1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/mount.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22
23 #define DM_MSG_PREFIX "table"
24
25 #define MAX_DEPTH 16
26 #define NODE_SIZE L1_CACHE_BYTES
27 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
28 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29
30 struct dm_table {
31 struct mapped_device *md;
32 unsigned type;
33
34 /* btree table */
35 unsigned int depth;
36 unsigned int counts[MAX_DEPTH]; /* in nodes */
37 sector_t *index[MAX_DEPTH];
38
39 unsigned int num_targets;
40 unsigned int num_allocated;
41 sector_t *highs;
42 struct dm_target *targets;
43
44 struct target_type *immutable_target_type;
45 unsigned integrity_supported:1;
46 unsigned singleton:1;
47
48 /*
49 * Indicates the rw permissions for the new logical
50 * device. This should be a combination of FMODE_READ
51 * and FMODE_WRITE.
52 */
53 fmode_t mode;
54
55 /* a list of devices used by this table */
56 struct list_head devices;
57
58 /* events get handed up using this callback */
59 void (*event_fn)(void *);
60 void *event_context;
61
62 struct dm_md_mempools *mempools;
63
64 struct list_head target_callbacks;
65 };
66
67 /*
68 * Similar to ceiling(log_size(n))
69 */
int_log(unsigned int n,unsigned int base)70 static unsigned int int_log(unsigned int n, unsigned int base)
71 {
72 int result = 0;
73
74 while (n > 1) {
75 n = dm_div_up(n, base);
76 result++;
77 }
78
79 return result;
80 }
81
82 /*
83 * Calculate the index of the child node of the n'th node k'th key.
84 */
get_child(unsigned int n,unsigned int k)85 static inline unsigned int get_child(unsigned int n, unsigned int k)
86 {
87 return (n * CHILDREN_PER_NODE) + k;
88 }
89
90 /*
91 * Return the n'th node of level l from table t.
92 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)93 static inline sector_t *get_node(struct dm_table *t,
94 unsigned int l, unsigned int n)
95 {
96 return t->index[l] + (n * KEYS_PER_NODE);
97 }
98
99 /*
100 * Return the highest key that you could lookup from the n'th
101 * node on level l of the btree.
102 */
high(struct dm_table * t,unsigned int l,unsigned int n)103 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
104 {
105 for (; l < t->depth - 1; l++)
106 n = get_child(n, CHILDREN_PER_NODE - 1);
107
108 if (n >= t->counts[l])
109 return (sector_t) - 1;
110
111 return get_node(t, l, n)[KEYS_PER_NODE - 1];
112 }
113
114 /*
115 * Fills in a level of the btree based on the highs of the level
116 * below it.
117 */
setup_btree_index(unsigned int l,struct dm_table * t)118 static int setup_btree_index(unsigned int l, struct dm_table *t)
119 {
120 unsigned int n, k;
121 sector_t *node;
122
123 for (n = 0U; n < t->counts[l]; n++) {
124 node = get_node(t, l, n);
125
126 for (k = 0U; k < KEYS_PER_NODE; k++)
127 node[k] = high(t, l + 1, get_child(n, k));
128 }
129
130 return 0;
131 }
132
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)133 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
134 {
135 unsigned long size;
136 void *addr;
137
138 /*
139 * Check that we're not going to overflow.
140 */
141 if (nmemb > (ULONG_MAX / elem_size))
142 return NULL;
143
144 size = nmemb * elem_size;
145 addr = vzalloc(size);
146
147 return addr;
148 }
149 EXPORT_SYMBOL(dm_vcalloc);
150
151 /*
152 * highs, and targets are managed as dynamic arrays during a
153 * table load.
154 */
alloc_targets(struct dm_table * t,unsigned int num)155 static int alloc_targets(struct dm_table *t, unsigned int num)
156 {
157 sector_t *n_highs;
158 struct dm_target *n_targets;
159
160 /*
161 * Allocate both the target array and offset array at once.
162 * Append an empty entry to catch sectors beyond the end of
163 * the device.
164 */
165 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 sizeof(sector_t));
167 if (!n_highs)
168 return -ENOMEM;
169
170 n_targets = (struct dm_target *) (n_highs + num);
171
172 memset(n_highs, -1, sizeof(*n_highs) * num);
173 vfree(t->highs);
174
175 t->num_allocated = num;
176 t->highs = n_highs;
177 t->targets = n_targets;
178
179 return 0;
180 }
181
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)182 int dm_table_create(struct dm_table **result, fmode_t mode,
183 unsigned num_targets, struct mapped_device *md)
184 {
185 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186
187 if (!t)
188 return -ENOMEM;
189
190 INIT_LIST_HEAD(&t->devices);
191 INIT_LIST_HEAD(&t->target_callbacks);
192
193 if (!num_targets)
194 num_targets = KEYS_PER_NODE;
195
196 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
197
198 if (!num_targets) {
199 kfree(t);
200 return -ENOMEM;
201 }
202
203 if (alloc_targets(t, num_targets)) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 t->mode = mode;
209 t->md = md;
210 *result = t;
211 return 0;
212 }
213
free_devices(struct list_head * devices,struct mapped_device * md)214 static void free_devices(struct list_head *devices, struct mapped_device *md)
215 {
216 struct list_head *tmp, *next;
217
218 list_for_each_safe(tmp, next, devices) {
219 struct dm_dev_internal *dd =
220 list_entry(tmp, struct dm_dev_internal, list);
221 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 dm_device_name(md), dd->dm_dev->name);
223 dm_put_table_device(md, dd->dm_dev);
224 kfree(dd);
225 }
226 }
227
dm_table_destroy(struct dm_table * t)228 void dm_table_destroy(struct dm_table *t)
229 {
230 unsigned int i;
231
232 if (!t)
233 return;
234
235 /* free the indexes */
236 if (t->depth >= 2)
237 vfree(t->index[t->depth - 2]);
238
239 /* free the targets */
240 for (i = 0; i < t->num_targets; i++) {
241 struct dm_target *tgt = t->targets + i;
242
243 if (tgt->type->dtr)
244 tgt->type->dtr(tgt);
245
246 dm_put_target_type(tgt->type);
247 }
248
249 vfree(t->highs);
250
251 /* free the device list */
252 free_devices(&t->devices, t->md);
253
254 dm_free_md_mempools(t->mempools);
255
256 kfree(t);
257 }
258
259 /*
260 * See if we've already got a device in the list.
261 */
find_device(struct list_head * l,dev_t dev)262 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263 {
264 struct dm_dev_internal *dd;
265
266 list_for_each_entry (dd, l, list)
267 if (dd->dm_dev->bdev->bd_dev == dev)
268 return dd;
269
270 return NULL;
271 }
272
273 /*
274 * If possible, this checks an area of a destination device is invalid.
275 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)276 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 sector_t start, sector_t len, void *data)
278 {
279 struct request_queue *q;
280 struct queue_limits *limits = data;
281 struct block_device *bdev = dev->bdev;
282 sector_t dev_size =
283 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
284 unsigned short logical_block_size_sectors =
285 limits->logical_block_size >> SECTOR_SHIFT;
286 char b[BDEVNAME_SIZE];
287
288 /*
289 * Some devices exist without request functions,
290 * such as loop devices not yet bound to backing files.
291 * Forbid the use of such devices.
292 */
293 q = bdev_get_queue(bdev);
294 if (!q || !q->make_request_fn) {
295 DMWARN("%s: %s is not yet initialised: "
296 "start=%llu, len=%llu, dev_size=%llu",
297 dm_device_name(ti->table->md), bdevname(bdev, b),
298 (unsigned long long)start,
299 (unsigned long long)len,
300 (unsigned long long)dev_size);
301 return 1;
302 }
303
304 if (!dev_size)
305 return 0;
306
307 if ((start >= dev_size) || (start + len > dev_size)) {
308 DMWARN("%s: %s too small for target: "
309 "start=%llu, len=%llu, dev_size=%llu",
310 dm_device_name(ti->table->md), bdevname(bdev, b),
311 (unsigned long long)start,
312 (unsigned long long)len,
313 (unsigned long long)dev_size);
314 return 1;
315 }
316
317 if (logical_block_size_sectors <= 1)
318 return 0;
319
320 if (start & (logical_block_size_sectors - 1)) {
321 DMWARN("%s: start=%llu not aligned to h/w "
322 "logical block size %u of %s",
323 dm_device_name(ti->table->md),
324 (unsigned long long)start,
325 limits->logical_block_size, bdevname(bdev, b));
326 return 1;
327 }
328
329 if (len & (logical_block_size_sectors - 1)) {
330 DMWARN("%s: len=%llu not aligned to h/w "
331 "logical block size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)len,
334 limits->logical_block_size, bdevname(bdev, b));
335 return 1;
336 }
337
338 return 0;
339 }
340
341 /*
342 * This upgrades the mode on an already open dm_dev, being
343 * careful to leave things as they were if we fail to reopen the
344 * device and not to touch the existing bdev field in case
345 * it is accessed concurrently inside dm_table_any_congested().
346 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)347 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
348 struct mapped_device *md)
349 {
350 int r;
351 struct dm_dev *old_dev, *new_dev;
352
353 old_dev = dd->dm_dev;
354
355 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
356 dd->dm_dev->mode | new_mode, &new_dev);
357 if (r)
358 return r;
359
360 dd->dm_dev = new_dev;
361 dm_put_table_device(md, old_dev);
362
363 return 0;
364 }
365
366 /*
367 * Add a device to the list, or just increment the usage count if
368 * it's already present.
369 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)370 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
371 struct dm_dev **result)
372 {
373 int r;
374 dev_t uninitialized_var(dev);
375 struct dm_dev_internal *dd;
376 unsigned int major, minor;
377 struct dm_table *t = ti->table;
378 char dummy;
379
380 BUG_ON(!t);
381
382 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
383 /* Extract the major/minor numbers */
384 dev = MKDEV(major, minor);
385 if (MAJOR(dev) != major || MINOR(dev) != minor)
386 return -EOVERFLOW;
387 } else {
388 /* convert the path to a device */
389 struct block_device *bdev = lookup_bdev(path);
390
391 if (IS_ERR(bdev))
392 return PTR_ERR(bdev);
393 dev = bdev->bd_dev;
394 bdput(bdev);
395 }
396
397 dd = find_device(&t->devices, dev);
398 if (!dd) {
399 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
400 if (!dd)
401 return -ENOMEM;
402
403 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
404 kfree(dd);
405 return r;
406 }
407
408 atomic_set(&dd->count, 0);
409 list_add(&dd->list, &t->devices);
410
411 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
412 r = upgrade_mode(dd, mode, t->md);
413 if (r)
414 return r;
415 }
416 atomic_inc(&dd->count);
417
418 *result = dd->dm_dev;
419 return 0;
420 }
421 EXPORT_SYMBOL(dm_get_device);
422
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)423 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
424 sector_t start, sector_t len, void *data)
425 {
426 struct queue_limits *limits = data;
427 struct block_device *bdev = dev->bdev;
428 struct request_queue *q = bdev_get_queue(bdev);
429 char b[BDEVNAME_SIZE];
430
431 if (unlikely(!q)) {
432 DMWARN("%s: Cannot set limits for nonexistent device %s",
433 dm_device_name(ti->table->md), bdevname(bdev, b));
434 return 0;
435 }
436
437 if (bdev_stack_limits(limits, bdev, start) < 0)
438 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
439 "physical_block_size=%u, logical_block_size=%u, "
440 "alignment_offset=%u, start=%llu",
441 dm_device_name(ti->table->md), bdevname(bdev, b),
442 q->limits.physical_block_size,
443 q->limits.logical_block_size,
444 q->limits.alignment_offset,
445 (unsigned long long) start << SECTOR_SHIFT);
446
447 /*
448 * Check if merge fn is supported.
449 * If not we'll force DM to use PAGE_SIZE or
450 * smaller I/O, just to be safe.
451 */
452 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
453 blk_limits_max_hw_sectors(limits,
454 (unsigned int) (PAGE_SIZE >> 9));
455 return 0;
456 }
457
458 /*
459 * Decrement a device's use count and remove it if necessary.
460 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
462 {
463 int found = 0;
464 struct list_head *devices = &ti->table->devices;
465 struct dm_dev_internal *dd;
466
467 list_for_each_entry(dd, devices, list) {
468 if (dd->dm_dev == d) {
469 found = 1;
470 break;
471 }
472 }
473 if (!found) {
474 DMWARN("%s: device %s not in table devices list",
475 dm_device_name(ti->table->md), d->name);
476 return;
477 }
478 if (atomic_dec_and_test(&dd->count)) {
479 dm_put_table_device(ti->table->md, d);
480 list_del(&dd->list);
481 kfree(dd);
482 }
483 }
484 EXPORT_SYMBOL(dm_put_device);
485
486 /*
487 * Checks to see if the target joins onto the end of the table.
488 */
adjoin(struct dm_table * table,struct dm_target * ti)489 static int adjoin(struct dm_table *table, struct dm_target *ti)
490 {
491 struct dm_target *prev;
492
493 if (!table->num_targets)
494 return !ti->begin;
495
496 prev = &table->targets[table->num_targets - 1];
497 return (ti->begin == (prev->begin + prev->len));
498 }
499
500 /*
501 * Used to dynamically allocate the arg array.
502 *
503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504 * process messages even if some device is suspended. These messages have a
505 * small fixed number of arguments.
506 *
507 * On the other hand, dm-switch needs to process bulk data using messages and
508 * excessive use of GFP_NOIO could cause trouble.
509 */
realloc_argv(unsigned * array_size,char ** old_argv)510 static char **realloc_argv(unsigned *array_size, char **old_argv)
511 {
512 char **argv;
513 unsigned new_size;
514 gfp_t gfp;
515
516 if (*array_size) {
517 new_size = *array_size * 2;
518 gfp = GFP_KERNEL;
519 } else {
520 new_size = 8;
521 gfp = GFP_NOIO;
522 }
523 argv = kmalloc(new_size * sizeof(*argv), gfp);
524 if (argv) {
525 memcpy(argv, old_argv, *array_size * sizeof(*argv));
526 *array_size = new_size;
527 }
528
529 kfree(old_argv);
530 return argv;
531 }
532
533 /*
534 * Destructively splits up the argument list to pass to ctr.
535 */
dm_split_args(int * argc,char *** argvp,char * input)536 int dm_split_args(int *argc, char ***argvp, char *input)
537 {
538 char *start, *end = input, *out, **argv = NULL;
539 unsigned array_size = 0;
540
541 *argc = 0;
542
543 if (!input) {
544 *argvp = NULL;
545 return 0;
546 }
547
548 argv = realloc_argv(&array_size, argv);
549 if (!argv)
550 return -ENOMEM;
551
552 while (1) {
553 /* Skip whitespace */
554 start = skip_spaces(end);
555
556 if (!*start)
557 break; /* success, we hit the end */
558
559 /* 'out' is used to remove any back-quotes */
560 end = out = start;
561 while (*end) {
562 /* Everything apart from '\0' can be quoted */
563 if (*end == '\\' && *(end + 1)) {
564 *out++ = *(end + 1);
565 end += 2;
566 continue;
567 }
568
569 if (isspace(*end))
570 break; /* end of token */
571
572 *out++ = *end++;
573 }
574
575 /* have we already filled the array ? */
576 if ((*argc + 1) > array_size) {
577 argv = realloc_argv(&array_size, argv);
578 if (!argv)
579 return -ENOMEM;
580 }
581
582 /* we know this is whitespace */
583 if (*end)
584 end++;
585
586 /* terminate the string and put it in the array */
587 *out = '\0';
588 argv[*argc] = start;
589 (*argc)++;
590 }
591
592 *argvp = argv;
593 return 0;
594 }
595
596 /*
597 * Impose necessary and sufficient conditions on a devices's table such
598 * that any incoming bio which respects its logical_block_size can be
599 * processed successfully. If it falls across the boundary between
600 * two or more targets, the size of each piece it gets split into must
601 * be compatible with the logical_block_size of the target processing it.
602 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604 struct queue_limits *limits)
605 {
606 /*
607 * This function uses arithmetic modulo the logical_block_size
608 * (in units of 512-byte sectors).
609 */
610 unsigned short device_logical_block_size_sects =
611 limits->logical_block_size >> SECTOR_SHIFT;
612
613 /*
614 * Offset of the start of the next table entry, mod logical_block_size.
615 */
616 unsigned short next_target_start = 0;
617
618 /*
619 * Given an aligned bio that extends beyond the end of a
620 * target, how many sectors must the next target handle?
621 */
622 unsigned short remaining = 0;
623
624 struct dm_target *uninitialized_var(ti);
625 struct queue_limits ti_limits;
626 unsigned i = 0;
627
628 /*
629 * Check each entry in the table in turn.
630 */
631 while (i < dm_table_get_num_targets(table)) {
632 ti = dm_table_get_target(table, i++);
633
634 blk_set_stacking_limits(&ti_limits);
635
636 /* combine all target devices' limits */
637 if (ti->type->iterate_devices)
638 ti->type->iterate_devices(ti, dm_set_device_limits,
639 &ti_limits);
640
641 /*
642 * If the remaining sectors fall entirely within this
643 * table entry are they compatible with its logical_block_size?
644 */
645 if (remaining < ti->len &&
646 remaining & ((ti_limits.logical_block_size >>
647 SECTOR_SHIFT) - 1))
648 break; /* Error */
649
650 next_target_start =
651 (unsigned short) ((next_target_start + ti->len) &
652 (device_logical_block_size_sects - 1));
653 remaining = next_target_start ?
654 device_logical_block_size_sects - next_target_start : 0;
655 }
656
657 if (remaining) {
658 DMWARN("%s: table line %u (start sect %llu len %llu) "
659 "not aligned to h/w logical block size %u",
660 dm_device_name(table->md), i,
661 (unsigned long long) ti->begin,
662 (unsigned long long) ti->len,
663 limits->logical_block_size);
664 return -EINVAL;
665 }
666
667 return 0;
668 }
669
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)670 int dm_table_add_target(struct dm_table *t, const char *type,
671 sector_t start, sector_t len, char *params)
672 {
673 int r = -EINVAL, argc;
674 char **argv;
675 struct dm_target *tgt;
676
677 if (t->singleton) {
678 DMERR("%s: target type %s must appear alone in table",
679 dm_device_name(t->md), t->targets->type->name);
680 return -EINVAL;
681 }
682
683 BUG_ON(t->num_targets >= t->num_allocated);
684
685 tgt = t->targets + t->num_targets;
686 memset(tgt, 0, sizeof(*tgt));
687
688 if (!len) {
689 DMERR("%s: zero-length target", dm_device_name(t->md));
690 return -EINVAL;
691 }
692
693 tgt->type = dm_get_target_type(type);
694 if (!tgt->type) {
695 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
696 return -EINVAL;
697 }
698
699 if (dm_target_needs_singleton(tgt->type)) {
700 if (t->num_targets) {
701 tgt->error = "singleton target type must appear alone in table";
702 goto bad;
703 }
704 t->singleton = 1;
705 }
706
707 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
708 tgt->error = "target type may not be included in a read-only table";
709 goto bad;
710 }
711
712 if (t->immutable_target_type) {
713 if (t->immutable_target_type != tgt->type) {
714 tgt->error = "immutable target type cannot be mixed with other target types";
715 goto bad;
716 }
717 } else if (dm_target_is_immutable(tgt->type)) {
718 if (t->num_targets) {
719 tgt->error = "immutable target type cannot be mixed with other target types";
720 goto bad;
721 }
722 t->immutable_target_type = tgt->type;
723 }
724
725 tgt->table = t;
726 tgt->begin = start;
727 tgt->len = len;
728 tgt->error = "Unknown error";
729
730 /*
731 * Does this target adjoin the previous one ?
732 */
733 if (!adjoin(t, tgt)) {
734 tgt->error = "Gap in table";
735 goto bad;
736 }
737
738 r = dm_split_args(&argc, &argv, params);
739 if (r) {
740 tgt->error = "couldn't split parameters (insufficient memory)";
741 goto bad;
742 }
743
744 r = tgt->type->ctr(tgt, argc, argv);
745 kfree(argv);
746 if (r)
747 goto bad;
748
749 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
750
751 if (!tgt->num_discard_bios && tgt->discards_supported)
752 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
753 dm_device_name(t->md), type);
754
755 return 0;
756
757 bad:
758 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
759 dm_put_target_type(tgt->type);
760 return r;
761 }
762
763 /*
764 * Target argument parsing helpers.
765 */
validate_next_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)766 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
767 unsigned *value, char **error, unsigned grouped)
768 {
769 const char *arg_str = dm_shift_arg(arg_set);
770 char dummy;
771
772 if (!arg_str ||
773 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
774 (*value < arg->min) ||
775 (*value > arg->max) ||
776 (grouped && arg_set->argc < *value)) {
777 *error = arg->error;
778 return -EINVAL;
779 }
780
781 return 0;
782 }
783
dm_read_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)784 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
785 unsigned *value, char **error)
786 {
787 return validate_next_arg(arg, arg_set, value, error, 0);
788 }
789 EXPORT_SYMBOL(dm_read_arg);
790
dm_read_arg_group(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)791 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
792 unsigned *value, char **error)
793 {
794 return validate_next_arg(arg, arg_set, value, error, 1);
795 }
796 EXPORT_SYMBOL(dm_read_arg_group);
797
dm_shift_arg(struct dm_arg_set * as)798 const char *dm_shift_arg(struct dm_arg_set *as)
799 {
800 char *r;
801
802 if (as->argc) {
803 as->argc--;
804 r = *as->argv;
805 as->argv++;
806 return r;
807 }
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(dm_shift_arg);
812
dm_consume_args(struct dm_arg_set * as,unsigned num_args)813 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
814 {
815 BUG_ON(as->argc < num_args);
816 as->argc -= num_args;
817 as->argv += num_args;
818 }
819 EXPORT_SYMBOL(dm_consume_args);
820
dm_table_set_type(struct dm_table * t)821 static int dm_table_set_type(struct dm_table *t)
822 {
823 unsigned i;
824 unsigned bio_based = 0, request_based = 0, hybrid = 0;
825 struct dm_target *tgt;
826 struct dm_dev_internal *dd;
827 struct list_head *devices;
828 unsigned live_md_type;
829
830 for (i = 0; i < t->num_targets; i++) {
831 tgt = t->targets + i;
832 if (dm_target_hybrid(tgt))
833 hybrid = 1;
834 else if (dm_target_request_based(tgt))
835 request_based = 1;
836 else
837 bio_based = 1;
838
839 if (bio_based && request_based) {
840 DMWARN("Inconsistent table: different target types"
841 " can't be mixed up");
842 return -EINVAL;
843 }
844 }
845
846 if (hybrid && !bio_based && !request_based) {
847 /*
848 * The targets can work either way.
849 * Determine the type from the live device.
850 * Default to bio-based if device is new.
851 */
852 live_md_type = dm_get_md_type(t->md);
853 if (live_md_type == DM_TYPE_REQUEST_BASED)
854 request_based = 1;
855 else
856 bio_based = 1;
857 }
858
859 if (bio_based) {
860 /* We must use this table as bio-based */
861 t->type = DM_TYPE_BIO_BASED;
862 return 0;
863 }
864
865 BUG_ON(!request_based); /* No targets in this table */
866
867 /* Non-request-stackable devices can't be used for request-based dm */
868 devices = dm_table_get_devices(t);
869 list_for_each_entry(dd, devices, list) {
870 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev->bdev))) {
871 DMWARN("table load rejected: including"
872 " non-request-stackable devices");
873 return -EINVAL;
874 }
875 }
876
877 /*
878 * Request-based dm supports only tables that have a single target now.
879 * To support multiple targets, request splitting support is needed,
880 * and that needs lots of changes in the block-layer.
881 * (e.g. request completion process for partial completion.)
882 */
883 if (t->num_targets > 1) {
884 DMWARN("Request-based dm doesn't support multiple targets yet");
885 return -EINVAL;
886 }
887
888 t->type = DM_TYPE_REQUEST_BASED;
889
890 return 0;
891 }
892
dm_table_get_type(struct dm_table * t)893 unsigned dm_table_get_type(struct dm_table *t)
894 {
895 return t->type;
896 }
897
dm_table_get_immutable_target_type(struct dm_table * t)898 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
899 {
900 return t->immutable_target_type;
901 }
902
dm_table_request_based(struct dm_table * t)903 bool dm_table_request_based(struct dm_table *t)
904 {
905 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
906 }
907
dm_table_alloc_md_mempools(struct dm_table * t)908 static int dm_table_alloc_md_mempools(struct dm_table *t)
909 {
910 unsigned type = dm_table_get_type(t);
911 unsigned per_bio_data_size = 0;
912 struct dm_target *tgt;
913 unsigned i;
914
915 if (unlikely(type == DM_TYPE_NONE)) {
916 DMWARN("no table type is set, can't allocate mempools");
917 return -EINVAL;
918 }
919
920 if (type == DM_TYPE_BIO_BASED)
921 for (i = 0; i < t->num_targets; i++) {
922 tgt = t->targets + i;
923 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
924 }
925
926 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
927 if (!t->mempools)
928 return -ENOMEM;
929
930 return 0;
931 }
932
dm_table_free_md_mempools(struct dm_table * t)933 void dm_table_free_md_mempools(struct dm_table *t)
934 {
935 dm_free_md_mempools(t->mempools);
936 t->mempools = NULL;
937 }
938
dm_table_get_md_mempools(struct dm_table * t)939 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
940 {
941 return t->mempools;
942 }
943
setup_indexes(struct dm_table * t)944 static int setup_indexes(struct dm_table *t)
945 {
946 int i;
947 unsigned int total = 0;
948 sector_t *indexes;
949
950 /* allocate the space for *all* the indexes */
951 for (i = t->depth - 2; i >= 0; i--) {
952 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
953 total += t->counts[i];
954 }
955
956 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
957 if (!indexes)
958 return -ENOMEM;
959
960 /* set up internal nodes, bottom-up */
961 for (i = t->depth - 2; i >= 0; i--) {
962 t->index[i] = indexes;
963 indexes += (KEYS_PER_NODE * t->counts[i]);
964 setup_btree_index(i, t);
965 }
966
967 return 0;
968 }
969
970 /*
971 * Builds the btree to index the map.
972 */
dm_table_build_index(struct dm_table * t)973 static int dm_table_build_index(struct dm_table *t)
974 {
975 int r = 0;
976 unsigned int leaf_nodes;
977
978 /* how many indexes will the btree have ? */
979 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
980 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
981
982 /* leaf layer has already been set up */
983 t->counts[t->depth - 1] = leaf_nodes;
984 t->index[t->depth - 1] = t->highs;
985
986 if (t->depth >= 2)
987 r = setup_indexes(t);
988
989 return r;
990 }
991
992 /*
993 * Get a disk whose integrity profile reflects the table's profile.
994 * If %match_all is true, all devices' profiles must match.
995 * If %match_all is false, all devices must at least have an
996 * allocated integrity profile; but uninitialized is ok.
997 * Returns NULL if integrity support was inconsistent or unavailable.
998 */
dm_table_get_integrity_disk(struct dm_table * t,bool match_all)999 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1000 bool match_all)
1001 {
1002 struct list_head *devices = dm_table_get_devices(t);
1003 struct dm_dev_internal *dd = NULL;
1004 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1005
1006 list_for_each_entry(dd, devices, list) {
1007 template_disk = dd->dm_dev->bdev->bd_disk;
1008 if (!blk_get_integrity(template_disk))
1009 goto no_integrity;
1010 if (!match_all && !blk_integrity_is_initialized(template_disk))
1011 continue; /* skip uninitialized profiles */
1012 else if (prev_disk &&
1013 blk_integrity_compare(prev_disk, template_disk) < 0)
1014 goto no_integrity;
1015 prev_disk = template_disk;
1016 }
1017
1018 return template_disk;
1019
1020 no_integrity:
1021 if (prev_disk)
1022 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1023 dm_device_name(t->md),
1024 prev_disk->disk_name,
1025 template_disk->disk_name);
1026 return NULL;
1027 }
1028
1029 /*
1030 * Register the mapped device for blk_integrity support if
1031 * the underlying devices have an integrity profile. But all devices
1032 * may not have matching profiles (checking all devices isn't reliable
1033 * during table load because this table may use other DM device(s) which
1034 * must be resumed before they will have an initialized integity profile).
1035 * Stacked DM devices force a 2 stage integrity profile validation:
1036 * 1 - during load, validate all initialized integrity profiles match
1037 * 2 - during resume, validate all integrity profiles match
1038 */
dm_table_prealloc_integrity(struct dm_table * t,struct mapped_device * md)1039 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1040 {
1041 struct gendisk *template_disk = NULL;
1042
1043 template_disk = dm_table_get_integrity_disk(t, false);
1044 if (!template_disk)
1045 return 0;
1046
1047 if (!blk_integrity_is_initialized(dm_disk(md))) {
1048 t->integrity_supported = 1;
1049 return blk_integrity_register(dm_disk(md), NULL);
1050 }
1051
1052 /*
1053 * If DM device already has an initalized integrity
1054 * profile the new profile should not conflict.
1055 */
1056 if (blk_integrity_is_initialized(template_disk) &&
1057 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1058 DMWARN("%s: conflict with existing integrity profile: "
1059 "%s profile mismatch",
1060 dm_device_name(t->md),
1061 template_disk->disk_name);
1062 return 1;
1063 }
1064
1065 /* Preserve existing initialized integrity profile */
1066 t->integrity_supported = 1;
1067 return 0;
1068 }
1069
1070 /*
1071 * Prepares the table for use by building the indices,
1072 * setting the type, and allocating mempools.
1073 */
dm_table_complete(struct dm_table * t)1074 int dm_table_complete(struct dm_table *t)
1075 {
1076 int r;
1077
1078 r = dm_table_set_type(t);
1079 if (r) {
1080 DMERR("unable to set table type");
1081 return r;
1082 }
1083
1084 r = dm_table_build_index(t);
1085 if (r) {
1086 DMERR("unable to build btrees");
1087 return r;
1088 }
1089
1090 r = dm_table_prealloc_integrity(t, t->md);
1091 if (r) {
1092 DMERR("could not register integrity profile.");
1093 return r;
1094 }
1095
1096 r = dm_table_alloc_md_mempools(t);
1097 if (r)
1098 DMERR("unable to allocate mempools");
1099
1100 return r;
1101 }
1102
1103 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1104 void dm_table_event_callback(struct dm_table *t,
1105 void (*fn)(void *), void *context)
1106 {
1107 mutex_lock(&_event_lock);
1108 t->event_fn = fn;
1109 t->event_context = context;
1110 mutex_unlock(&_event_lock);
1111 }
1112
dm_table_event(struct dm_table * t)1113 void dm_table_event(struct dm_table *t)
1114 {
1115 /*
1116 * You can no longer call dm_table_event() from interrupt
1117 * context, use a bottom half instead.
1118 */
1119 BUG_ON(in_interrupt());
1120
1121 mutex_lock(&_event_lock);
1122 if (t->event_fn)
1123 t->event_fn(t->event_context);
1124 mutex_unlock(&_event_lock);
1125 }
1126 EXPORT_SYMBOL(dm_table_event);
1127
dm_table_get_size(struct dm_table * t)1128 sector_t dm_table_get_size(struct dm_table *t)
1129 {
1130 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1131 }
1132 EXPORT_SYMBOL(dm_table_get_size);
1133
dm_table_get_target(struct dm_table * t,unsigned int index)1134 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1135 {
1136 if (index >= t->num_targets)
1137 return NULL;
1138
1139 return t->targets + index;
1140 }
1141
1142 /*
1143 * Search the btree for the correct target.
1144 *
1145 * Caller should check returned pointer with dm_target_is_valid()
1146 * to trap I/O beyond end of device.
1147 */
dm_table_find_target(struct dm_table * t,sector_t sector)1148 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1149 {
1150 unsigned int l, n = 0, k = 0;
1151 sector_t *node;
1152
1153 for (l = 0; l < t->depth; l++) {
1154 n = get_child(n, k);
1155 node = get_node(t, l, n);
1156
1157 for (k = 0; k < KEYS_PER_NODE; k++)
1158 if (node[k] >= sector)
1159 break;
1160 }
1161
1162 return &t->targets[(KEYS_PER_NODE * n) + k];
1163 }
1164
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1165 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1166 sector_t start, sector_t len, void *data)
1167 {
1168 unsigned *num_devices = data;
1169
1170 (*num_devices)++;
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * Check whether a table has no data devices attached using each
1177 * target's iterate_devices method.
1178 * Returns false if the result is unknown because a target doesn't
1179 * support iterate_devices.
1180 */
dm_table_has_no_data_devices(struct dm_table * table)1181 bool dm_table_has_no_data_devices(struct dm_table *table)
1182 {
1183 struct dm_target *uninitialized_var(ti);
1184 unsigned i = 0, num_devices = 0;
1185
1186 while (i < dm_table_get_num_targets(table)) {
1187 ti = dm_table_get_target(table, i++);
1188
1189 if (!ti->type->iterate_devices)
1190 return false;
1191
1192 ti->type->iterate_devices(ti, count_device, &num_devices);
1193 if (num_devices)
1194 return false;
1195 }
1196
1197 return true;
1198 }
1199
1200 /*
1201 * Establish the new table's queue_limits and validate them.
1202 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1203 int dm_calculate_queue_limits(struct dm_table *table,
1204 struct queue_limits *limits)
1205 {
1206 struct dm_target *uninitialized_var(ti);
1207 struct queue_limits ti_limits;
1208 unsigned i = 0;
1209
1210 blk_set_stacking_limits(limits);
1211
1212 while (i < dm_table_get_num_targets(table)) {
1213 blk_set_stacking_limits(&ti_limits);
1214
1215 ti = dm_table_get_target(table, i++);
1216
1217 if (!ti->type->iterate_devices)
1218 goto combine_limits;
1219
1220 /*
1221 * Combine queue limits of all the devices this target uses.
1222 */
1223 ti->type->iterate_devices(ti, dm_set_device_limits,
1224 &ti_limits);
1225
1226 /* Set I/O hints portion of queue limits */
1227 if (ti->type->io_hints)
1228 ti->type->io_hints(ti, &ti_limits);
1229
1230 /*
1231 * Check each device area is consistent with the target's
1232 * overall queue limits.
1233 */
1234 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1235 &ti_limits))
1236 return -EINVAL;
1237
1238 combine_limits:
1239 /*
1240 * Merge this target's queue limits into the overall limits
1241 * for the table.
1242 */
1243 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1244 DMWARN("%s: adding target device "
1245 "(start sect %llu len %llu) "
1246 "caused an alignment inconsistency",
1247 dm_device_name(table->md),
1248 (unsigned long long) ti->begin,
1249 (unsigned long long) ti->len);
1250 }
1251
1252 return validate_hardware_logical_block_alignment(table, limits);
1253 }
1254
1255 /*
1256 * Set the integrity profile for this device if all devices used have
1257 * matching profiles. We're quite deep in the resume path but still
1258 * don't know if all devices (particularly DM devices this device
1259 * may be stacked on) have matching profiles. Even if the profiles
1260 * don't match we have no way to fail (to resume) at this point.
1261 */
dm_table_set_integrity(struct dm_table * t)1262 static void dm_table_set_integrity(struct dm_table *t)
1263 {
1264 struct gendisk *template_disk = NULL;
1265
1266 if (!blk_get_integrity(dm_disk(t->md)))
1267 return;
1268
1269 template_disk = dm_table_get_integrity_disk(t, true);
1270 if (template_disk)
1271 blk_integrity_register(dm_disk(t->md),
1272 blk_get_integrity(template_disk));
1273 else if (blk_integrity_is_initialized(dm_disk(t->md)))
1274 DMWARN("%s: device no longer has a valid integrity profile",
1275 dm_device_name(t->md));
1276 else
1277 DMWARN("%s: unable to establish an integrity profile",
1278 dm_device_name(t->md));
1279 }
1280
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1281 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1282 sector_t start, sector_t len, void *data)
1283 {
1284 unsigned flush = (*(unsigned *)data);
1285 struct request_queue *q = bdev_get_queue(dev->bdev);
1286
1287 return q && (q->flush_flags & flush);
1288 }
1289
dm_table_supports_flush(struct dm_table * t,unsigned flush)1290 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1291 {
1292 struct dm_target *ti;
1293 unsigned i = 0;
1294
1295 /*
1296 * Require at least one underlying device to support flushes.
1297 * t->devices includes internal dm devices such as mirror logs
1298 * so we need to use iterate_devices here, which targets
1299 * supporting flushes must provide.
1300 */
1301 while (i < dm_table_get_num_targets(t)) {
1302 ti = dm_table_get_target(t, i++);
1303
1304 if (!ti->num_flush_bios)
1305 continue;
1306
1307 if (ti->flush_supported)
1308 return 1;
1309
1310 if (ti->type->iterate_devices &&
1311 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1312 return 1;
1313 }
1314
1315 return 0;
1316 }
1317
dm_table_discard_zeroes_data(struct dm_table * t)1318 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1319 {
1320 struct dm_target *ti;
1321 unsigned i = 0;
1322
1323 /* Ensure that all targets supports discard_zeroes_data. */
1324 while (i < dm_table_get_num_targets(t)) {
1325 ti = dm_table_get_target(t, i++);
1326
1327 if (ti->discard_zeroes_data_unsupported)
1328 return 0;
1329 }
1330
1331 return 1;
1332 }
1333
device_is_nonrot(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1334 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1335 sector_t start, sector_t len, void *data)
1336 {
1337 struct request_queue *q = bdev_get_queue(dev->bdev);
1338
1339 return q && blk_queue_nonrot(q);
1340 }
1341
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1342 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1343 sector_t start, sector_t len, void *data)
1344 {
1345 struct request_queue *q = bdev_get_queue(dev->bdev);
1346
1347 return q && !blk_queue_add_random(q);
1348 }
1349
queue_supports_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1350 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1351 sector_t start, sector_t len, void *data)
1352 {
1353 struct request_queue *q = bdev_get_queue(dev->bdev);
1354
1355 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1356 }
1357
dm_table_all_devices_attribute(struct dm_table * t,iterate_devices_callout_fn func)1358 static bool dm_table_all_devices_attribute(struct dm_table *t,
1359 iterate_devices_callout_fn func)
1360 {
1361 struct dm_target *ti;
1362 unsigned i = 0;
1363
1364 while (i < dm_table_get_num_targets(t)) {
1365 ti = dm_table_get_target(t, i++);
1366
1367 if (!ti->type->iterate_devices ||
1368 !ti->type->iterate_devices(ti, func, NULL))
1369 return 0;
1370 }
1371
1372 return 1;
1373 }
1374
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1375 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1376 sector_t start, sector_t len, void *data)
1377 {
1378 struct request_queue *q = bdev_get_queue(dev->bdev);
1379
1380 return q && !q->limits.max_write_same_sectors;
1381 }
1382
dm_table_supports_write_same(struct dm_table * t)1383 static bool dm_table_supports_write_same(struct dm_table *t)
1384 {
1385 struct dm_target *ti;
1386 unsigned i = 0;
1387
1388 while (i < dm_table_get_num_targets(t)) {
1389 ti = dm_table_get_target(t, i++);
1390
1391 if (!ti->num_write_same_bios)
1392 return false;
1393
1394 if (!ti->type->iterate_devices ||
1395 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1396 return false;
1397 }
1398
1399 return true;
1400 }
1401
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1402 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1403 sector_t start, sector_t len, void *data)
1404 {
1405 struct request_queue *q = bdev_get_queue(dev->bdev);
1406
1407 return q && blk_queue_discard(q);
1408 }
1409
dm_table_supports_discards(struct dm_table * t)1410 static bool dm_table_supports_discards(struct dm_table *t)
1411 {
1412 struct dm_target *ti;
1413 unsigned i = 0;
1414
1415 /*
1416 * Unless any target used by the table set discards_supported,
1417 * require at least one underlying device to support discards.
1418 * t->devices includes internal dm devices such as mirror logs
1419 * so we need to use iterate_devices here, which targets
1420 * supporting discard selectively must provide.
1421 */
1422 while (i < dm_table_get_num_targets(t)) {
1423 ti = dm_table_get_target(t, i++);
1424
1425 if (!ti->num_discard_bios)
1426 continue;
1427
1428 if (ti->discards_supported)
1429 return 1;
1430
1431 if (ti->type->iterate_devices &&
1432 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1439 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1440 struct queue_limits *limits)
1441 {
1442 unsigned flush = 0;
1443
1444 /*
1445 * Copy table's limits to the DM device's request_queue
1446 */
1447 q->limits = *limits;
1448
1449 if (!dm_table_supports_discards(t))
1450 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1451 else
1452 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1453
1454 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1455 flush |= REQ_FLUSH;
1456 if (dm_table_supports_flush(t, REQ_FUA))
1457 flush |= REQ_FUA;
1458 }
1459 blk_queue_flush(q, flush);
1460
1461 if (!dm_table_discard_zeroes_data(t))
1462 q->limits.discard_zeroes_data = 0;
1463
1464 /* Ensure that all underlying devices are non-rotational. */
1465 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1466 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1467 else
1468 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1469
1470 if (!dm_table_supports_write_same(t))
1471 q->limits.max_write_same_sectors = 0;
1472
1473 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1474 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1475 else
1476 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1477
1478 dm_table_set_integrity(t);
1479
1480 /*
1481 * Determine whether or not this queue's I/O timings contribute
1482 * to the entropy pool, Only request-based targets use this.
1483 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1484 * have it set.
1485 */
1486 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1487 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1488
1489 /*
1490 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1491 * visible to other CPUs because, once the flag is set, incoming bios
1492 * are processed by request-based dm, which refers to the queue
1493 * settings.
1494 * Until the flag set, bios are passed to bio-based dm and queued to
1495 * md->deferred where queue settings are not needed yet.
1496 * Those bios are passed to request-based dm at the resume time.
1497 */
1498 smp_mb();
1499 if (dm_table_request_based(t))
1500 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1501 }
1502
dm_table_get_num_targets(struct dm_table * t)1503 unsigned int dm_table_get_num_targets(struct dm_table *t)
1504 {
1505 return t->num_targets;
1506 }
1507
dm_table_get_devices(struct dm_table * t)1508 struct list_head *dm_table_get_devices(struct dm_table *t)
1509 {
1510 return &t->devices;
1511 }
1512
dm_table_get_mode(struct dm_table * t)1513 fmode_t dm_table_get_mode(struct dm_table *t)
1514 {
1515 return t->mode;
1516 }
1517 EXPORT_SYMBOL(dm_table_get_mode);
1518
suspend_targets(struct dm_table * t,unsigned postsuspend)1519 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1520 {
1521 int i = t->num_targets;
1522 struct dm_target *ti = t->targets;
1523
1524 while (i--) {
1525 if (postsuspend) {
1526 if (ti->type->postsuspend)
1527 ti->type->postsuspend(ti);
1528 } else if (ti->type->presuspend)
1529 ti->type->presuspend(ti);
1530
1531 ti++;
1532 }
1533 }
1534
dm_table_presuspend_targets(struct dm_table * t)1535 void dm_table_presuspend_targets(struct dm_table *t)
1536 {
1537 if (!t)
1538 return;
1539
1540 suspend_targets(t, 0);
1541 }
1542
dm_table_postsuspend_targets(struct dm_table * t)1543 void dm_table_postsuspend_targets(struct dm_table *t)
1544 {
1545 if (!t)
1546 return;
1547
1548 suspend_targets(t, 1);
1549 }
1550
dm_table_resume_targets(struct dm_table * t)1551 int dm_table_resume_targets(struct dm_table *t)
1552 {
1553 int i, r = 0;
1554
1555 for (i = 0; i < t->num_targets; i++) {
1556 struct dm_target *ti = t->targets + i;
1557
1558 if (!ti->type->preresume)
1559 continue;
1560
1561 r = ti->type->preresume(ti);
1562 if (r) {
1563 DMERR("%s: %s: preresume failed, error = %d",
1564 dm_device_name(t->md), ti->type->name, r);
1565 return r;
1566 }
1567 }
1568
1569 for (i = 0; i < t->num_targets; i++) {
1570 struct dm_target *ti = t->targets + i;
1571
1572 if (ti->type->resume)
1573 ti->type->resume(ti);
1574 }
1575
1576 return 0;
1577 }
1578
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1579 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1580 {
1581 list_add(&cb->list, &t->target_callbacks);
1582 }
1583 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1584
dm_table_any_congested(struct dm_table * t,int bdi_bits)1585 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1586 {
1587 struct dm_dev_internal *dd;
1588 struct list_head *devices = dm_table_get_devices(t);
1589 struct dm_target_callbacks *cb;
1590 int r = 0;
1591
1592 list_for_each_entry(dd, devices, list) {
1593 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1594 char b[BDEVNAME_SIZE];
1595
1596 if (likely(q))
1597 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1598 else
1599 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1600 dm_device_name(t->md),
1601 bdevname(dd->dm_dev->bdev, b));
1602 }
1603
1604 list_for_each_entry(cb, &t->target_callbacks, list)
1605 if (cb->congested_fn)
1606 r |= cb->congested_fn(cb, bdi_bits);
1607
1608 return r;
1609 }
1610
dm_table_any_busy_target(struct dm_table * t)1611 int dm_table_any_busy_target(struct dm_table *t)
1612 {
1613 unsigned i;
1614 struct dm_target *ti;
1615
1616 for (i = 0; i < t->num_targets; i++) {
1617 ti = t->targets + i;
1618 if (ti->type->busy && ti->type->busy(ti))
1619 return 1;
1620 }
1621
1622 return 0;
1623 }
1624
dm_table_get_md(struct dm_table * t)1625 struct mapped_device *dm_table_get_md(struct dm_table *t)
1626 {
1627 return t->md;
1628 }
1629 EXPORT_SYMBOL(dm_table_get_md);
1630
dm_table_run_md_queue_async(struct dm_table * t)1631 void dm_table_run_md_queue_async(struct dm_table *t)
1632 {
1633 struct mapped_device *md;
1634 struct request_queue *queue;
1635 unsigned long flags;
1636
1637 if (!dm_table_request_based(t))
1638 return;
1639
1640 md = dm_table_get_md(t);
1641 queue = dm_get_md_queue(md);
1642 if (queue) {
1643 spin_lock_irqsave(queue->queue_lock, flags);
1644 blk_run_queue_async(queue);
1645 spin_unlock_irqrestore(queue->queue_lock, flags);
1646 }
1647 }
1648 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1649
1650