_size, bdevname(bdev, b));
335 		return 1;
336 	}
337 
338 	return 0;
339 }
340 
341 /*
342  * This upgrades the mode on an already open dm_dev, being
343  * careful to leave things as they were if we fail to reopen the
344  * device and not to touch the existing bdev field in case
345  * it is accessed concurrently inside dm_table_any_congested().
346  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)347 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
348 			struct mapped_device *md)
349 {
350 	int r;
351 	struct dm_dev *old_dev, *new_dev;
352 
353 	old_dev = dd->dm_dev;
354 
355 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
356 				dd->dm_dev->mode | new_mode, &new_dev);
357 	if (r)
358 		return r;
359 
360 	dd->dm_dev = new_dev;
361 	dm_put_table_device(md, old_dev);
362 
363 	return 0;
364 }
365 
366 /*
367  * Add a device to the list, or just increment the usage count if
368  * it's already present.
369  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)370 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
371 		  struct dm_dev **result)
372 {
373 	int r;
374 	dev_t uninitialized_var(dev);
375 	struct dm_dev_internal *dd;
376 	unsigned int major, minor;
377 	struct dm_table *t = ti->table;
378 	char dummy;
379 
380 	BUG_ON(!t);
381 
382 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
383 		/* Extract the major/minor numbers */
384 		dev = MKDEV(major, minor);
385 		if (MAJOR(dev) != major || MINOR(dev) != minor)
386 			return -EOVERFLOW;
387 	} else {
388 		/* convert the path to a device */
389 		struct block_device *bdev = lookup_bdev(path);
390 
391 		if (IS_ERR(bdev))
392 			return PTR_ERR(bdev);
393 		dev = bdev->bd_dev;
394 		bdput(bdev);
395 	}
396 
397 	dd = find_device(&t->devices, dev);
398 	if (!dd) {
399 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
400 		if (!dd)
401 			return -ENOMEM;
402 
403 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
404 			kfree(dd);
405 			return r;
406 		}
407 
408 		atomic_set(&dd->count, 0);
409 		list_add(&dd->list, &t->devices);
410 
411 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
412 		r = upgrade_mode(dd, mode, t->md);
413 		if (r)
414 			return r;
415 	}
416 	atomic_inc(&dd->count);
417 
418 	*result = dd->dm_dev;
419 	return 0;
420 }
421 EXPORT_SYMBOL(dm_get_device);
422 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)423 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
424 				sector_t start, sector_t len, void *data)
425 {
426 	struct queue_limits *limits = data;
427 	struct block_device *bdev = dev->bdev;
428 	struct request_queue *q = bdev_get_queue(bdev);
429 	char b[BDEVNAME_SIZE];
430 
431 	if (unlikely(!q)) {
432 		DMWARN("%s: Cannot set limits for nonexistent device %s",
433 		       dm_device_name(ti->table->md), bdevname(bdev, b));
434 		return 0;
435 	}
436 
437 	if (bdev_stack_limits(limits, bdev, start) < 0)
438 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
439 		       "physical_block_size=%u, logical_block_size=%u, "
440 		       "alignment_offset=%u, start=%llu",
441 		       dm_device_name(ti->table->md), bdevname(bdev, b),
442 		       q->limits.physical_block_size,
443 		       q->limits.logical_block_size,
444 		       q->limits.alignment_offset,
445 		       (unsigned long long) start << SECTOR_SHIFT);
446 
447 	/*
448 	 * Check if merge fn is supported.
449 	 * If not we'll force DM to use PAGE_SIZE or
450 	 * smaller I/O, just to be safe.
451 	 */
452 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
453 		blk_limits_max_hw_sectors(limits,
454 					  (unsigned int) (PAGE_SIZE >> 9));
455 	return 0;
456 }
457 
458 /*
459  * Decrement a device's use count and remove it if necessary.
460  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462 {
463 	int found = 0;
464 	struct list_head *devices = &ti->table->devices;
465 	struct dm_dev_internal *dd;
466 
467 	list_for_each_entry(dd, devices, list) {
468 		if (dd->dm_dev == d) {
469 			found = 1;
470 			break;
471 		}
472 	}
473 	if (!found) {
474 		DMWARN("%s: device %s not in table devices list",
475 		       dm_device_name(ti->table->md), d->name);
476 		return;
477 	}
478 	if (atomic_dec_and_test(&dd->count)) {
479 		dm_put_table_device(ti->table->md, d);
480 		list_del(&dd->list);
481 		kfree(dd);
482 	}
483 }
484 EXPORT_SYMBOL(dm_put_device);
485 
486 /*
487  * Checks to see if the target joins onto the end of the table.
488  */
adjoin(struct dm_table * table,struct dm_target * ti)489 static int adjoin(struct dm_table *table, struct dm_target *ti)
490 {
491 	struct dm_target *prev;
492 
493 	if (!table->num_targets)
494 		return !ti->begin;
495 
496 	prev = &table->targets[table->num_targets - 1];
497 	return (ti->begin == (prev->begin + prev->len));
498 }
499 
500 /*
501  * Used to dynamically allocate the arg array.
502  *
503  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504  * process messages even if some device is suspended. These messages have a
505  * small fixed number of arguments.
506  *
507  * On the other hand, dm-switch needs to process bulk data using messages and
508  * excessive use of GFP_NOIO could cause trouble.
509  */
realloc_argv(unsigned * array_size,char ** old_argv)510 static char **realloc_argv(unsigned *array_size, char **old_argv)
511 {
512 	char **argv;
513 	unsigned new_size;
514 	gfp_t gfp;
515 
516 	if (*array_size) {
517 		new_size = *array_size * 2;
518 		gfp = GFP_KERNEL;
519 	} else {
520 		new_size = 8;
521 		gfp = GFP_NOIO;
522 	}
523 	argv = kmalloc(new_size * sizeof(*argv), gfp);
524 	if (argv) {
525 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
526 		*array_size = new_size;
527 	}
528 
529 	kfree(old_argv);
530 	return argv;
531 }
532 
533 /*
534  * Destructively splits up the argument list to pass to ctr.
535  */
dm_split_args(int * argc,char *** argvp,char * input)536 int dm_split_args(int *argc, char ***argvp, char *input)
537 {
538 	char *start, *end = input, *out, **argv = NULL;
539 	unsigned array_size = 0;
540 
541 	*argc = 0;
542 
543 	if (!input) {
544 		*argvp = NULL;
545 		return 0;
546 	}
547 
548 	argv = realloc_argv(&array_size, argv);
549 	if (!argv)
550 		return -ENOMEM;
551 
552 	while (1) {
553 		/* Skip whitespace */
554 		start = skip_spaces(end);
555 
556 		if (!*start)
557 			break;	/* success, we hit the end */
558 
559 		/* 'out' is used to remove any back-quotes */
560 		end = out = start;
561 		while (*end) {
562 			/* Everything apart from '\0' can be quoted */
563 			if (*end == '\\' && *(end + 1)) {
564 				*out++ = *(end + 1);
565 				end += 2;
566 				continue;
567 			}
568 
569 			if (isspace(*end))
570 				break;	/* end of token */
571 
572 			*out++ = *end++;
573 		}
574 
575 		/* have we already filled the array ? */
576 		if ((*argc + 1) > array_size) {
577 			argv = realloc_argv(&array_size, argv);
578 			if (!argv)
579 				return -ENOMEM;
580 		}
581 
582 		/* we know this is whitespace */
583 		if (*end)
584 			end++;
585 
586 		/* terminate the string and put it in the array */
587 		*out = '\0';
588 		argv[*argc] = start;
589 		(*argc)++;
590 	}
591 
592 	*argvp = argv;
593 	return 0;
594 }
595 
596 /*
597  * Impose necessary and sufficient conditions on a devices's table such
598  * that any incoming bio which respects its logical_block_size can be
599  * processed successfully.  If it falls across the boundary between
600  * two or more targets, the size of each piece it gets split into must
601  * be compatible with the logical_block_size of the target processing it.
602  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604 						 struct queue_limits *limits)
605 {
606 	/*
607 	 * This function uses arithmetic modulo the logical_block_size
608 	 * (in units of 512-byte sectors).
609 	 */
610 	unsigned short device_logical_block_size_sects =
611 		limits->logical_block_size >> SECTOR_SHIFT;
612 
613 	/*
614 	 * Offset of the start of the next table entry, mod logical_block_size.
615 	 */
616 	unsigned short next_target_start = 0;
617 
618 	/*
619 	 * Given an aligned bio that extends beyond the end of a
620 	 * target, how many sectors must the next target handle?
621 	 */
622 	unsigned short remaining = 0;
623 
624 	struct dm_target *uninitialized_var(ti);
625 	struct queue_limits ti_limits;
626 	unsigned i = 0;
627 
628 	/*
629 	 * Check each entry in the table in turn.
630 	 */
631 	while (i < dm_table_get_num_targets(table)) {
632 		ti = dm_table_get_target(table, i++);
633 
634 		blk_set_stacking_limits(&ti_limits);
635 
636 		/* combine all target devices' limits */
637 		if (ti->type->iterate_devices)
638 			ti->type->iterate_devices(ti, dm_set_device_limits,
639 						  &ti_limits);
640 
641 		/*
642 		 * If the remaining sectors fall entirely within this
643 		 * table entry are they compatible with its logical_block_size?
644 		 */
645 		if (remaining < ti->len &&
646 		    remaining & ((ti_limits.logical_block_size >>
647 				  SECTOR_SHIFT) - 1))
648 			break;	/* Error */
649 
650 		next_target_start =
651 		    (unsigned short) ((next_target_start + ti->len) &
652 				      (device_logical_block_size_sects - 1));
653 		remaining = next_target_start ?
654 		    device_logical_block_size_sects - next_target_start : 0;
655 	}
656 
657 	if (remaining) {
658 		DMWARN("%s: table line %u (start sect %llu len %llu) "
659 		       "not aligned to h/w logical block size %u",
660 		       dm_device_name(table->md), i,
661 		       (unsigned long long) ti->begin,
662 		       (unsigned long long) ti->len,
663 		       limits->logical_block_size);
664 		return -EINVAL;
665 	}
666 
667 	return 0;
668 }
669 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)670 int dm_table_add_target(struct dm_table *t, const char *type,
671 			sector_t start, sector_t len, char *params)
672 {
673 	int r = -EINVAL, argc;
674 	char **argv;
675 	struct dm_target *tgt;
676 
677 	if (t->singleton) {
678 		DMERR("%s: target type %s must appear alone in table",
679 		      dm_device_name(t->md), t->targets->type->name);
680 		return -EINVAL;
681 	}
682 
683 	BUG_ON(t->num_targets >= t->num_allocated);
684 
685 	tgt = t->targets + t->num_targets;
686 	memset(tgt, 0, sizeof(*tgt));
687 
688 	if (!len) {
689 		DMERR("%s: zero-length target", dm_device_name(t->md));
690 		return -EINVAL;
691 	}
692 
693 	tgt->type = dm_get_target_type(type);
694 	if (!tgt->type) {
695 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
696 		return -EINVAL;
697 	}
698 
699 	if (dm_target_needs_singleton(tgt->type)) {
700 		if (t->num_targets) {
701 			tgt->error = "singleton target type must appear alone in table";
702 			goto bad;
703 		}
704 		t->singleton = 1;
705 	}
706 
707 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
708 		tgt->error = "target type may not be included in a read-only table";
709 		goto bad;
710 	}
711 
712 	if (t->immutable_target_type) {
713 		if (t->immutable_target_type != tgt->type) {
714 			tgt->error = "immutable target type cannot be mixed with other target types";
715 			goto bad;
716 		}
717 	} else if (dm_target_is_immutable(tgt->type)) {
718 		if (t->num_targets) {
719 			tgt->error = "immutable target type cannot be mixed with other target types";
720 			goto bad;
721 		}
722 		t->immutable_target_type = tgt->type;
723 	}
724 
725 	tgt->table = t;
726 	tgt->begin = start;
727 	tgt->len = len;
728 	tgt->error = "Unknown error";
729 
730 	/*
731 	 * Does this target adjoin the previous one ?
732 	 */
733 	if (!adjoin(t, tgt)) {
734 		tgt->error = "Gap in table";
735 		goto bad;
736 	}
737 
738 	r = dm_split_args(&argc, &argv, params);
739 	if (r) {
740 		tgt->error = "couldn't split parameters (insufficient memory)";
741 		goto bad;
742 	}
743 
744 	r = tgt->type->ctr(tgt, argc, argv);
745 	kfree(argv);
746 	if (r)
747 		goto bad;
748 
749 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
750 
751 	if (!tgt->num_discard_bios && tgt->discards_supported)
752 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
753 		       dm_device_name(t->md), type);
754 
755 	return 0;
756 
757  bad:
758 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
759 	dm_put_target_type(tgt->type);
760 	return r;
761 }
762 
763 /*
764  * Target argument parsing helpers.
765  */
validate_next_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)766 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
767 			     unsigned *value, char **error, unsigned grouped)
768 {
769 	const char *arg_str = dm_shift_arg(arg_set);
770 	char dummy;
771 
772 	if (!arg_str ||
773 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
774 	    (*value < arg->min) ||
775 	    (*value > arg->max) ||
776 	    (grouped && arg_set->argc < *value)) {
777 		*error = arg->error;
778 		return -EINVAL;
779 	}
780 
781 	return 0;
782 }
783 
dm_read_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)784 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
785 		unsigned *value, char **error)
786 {
787 	return validate_next_arg(arg, arg_set, value, error, 0);
788 }
789 EXPORT_SYMBOL(dm_read_arg);
790 
dm_read_arg_group(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)791 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
792 		      unsigned *value, char **error)
793 {
794 	return validate_next_arg(arg, arg_set, value, error, 1);
795 }
796 EXPORT_SYMBOL(dm_read_arg_group);
797 
dm_shift_arg(struct dm_arg_set * as)798 const char *dm_shift_arg(struct dm_arg_set *as)
799 {
800 	char *r;
801 
802 	if (as->argc) {
803 		as->argc--;
804 		r = *as->argv;
805 		as->argv++;
806 		return r;
807 	}
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(dm_shift_arg);
812 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)813 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
814 {
815 	BUG_ON(as->argc < num_args);
816 	as->argc -= num_args;
817 	as->argv += num_args;
818 }
819 EXPORT_SYMBOL(dm_consume_args);
820 
dm_table_set_type(struct dm_table * t)821 static int dm_table_set_type(struct dm_table *t)
822 {
823 	unsigned i;
824 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
825 	struct dm_target *tgt;
826 	struct dm_dev_internal *dd;
827 	struct list_head *devices;
828 	unsigned live_md_type;
829 
830 	for (i = 0; i < t->num_targets; i++) {
831 		tgt = t->targets + i;
832 		if (dm_target_hybrid(tgt))
833 			hybrid = 1;
834 		else if (dm_target_request_based(tgt))
835 			request_based = 1;
836 		else
837 			bio_based = 1;
838 
839 		if (bio_based && request_based) {
840 			DMWARN("Inconsistent table: different target types"
841 			       " can't be mixed up");
842 			return -EINVAL;
843 		}
844 	}
845 
846 	if (hybrid && !bio_based && !request_based) {
847 		/*
848 		 * The targets can work either way.
849 		 * Determine the type from the live device.
850 		 * Default to bio-based if device is new.
851 		 */
852 		live_md_type = dm_get_md_type(t->md);
853 		if (live_md_type == DM_TYPE_REQUEST_BASED)
854 			request_based = 1;
855 		else
856 			bio_based = 1;
857 	}
858 
859 	if (bio_based) {
860 		/* We must use this table as bio-based */
861 		t->type = DM_TYPE_BIO_BASED;
862 		return 0;
863 	}
864 
865 	BUG_ON(!request_based); /* No targets in this table */
866 
867 	/* Non-request-stackable devices can't be used for request-based dm */
868 	devices = dm_table_get_devices(t);
869 	list_for_each_entry(dd, devices, list) {
870 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev->bdev))) {
871 			DMWARN("table load rejected: including"
872 			       " non-request-stackable devices");
873 			return -EINVAL;
874 		}
875 	}
876 
877 	/*
878 	 * Request-based dm supports only tables that have a single target now.
879 	 * To support multiple targets, request splitting support is needed,
880 	 * and that needs lots of changes in the block-layer.
881 	 * (e.g. request completion process for partial completion.)
882 	 */
883 	if (t->num_targets > 1) {
884 		DMWARN("Request-based dm doesn't support multiple targets yet");
885 		return -EINVAL;
886 	}
887 
888 	t->type = DM_TYPE_REQUEST_BASED;
889 
890 	return 0;
891 }
892 
dm_table_get_type(struct dm_table * t)893 unsigned dm_table_get_type(struct dm_table *t)
894 {
895 	return t->type;
896 }
897 
dm_table_get_immutable_target_type(struct dm_table * t)898 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
899 {
900 	return t->immutable_target_type;
901 }
902 
dm_table_request_based(struct dm_table * t)903 bool dm_table_request_based(struct dm_table *t)
904 {
905 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
906 }
907 
dm_table_alloc_md_mempools(struct dm_table * t)908 static int dm_table_alloc_md_mempools(struct dm_table *t)
909 {
910 	unsigned type = dm_table_get_type(t);
911 	unsigned per_bio_data_size = 0;
912 	struct dm_target *tgt;
913 	unsigned i;
914 
915 	if (unlikely(type == DM_TYPE_NONE)) {
916 		DMWARN("no table type is set, can't allocate mempools");
917 		return -EINVAL;
918 	}
919 
920 	if (type == DM_TYPE_BIO_BASED)
921 		for (i = 0; i < t->num_targets; i++) {
922 			tgt = t->targets + i;
923 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
924 		}
925 
926 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
927 	if (!t->mempools)
928 		return -ENOMEM;
929 
930 	return 0;
931 }
932 
dm_table_free_md_mempools(struct dm_table * t)933 void dm_table_free_md_mempools(struct dm_table *t)
934 {
935 	dm_free_md_mempools(t->mempools);
936 	t->mempools = NULL;
937 }
938 
dm_table_get_md_mempools(struct dm_table * t)939 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
940 {
941 	return t->mempools;
942 }
943 
setup_indexes(struct dm_table * t)944 static int setup_indexes(struct dm_table *t)
945 {
946 	int i;
947 	unsigned int total = 0;
948 	sector_t *indexes;
949 
950 	/* allocate the space for *all* the indexes */
951 	for (i = t->depth - 2; i >= 0; i--) {
952 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
953 		total += t->counts[i];
954 	}
955 
956 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
957 	if (!indexes)
958 		return -ENOMEM;
959 
960 	/* set up internal nodes, bottom-up */
961 	for (i = t->depth - 2; i >= 0; i--) {
962 		t->index[i] = indexes;
963 		indexes += (KEYS_PER_NODE * t->counts[i]);
964 		setup_btree_index(i, t);
965 	}
966 
967 	return 0;
968 }
969 
970 /*
971  * Builds the btree to index the map.
972  */
dm_table_build_index(struct dm_table * t)973 static int dm_table_build_index(struct dm_table *t)
974 {
975 	int r = 0;
976 	unsigned int leaf_nodes;
977 
978 	/* how many indexes will the btree have ? */
979 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
980 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
981 
982 	/* leaf layer has already been set up */
983 	t->counts[t->depth - 1] = leaf_nodes;
984 	t->index[t->depth - 1] = t->highs;
985 
986 	if (t->depth >= 2)
987 		r = setup_indexes(t);
988 
989 	return r;
990 }
991 
992 /*
993  * Get a disk whose integrity profile reflects the table's profile.
994  * If %match_all is true, all devices' profiles must match.
995  * If %match_all is false, all devices must at least have an
996  * allocated integrity profile; but uninitialized is ok.
997  * Returns NULL if integrity support was inconsistent or unavailable.
998  */
dm_table_get_integrity_disk(struct dm_table * t,bool match_all)999 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1000 						    bool match_all)
1001 {
1002 	struct list_head *devices = dm_table_get_devices(t);
1003 	struct dm_dev_internal *dd = NULL;
1004 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1005 
1006 	list_for_each_entry(dd, devices, list) {
1007 		template_disk = dd->dm_dev->bdev->bd_disk;
1008 		if (!blk_get_integrity(template_disk))
1009 			goto no_integrity;
1010 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1011 			continue; /* skip uninitialized profiles */
1012 		else if (prev_disk &&
1013 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1014 			goto no_integrity;
1015 		prev_disk = template_disk;
1016 	}
1017 
1018 	return template_disk;
1019 
1020 no_integrity:
1021 	if (prev_disk)
1022 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1023 		       dm_device_name(t->md),
1024 		       prev_disk->disk_name,
1025 		       template_disk->disk_name);
1026 	return NULL;
1027 }
1028 
1029 /*
1030  * Register the mapped device for blk_integrity support if
1031  * the underlying devices have an integrity profile.  But all devices
1032  * may not have matching profiles (checking all devices isn't reliable
1033  * during table load because this table may use other DM device(s) which
1034  * must be resumed before they will have an initialized integity profile).
1035  * Stacked DM devices force a 2 stage integrity profile validation:
1036  * 1 - during load, validate all initialized integrity profiles match
1037  * 2 - during resume, validate all integrity profiles match
1038  */
dm_table_prealloc_integrity(struct dm_table * t,struct mapped_device * md)1039 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1040 {
1041 	struct gendisk *template_disk = NULL;
1042 
1043 	template_disk = dm_table_get_integrity_disk(t, false);
1044 	if (!template_disk)
1045 		return 0;
1046 
1047 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1048 		t->integrity_supported = 1;
1049 		return blk_integrity_register(dm_disk(md), NULL);
1050 	}
1051 
1052 	/*
1053 	 * If DM device already has an initalized integrity
1054 	 * profile the new profile should not conflict.
1055 	 */
1056 	if (blk_integrity_is_initialized(template_disk) &&
1057 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1058 		DMWARN("%s: conflict with existing integrity profile: "
1059 		       "%s profile mismatch",
1060 		       dm_device_name(t->md),
1061 		       template_disk->disk_name);
1062 		return 1;
1063 	}
1064 
1065 	/* Preserve existing initialized integrity profile */
1066 	t->integrity_supported = 1;
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Prepares the table for use by building the indices,
1072  * setting the type, and allocating mempools.
1073  */
dm_table_complete(struct dm_table * t)1074 int dm_table_complete(struct dm_table *t)
1075 {
1076 	int r;
1077 
1078 	r = dm_table_set_type(t);
1079 	if (r) {
1080 		DMERR("unable to set table type");
1081 		return r;
1082 	}
1083 
1084 	r = dm_table_build_index(t);
1085 	if (r) {
1086 		DMERR("unable to build btrees");
1087 		return r;
1088 	}
1089 
1090 	r = dm_table_prealloc_integrity(t, t->md);
1091 	if (r) {
1092 		DMERR("could not register integrity profile.");
1093 		return r;
1094 	}
1095 
1096 	r = dm_table_alloc_md_mempools(t);
1097 	if (r)
1098 		DMERR("unable to allocate mempools");
1099 
1100 	return r;
1101 }
1102 
1103 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1104 void dm_table_event_callback(struct dm_table *t,
1105 			     void (*fn)(void *), void *context)
1106 {
1107 	mutex_lock(&_event_lock);
1108 	t->event_fn = fn;
1109 	t->event_context = context;
1110 	mutex_unlock(&_event_lock);
1111 }
1112 
dm_table_event(struct dm_table * t)1113 void dm_table_event(struct dm_table *t)
1114 {
1115 	/*
1116 	 * You can no longer call dm_table_event() from interrupt
1117 	 * context, use a bottom half instead.
1118 	 */
1119 	BUG_ON(in_interrupt());
1120 
1121 	mutex_lock(&_event_lock);
1122 	if (t->event_fn)
1123 		t->event_fn(t->event_context);
1124 	mutex_unlock(&_event_lock);
1125 }
1126 EXPORT_SYMBOL(dm_table_event);
1127 
dm_table_get_size(struct dm_table * t)1128 sector_t dm_table_get_size(struct dm_table *t)
1129 {
1130 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1131 }
1132 EXPORT_SYMBOL(dm_table_get_size);
1133 
dm_table_get_target(struct dm_table * t,unsigned int index)1134 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1135 {
1136 	if (index >= t->num_targets)
1137 		return NULL;
1138 
1139 	return t->targets + index;
1140 }
1141 
1142 /*
1143  * Search the btree for the correct target.
1144  *
1145  * Caller should check returned pointer with dm_target_is_valid()
1146  * to trap I/O beyond end of device.
1147  */
dm_table_find_target(struct dm_table * t,sector_t sector)1148 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1149 {
1150 	unsigned int l, n = 0, k = 0;
1151 	sector_t *node;
1152 
1153 	for (l = 0; l < t->depth; l++) {
1154 		n = get_child(n, k);
1155 		node = get_node(t, l, n);
1156 
1157 		for (k = 0; k < KEYS_PER_NODE; k++)
1158 			if (node[k] >= sector)
1159 				break;
1160 	}
1161 
1162 	return &t->targets[(KEYS_PER_NODE * n) + k];
1163 }
1164 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1165 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1166 			sector_t start, sector_t len, void *data)
1167 {
1168 	unsigned *num_devices = data;
1169 
1170 	(*num_devices)++;
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Check whether a table has no data devices attached using each
1177  * target's iterate_devices method.
1178  * Returns false if the result is unknown because a target doesn't
1179  * support iterate_devices.
1180  */
dm_table_has_no_data_devices(struct dm_table * table)1181 bool dm_table_has_no_data_devices(struct dm_table *table)
1182 {
1183 	struct dm_target *uninitialized_var(ti);
1184 	unsigned i = 0, num_devices = 0;
1185 
1186 	while (i < dm_table_get_num_targets(table)) {
1187 		ti = dm_table_get_target(table, i++);
1188 
1189 		if (!ti->type->iterate_devices)
1190 			return false;
1191 
1192 		ti->type->iterate_devices(ti, count_device, &num_devices);
1193 		if (num_devices)
1194 			return false;
1195 	}
1196 
1197 	return true;
1198 }
1199 
1200 /*
1201  * Establish the new table's queue_limits and validate them.
1202  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1203 int dm_calculate_queue_limits(struct dm_table *table,
1204 			      struct queue_limits *limits)
1205 {
1206 	struct dm_target *uninitialized_var(ti);
1207 	struct queue_limits ti_limits;
1208 	unsigned i = 0;
1209 
1210 	blk_set_stacking_limits(limits);
1211 
1212 	while (i < dm_table_get_num_targets(table)) {
1213 		blk_set_stacking_limits(&ti_limits);
1214 
1215 		ti = dm_table_get_target(table, i++);
1216 
1217 		if (!ti->type->iterate_devices)
1218 			goto combine_limits;
1219 
1220 		/*
1221 		 * Combine queue limits of all the devices this target uses.
1222 		 */
1223 		ti->type->iterate_devices(ti, dm_set_device_limits,
1224 					  &ti_limits);
1225 
1226 		/* Set I/O hints portion of queue limits */
1227 		if (ti->type->io_hints)
1228 			ti->type->io_hints(ti, &ti_limits);
1229 
1230 		/*
1231 		 * Check each device area is consistent with the target's
1232 		 * overall queue limits.
1233 		 */
1234 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1235 					      &ti_limits))
1236 			return -EINVAL;
1237 
1238 combine_limits:
1239 		/*
1240 		 * Merge this target's queue limits into the overall limits
1241 		 * for the table.
1242 		 */
1243 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1244 			DMWARN("%s: adding target device "
1245 			       "(start sect %llu len %llu) "
1246 			       "caused an alignment inconsistency",
1247 			       dm_device_name(table->md),
1248 			       (unsigned long long) ti->begin,
1249 			       (unsigned long long) ti->len);
1250 	}
1251 
1252 	return validate_hardware_logical_block_alignment(table, limits);
1253 }
1254 
1255 /*
1256  * Set the integrity profile for this device if all devices used have
1257  * matching profiles.  We're quite deep in the resume path but still
1258  * don't know if all devices (particularly DM devices this device
1259  * may be stacked on) have matching profiles.  Even if the profiles
1260  * don't match we have no way to fail (to resume) at this point.
1261  */
dm_table_set_integrity(struct dm_table * t)1262 static void dm_table_set_integrity(struct dm_table *t)
1263 {
1264 	struct gendisk *template_disk = NULL;
1265 
1266 	if (!blk_get_integrity(dm_disk(t->md)))
1267 		return;
1268 
1269 	template_disk = dm_table_get_integrity_disk(t, true);
1270 	if (template_disk)
1271 		blk_integrity_register(dm_disk(t->md),
1272 				       blk_get_integrity(template_disk));
1273 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1274 		DMWARN("%s: device no longer has a valid integrity profile",
1275 		       dm_device_name(t->md));
1276 	else
1277 		DMWARN("%s: unable to establish an integrity profile",
1278 		       dm_device_name(t->md));
1279 }
1280 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1281 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1282 				sector_t start, sector_t len, void *data)
1283 {
1284 	unsigned flush = (*(unsigned *)data);
1285 	struct request_queue *q = bdev_get_queue(dev->bdev);
1286 
1287 	return q && (q->flush_flags & flush);
1288 }
1289 
dm_table_supports_flush(struct dm_table * t,unsigned flush)1290 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1291 {
1292 	struct dm_target *ti;
1293 	unsigned i = 0;
1294 
1295 	/*
1296 	 * Require at least one underlying device to support flushes.
1297 	 * t->devices includes internal dm devices such as mirror logs
1298 	 * so we need to use iterate_devices here, which targets
1299 	 * supporting flushes must provide.
1300 	 */
1301 	while (i < dm_table_get_num_targets(t)) {
1302 		ti = dm_table_get_target(t, i++);
1303 
1304 		if (!ti->num_flush_bios)
1305 			continue;
1306 
1307 		if (ti->flush_supported)
1308 			return 1;
1309 
1310 		if (ti->type->iterate_devices &&
1311 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1312 			return 1;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
dm_table_discard_zeroes_data(struct dm_table * t)1318 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1319 {
1320 	struct dm_target *ti;
1321 	unsigned i = 0;
1322 
1323 	/* Ensure that all targets supports discard_zeroes_data. */
1324 	while (i < dm_table_get_num_targets(t)) {
1325 		ti = dm_table_get_target(t, i++);
1326 
1327 		if (ti->discard_zeroes_data_unsupported)
1328 			return 0;
1329 	}
1330 
1331 	return 1;
1332 }
1333 
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1334 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1335 			    sector_t start, sector_t len, void *data)
1336 {
1337 	struct request_queue *q = bdev_get_queue(dev->bdev);
1338 
1339 	return q && blk_queue_nonrot(q);
1340 }
1341 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1342 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1343 			     sector_t start, sector_t len, void *data)
1344 {
1345 	struct request_queue *q = bdev_get_queue(dev->bdev);
1346 
1347 	return q && !blk_queue_add_random(q);
1348 }
1349 
queue_supports_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1350 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1351 				   sector_t start, sector_t len, void *data)
1352 {
1353 	struct request_queue *q = bdev_get_queue(dev->bdev);
1354 
1355 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1356 }
1357 
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1358 static bool dm_table_all_devices_attribute(struct dm_table *t,
1359 					   iterate_devices_callout_fn func)
1360 {
1361 	struct dm_target *ti;
1362 	unsigned i = 0;
1363 
1364 	while (i < dm_table_get_num_targets(t)) {
1365 		ti = dm_table_get_target(t, i++);
1366 
1367 		if (!ti->type->iterate_devices ||
1368 		    !ti->type->iterate_devices(ti, func, NULL))
1369 			return 0;
1370 	}
1371 
1372 	return 1;
1373 }
1374 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1375 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1376 					 sector_t start, sector_t len, void *data)
1377 {
1378 	struct request_queue *q = bdev_get_queue(dev->bdev);
1379 
1380 	return q && !q->limits.max_write_same_sectors;
1381 }
1382 
dm_table_supports_write_same(struct dm_table * t)1383 static bool dm_table_supports_write_same(struct dm_table *t)
1384 {
1385 	struct dm_target *ti;
1386 	unsigned i = 0;
1387 
1388 	while (i < dm_table_get_num_targets(t)) {
1389 		ti = dm_table_get_target(t, i++);
1390 
1391 		if (!ti->num_write_same_bios)
1392 			return false;
1393 
1394 		if (!ti->type->iterate_devices ||
1395 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1396 			return false;
1397 	}
1398 
1399 	return true;
1400 }
1401 
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1402 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1403 				  sector_t start, sector_t len, void *data)
1404 {
1405 	struct request_queue *q = bdev_get_queue(dev->bdev);
1406 
1407 	return q && blk_queue_discard(q);
1408 }
1409 
dm_table_supports_discards(struct dm_table * t)1410 static bool dm_table_supports_discards(struct dm_table *t)
1411 {
1412 	struct dm_target *ti;
1413 	unsigned i = 0;
1414 
1415 	/*
1416 	 * Unless any target used by the table set discards_supported,
1417 	 * require at least one underlying device to support discards.
1418 	 * t->devices includes internal dm devices such as mirror logs
1419 	 * so we need to use iterate_devices here, which targets
1420 	 * supporting discard selectively must provide.
1421 	 */
1422 	while (i < dm_table_get_num_targets(t)) {
1423 		ti = dm_table_get_target(t, i++);
1424 
1425 		if (!ti->num_discard_bios)
1426 			continue;
1427 
1428 		if (ti->discards_supported)
1429 			return 1;
1430 
1431 		if (ti->type->iterate_devices &&
1432 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1433 			return 1;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1439 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1440 			       struct queue_limits *limits)
1441 {
1442 	unsigned flush = 0;
1443 
1444 	/*
1445 	 * Copy table's limits to the DM device's request_queue
1446 	 */
1447 	q->limits = *limits;
1448 
1449 	if (!dm_table_supports_discards(t))
1450 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1451 	else
1452 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1453 
1454 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1455 		flush |= REQ_FLUSH;
1456 		if (dm_table_supports_flush(t, REQ_FUA))
1457 			flush |= REQ_FUA;
1458 	}
1459 	blk_queue_flush(q, flush);
1460 
1461 	if (!dm_table_discard_zeroes_data(t))
1462 		q->limits.discard_zeroes_data = 0;
1463 
1464 	/* Ensure that all underlying devices are non-rotational. */
1465 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1466 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1467 	else
1468 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1469 
1470 	if (!dm_table_supports_write_same(t))
1471 		q->limits.max_write_same_sectors = 0;
1472 
1473 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1474 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1475 	else
1476 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1477 
1478 	dm_table_set_integrity(t);
1479 
1480 	/*
1481 	 * Determine whether or not this queue's I/O timings contribute
1482 	 * to the entropy pool, Only request-based targets use this.
1483 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1484 	 * have it set.
1485 	 */
1486 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1487 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1488 
1489 	/*
1490 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1491 	 * visible to other CPUs because, once the flag is set, incoming bios
1492 	 * are processed by request-based dm, which refers to the queue
1493 	 * settings.
1494 	 * Until the flag set, bios are passed to bio-based dm and queued to
1495 	 * md->deferred where queue settings are not needed yet.
1496 	 * Those bios are passed to request-based dm at the resume time.
1497 	 */
1498 	smp_mb();
1499 	if (dm_table_request_based(t))
1500 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1501 }
1502 
dm_table_get_num_targets(struct dm_table * t)1503 unsigned int dm_table_get_num_targets(struct dm_table *t)
1504 {
1505 	return t->num_targets;
1506 }
1507 
dm_table_get_devices(struct dm_table * t)1508 struct list_head *dm_table_get_devices(struct dm_table *t)
1509 {
1510 	return &t->devices;
1511 }
1512 
dm_table_get_mode(struct dm_table * t)1513 fmode_t dm_table_get_mode(struct dm_table *t)
1514 {
1515 	return t->mode;
1516 }
1517 EXPORT_SYMBOL(dm_table_get_mode);
1518 
suspend_targets(struct dm_table * t,unsigned postsuspend)1519 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1520 {
1521 	int i = t->num_targets;
1522 	struct dm_target *ti = t->targets;
1523 
1524 	while (i--) {
1525 		if (postsuspend) {
1526 			if (ti->type->postsuspend)
1527 				ti->type->postsuspend(ti);
1528 		} else if (ti->type->presuspend)
1529 			ti->type->presuspend(ti);
1530 
1531 		ti++;
1532 	}
1533 }
1534 
dm_table_presuspend_targets(struct dm_table * t)1535 void dm_table_presuspend_targets(struct dm_table *t)
1536 {
1537 	if (!t)
1538 		return;
1539 
1540 	suspend_targets(t, 0);
1541 }
1542 
dm_table_postsuspend_targets(struct dm_table * t)1543 void dm_table_postsuspend_targets(struct dm_table *t)
1544 {
1545 	if (!t)
1546 		return;
1547 
1548 	suspend_targets(t, 1);
1549 }
1550 
dm_table_resume_targets(struct dm_table * t)1551 int dm_table_resume_targets(struct dm_table *t)
1552 {
1553 	int i, r = 0;
1554 
1555 	for (i = 0; i < t->num_targets; i++) {
1556 		struct dm_target *ti = t->targets + i;
1557 
1558 		if (!ti->type->preresume)
1559 			continue;
1560 
1561 		r = ti->type->preresume(ti);
1562 		if (r) {
1563 			DMERR("%s: %s: preresume failed, error = %d",
1564 			      dm_device_name(t->md), ti->type->name, r);
1565 			return r;
1566 		}
1567 	}
1568 
1569 	for (i = 0; i < t->num_targets; i++) {
1570 		struct dm_target *ti = t->targets + i;
1571 
1572 		if (ti->type->resume)
1573 			ti->type->resume(ti);
1574 	}
1575 
1576 	return 0;
1577 }
1578 
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1579 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1580 {
1581 	list_add(&cb->list, &t->target_callbacks);
1582 }
1583 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1584 
dm_table_any_congested(struct dm_table * t,int bdi_bits)1585 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1586 {
1587 	struct dm_dev_internal *dd;
1588 	struct list_head *devices = dm_table_get_devices(t);
1589 	struct dm_target_callbacks *cb;
1590 	int r = 0;
1591 
1592 	list_for_each_entry(dd, devices, list) {
1593 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1594 		char b[BDEVNAME_SIZE];
1595 
1596 		if (likely(q))
1597 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1598 		else
1599 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1600 				     dm_device_name(t->md),
1601 				     bdevname(dd->dm_dev->bdev, b));
1602 	}
1603 
1604 	list_for_each_entry(cb, &t->target_callbacks, list)
1605 		if (cb->congested_fn)
1606 			r |= cb->congested_fn(cb, bdi_bits);
1607 
1608 	return r;
1609 }
1610 
dm_table_any_busy_target(struct dm_table * t)1611 int dm_table_any_busy_target(struct dm_table *t)
1612 {
1613 	unsigned i;
1614 	struct dm_target *ti;
1615 
1616 	for (i = 0; i < t->num_targets; i++) {
1617 		ti = t->targets + i;
1618 		if (ti->type->busy && ti->type->busy(ti))
1619 			return 1;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
dm_table_get_md(struct dm_table * t)1625 struct mapped_device *dm_table_get_md(struct dm_table *t)
1626 {
1627 	return t->md;
1628 }
1629 EXPORT_SYMBOL(dm_table_get_md);
1630 
dm_table_run_md_queue_async(struct dm_table * t)1631 void dm_table_run_md_queue_async(struct dm_table *t)
1632 {
1633 	struct mapped_device *md;
1634 	struct request_queue *queue;
1635 	unsigned long flags;
1636 
1637 	if (!dm_table_request_based(t))
1638 		return;
1639 
1640 	md = dm_table_get_md(t);
1641 	queue = dm_get_md_queue(md);
1642 	if (queue) {
1643 		spin_lock_irqsave(queue->queue_lock, flags);
1644 		blk_run_queue_async(queue);
1645 		spin_unlock_irqrestore(queue->queue_lock, flags);
1646 	}
1647 }
1648 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1649 
1650