• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /*
84  * For btree insert:
85  *  3 for btree insert +
86  *  2 for btree lookup used within space map
87  * For btree remove:
88  *  2 for shadow spine +
89  *  4 for rebalance 3 child node
90  */
91 #define THIN_MAX_CONCURRENT_LOCKS 6
92 
93 /* This should be plenty */
94 #define SPACE_MAP_ROOT_SIZE 128
95 
96 /*
97  * Little endian on-disk superblock and device details.
98  */
99 struct thin_disk_superblock {
100 	__le32 csum;	/* Checksum of superblock except for this field. */
101 	__le32 flags;
102 	__le64 blocknr;	/* This block number, dm_block_t. */
103 
104 	__u8 uuid[16];
105 	__le64 magic;
106 	__le32 version;
107 	__le32 time;
108 
109 	__le64 trans_id;
110 
111 	/*
112 	 * Root held by userspace transactions.
113 	 */
114 	__le64 held_root;
115 
116 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
117 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
118 
119 	/*
120 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
121 	 */
122 	__le64 data_mapping_root;
123 
124 	/*
125 	 * Device detail root mapping dev_id -> device_details
126 	 */
127 	__le64 device_details_root;
128 
129 	__le32 data_block_size;		/* In 512-byte sectors. */
130 
131 	__le32 metadata_block_size;	/* In 512-byte sectors. */
132 	__le64 metadata_nr_blocks;
133 
134 	__le32 compat_flags;
135 	__le32 compat_ro_flags;
136 	__le32 incompat_flags;
137 } __packed;
138 
139 struct disk_device_details {
140 	__le64 mapped_blocks;
141 	__le64 transaction_id;		/* When created. */
142 	__le32 creation_time;
143 	__le32 snapshotted_time;
144 } __packed;
145 
146 struct dm_pool_metadata {
147 	struct hlist_node hash;
148 
149 	struct block_device *bdev;
150 	struct dm_block_manager *bm;
151 	struct dm_space_map *metadata_sm;
152 	struct dm_space_map *data_sm;
153 	struct dm_transaction_manager *tm;
154 	struct dm_transaction_manager *nb_tm;
155 
156 	/*
157 	 * Two-level btree.
158 	 * First level holds thin_dev_t.
159 	 * Second level holds mappings.
160 	 */
161 	struct dm_btree_info info;
162 
163 	/*
164 	 * Non-blocking version of the above.
165 	 */
166 	struct dm_btree_info nb_info;
167 
168 	/*
169 	 * Just the top level for deleting whole devices.
170 	 */
171 	struct dm_btree_info tl_info;
172 
173 	/*
174 	 * Just the bottom level for creating new devices.
175 	 */
176 	struct dm_btree_info bl_info;
177 
178 	/*
179 	 * Describes the device details btree.
180 	 */
181 	struct dm_btree_info details_info;
182 
183 	struct rw_semaphore root_lock;
184 	uint32_t time;
185 	dm_block_t root;
186 	dm_block_t details_root;
187 	struct list_head thin_devices;
188 	uint64_t trans_id;
189 	unsigned long flags;
190 	sector_t data_block_size;
191 	bool read_only:1;
192 
193 	/*
194 	 * Set if a transaction has to be aborted but the attempt to roll back
195 	 * to the previous (good) transaction failed.  The only pool metadata
196 	 * operation possible in this state is the closing of the device.
197 	 */
198 	bool fail_io:1;
199 
200 	/*
201 	 * Reading the space map roots can fail, so we read it into these
202 	 * buffers before the superblock is locked and updated.
203 	 */
204 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
205 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
206 };
207 
208 struct dm_thin_device {
209 	struct list_head list;
210 	struct dm_pool_metadata *pmd;
211 	dm_thin_id id;
212 
213 	int open_count;
214 	bool changed:1;
215 	bool aborted_with_changes:1;
216 	uint64_t mapped_blocks;
217 	uint64_t transaction_id;
218 	uint32_t creation_time;
219 	uint32_t snapshotted_time;
220 };
221 
222 /*----------------------------------------------------------------
223  * superblock validator
224  *--------------------------------------------------------------*/
225 
226 #define SUPERBLOCK_CSUM_XOR 160774
227 
sb_prepare_for_write(struct dm_block_validator * v,struct dm_block * b,size_t block_size)228 static void sb_prepare_for_write(struct dm_block_validator *v,
229 				 struct dm_block *b,
230 				 size_t block_size)
231 {
232 	struct thin_disk_superblock *disk_super = dm_block_data(b);
233 
234 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
235 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
236 						      block_size - sizeof(__le32),
237 						      SUPERBLOCK_CSUM_XOR));
238 }
239 
sb_check(struct dm_block_validator * v,struct dm_block * b,size_t block_size)240 static int sb_check(struct dm_block_validator *v,
241 		    struct dm_block *b,
242 		    size_t block_size)
243 {
244 	struct thin_disk_superblock *disk_super = dm_block_data(b);
245 	__le32 csum_le;
246 
247 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
248 		DMERR("sb_check failed: blocknr %llu: "
249 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
250 		      (unsigned long long)dm_block_location(b));
251 		return -ENOTBLK;
252 	}
253 
254 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
255 		DMERR("sb_check failed: magic %llu: "
256 		      "wanted %llu", le64_to_cpu(disk_super->magic),
257 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
258 		return -EILSEQ;
259 	}
260 
261 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
262 					     block_size - sizeof(__le32),
263 					     SUPERBLOCK_CSUM_XOR));
264 	if (csum_le != disk_super->csum) {
265 		DMERR("sb_check failed: csum %u: wanted %u",
266 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
267 		return -EILSEQ;
268 	}
269 
270 	return 0;
271 }
272 
273 static struct dm_block_validator sb_validator = {
274 	.name = "superblock",
275 	.prepare_for_write = sb_prepare_for_write,
276 	.check = sb_check
277 };
278 
279 /*----------------------------------------------------------------
280  * Methods for the btree value types
281  *--------------------------------------------------------------*/
282 
pack_block_time(dm_block_t b,uint32_t t)283 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
284 {
285 	return (b << 24) | t;
286 }
287 
unpack_block_time(uint64_t v,dm_block_t * b,uint32_t * t)288 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
289 {
290 	*b = v >> 24;
291 	*t = v & ((1 << 24) - 1);
292 }
293 
data_block_inc(void * context,const void * value_le)294 static void data_block_inc(void *context, const void *value_le)
295 {
296 	struct dm_space_map *sm = context;
297 	__le64 v_le;
298 	uint64_t b;
299 	uint32_t t;
300 
301 	memcpy(&v_le, value_le, sizeof(v_le));
302 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
303 	dm_sm_inc_block(sm, b);
304 }
305 
data_block_dec(void * context,const void * value_le)306 static void data_block_dec(void *context, const void *value_le)
307 {
308 	struct dm_space_map *sm = context;
309 	__le64 v_le;
310 	uint64_t b;
311 	uint32_t t;
312 
313 	memcpy(&v_le, value_le, sizeof(v_le));
314 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
315 	dm_sm_dec_block(sm, b);
316 }
317 
data_block_equal(void * context,const void * value1_le,const void * value2_le)318 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
319 {
320 	__le64 v1_le, v2_le;
321 	uint64_t b1, b2;
322 	uint32_t t;
323 
324 	memcpy(&v1_le, value1_le, sizeof(v1_le));
325 	memcpy(&v2_le, value2_le, sizeof(v2_le));
326 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
327 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
328 
329 	return b1 == b2;
330 }
331 
subtree_inc(void * context,const void * value)332 static void subtree_inc(void *context, const void *value)
333 {
334 	struct dm_btree_info *info = context;
335 	__le64 root_le;
336 	uint64_t root;
337 
338 	memcpy(&root_le, value, sizeof(root_le));
339 	root = le64_to_cpu(root_le);
340 	dm_tm_inc(info->tm, root);
341 }
342 
subtree_dec(void * context,const void * value)343 static void subtree_dec(void *context, const void *value)
344 {
345 	struct dm_btree_info *info = context;
346 	__le64 root_le;
347 	uint64_t root;
348 
349 	memcpy(&root_le, value, sizeof(root_le));
350 	root = le64_to_cpu(root_le);
351 	if (dm_btree_del(info, root))
352 		DMERR("btree delete failed\n");
353 }
354 
subtree_equal(void * context,const void * value1_le,const void * value2_le)355 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
356 {
357 	__le64 v1_le, v2_le;
358 	memcpy(&v1_le, value1_le, sizeof(v1_le));
359 	memcpy(&v2_le, value2_le, sizeof(v2_le));
360 
361 	return v1_le == v2_le;
362 }
363 
364 /*----------------------------------------------------------------*/
365 
superblock_lock_zero(struct dm_pool_metadata * pmd,struct dm_block ** sblock)366 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
367 				struct dm_block **sblock)
368 {
369 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
370 				     &sb_validator, sblock);
371 }
372 
superblock_lock(struct dm_pool_metadata * pmd,struct dm_block ** sblock)373 static int superblock_lock(struct dm_pool_metadata *pmd,
374 			   struct dm_block **sblock)
375 {
376 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
377 				&sb_validator, sblock);
378 }
379 
__superblock_all_zeroes(struct dm_block_manager * bm,int * result)380 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
381 {
382 	int r;
383 	unsigned i;
384 	struct dm_block *b;
385 	__le64 *data_le, zero = cpu_to_le64(0);
386 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
387 
388 	/*
389 	 * We can't use a validator here - it may be all zeroes.
390 	 */
391 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
392 	if (r)
393 		return r;
394 
395 	data_le = dm_block_data(b);
396 	*result = 1;
397 	for (i = 0; i < block_size; i++) {
398 		if (data_le[i] != zero) {
399 			*result = 0;
400 			break;
401 		}
402 	}
403 
404 	return dm_bm_unlock(b);
405 }
406 
__setup_btree_details(struct dm_pool_metadata * pmd)407 static void __setup_btree_details(struct dm_pool_metadata *pmd)
408 {
409 	pmd->info.tm = pmd->tm;
410 	pmd->info.levels = 2;
411 	pmd->info.value_type.context = pmd->data_sm;
412 	pmd->info.value_type.size = sizeof(__le64);
413 	pmd->info.value_type.inc = data_block_inc;
414 	pmd->info.value_type.dec = data_block_dec;
415 	pmd->info.value_type.equal = data_block_equal;
416 
417 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
418 	pmd->nb_info.tm = pmd->nb_tm;
419 
420 	pmd->tl_info.tm = pmd->tm;
421 	pmd->tl_info.levels = 1;
422 	pmd->tl_info.value_type.context = &pmd->bl_info;
423 	pmd->tl_info.value_type.size = sizeof(__le64);
424 	pmd->tl_info.value_type.inc = subtree_inc;
425 	pmd->tl_info.value_type.dec = subtree_dec;
426 	pmd->tl_info.value_type.equal = subtree_equal;
427 
428 	pmd->bl_info.tm = pmd->tm;
429 	pmd->bl_info.levels = 1;
430 	pmd->bl_info.value_type.context = pmd->data_sm;
431 	pmd->bl_info.value_type.size = sizeof(__le64);
432 	pmd->bl_info.value_type.inc = data_block_inc;
433 	pmd->bl_info.value_type.dec = data_block_dec;
434 	pmd->bl_info.value_type.equal = data_block_equal;
435 
436 	pmd->details_info.tm = pmd->tm;
437 	pmd->details_info.levels = 1;
438 	pmd->details_info.value_type.context = NULL;
439 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
440 	pmd->details_info.value_type.inc = NULL;
441 	pmd->details_info.value_type.dec = NULL;
442 	pmd->details_info.value_type.equal = NULL;
443 }
444 
save_sm_roots(struct dm_pool_metadata * pmd)445 static int save_sm_roots(struct dm_pool_metadata *pmd)
446 {
447 	int r;
448 	size_t len;
449 
450 	r = dm_sm_root_size(pmd->metadata_sm, &len);
451 	if (r < 0)
452 		return r;
453 
454 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
455 	if (r < 0)
456 		return r;
457 
458 	r = dm_sm_root_size(pmd->data_sm, &len);
459 	if (r < 0)
460 		return r;
461 
462 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
463 }
464 
copy_sm_roots(struct dm_pool_metadata * pmd,struct thin_disk_superblock * disk)465 static void copy_sm_roots(struct dm_pool_metadata *pmd,
466 			  struct thin_disk_superblock *disk)
467 {
468 	memcpy(&disk->metadata_space_map_root,
469 	       &pmd->metadata_space_map_root,
470 	       sizeof(pmd->metadata_space_map_root));
471 
472 	memcpy(&disk->data_space_map_root,
473 	       &pmd->data_space_map_root,
474 	       sizeof(pmd->data_space_map_root));
475 }
476 
__write_initial_superblock(struct dm_pool_metadata * pmd)477 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
478 {
479 	int r;
480 	struct dm_block *sblock;
481 	struct thin_disk_superblock *disk_super;
482 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
483 
484 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
485 		bdev_size = THIN_METADATA_MAX_SECTORS;
486 
487 	r = dm_sm_commit(pmd->data_sm);
488 	if (r < 0)
489 		return r;
490 
491 	r = dm_tm_pre_commit(pmd->tm);
492 	if (r < 0)
493 		return r;
494 
495 	r = save_sm_roots(pmd);
496 	if (r < 0)
497 		return r;
498 
499 	r = superblock_lock_zero(pmd, &sblock);
500 	if (r)
501 		return r;
502 
503 	disk_super = dm_block_data(sblock);
504 	disk_super->flags = 0;
505 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
506 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
507 	disk_super->version = cpu_to_le32(THIN_VERSION);
508 	disk_super->time = 0;
509 	disk_super->trans_id = 0;
510 	disk_super->held_root = 0;
511 
512 	copy_sm_roots(pmd, disk_super);
513 
514 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
515 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
516 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
517 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
518 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
519 
520 	return dm_tm_commit(pmd->tm, sblock);
521 }
522 
__format_metadata(struct dm_pool_metadata * pmd)523 static int __format_metadata(struct dm_pool_metadata *pmd)
524 {
525 	int r;
526 
527 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
528 				 &pmd->tm, &pmd->metadata_sm);
529 	if (r < 0) {
530 		DMERR("tm_create_with_sm failed");
531 		return r;
532 	}
533 
534 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
535 	if (IS_ERR(pmd->data_sm)) {
536 		DMERR("sm_disk_create failed");
537 		r = PTR_ERR(pmd->data_sm);
538 		goto bad_cleanup_tm;
539 	}
540 
541 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
542 	if (!pmd->nb_tm) {
543 		DMERR("could not create non-blocking clone tm");
544 		r = -ENOMEM;
545 		goto bad_cleanup_data_sm;
546 	}
547 
548 	__setup_btree_details(pmd);
549 
550 	r = dm_btree_empty(&pmd->info, &pmd->root);
551 	if (r < 0)
552 		goto bad_cleanup_nb_tm;
553 
554 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
555 	if (r < 0) {
556 		DMERR("couldn't create devices root");
557 		goto bad_cleanup_nb_tm;
558 	}
559 
560 	r = __write_initial_superblock(pmd);
561 	if (r)
562 		goto bad_cleanup_nb_tm;
563 
564 	return 0;
565 
566 bad_cleanup_nb_tm:
567 	dm_tm_destroy(pmd->nb_tm);
568 bad_cleanup_data_sm:
569 	dm_sm_destroy(pmd->data_sm);
570 bad_cleanup_tm:
571 	dm_tm_destroy(pmd->tm);
572 	dm_sm_destroy(pmd->metadata_sm);
573 
574 	return r;
575 }
576 
__check_incompat_features(struct thin_disk_superblock * disk_super,struct dm_pool_metadata * pmd)577 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
578 				     struct dm_pool_metadata *pmd)
579 {
580 	uint32_t features;
581 
582 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
583 	if (features) {
584 		DMERR("could not access metadata due to unsupported optional features (%lx).",
585 		      (unsigned long)features);
586 		return -EINVAL;
587 	}
588 
589 	/*
590 	 * Check for read-only metadata to skip the following RDWR checks.
591 	 */
592 	if (get_disk_ro(pmd->bdev->bd_disk))
593 		return 0;
594 
595 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
596 	if (features) {
597 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
598 		      (unsigned long)features);
599 		return -EINVAL;
600 	}
601 
602 	return 0;
603 }
604 
__open_metadata(struct dm_pool_metadata * pmd)605 static int __open_metadata(struct dm_pool_metadata *pmd)
606 {
607 	int r;
608 	struct dm_block *sblock;
609 	struct thin_disk_superblock *disk_super;
610 
611 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
612 			    &sb_validator, &sblock);
613 	if (r < 0) {
614 		DMERR("couldn't read superblock");
615 		return r;
616 	}
617 
618 	disk_super = dm_block_data(sblock);
619 
620 	/* Verify the data block size hasn't changed */
621 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
622 		DMERR("changing the data block size (from %u to %llu) is not supported",
623 		      le32_to_cpu(disk_super->data_block_size),
624 		      (unsigned long long)pmd->data_block_size);
625 		r = -EINVAL;
626 		goto bad_unlock_sblock;
627 	}
628 
629 	r = __check_incompat_features(disk_super, pmd);
630 	if (r < 0)
631 		goto bad_unlock_sblock;
632 
633 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
634 			       disk_super->metadata_space_map_root,
635 			       sizeof(disk_super->metadata_space_map_root),
636 			       &pmd->tm, &pmd->metadata_sm);
637 	if (r < 0) {
638 		DMERR("tm_open_with_sm failed");
639 		goto bad_unlock_sblock;
640 	}
641 
642 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
643 				       sizeof(disk_super->data_space_map_root));
644 	if (IS_ERR(pmd->data_sm)) {
645 		DMERR("sm_disk_open failed");
646 		r = PTR_ERR(pmd->data_sm);
647 		goto bad_cleanup_tm;
648 	}
649 
650 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
651 	if (!pmd->nb_tm) {
652 		DMERR("could not create non-blocking clone tm");
653 		r = -ENOMEM;
654 		goto bad_cleanup_data_sm;
655 	}
656 
657 	__setup_btree_details(pmd);
658 	return dm_bm_unlock(sblock);
659 
660 bad_cleanup_data_sm:
661 	dm_sm_destroy(pmd->data_sm);
662 bad_cleanup_tm:
663 	dm_tm_destroy(pmd->tm);
664 	dm_sm_destroy(pmd->metadata_sm);
665 bad_unlock_sblock:
666 	dm_bm_unlock(sblock);
667 
668 	return r;
669 }
670 
__open_or_format_metadata(struct dm_pool_metadata * pmd,bool format_device)671 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
672 {
673 	int r, unformatted;
674 
675 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
676 	if (r)
677 		return r;
678 
679 	if (unformatted)
680 		return format_device ? __format_metadata(pmd) : -EPERM;
681 
682 	return __open_metadata(pmd);
683 }
684 
__create_persistent_data_objects(struct dm_pool_metadata * pmd,bool format_device)685 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
686 {
687 	int r;
688 
689 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
690 					  THIN_METADATA_CACHE_SIZE,
691 					  THIN_MAX_CONCURRENT_LOCKS);
692 	if (IS_ERR(pmd->bm)) {
693 		DMERR("could not create block manager");
694 		return PTR_ERR(pmd->bm);
695 	}
696 
697 	r = __open_or_format_metadata(pmd, format_device);
698 	if (r)
699 		dm_block_manager_destroy(pmd->bm);
700 
701 	return r;
702 }
703 
__destroy_persistent_data_objects(struct dm_pool_metadata * pmd)704 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
705 {
706 	dm_sm_destroy(pmd->data_sm);
707 	dm_sm_destroy(pmd->metadata_sm);
708 	dm_tm_destroy(pmd->nb_tm);
709 	dm_tm_destroy(pmd->tm);
710 	dm_block_manager_destroy(pmd->bm);
711 }
712 
__begin_transaction(struct dm_pool_metadata * pmd)713 static int __begin_transaction(struct dm_pool_metadata *pmd)
714 {
715 	int r;
716 	struct thin_disk_superblock *disk_super;
717 	struct dm_block *sblock;
718 
719 	/*
720 	 * We re-read the superblock every time.  Shouldn't need to do this
721 	 * really.
722 	 */
723 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
724 			    &sb_validator, &sblock);
725 	if (r)
726 		return r;
727 
728 	disk_super = dm_block_data(sblock);
729 	pmd->time = le32_to_cpu(disk_super->time);
730 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
731 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
732 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
733 	pmd->flags = le32_to_cpu(disk_super->flags);
734 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
735 
736 	dm_bm_unlock(sblock);
737 	return 0;
738 }
739 
__write_changed_details(struct dm_pool_metadata * pmd)740 static int __write_changed_details(struct dm_pool_metadata *pmd)
741 {
742 	int r;
743 	struct dm_thin_device *td, *tmp;
744 	struct disk_device_details details;
745 	uint64_t key;
746 
747 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
748 		if (!td->changed)
749 			continue;
750 
751 		key = td->id;
752 
753 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
754 		details.transaction_id = cpu_to_le64(td->transaction_id);
755 		details.creation_time = cpu_to_le32(td->creation_time);
756 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
757 		__dm_bless_for_disk(&details);
758 
759 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
760 				    &key, &details, &pmd->details_root);
761 		if (r)
762 			return r;
763 
764 		if (td->open_count)
765 			td->changed = 0;
766 		else {
767 			list_del(&td->list);
768 			kfree(td);
769 		}
770 	}
771 
772 	return 0;
773 }
774 
__commit_transaction(struct dm_pool_metadata * pmd)775 static int __commit_transaction(struct dm_pool_metadata *pmd)
776 {
777 	int r;
778 	size_t metadata_len, data_len;
779 	struct thin_disk_superblock *disk_super;
780 	struct dm_block *sblock;
781 
782 	/*
783 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
784 	 */
785 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
786 
787 	r = __write_changed_details(pmd);
788 	if (r < 0)
789 		return r;
790 
791 	r = dm_sm_commit(pmd->data_sm);
792 	if (r < 0)
793 		return r;
794 
795 	r = dm_tm_pre_commit(pmd->tm);
796 	if (r < 0)
797 		return r;
798 
799 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
800 	if (r < 0)
801 		return r;
802 
803 	r = dm_sm_root_size(pmd->data_sm, &data_len);
804 	if (r < 0)
805 		return r;
806 
807 	r = save_sm_roots(pmd);
808 	if (r < 0)
809 		return r;
810 
811 	r = superblock_lock(pmd, &sblock);
812 	if (r)
813 		return r;
814 
815 	disk_super = dm_block_data(sblock);
816 	disk_super->time = cpu_to_le32(pmd->time);
817 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
818 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
819 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
820 	disk_super->flags = cpu_to_le32(pmd->flags);
821 
822 	copy_sm_roots(pmd, disk_super);
823 
824 	return dm_tm_commit(pmd->tm, sblock);
825 }
826 
dm_pool_metadata_open(struct block_device * bdev,sector_t data_block_size,bool format_device)827 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
828 					       sector_t data_block_size,
829 					       bool format_device)
830 {
831 	int r;
832 	struct dm_pool_metadata *pmd;
833 
834 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
835 	if (!pmd) {
836 		DMERR("could not allocate metadata struct");
837 		return ERR_PTR(-ENOMEM);
838 	}
839 
840 	init_rwsem(&pmd->root_lock);
841 	pmd->time = 0;
842 	INIT_LIST_HEAD(&pmd->thin_devices);
843 	pmd->read_only = false;
844 	pmd->fail_io = false;
845 	pmd->bdev = bdev;
846 	pmd->data_block_size = data_block_size;
847 
848 	r = __create_persistent_data_objects(pmd, format_device);
849 	if (r) {
850 		kfree(pmd);
851 		return ERR_PTR(r);
852 	}
853 
854 	r = __begin_transaction(pmd);
855 	if (r < 0) {
856 		if (dm_pool_metadata_close(pmd) < 0)
857 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
858 		return ERR_PTR(r);
859 	}
860 
861 	return pmd;
862 }
863 
dm_pool_metadata_close(struct dm_pool_metadata * pmd)864 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
865 {
866 	int r;
867 	unsigned open_devices = 0;
868 	struct dm_thin_device *td, *tmp;
869 
870 	down_read(&pmd->root_lock);
871 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
872 		if (td->open_count)
873 			open_devices++;
874 		else {
875 			list_del(&td->list);
876 			kfree(td);
877 		}
878 	}
879 	up_read(&pmd->root_lock);
880 
881 	if (open_devices) {
882 		DMERR("attempt to close pmd when %u device(s) are still open",
883 		       open_devices);
884 		return -EBUSY;
885 	}
886 
887 	if (!pmd->read_only && !pmd->fail_io) {
888 		r = __commit_transaction(pmd);
889 		if (r < 0)
890 			DMWARN("%s: __commit_transaction() failed, error = %d",
891 			       __func__, r);
892 	}
893 
894 	if (!pmd->fail_io)
895 		__destroy_persistent_data_objects(pmd);
896 
897 	kfree(pmd);
898 	return 0;
899 }
900 
901 /*
902  * __open_device: Returns @td corresponding to device with id @dev,
903  * creating it if @create is set and incrementing @td->open_count.
904  * On failure, @td is undefined.
905  */
__open_device(struct dm_pool_metadata * pmd,dm_thin_id dev,int create,struct dm_thin_device ** td)906 static int __open_device(struct dm_pool_metadata *pmd,
907 			 dm_thin_id dev, int create,
908 			 struct dm_thin_device **td)
909 {
910 	int r, changed = 0;
911 	struct dm_thin_device *td2;
912 	uint64_t key = dev;
913 	struct disk_device_details details_le;
914 
915 	/*
916 	 * If the device is already open, return it.
917 	 */
918 	list_for_each_entry(td2, &pmd->thin_devices, list)
919 		if (td2->id == dev) {
920 			/*
921 			 * May not create an already-open device.
922 			 */
923 			if (create)
924 				return -EEXIST;
925 
926 			td2->open_count++;
927 			*td = td2;
928 			return 0;
929 		}
930 
931 	/*
932 	 * Check the device exists.
933 	 */
934 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
935 			    &key, &details_le);
936 	if (r) {
937 		if (r != -ENODATA || !create)
938 			return r;
939 
940 		/*
941 		 * Create new device.
942 		 */
943 		changed = 1;
944 		details_le.mapped_blocks = 0;
945 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
946 		details_le.creation_time = cpu_to_le32(pmd->time);
947 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
948 	}
949 
950 	*td = kmalloc(sizeof(**td), GFP_NOIO);
951 	if (!*td)
952 		return -ENOMEM;
953 
954 	(*td)->pmd = pmd;
955 	(*td)->id = dev;
956 	(*td)->open_count = 1;
957 	(*td)->changed = changed;
958 	(*td)->aborted_with_changes = false;
959 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
960 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
961 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
962 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
963 
964 	list_add(&(*td)->list, &pmd->thin_devices);
965 
966 	return 0;
967 }
968 
__close_device(struct dm_thin_device * td)969 static void __close_device(struct dm_thin_device *td)
970 {
971 	--td->open_count;
972 }
973 
__create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)974 static int __create_thin(struct dm_pool_metadata *pmd,
975 			 dm_thin_id dev)
976 {
977 	int r;
978 	dm_block_t dev_root;
979 	uint64_t key = dev;
980 	struct disk_device_details details_le;
981 	struct dm_thin_device *td;
982 	__le64 value;
983 
984 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
985 			    &key, &details_le);
986 	if (!r)
987 		return -EEXIST;
988 
989 	/*
990 	 * Create an empty btree for the mappings.
991 	 */
992 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
993 	if (r)
994 		return r;
995 
996 	/*
997 	 * Insert it into the main mapping tree.
998 	 */
999 	value = cpu_to_le64(dev_root);
1000 	__dm_bless_for_disk(&value);
1001 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1002 	if (r) {
1003 		dm_btree_del(&pmd->bl_info, dev_root);
1004 		return r;
1005 	}
1006 
1007 	r = __open_device(pmd, dev, 1, &td);
1008 	if (r) {
1009 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1010 		dm_btree_del(&pmd->bl_info, dev_root);
1011 		return r;
1012 	}
1013 	__close_device(td);
1014 
1015 	return r;
1016 }
1017 
dm_pool_create_thin(struct dm_pool_metadata * pmd,dm_thin_id dev)1018 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1019 {
1020 	int r = -EINVAL;
1021 
1022 	down_write(&pmd->root_lock);
1023 	if (!pmd->fail_io)
1024 		r = __create_thin(pmd, dev);
1025 	up_write(&pmd->root_lock);
1026 
1027 	return r;
1028 }
1029 
__set_snapshot_details(struct dm_pool_metadata * pmd,struct dm_thin_device * snap,dm_thin_id origin,uint32_t time)1030 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1031 				  struct dm_thin_device *snap,
1032 				  dm_thin_id origin, uint32_t time)
1033 {
1034 	int r;
1035 	struct dm_thin_device *td;
1036 
1037 	r = __open_device(pmd, origin, 0, &td);
1038 	if (r)
1039 		return r;
1040 
1041 	td->changed = 1;
1042 	td->snapshotted_time = time;
1043 
1044 	snap->mapped_blocks = td->mapped_blocks;
1045 	snap->snapshotted_time = time;
1046 	__close_device(td);
1047 
1048 	return 0;
1049 }
1050 
__create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1051 static int __create_snap(struct dm_pool_metadata *pmd,
1052 			 dm_thin_id dev, dm_thin_id origin)
1053 {
1054 	int r;
1055 	dm_block_t origin_root;
1056 	uint64_t key = origin, dev_key = dev;
1057 	struct dm_thin_device *td;
1058 	struct disk_device_details details_le;
1059 	__le64 value;
1060 
1061 	/* check this device is unused */
1062 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1063 			    &dev_key, &details_le);
1064 	if (!r)
1065 		return -EEXIST;
1066 
1067 	/* find the mapping tree for the origin */
1068 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1069 	if (r)
1070 		return r;
1071 	origin_root = le64_to_cpu(value);
1072 
1073 	/* clone the origin, an inc will do */
1074 	dm_tm_inc(pmd->tm, origin_root);
1075 
1076 	/* insert into the main mapping tree */
1077 	value = cpu_to_le64(origin_root);
1078 	__dm_bless_for_disk(&value);
1079 	key = dev;
1080 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1081 	if (r) {
1082 		dm_tm_dec(pmd->tm, origin_root);
1083 		return r;
1084 	}
1085 
1086 	pmd->time++;
1087 
1088 	r = __open_device(pmd, dev, 1, &td);
1089 	if (r)
1090 		goto bad;
1091 
1092 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1093 	__close_device(td);
1094 
1095 	if (r)
1096 		goto bad;
1097 
1098 	return 0;
1099 
1100 bad:
1101 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1102 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1103 			&key, &pmd->details_root);
1104 	return r;
1105 }
1106 
dm_pool_create_snap(struct dm_pool_metadata * pmd,dm_thin_id dev,dm_thin_id origin)1107 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1108 				 dm_thin_id dev,
1109 				 dm_thin_id origin)
1110 {
1111 	int r = -EINVAL;
1112 
1113 	down_write(&pmd->root_lock);
1114 	if (!pmd->fail_io)
1115 		r = __create_snap(pmd, dev, origin);
1116 	up_write(&pmd->root_lock);
1117 
1118 	return r;
1119 }
1120 
__delete_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1121 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1122 {
1123 	int r;
1124 	uint64_t key = dev;
1125 	struct dm_thin_device *td;
1126 
1127 	/* TODO: failure should mark the transaction invalid */
1128 	r = __open_device(pmd, dev, 0, &td);
1129 	if (r)
1130 		return r;
1131 
1132 	if (td->open_count > 1) {
1133 		__close_device(td);
1134 		return -EBUSY;
1135 	}
1136 
1137 	list_del(&td->list);
1138 	kfree(td);
1139 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1140 			    &key, &pmd->details_root);
1141 	if (r)
1142 		return r;
1143 
1144 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1145 	if (r)
1146 		return r;
1147 
1148 	return 0;
1149 }
1150 
dm_pool_delete_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev)1151 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1152 			       dm_thin_id dev)
1153 {
1154 	int r = -EINVAL;
1155 
1156 	down_write(&pmd->root_lock);
1157 	if (!pmd->fail_io)
1158 		r = __delete_device(pmd, dev);
1159 	up_write(&pmd->root_lock);
1160 
1161 	return r;
1162 }
1163 
dm_pool_set_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t current_id,uint64_t new_id)1164 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1165 					uint64_t current_id,
1166 					uint64_t new_id)
1167 {
1168 	int r = -EINVAL;
1169 
1170 	down_write(&pmd->root_lock);
1171 
1172 	if (pmd->fail_io)
1173 		goto out;
1174 
1175 	if (pmd->trans_id != current_id) {
1176 		DMERR("mismatched transaction id");
1177 		goto out;
1178 	}
1179 
1180 	pmd->trans_id = new_id;
1181 	r = 0;
1182 
1183 out:
1184 	up_write(&pmd->root_lock);
1185 
1186 	return r;
1187 }
1188 
dm_pool_get_metadata_transaction_id(struct dm_pool_metadata * pmd,uint64_t * result)1189 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1190 					uint64_t *result)
1191 {
1192 	int r = -EINVAL;
1193 
1194 	down_read(&pmd->root_lock);
1195 	if (!pmd->fail_io) {
1196 		*result = pmd->trans_id;
1197 		r = 0;
1198 	}
1199 	up_read(&pmd->root_lock);
1200 
1201 	return r;
1202 }
1203 
__reserve_metadata_snap(struct dm_pool_metadata * pmd)1204 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1205 {
1206 	int r, inc;
1207 	struct thin_disk_superblock *disk_super;
1208 	struct dm_block *copy, *sblock;
1209 	dm_block_t held_root;
1210 
1211 	/*
1212 	 * Copy the superblock.
1213 	 */
1214 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1215 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1216 			       &sb_validator, &copy, &inc);
1217 	if (r)
1218 		return r;
1219 
1220 	BUG_ON(!inc);
1221 
1222 	held_root = dm_block_location(copy);
1223 	disk_super = dm_block_data(copy);
1224 
1225 	if (le64_to_cpu(disk_super->held_root)) {
1226 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1227 
1228 		dm_tm_dec(pmd->tm, held_root);
1229 		dm_tm_unlock(pmd->tm, copy);
1230 		return -EBUSY;
1231 	}
1232 
1233 	/*
1234 	 * Wipe the spacemap since we're not publishing this.
1235 	 */
1236 	memset(&disk_super->data_space_map_root, 0,
1237 	       sizeof(disk_super->data_space_map_root));
1238 	memset(&disk_super->metadata_space_map_root, 0,
1239 	       sizeof(disk_super->metadata_space_map_root));
1240 
1241 	/*
1242 	 * Increment the data structures that need to be preserved.
1243 	 */
1244 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1245 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1246 	dm_tm_unlock(pmd->tm, copy);
1247 
1248 	/*
1249 	 * Write the held root into the superblock.
1250 	 */
1251 	r = superblock_lock(pmd, &sblock);
1252 	if (r) {
1253 		dm_tm_dec(pmd->tm, held_root);
1254 		return r;
1255 	}
1256 
1257 	disk_super = dm_block_data(sblock);
1258 	disk_super->held_root = cpu_to_le64(held_root);
1259 	dm_bm_unlock(sblock);
1260 	return 0;
1261 }
1262 
dm_pool_reserve_metadata_snap(struct dm_pool_metadata * pmd)1263 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1264 {
1265 	int r = -EINVAL;
1266 
1267 	down_write(&pmd->root_lock);
1268 	if (!pmd->fail_io)
1269 		r = __reserve_metadata_snap(pmd);
1270 	up_write(&pmd->root_lock);
1271 
1272 	return r;
1273 }
1274 
__release_metadata_snap(struct dm_pool_metadata * pmd)1275 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1276 {
1277 	int r;
1278 	struct thin_disk_superblock *disk_super;
1279 	struct dm_block *sblock, *copy;
1280 	dm_block_t held_root;
1281 
1282 	r = superblock_lock(pmd, &sblock);
1283 	if (r)
1284 		return r;
1285 
1286 	disk_super = dm_block_data(sblock);
1287 	held_root = le64_to_cpu(disk_super->held_root);
1288 	disk_super->held_root = cpu_to_le64(0);
1289 
1290 	dm_bm_unlock(sblock);
1291 
1292 	if (!held_root) {
1293 		DMWARN("No pool metadata snapshot found: nothing to release.");
1294 		return -EINVAL;
1295 	}
1296 
1297 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1298 	if (r)
1299 		return r;
1300 
1301 	disk_super = dm_block_data(copy);
1302 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1303 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1304 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1305 
1306 	return dm_tm_unlock(pmd->tm, copy);
1307 }
1308 
dm_pool_release_metadata_snap(struct dm_pool_metadata * pmd)1309 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1310 {
1311 	int r = -EINVAL;
1312 
1313 	down_write(&pmd->root_lock);
1314 	if (!pmd->fail_io)
1315 		r = __release_metadata_snap(pmd);
1316 	up_write(&pmd->root_lock);
1317 
1318 	return r;
1319 }
1320 
__get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1321 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1322 			       dm_block_t *result)
1323 {
1324 	int r;
1325 	struct thin_disk_superblock *disk_super;
1326 	struct dm_block *sblock;
1327 
1328 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1329 			    &sb_validator, &sblock);
1330 	if (r)
1331 		return r;
1332 
1333 	disk_super = dm_block_data(sblock);
1334 	*result = le64_to_cpu(disk_super->held_root);
1335 
1336 	return dm_bm_unlock(sblock);
1337 }
1338 
dm_pool_get_metadata_snap(struct dm_pool_metadata * pmd,dm_block_t * result)1339 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1340 			      dm_block_t *result)
1341 {
1342 	int r = -EINVAL;
1343 
1344 	down_read(&pmd->root_lock);
1345 	if (!pmd->fail_io)
1346 		r = __get_metadata_snap(pmd, result);
1347 	up_read(&pmd->root_lock);
1348 
1349 	return r;
1350 }
1351 
dm_pool_open_thin_device(struct dm_pool_metadata * pmd,dm_thin_id dev,struct dm_thin_device ** td)1352 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1353 			     struct dm_thin_device **td)
1354 {
1355 	int r = -EINVAL;
1356 
1357 	down_write(&pmd->root_lock);
1358 	if (!pmd->fail_io)
1359 		r = __open_device(pmd, dev, 0, td);
1360 	up_write(&pmd->root_lock);
1361 
1362 	return r;
1363 }
1364 
dm_pool_close_thin_device(struct dm_thin_device * td)1365 int dm_pool_close_thin_device(struct dm_thin_device *td)
1366 {
1367 	down_write(&td->pmd->root_lock);
1368 	__close_device(td);
1369 	up_write(&td->pmd->root_lock);
1370 
1371 	return 0;
1372 }
1373 
dm_thin_dev_id(struct dm_thin_device * td)1374 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1375 {
1376 	return td->id;
1377 }
1378 
1379 /*
1380  * Check whether @time (of block creation) is older than @td's last snapshot.
1381  * If so then the associated block is shared with the last snapshot device.
1382  * Any block on a device created *after* the device last got snapshotted is
1383  * necessarily not shared.
1384  */
__snapshotted_since(struct dm_thin_device * td,uint32_t time)1385 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1386 {
1387 	return td->snapshotted_time > time;
1388 }
1389 
dm_thin_find_block(struct dm_thin_device * td,dm_block_t block,int can_block,struct dm_thin_lookup_result * result)1390 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1391 		       int can_block, struct dm_thin_lookup_result *result)
1392 {
1393 	int r = -EINVAL;
1394 	uint64_t block_time = 0;
1395 	__le64 value;
1396 	struct dm_pool_metadata *pmd = td->pmd;
1397 	dm_block_t keys[2] = { td->id, block };
1398 	struct dm_btree_info *info;
1399 
1400 	if (can_block) {
1401 		down_read(&pmd->root_lock);
1402 		info = &pmd->info;
1403 	} else if (down_read_trylock(&pmd->root_lock))
1404 		info = &pmd->nb_info;
1405 	else
1406 		return -EWOULDBLOCK;
1407 
1408 	if (pmd->fail_io)
1409 		goto out;
1410 
1411 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1412 	if (!r)
1413 		block_time = le64_to_cpu(value);
1414 
1415 out:
1416 	up_read(&pmd->root_lock);
1417 
1418 	if (!r) {
1419 		dm_block_t exception_block;
1420 		uint32_t exception_time;
1421 		unpack_block_time(block_time, &exception_block,
1422 				  &exception_time);
1423 		result->block = exception_block;
1424 		result->shared = __snapshotted_since(td, exception_time);
1425 	}
1426 
1427 	return r;
1428 }
1429 
__insert(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1430 static int __insert(struct dm_thin_device *td, dm_block_t block,
1431 		    dm_block_t data_block)
1432 {
1433 	int r, inserted;
1434 	__le64 value;
1435 	struct dm_pool_metadata *pmd = td->pmd;
1436 	dm_block_t keys[2] = { td->id, block };
1437 
1438 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1439 	__dm_bless_for_disk(&value);
1440 
1441 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1442 				   &pmd->root, &inserted);
1443 	if (r)
1444 		return r;
1445 
1446 	td->changed = 1;
1447 	if (inserted)
1448 		td->mapped_blocks++;
1449 
1450 	return 0;
1451 }
1452 
dm_thin_insert_block(struct dm_thin_device * td,dm_block_t block,dm_block_t data_block)1453 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1454 			 dm_block_t data_block)
1455 {
1456 	int r = -EINVAL;
1457 
1458 	down_write(&td->pmd->root_lock);
1459 	if (!td->pmd->fail_io)
1460 		r = __insert(td, block, data_block);
1461 	up_write(&td->pmd->root_lock);
1462 
1463 	return r;
1464 }
1465 
__remove(struct dm_thin_device * td,dm_block_t block)1466 static int __remove(struct dm_thin_device *td, dm_block_t block)
1467 {
1468 	int r;
1469 	struct dm_pool_metadata *pmd = td->pmd;
1470 	dm_block_t keys[2] = { td->id, block };
1471 
1472 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1473 	if (r)
1474 		return r;
1475 
1476 	td->mapped_blocks--;
1477 	td->changed = 1;
1478 
1479 	return 0;
1480 }
1481 
dm_thin_remove_block(struct dm_thin_device * td,dm_block_t block)1482 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1483 {
1484 	int r = -EINVAL;
1485 
1486 	down_write(&td->pmd->root_lock);
1487 	if (!td->pmd->fail_io)
1488 		r = __remove(td, block);
1489 	up_write(&td->pmd->root_lock);
1490 
1491 	return r;
1492 }
1493 
dm_pool_block_is_used(struct dm_pool_metadata * pmd,dm_block_t b,bool * result)1494 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1495 {
1496 	int r;
1497 	uint32_t ref_count;
1498 
1499 	down_read(&pmd->root_lock);
1500 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1501 	if (!r)
1502 		*result = (ref_count != 0);
1503 	up_read(&pmd->root_lock);
1504 
1505 	return r;
1506 }
1507 
dm_thin_changed_this_transaction(struct dm_thin_device * td)1508 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1509 {
1510 	int r;
1511 
1512 	down_read(&td->pmd->root_lock);
1513 	r = td->changed;
1514 	up_read(&td->pmd->root_lock);
1515 
1516 	return r;
1517 }
1518 
dm_pool_changed_this_transaction(struct dm_pool_metadata * pmd)1519 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1520 {
1521 	bool r = false;
1522 	struct dm_thin_device *td, *tmp;
1523 
1524 	down_read(&pmd->root_lock);
1525 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1526 		if (td->changed) {
1527 			r = td->changed;
1528 			break;
1529 		}
1530 	}
1531 	up_read(&pmd->root_lock);
1532 
1533 	return r;
1534 }
1535 
dm_thin_aborted_changes(struct dm_thin_device * td)1536 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1537 {
1538 	bool r;
1539 
1540 	down_read(&td->pmd->root_lock);
1541 	r = td->aborted_with_changes;
1542 	up_read(&td->pmd->root_lock);
1543 
1544 	return r;
1545 }
1546 
dm_pool_alloc_data_block(struct dm_pool_metadata * pmd,dm_block_t * result)1547 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1548 {
1549 	int r = -EINVAL;
1550 
1551 	down_write(&pmd->root_lock);
1552 	if (!pmd->fail_io)
1553 		r = dm_sm_new_block(pmd->data_sm, result);
1554 	up_write(&pmd->root_lock);
1555 
1556 	return r;
1557 }
1558 
dm_pool_commit_metadata(struct dm_pool_metadata * pmd)1559 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1560 {
1561 	int r = -EINVAL;
1562 
1563 	down_write(&pmd->root_lock);
1564 	if (pmd->fail_io)
1565 		goto out;
1566 
1567 	r = __commit_transaction(pmd);
1568 	if (r <= 0)
1569 		goto out;
1570 
1571 	/*
1572 	 * Open the next transaction.
1573 	 */
1574 	r = __begin_transaction(pmd);
1575 out:
1576 	up_write(&pmd->root_lock);
1577 	return r;
1578 }
1579 
__set_abort_with_changes_flags(struct dm_pool_metadata * pmd)1580 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1581 {
1582 	struct dm_thin_device *td;
1583 
1584 	list_for_each_entry(td, &pmd->thin_devices, list)
1585 		td->aborted_with_changes = td->changed;
1586 }
1587 
dm_pool_abort_metadata(struct dm_pool_metadata * pmd)1588 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1589 {
1590 	int r = -EINVAL;
1591 
1592 	down_write(&pmd->root_lock);
1593 	if (pmd->fail_io)
1594 		goto out;
1595 
1596 	__set_abort_with_changes_flags(pmd);
1597 	__destroy_persistent_data_objects(pmd);
1598 	r = __create_persistent_data_objects(pmd, false);
1599 	if (r)
1600 		pmd->fail_io = true;
1601 
1602 out:
1603 	up_write(&pmd->root_lock);
1604 
1605 	return r;
1606 }
1607 
dm_pool_get_free_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1608 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1609 {
1610 	int r = -EINVAL;
1611 
1612 	down_read(&pmd->root_lock);
1613 	if (!pmd->fail_io)
1614 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1615 	up_read(&pmd->root_lock);
1616 
1617 	return r;
1618 }
1619 
dm_pool_get_free_metadata_block_count(struct dm_pool_metadata * pmd,dm_block_t * result)1620 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1621 					  dm_block_t *result)
1622 {
1623 	int r = -EINVAL;
1624 
1625 	down_read(&pmd->root_lock);
1626 	if (!pmd->fail_io)
1627 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1628 	up_read(&pmd->root_lock);
1629 
1630 	return r;
1631 }
1632 
dm_pool_get_metadata_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1633 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1634 				  dm_block_t *result)
1635 {
1636 	int r = -EINVAL;
1637 
1638 	down_read(&pmd->root_lock);
1639 	if (!pmd->fail_io)
1640 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1641 	up_read(&pmd->root_lock);
1642 
1643 	return r;
1644 }
1645 
dm_pool_get_data_block_size(struct dm_pool_metadata * pmd,sector_t * result)1646 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1647 {
1648 	down_read(&pmd->root_lock);
1649 	*result = pmd->data_block_size;
1650 	up_read(&pmd->root_lock);
1651 
1652 	return 0;
1653 }
1654 
dm_pool_get_data_dev_size(struct dm_pool_metadata * pmd,dm_block_t * result)1655 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1656 {
1657 	int r = -EINVAL;
1658 
1659 	down_read(&pmd->root_lock);
1660 	if (!pmd->fail_io)
1661 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1662 	up_read(&pmd->root_lock);
1663 
1664 	return r;
1665 }
1666 
dm_thin_get_mapped_count(struct dm_thin_device * td,dm_block_t * result)1667 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1668 {
1669 	int r = -EINVAL;
1670 	struct dm_pool_metadata *pmd = td->pmd;
1671 
1672 	down_read(&pmd->root_lock);
1673 	if (!pmd->fail_io) {
1674 		*result = td->mapped_blocks;
1675 		r = 0;
1676 	}
1677 	up_read(&pmd->root_lock);
1678 
1679 	return r;
1680 }
1681 
__highest_block(struct dm_thin_device * td,dm_block_t * result)1682 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1683 {
1684 	int r;
1685 	__le64 value_le;
1686 	dm_block_t thin_root;
1687 	struct dm_pool_metadata *pmd = td->pmd;
1688 
1689 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1690 	if (r)
1691 		return r;
1692 
1693 	thin_root = le64_to_cpu(value_le);
1694 
1695 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1696 }
1697 
dm_thin_get_highest_mapped_block(struct dm_thin_device * td,dm_block_t * result)1698 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1699 				     dm_block_t *result)
1700 {
1701 	int r = -EINVAL;
1702 	struct dm_pool_metadata *pmd = td->pmd;
1703 
1704 	down_read(&pmd->root_lock);
1705 	if (!pmd->fail_io)
1706 		r = __highest_block(td, result);
1707 	up_read(&pmd->root_lock);
1708 
1709 	return r;
1710 }
1711 
__resize_space_map(struct dm_space_map * sm,dm_block_t new_count)1712 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1713 {
1714 	int r;
1715 	dm_block_t old_count;
1716 
1717 	r = dm_sm_get_nr_blocks(sm, &old_count);
1718 	if (r)
1719 		return r;
1720 
1721 	if (new_count == old_count)
1722 		return 0;
1723 
1724 	if (new_count < old_count) {
1725 		DMERR("cannot reduce size of space map");
1726 		return -EINVAL;
1727 	}
1728 
1729 	return dm_sm_extend(sm, new_count - old_count);
1730 }
1731 
dm_pool_resize_data_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)1732 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1733 {
1734 	int r = -EINVAL;
1735 
1736 	down_write(&pmd->root_lock);
1737 	if (!pmd->fail_io)
1738 		r = __resize_space_map(pmd->data_sm, new_count);
1739 	up_write(&pmd->root_lock);
1740 
1741 	return r;
1742 }
1743 
dm_pool_resize_metadata_dev(struct dm_pool_metadata * pmd,dm_block_t new_count)1744 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1745 {
1746 	int r = -EINVAL;
1747 
1748 	down_write(&pmd->root_lock);
1749 	if (!pmd->fail_io)
1750 		r = __resize_space_map(pmd->metadata_sm, new_count);
1751 	up_write(&pmd->root_lock);
1752 
1753 	return r;
1754 }
1755 
dm_pool_metadata_read_only(struct dm_pool_metadata * pmd)1756 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1757 {
1758 	down_write(&pmd->root_lock);
1759 	pmd->read_only = true;
1760 	dm_bm_set_read_only(pmd->bm);
1761 	up_write(&pmd->root_lock);
1762 }
1763 
dm_pool_metadata_read_write(struct dm_pool_metadata * pmd)1764 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1765 {
1766 	down_write(&pmd->root_lock);
1767 	pmd->read_only = false;
1768 	dm_bm_set_read_write(pmd->bm);
1769 	up_write(&pmd->root_lock);
1770 }
1771 
dm_pool_register_metadata_threshold(struct dm_pool_metadata * pmd,dm_block_t threshold,dm_sm_threshold_fn fn,void * context)1772 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1773 					dm_block_t threshold,
1774 					dm_sm_threshold_fn fn,
1775 					void *context)
1776 {
1777 	int r;
1778 
1779 	down_write(&pmd->root_lock);
1780 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1781 	up_write(&pmd->root_lock);
1782 
1783 	return r;
1784 }
1785 
dm_pool_metadata_set_needs_check(struct dm_pool_metadata * pmd)1786 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1787 {
1788 	int r;
1789 	struct dm_block *sblock;
1790 	struct thin_disk_superblock *disk_super;
1791 
1792 	down_write(&pmd->root_lock);
1793 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1794 
1795 	r = superblock_lock(pmd, &sblock);
1796 	if (r) {
1797 		DMERR("couldn't read superblock");
1798 		goto out;
1799 	}
1800 
1801 	disk_super = dm_block_data(sblock);
1802 	disk_super->flags = cpu_to_le32(pmd->flags);
1803 
1804 	dm_bm_unlock(sblock);
1805 out:
1806 	up_write(&pmd->root_lock);
1807 	return r;
1808 }
1809 
dm_pool_metadata_needs_check(struct dm_pool_metadata * pmd)1810 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1811 {
1812 	bool needs_check;
1813 
1814 	down_read(&pmd->root_lock);
1815 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1816 	up_read(&pmd->root_lock);
1817 
1818 	return needs_check;
1819 }
1820