• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 
76 /*
77  * Default number of read corrections we'll attempt on an rdev
78  * before ejecting it from the array. We divide the read error
79  * count by 2 for every hour elapsed between read errors.
80  */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84  * is 1000 KB/sec, so the extra system load does not show up that much.
85  * Increase it if you want to have more _guaranteed_ speed. Note that
86  * the RAID driver will use the maximum available bandwidth if the IO
87  * subsystem is idle. There is also an 'absolute maximum' reconstruction
88  * speed limit - in case reconstruction slows down your system despite
89  * idle IO detection.
90  *
91  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92  * or /sys/block/mdX/md/sync_speed_{min,max}
93  */
94 
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)97 static inline int speed_min(struct mddev *mddev)
98 {
99 	return mddev->sync_speed_min ?
100 		mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102 
speed_max(struct mddev * mddev)103 static inline int speed_max(struct mddev *mddev)
104 {
105 	return mddev->sync_speed_max ?
106 		mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108 
109 static struct ctl_table_header *raid_table_header;
110 
111 static struct ctl_table raid_table[] = {
112 	{
113 		.procname	= "speed_limit_min",
114 		.data		= &sysctl_speed_limit_min,
115 		.maxlen		= sizeof(int),
116 		.mode		= S_IRUGO|S_IWUSR,
117 		.proc_handler	= proc_dointvec,
118 	},
119 	{
120 		.procname	= "speed_limit_max",
121 		.data		= &sysctl_speed_limit_max,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{ }
127 };
128 
129 static struct ctl_table raid_dir_table[] = {
130 	{
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ }
137 };
138 
139 static struct ctl_table raid_root_table[] = {
140 	{
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{  }
147 };
148 
149 static const struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /* bio_clone_mddev
154  * like bio_clone, but with a local bio set
155  */
156 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 			    struct mddev *mddev)
159 {
160 	struct bio *b;
161 
162 	if (!mddev || !mddev->bio_set)
163 		return bio_alloc(gfp_mask, nr_iovecs);
164 
165 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 	if (!b)
167 		return NULL;
168 	return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 			    struct mddev *mddev)
174 {
175 	if (!mddev || !mddev->bio_set)
176 		return bio_clone(bio, gfp_mask);
177 
178 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181 
182 /*
183  * We have a system wide 'event count' that is incremented
184  * on any 'interesting' event, and readers of /proc/mdstat
185  * can use 'poll' or 'select' to find out when the event
186  * count increases.
187  *
188  * Events are:
189  *  start array, stop array, error, add device, remove device,
190  *  start build, activate spare
191  */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)194 void md_new_event(struct mddev *mddev)
195 {
196 	atomic_inc(&md_event_count);
197 	wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200 
201 /* Alternate version that can be called from interrupts
202  * when calling sysfs_notify isn't needed.
203  */
md_new_event_inintr(struct mddev * mddev)204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 	atomic_inc(&md_event_count);
207 	wake_up(&md_event_waiters);
208 }
209 
210 /*
211  * Enables to iterate over all existing md arrays
212  * all_mddevs_lock protects this list.
213  */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216 
217 /*
218  * iterates through all used mddevs in the system.
219  * We take care to grab the all_mddevs_lock whenever navigating
220  * the list, and to always hold a refcount when unlocked.
221  * Any code which breaks out of this loop while own
222  * a reference to the current mddev and must mddev_put it.
223  */
224 #define for_each_mddev(_mddev,_tmp)					\
225 									\
226 	for (({ spin_lock(&all_mddevs_lock);				\
227 		_tmp = all_mddevs.next;					\
228 		_mddev = NULL;});					\
229 	     ({ if (_tmp != &all_mddevs)				\
230 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 		spin_unlock(&all_mddevs_lock);				\
232 		if (_mddev) mddev_put(_mddev);				\
233 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
234 		_tmp != &all_mddevs;});					\
235 	     ({ spin_lock(&all_mddevs_lock);				\
236 		_tmp = _tmp->next;})					\
237 		)
238 
239 /* Rather than calling directly into the personality make_request function,
240  * IO requests come here first so that we can check if the device is
241  * being suspended pending a reconfiguration.
242  * We hold a refcount over the call to ->make_request.  By the time that
243  * call has finished, the bio has been linked into some internal structure
244  * and so is visible to ->quiesce(), so we don't need the refcount any more.
245  */
md_make_request(struct request_queue * q,struct bio * bio)246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 	const int rw = bio_data_dir(bio);
249 	struct mddev *mddev = q->queuedata;
250 	int cpu;
251 	unsigned int sectors;
252 
253 	if (mddev == NULL || mddev->pers == NULL
254 	    || !mddev->ready) {
255 		bio_io_error(bio);
256 		return;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 		return;
261 	}
262 	smp_rmb(); /* Ensure implications of  'active' are visible */
263 	rcu_read_lock();
264 	if (mddev->suspended) {
265 		DEFINE_WAIT(__wait);
266 		for (;;) {
267 			prepare_to_wait(&mddev->sb_wait, &__wait,
268 					TASK_UNINTERRUPTIBLE);
269 			if (!mddev->suspended)
270 				break;
271 			rcu_read_unlock();
272 			schedule();
273 			rcu_read_lock();
274 		}
275 		finish_wait(&mddev->sb_wait, &__wait);
276 	}
277 	atomic_inc(&mddev->active_io);
278 	rcu_read_unlock();
279 
280 	/*
281 	 * save the sectors now since our bio can
282 	 * go away inside make_request
283 	 */
284 	sectors = bio_sectors(bio);
285 	/* bio could be mergeable after passing to underlayer */
286 	bio->bi_rw &= ~REQ_NOMERGE;
287 	mddev->pers->make_request(mddev, bio);
288 
289 	cpu = part_stat_lock();
290 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 	part_stat_unlock();
293 
294 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 		wake_up(&mddev->sb_wait);
296 }
297 
298 /* mddev_suspend makes sure no new requests are submitted
299  * to the device, and that any requests that have been submitted
300  * are completely handled.
301  * Once ->stop is called and completes, the module will be completely
302  * unused.
303  */
mddev_suspend(struct mddev * mddev)304 void mddev_suspend(struct mddev *mddev)
305 {
306 	BUG_ON(mddev->suspended);
307 	mddev->suspended = 1;
308 	synchronize_rcu();
309 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
310 	mddev->pers->quiesce(mddev, 1);
311 
312 	del_timer_sync(&mddev->safemode_timer);
313 }
314 EXPORT_SYMBOL_GPL(mddev_suspend);
315 
mddev_resume(struct mddev * mddev)316 void mddev_resume(struct mddev *mddev)
317 {
318 	mddev->suspended = 0;
319 	wake_up(&mddev->sb_wait);
320 	mddev->pers->quiesce(mddev, 0);
321 
322 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
323 	md_wakeup_thread(mddev->thread);
324 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
325 }
326 EXPORT_SYMBOL_GPL(mddev_resume);
327 
mddev_congested(struct mddev * mddev,int bits)328 int mddev_congested(struct mddev *mddev, int bits)
329 {
330 	return mddev->suspended;
331 }
332 EXPORT_SYMBOL(mddev_congested);
333 
334 /*
335  * Generic flush handling for md
336  */
337 
md_end_flush(struct bio * bio,int err)338 static void md_end_flush(struct bio *bio, int err)
339 {
340 	struct md_rdev *rdev = bio->bi_private;
341 	struct mddev *mddev = rdev->mddev;
342 
343 	rdev_dec_pending(rdev, mddev);
344 
345 	if (atomic_dec_and_test(&mddev->flush_pending)) {
346 		/* The pre-request flush has finished */
347 		queue_work(md_wq, &mddev->flush_work);
348 	}
349 	bio_put(bio);
350 }
351 
352 static void md_submit_flush_data(struct work_struct *ws);
353 
submit_flushes(struct work_struct * ws)354 static void submit_flushes(struct work_struct *ws)
355 {
356 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
357 	struct md_rdev *rdev;
358 
359 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
360 	atomic_set(&mddev->flush_pending, 1);
361 	rcu_read_lock();
362 	rdev_for_each_rcu(rdev, mddev)
363 		if (rdev->raid_disk >= 0 &&
364 		    !test_bit(Faulty, &rdev->flags)) {
365 			/* Take two references, one is dropped
366 			 * when request finishes, one after
367 			 * we reclaim rcu_read_lock
368 			 */
369 			struct bio *bi;
370 			atomic_inc(&rdev->nr_pending);
371 			atomic_inc(&rdev->nr_pending);
372 			rcu_read_unlock();
373 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
374 			bi->bi_end_io = md_end_flush;
375 			bi->bi_private = rdev;
376 			bi->bi_bdev = rdev->bdev;
377 			atomic_inc(&mddev->flush_pending);
378 			submit_bio(WRITE_FLUSH, bi);
379 			rcu_read_lock();
380 			rdev_dec_pending(rdev, mddev);
381 		}
382 	rcu_read_unlock();
383 	if (atomic_dec_and_test(&mddev->flush_pending))
384 		queue_work(md_wq, &mddev->flush_work);
385 }
386 
md_submit_flush_data(struct work_struct * ws)387 static void md_submit_flush_data(struct work_struct *ws)
388 {
389 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
390 	struct bio *bio = mddev->flush_bio;
391 
392 	if (bio->bi_iter.bi_size == 0)
393 		/* an empty barrier - all done */
394 		bio_endio(bio, 0);
395 	else {
396 		bio->bi_rw &= ~REQ_FLUSH;
397 		mddev->pers->make_request(mddev, bio);
398 	}
399 
400 	mddev->flush_bio = NULL;
401 	wake_up(&mddev->sb_wait);
402 }
403 
md_flush_request(struct mddev * mddev,struct bio * bio)404 void md_flush_request(struct mddev *mddev, struct bio *bio)
405 {
406 	spin_lock_irq(&mddev->write_lock);
407 	wait_event_lock_irq(mddev->sb_wait,
408 			    !mddev->flush_bio,
409 			    mddev->write_lock);
410 	mddev->flush_bio = bio;
411 	spin_unlock_irq(&mddev->write_lock);
412 
413 	INIT_WORK(&mddev->flush_work, submit_flushes);
414 	queue_work(md_wq, &mddev->flush_work);
415 }
416 EXPORT_SYMBOL(md_flush_request);
417 
md_unplug(struct blk_plug_cb * cb,bool from_schedule)418 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
419 {
420 	struct mddev *mddev = cb->data;
421 	md_wakeup_thread(mddev->thread);
422 	kfree(cb);
423 }
424 EXPORT_SYMBOL(md_unplug);
425 
mddev_get(struct mddev * mddev)426 static inline struct mddev *mddev_get(struct mddev *mddev)
427 {
428 	atomic_inc(&mddev->active);
429 	return mddev;
430 }
431 
432 static void mddev_delayed_delete(struct work_struct *ws);
433 
mddev_put(struct mddev * mddev)434 static void mddev_put(struct mddev *mddev)
435 {
436 	struct bio_set *bs = NULL;
437 
438 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
439 		return;
440 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
441 	    mddev->ctime == 0 && !mddev->hold_active) {
442 		/* Array is not configured at all, and not held active,
443 		 * so destroy it */
444 		list_del_init(&mddev->all_mddevs);
445 		bs = mddev->bio_set;
446 		mddev->bio_set = NULL;
447 		if (mddev->gendisk) {
448 			/* We did a probe so need to clean up.  Call
449 			 * queue_work inside the spinlock so that
450 			 * flush_workqueue() after mddev_find will
451 			 * succeed in waiting for the work to be done.
452 			 */
453 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
454 			queue_work(md_misc_wq, &mddev->del_work);
455 		} else
456 			kfree(mddev);
457 	}
458 	spin_unlock(&all_mddevs_lock);
459 	if (bs)
460 		bioset_free(bs);
461 }
462 
mddev_init(struct mddev * mddev)463 void mddev_init(struct mddev *mddev)
464 {
465 	mutex_init(&mddev->open_mutex);
466 	mutex_init(&mddev->reconfig_mutex);
467 	mutex_init(&mddev->bitmap_info.mutex);
468 	INIT_LIST_HEAD(&mddev->disks);
469 	INIT_LIST_HEAD(&mddev->all_mddevs);
470 	init_timer(&mddev->safemode_timer);
471 	atomic_set(&mddev->active, 1);
472 	atomic_set(&mddev->openers, 0);
473 	atomic_set(&mddev->active_io, 0);
474 	spin_lock_init(&mddev->write_lock);
475 	atomic_set(&mddev->flush_pending, 0);
476 	init_waitqueue_head(&mddev->sb_wait);
477 	init_waitqueue_head(&mddev->recovery_wait);
478 	mddev->reshape_position = MaxSector;
479 	mddev->reshape_backwards = 0;
480 	mddev->last_sync_action = "none";
481 	mddev->resync_min = 0;
482 	mddev->resync_max = MaxSector;
483 	mddev->level = LEVEL_NONE;
484 }
485 EXPORT_SYMBOL_GPL(mddev_init);
486 
mddev_find(dev_t unit)487 static struct mddev *mddev_find(dev_t unit)
488 {
489 	struct mddev *mddev, *new = NULL;
490 
491 	if (unit && MAJOR(unit) != MD_MAJOR)
492 		unit &= ~((1<<MdpMinorShift)-1);
493 
494  retry:
495 	spin_lock(&all_mddevs_lock);
496 
497 	if (unit) {
498 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
499 			if (mddev->unit == unit) {
500 				mddev_get(mddev);
501 				spin_unlock(&all_mddevs_lock);
502 				kfree(new);
503 				return mddev;
504 			}
505 
506 		if (new) {
507 			list_add(&new->all_mddevs, &all_mddevs);
508 			spin_unlock(&all_mddevs_lock);
509 			new->hold_active = UNTIL_IOCTL;
510 			return new;
511 		}
512 	} else if (new) {
513 		/* find an unused unit number */
514 		static int next_minor = 512;
515 		int start = next_minor;
516 		int is_free = 0;
517 		int dev = 0;
518 		while (!is_free) {
519 			dev = MKDEV(MD_MAJOR, next_minor);
520 			next_minor++;
521 			if (next_minor > MINORMASK)
522 				next_minor = 0;
523 			if (next_minor == start) {
524 				/* Oh dear, all in use. */
525 				spin_unlock(&all_mddevs_lock);
526 				kfree(new);
527 				return NULL;
528 			}
529 
530 			is_free = 1;
531 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
532 				if (mddev->unit == dev) {
533 					is_free = 0;
534 					break;
535 				}
536 		}
537 		new->unit = dev;
538 		new->md_minor = MINOR(dev);
539 		new->hold_active = UNTIL_STOP;
540 		list_add(&new->all_mddevs, &all_mddevs);
541 		spin_unlock(&all_mddevs_lock);
542 		return new;
543 	}
544 	spin_unlock(&all_mddevs_lock);
545 
546 	new = kzalloc(sizeof(*new), GFP_KERNEL);
547 	if (!new)
548 		return NULL;
549 
550 	new->unit = unit;
551 	if (MAJOR(unit) == MD_MAJOR)
552 		new->md_minor = MINOR(unit);
553 	else
554 		new->md_minor = MINOR(unit) >> MdpMinorShift;
555 
556 	mddev_init(new);
557 
558 	goto retry;
559 }
560 
mddev_lock(struct mddev * mddev)561 static inline int __must_check mddev_lock(struct mddev *mddev)
562 {
563 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
564 }
565 
566 /* Sometimes we need to take the lock in a situation where
567  * failure due to interrupts is not acceptable.
568  */
mddev_lock_nointr(struct mddev * mddev)569 static inline void mddev_lock_nointr(struct mddev *mddev)
570 {
571 	mutex_lock(&mddev->reconfig_mutex);
572 }
573 
mddev_is_locked(struct mddev * mddev)574 static inline int mddev_is_locked(struct mddev *mddev)
575 {
576 	return mutex_is_locked(&mddev->reconfig_mutex);
577 }
578 
mddev_trylock(struct mddev * mddev)579 static inline int mddev_trylock(struct mddev *mddev)
580 {
581 	return mutex_trylock(&mddev->reconfig_mutex);
582 }
583 
584 static struct attribute_group md_redundancy_group;
585 
mddev_unlock(struct mddev * mddev)586 static void mddev_unlock(struct mddev *mddev)
587 {
588 	if (mddev->to_remove) {
589 		/* These cannot be removed under reconfig_mutex as
590 		 * an access to the files will try to take reconfig_mutex
591 		 * while holding the file unremovable, which leads to
592 		 * a deadlock.
593 		 * So hold set sysfs_active while the remove in happeing,
594 		 * and anything else which might set ->to_remove or my
595 		 * otherwise change the sysfs namespace will fail with
596 		 * -EBUSY if sysfs_active is still set.
597 		 * We set sysfs_active under reconfig_mutex and elsewhere
598 		 * test it under the same mutex to ensure its correct value
599 		 * is seen.
600 		 */
601 		struct attribute_group *to_remove = mddev->to_remove;
602 		mddev->to_remove = NULL;
603 		mddev->sysfs_active = 1;
604 		mutex_unlock(&mddev->reconfig_mutex);
605 
606 		if (mddev->kobj.sd) {
607 			if (to_remove != &md_redundancy_group)
608 				sysfs_remove_group(&mddev->kobj, to_remove);
609 			if (mddev->pers == NULL ||
610 			    mddev->pers->sync_request == NULL) {
611 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 				if (mddev->sysfs_action)
613 					sysfs_put(mddev->sysfs_action);
614 				mddev->sysfs_action = NULL;
615 			}
616 		}
617 		mddev->sysfs_active = 0;
618 	} else
619 		mutex_unlock(&mddev->reconfig_mutex);
620 
621 	/* As we've dropped the mutex we need a spinlock to
622 	 * make sure the thread doesn't disappear
623 	 */
624 	spin_lock(&pers_lock);
625 	md_wakeup_thread(mddev->thread);
626 	spin_unlock(&pers_lock);
627 }
628 
find_rdev_nr_rcu(struct mddev * mddev,int nr)629 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
630 {
631 	struct md_rdev *rdev;
632 
633 	rdev_for_each_rcu(rdev, mddev)
634 		if (rdev->desc_nr == nr)
635 			return rdev;
636 
637 	return NULL;
638 }
639 
find_rdev(struct mddev * mddev,dev_t dev)640 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
641 {
642 	struct md_rdev *rdev;
643 
644 	rdev_for_each(rdev, mddev)
645 		if (rdev->bdev->bd_dev == dev)
646 			return rdev;
647 
648 	return NULL;
649 }
650 
find_rdev_rcu(struct mddev * mddev,dev_t dev)651 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
652 {
653 	struct md_rdev *rdev;
654 
655 	rdev_for_each_rcu(rdev, mddev)
656 		if (rdev->bdev->bd_dev == dev)
657 			return rdev;
658 
659 	return NULL;
660 }
661 
find_pers(int level,char * clevel)662 static struct md_personality *find_pers(int level, char *clevel)
663 {
664 	struct md_personality *pers;
665 	list_for_each_entry(pers, &pers_list, list) {
666 		if (level != LEVEL_NONE && pers->level == level)
667 			return pers;
668 		if (strcmp(pers->name, clevel)==0)
669 			return pers;
670 	}
671 	return NULL;
672 }
673 
674 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)675 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
676 {
677 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
678 	return MD_NEW_SIZE_SECTORS(num_sectors);
679 }
680 
alloc_disk_sb(struct md_rdev * rdev)681 static int alloc_disk_sb(struct md_rdev *rdev)
682 {
683 	rdev->sb_page = alloc_page(GFP_KERNEL);
684 	if (!rdev->sb_page) {
685 		printk(KERN_ALERT "md: out of memory.\n");
686 		return -ENOMEM;
687 	}
688 
689 	return 0;
690 }
691 
md_rdev_clear(struct md_rdev * rdev)692 void md_rdev_clear(struct md_rdev *rdev)
693 {
694 	if (rdev->sb_page) {
695 		put_page(rdev->sb_page);
696 		rdev->sb_loaded = 0;
697 		rdev->sb_page = NULL;
698 		rdev->sb_start = 0;
699 		rdev->sectors = 0;
700 	}
701 	if (rdev->bb_page) {
702 		put_page(rdev->bb_page);
703 		rdev->bb_page = NULL;
704 	}
705 	kfree(rdev->badblocks.page);
706 	rdev->badblocks.page = NULL;
707 }
708 EXPORT_SYMBOL_GPL(md_rdev_clear);
709 
super_written(struct bio * bio,int error)710 static void super_written(struct bio *bio, int error)
711 {
712 	struct md_rdev *rdev = bio->bi_private;
713 	struct mddev *mddev = rdev->mddev;
714 
715 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
716 		printk("md: super_written gets error=%d, uptodate=%d\n",
717 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
718 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
719 		md_error(mddev, rdev);
720 	}
721 
722 	if (atomic_dec_and_test(&mddev->pending_writes))
723 		wake_up(&mddev->sb_wait);
724 	bio_put(bio);
725 }
726 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 		   sector_t sector, int size, struct page *page)
729 {
730 	/* write first size bytes of page to sector of rdev
731 	 * Increment mddev->pending_writes before returning
732 	 * and decrement it on completion, waking up sb_wait
733 	 * if zero is reached.
734 	 * If an error occurred, call md_error
735 	 */
736 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737 
738 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
739 	bio->bi_iter.bi_sector = sector;
740 	bio_add_page(bio, page, size, 0);
741 	bio->bi_private = rdev;
742 	bio->bi_end_io = super_written;
743 
744 	atomic_inc(&mddev->pending_writes);
745 	submit_bio(WRITE_FLUSH_FUA, bio);
746 }
747 
md_super_wait(struct mddev * mddev)748 void md_super_wait(struct mddev *mddev)
749 {
750 	/* wait for all superblock writes that were scheduled to complete */
751 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
752 }
753 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)754 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
755 		 struct page *page, int rw, bool metadata_op)
756 {
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
758 	int ret;
759 
760 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
761 		rdev->meta_bdev : rdev->bdev;
762 	if (metadata_op)
763 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
764 	else if (rdev->mddev->reshape_position != MaxSector &&
765 		 (rdev->mddev->reshape_backwards ==
766 		  (sector >= rdev->mddev->reshape_position)))
767 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
768 	else
769 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
770 	bio_add_page(bio, page, size, 0);
771 	submit_bio_wait(rw, bio);
772 
773 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
774 	bio_put(bio);
775 	return ret;
776 }
777 EXPORT_SYMBOL_GPL(sync_page_io);
778 
read_disk_sb(struct md_rdev * rdev,int size)779 static int read_disk_sb(struct md_rdev *rdev, int size)
780 {
781 	char b[BDEVNAME_SIZE];
782 
783 	if (rdev->sb_loaded)
784 		return 0;
785 
786 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
787 		goto fail;
788 	rdev->sb_loaded = 1;
789 	return 0;
790 
791 fail:
792 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
793 		bdevname(rdev->bdev,b));
794 	return -EINVAL;
795 }
796 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)797 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
798 {
799 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
800 		sb1->set_uuid1 == sb2->set_uuid1 &&
801 		sb1->set_uuid2 == sb2->set_uuid2 &&
802 		sb1->set_uuid3 == sb2->set_uuid3;
803 }
804 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)805 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 	int ret;
808 	mdp_super_t *tmp1, *tmp2;
809 
810 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
811 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
812 
813 	if (!tmp1 || !tmp2) {
814 		ret = 0;
815 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
816 		goto abort;
817 	}
818 
819 	*tmp1 = *sb1;
820 	*tmp2 = *sb2;
821 
822 	/*
823 	 * nr_disks is not constant
824 	 */
825 	tmp1->nr_disks = 0;
826 	tmp2->nr_disks = 0;
827 
828 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
829 abort:
830 	kfree(tmp1);
831 	kfree(tmp2);
832 	return ret;
833 }
834 
md_csum_fold(u32 csum)835 static u32 md_csum_fold(u32 csum)
836 {
837 	csum = (csum & 0xffff) + (csum >> 16);
838 	return (csum & 0xffff) + (csum >> 16);
839 }
840 
calc_sb_csum(mdp_super_t * sb)841 static unsigned int calc_sb_csum(mdp_super_t *sb)
842 {
843 	u64 newcsum = 0;
844 	u32 *sb32 = (u32*)sb;
845 	int i;
846 	unsigned int disk_csum, csum;
847 
848 	disk_csum = sb->sb_csum;
849 	sb->sb_csum = 0;
850 
851 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
852 		newcsum += sb32[i];
853 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
854 
855 #ifdef CONFIG_ALPHA
856 	/* This used to use csum_partial, which was wrong for several
857 	 * reasons including that different results are returned on
858 	 * different architectures.  It isn't critical that we get exactly
859 	 * the same return value as before (we always csum_fold before
860 	 * testing, and that removes any differences).  However as we
861 	 * know that csum_partial always returned a 16bit value on
862 	 * alphas, do a fold to maximise conformity to previous behaviour.
863 	 */
864 	sb->sb_csum = md_csum_fold(disk_csum);
865 #else
866 	sb->sb_csum = disk_csum;
867 #endif
868 	return csum;
869 }
870 
871 /*
872  * Handle superblock details.
873  * We want to be able to handle multiple superblock formats
874  * so we have a common interface to them all, and an array of
875  * different handlers.
876  * We rely on user-space to write the initial superblock, and support
877  * reading and updating of superblocks.
878  * Interface methods are:
879  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
880  *      loads and validates a superblock on dev.
881  *      if refdev != NULL, compare superblocks on both devices
882  *    Return:
883  *      0 - dev has a superblock that is compatible with refdev
884  *      1 - dev has a superblock that is compatible and newer than refdev
885  *          so dev should be used as the refdev in future
886  *     -EINVAL superblock incompatible or invalid
887  *     -othererror e.g. -EIO
888  *
889  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
890  *      Verify that dev is acceptable into mddev.
891  *       The first time, mddev->raid_disks will be 0, and data from
892  *       dev should be merged in.  Subsequent calls check that dev
893  *       is new enough.  Return 0 or -EINVAL
894  *
895  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
896  *     Update the superblock for rdev with data in mddev
897  *     This does not write to disc.
898  *
899  */
900 
901 struct super_type  {
902 	char		    *name;
903 	struct module	    *owner;
904 	int		    (*load_super)(struct md_rdev *rdev,
905 					  struct md_rdev *refdev,
906 					  int minor_version);
907 	int		    (*validate_super)(struct mddev *mddev,
908 					      struct md_rdev *rdev);
909 	void		    (*sync_super)(struct mddev *mddev,
910 					  struct md_rdev *rdev);
911 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
912 						sector_t num_sectors);
913 	int		    (*allow_new_offset)(struct md_rdev *rdev,
914 						unsigned long long new_offset);
915 };
916 
917 /*
918  * Check that the given mddev has no bitmap.
919  *
920  * This function is called from the run method of all personalities that do not
921  * support bitmaps. It prints an error message and returns non-zero if mddev
922  * has a bitmap. Otherwise, it returns 0.
923  *
924  */
md_check_no_bitmap(struct mddev * mddev)925 int md_check_no_bitmap(struct mddev *mddev)
926 {
927 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
928 		return 0;
929 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
930 		mdname(mddev), mddev->pers->name);
931 	return 1;
932 }
933 EXPORT_SYMBOL(md_check_no_bitmap);
934 
935 /*
936  * load_super for 0.90.0
937  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)938 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
939 {
940 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
941 	mdp_super_t *sb;
942 	int ret;
943 
944 	/*
945 	 * Calculate the position of the superblock (512byte sectors),
946 	 * it's at the end of the disk.
947 	 *
948 	 * It also happens to be a multiple of 4Kb.
949 	 */
950 	rdev->sb_start = calc_dev_sboffset(rdev);
951 
952 	ret = read_disk_sb(rdev, MD_SB_BYTES);
953 	if (ret) return ret;
954 
955 	ret = -EINVAL;
956 
957 	bdevname(rdev->bdev, b);
958 	sb = page_address(rdev->sb_page);
959 
960 	if (sb->md_magic != MD_SB_MAGIC) {
961 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
962 		       b);
963 		goto abort;
964 	}
965 
966 	if (sb->major_version != 0 ||
967 	    sb->minor_version < 90 ||
968 	    sb->minor_version > 91) {
969 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
970 			sb->major_version, sb->minor_version,
971 			b);
972 		goto abort;
973 	}
974 
975 	if (sb->raid_disks <= 0)
976 		goto abort;
977 
978 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
979 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
980 			b);
981 		goto abort;
982 	}
983 
984 	rdev->preferred_minor = sb->md_minor;
985 	rdev->data_offset = 0;
986 	rdev->new_data_offset = 0;
987 	rdev->sb_size = MD_SB_BYTES;
988 	rdev->badblocks.shift = -1;
989 
990 	if (sb->level == LEVEL_MULTIPATH)
991 		rdev->desc_nr = -1;
992 	else
993 		rdev->desc_nr = sb->this_disk.number;
994 
995 	if (!refdev) {
996 		ret = 1;
997 	} else {
998 		__u64 ev1, ev2;
999 		mdp_super_t *refsb = page_address(refdev->sb_page);
1000 		if (!uuid_equal(refsb, sb)) {
1001 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1002 				b, bdevname(refdev->bdev,b2));
1003 			goto abort;
1004 		}
1005 		if (!sb_equal(refsb, sb)) {
1006 			printk(KERN_WARNING "md: %s has same UUID"
1007 			       " but different superblock to %s\n",
1008 			       b, bdevname(refdev->bdev, b2));
1009 			goto abort;
1010 		}
1011 		ev1 = md_event(sb);
1012 		ev2 = md_event(refsb);
1013 		if (ev1 > ev2)
1014 			ret = 1;
1015 		else
1016 			ret = 0;
1017 	}
1018 	rdev->sectors = rdev->sb_start;
1019 	/* Limit to 4TB as metadata cannot record more than that.
1020 	 * (not needed for Linear and RAID0 as metadata doesn't
1021 	 * record this size)
1022 	 */
1023 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1024 		rdev->sectors = (2ULL << 32) - 2;
1025 
1026 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1027 		/* "this cannot possibly happen" ... */
1028 		ret = -EINVAL;
1029 
1030  abort:
1031 	return ret;
1032 }
1033 
1034 /*
1035  * validate_super for 0.90.0
1036  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1037 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1038 {
1039 	mdp_disk_t *desc;
1040 	mdp_super_t *sb = page_address(rdev->sb_page);
1041 	__u64 ev1 = md_event(sb);
1042 
1043 	rdev->raid_disk = -1;
1044 	clear_bit(Faulty, &rdev->flags);
1045 	clear_bit(In_sync, &rdev->flags);
1046 	clear_bit(Bitmap_sync, &rdev->flags);
1047 	clear_bit(WriteMostly, &rdev->flags);
1048 
1049 	if (mddev->raid_disks == 0) {
1050 		mddev->major_version = 0;
1051 		mddev->minor_version = sb->minor_version;
1052 		mddev->patch_version = sb->patch_version;
1053 		mddev->external = 0;
1054 		mddev->chunk_sectors = sb->chunk_size >> 9;
1055 		mddev->ctime = sb->ctime;
1056 		mddev->utime = sb->utime;
1057 		mddev->level = sb->level;
1058 		mddev->clevel[0] = 0;
1059 		mddev->layout = sb->layout;
1060 		mddev->raid_disks = sb->raid_disks;
1061 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1062 		mddev->events = ev1;
1063 		mddev->bitmap_info.offset = 0;
1064 		mddev->bitmap_info.space = 0;
1065 		/* bitmap can use 60 K after the 4K superblocks */
1066 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1067 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1068 		mddev->reshape_backwards = 0;
1069 
1070 		if (mddev->minor_version >= 91) {
1071 			mddev->reshape_position = sb->reshape_position;
1072 			mddev->delta_disks = sb->delta_disks;
1073 			mddev->new_level = sb->new_level;
1074 			mddev->new_layout = sb->new_layout;
1075 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1076 			if (mddev->delta_disks < 0)
1077 				mddev->reshape_backwards = 1;
1078 		} else {
1079 			mddev->reshape_position = MaxSector;
1080 			mddev->delta_disks = 0;
1081 			mddev->new_level = mddev->level;
1082 			mddev->new_layout = mddev->layout;
1083 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1084 		}
1085 
1086 		if (sb->state & (1<<MD_SB_CLEAN))
1087 			mddev->recovery_cp = MaxSector;
1088 		else {
1089 			if (sb->events_hi == sb->cp_events_hi &&
1090 				sb->events_lo == sb->cp_events_lo) {
1091 				mddev->recovery_cp = sb->recovery_cp;
1092 			} else
1093 				mddev->recovery_cp = 0;
1094 		}
1095 
1096 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1097 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1098 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1099 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1100 
1101 		mddev->max_disks = MD_SB_DISKS;
1102 
1103 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1104 		    mddev->bitmap_info.file == NULL) {
1105 			mddev->bitmap_info.offset =
1106 				mddev->bitmap_info.default_offset;
1107 			mddev->bitmap_info.space =
1108 				mddev->bitmap_info.default_space;
1109 		}
1110 
1111 	} else if (mddev->pers == NULL) {
1112 		/* Insist on good event counter while assembling, except
1113 		 * for spares (which don't need an event count) */
1114 		++ev1;
1115 		if (sb->disks[rdev->desc_nr].state & (
1116 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1117 			if (ev1 < mddev->events)
1118 				return -EINVAL;
1119 	} else if (mddev->bitmap) {
1120 		/* if adding to array with a bitmap, then we can accept an
1121 		 * older device ... but not too old.
1122 		 */
1123 		if (ev1 < mddev->bitmap->events_cleared)
1124 			return 0;
1125 		if (ev1 < mddev->events)
1126 			set_bit(Bitmap_sync, &rdev->flags);
1127 	} else {
1128 		if (ev1 < mddev->events)
1129 			/* just a hot-add of a new device, leave raid_disk at -1 */
1130 			return 0;
1131 	}
1132 
1133 	if (mddev->level != LEVEL_MULTIPATH) {
1134 		desc = sb->disks + rdev->desc_nr;
1135 
1136 		if (desc->state & (1<<MD_DISK_FAULTY))
1137 			set_bit(Faulty, &rdev->flags);
1138 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1139 			    desc->raid_disk < mddev->raid_disks */) {
1140 			set_bit(In_sync, &rdev->flags);
1141 			rdev->raid_disk = desc->raid_disk;
1142 			rdev->saved_raid_disk = desc->raid_disk;
1143 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1144 			/* active but not in sync implies recovery up to
1145 			 * reshape position.  We don't know exactly where
1146 			 * that is, so set to zero for now */
1147 			if (mddev->minor_version >= 91) {
1148 				rdev->recovery_offset = 0;
1149 				rdev->raid_disk = desc->raid_disk;
1150 			}
1151 		}
1152 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1153 			set_bit(WriteMostly, &rdev->flags);
1154 	} else /* MULTIPATH are always insync */
1155 		set_bit(In_sync, &rdev->flags);
1156 	return 0;
1157 }
1158 
1159 /*
1160  * sync_super for 0.90.0
1161  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1162 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1163 {
1164 	mdp_super_t *sb;
1165 	struct md_rdev *rdev2;
1166 	int next_spare = mddev->raid_disks;
1167 
1168 	/* make rdev->sb match mddev data..
1169 	 *
1170 	 * 1/ zero out disks
1171 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1172 	 * 3/ any empty disks < next_spare become removed
1173 	 *
1174 	 * disks[0] gets initialised to REMOVED because
1175 	 * we cannot be sure from other fields if it has
1176 	 * been initialised or not.
1177 	 */
1178 	int i;
1179 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1180 
1181 	rdev->sb_size = MD_SB_BYTES;
1182 
1183 	sb = page_address(rdev->sb_page);
1184 
1185 	memset(sb, 0, sizeof(*sb));
1186 
1187 	sb->md_magic = MD_SB_MAGIC;
1188 	sb->major_version = mddev->major_version;
1189 	sb->patch_version = mddev->patch_version;
1190 	sb->gvalid_words  = 0; /* ignored */
1191 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1192 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1193 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1194 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1195 
1196 	sb->ctime = mddev->ctime;
1197 	sb->level = mddev->level;
1198 	sb->size = mddev->dev_sectors / 2;
1199 	sb->raid_disks = mddev->raid_disks;
1200 	sb->md_minor = mddev->md_minor;
1201 	sb->not_persistent = 0;
1202 	sb->utime = mddev->utime;
1203 	sb->state = 0;
1204 	sb->events_hi = (mddev->events>>32);
1205 	sb->events_lo = (u32)mddev->events;
1206 
1207 	if (mddev->reshape_position == MaxSector)
1208 		sb->minor_version = 90;
1209 	else {
1210 		sb->minor_version = 91;
1211 		sb->reshape_position = mddev->reshape_position;
1212 		sb->new_level = mddev->new_level;
1213 		sb->delta_disks = mddev->delta_disks;
1214 		sb->new_layout = mddev->new_layout;
1215 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1216 	}
1217 	mddev->minor_version = sb->minor_version;
1218 	if (mddev->in_sync)
1219 	{
1220 		sb->recovery_cp = mddev->recovery_cp;
1221 		sb->cp_events_hi = (mddev->events>>32);
1222 		sb->cp_events_lo = (u32)mddev->events;
1223 		if (mddev->recovery_cp == MaxSector)
1224 			sb->state = (1<< MD_SB_CLEAN);
1225 	} else
1226 		sb->recovery_cp = 0;
1227 
1228 	sb->layout = mddev->layout;
1229 	sb->chunk_size = mddev->chunk_sectors << 9;
1230 
1231 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1232 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1233 
1234 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1235 	rdev_for_each(rdev2, mddev) {
1236 		mdp_disk_t *d;
1237 		int desc_nr;
1238 		int is_active = test_bit(In_sync, &rdev2->flags);
1239 
1240 		if (rdev2->raid_disk >= 0 &&
1241 		    sb->minor_version >= 91)
1242 			/* we have nowhere to store the recovery_offset,
1243 			 * but if it is not below the reshape_position,
1244 			 * we can piggy-back on that.
1245 			 */
1246 			is_active = 1;
1247 		if (rdev2->raid_disk < 0 ||
1248 		    test_bit(Faulty, &rdev2->flags))
1249 			is_active = 0;
1250 		if (is_active)
1251 			desc_nr = rdev2->raid_disk;
1252 		else
1253 			desc_nr = next_spare++;
1254 		rdev2->desc_nr = desc_nr;
1255 		d = &sb->disks[rdev2->desc_nr];
1256 		nr_disks++;
1257 		d->number = rdev2->desc_nr;
1258 		d->major = MAJOR(rdev2->bdev->bd_dev);
1259 		d->minor = MINOR(rdev2->bdev->bd_dev);
1260 		if (is_active)
1261 			d->raid_disk = rdev2->raid_disk;
1262 		else
1263 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1264 		if (test_bit(Faulty, &rdev2->flags))
1265 			d->state = (1<<MD_DISK_FAULTY);
1266 		else if (is_active) {
1267 			d->state = (1<<MD_DISK_ACTIVE);
1268 			if (test_bit(In_sync, &rdev2->flags))
1269 				d->state |= (1<<MD_DISK_SYNC);
1270 			active++;
1271 			working++;
1272 		} else {
1273 			d->state = 0;
1274 			spare++;
1275 			working++;
1276 		}
1277 		if (test_bit(WriteMostly, &rdev2->flags))
1278 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1279 	}
1280 	/* now set the "removed" and "faulty" bits on any missing devices */
1281 	for (i=0 ; i < mddev->raid_disks ; i++) {
1282 		mdp_disk_t *d = &sb->disks[i];
1283 		if (d->state == 0 && d->number == 0) {
1284 			d->number = i;
1285 			d->raid_disk = i;
1286 			d->state = (1<<MD_DISK_REMOVED);
1287 			d->state |= (1<<MD_DISK_FAULTY);
1288 			failed++;
1289 		}
1290 	}
1291 	sb->nr_disks = nr_disks;
1292 	sb->active_disks = active;
1293 	sb->working_disks = working;
1294 	sb->failed_disks = failed;
1295 	sb->spare_disks = spare;
1296 
1297 	sb->this_disk = sb->disks[rdev->desc_nr];
1298 	sb->sb_csum = calc_sb_csum(sb);
1299 }
1300 
1301 /*
1302  * rdev_size_change for 0.90.0
1303  */
1304 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1305 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1306 {
1307 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1308 		return 0; /* component must fit device */
1309 	if (rdev->mddev->bitmap_info.offset)
1310 		return 0; /* can't move bitmap */
1311 	rdev->sb_start = calc_dev_sboffset(rdev);
1312 	if (!num_sectors || num_sectors > rdev->sb_start)
1313 		num_sectors = rdev->sb_start;
1314 	/* Limit to 4TB as metadata cannot record more than that.
1315 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1316 	 */
1317 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1318 		num_sectors = (2ULL << 32) - 2;
1319 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1320 		       rdev->sb_page);
1321 	md_super_wait(rdev->mddev);
1322 	return num_sectors;
1323 }
1324 
1325 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1326 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1327 {
1328 	/* non-zero offset changes not possible with v0.90 */
1329 	return new_offset == 0;
1330 }
1331 
1332 /*
1333  * version 1 superblock
1334  */
1335 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1336 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1337 {
1338 	__le32 disk_csum;
1339 	u32 csum;
1340 	unsigned long long newcsum;
1341 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1342 	__le32 *isuper = (__le32*)sb;
1343 
1344 	disk_csum = sb->sb_csum;
1345 	sb->sb_csum = 0;
1346 	newcsum = 0;
1347 	for (; size >= 4; size -= 4)
1348 		newcsum += le32_to_cpu(*isuper++);
1349 
1350 	if (size == 2)
1351 		newcsum += le16_to_cpu(*(__le16*) isuper);
1352 
1353 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1354 	sb->sb_csum = disk_csum;
1355 	return cpu_to_le32(csum);
1356 }
1357 
1358 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1359 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1360 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1361 {
1362 	struct mdp_superblock_1 *sb;
1363 	int ret;
1364 	sector_t sb_start;
1365 	sector_t sectors;
1366 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1367 	int bmask;
1368 
1369 	/*
1370 	 * Calculate the position of the superblock in 512byte sectors.
1371 	 * It is always aligned to a 4K boundary and
1372 	 * depeding on minor_version, it can be:
1373 	 * 0: At least 8K, but less than 12K, from end of device
1374 	 * 1: At start of device
1375 	 * 2: 4K from start of device.
1376 	 */
1377 	switch(minor_version) {
1378 	case 0:
1379 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1380 		sb_start -= 8*2;
1381 		sb_start &= ~(sector_t)(4*2-1);
1382 		break;
1383 	case 1:
1384 		sb_start = 0;
1385 		break;
1386 	case 2:
1387 		sb_start = 8;
1388 		break;
1389 	default:
1390 		return -EINVAL;
1391 	}
1392 	rdev->sb_start = sb_start;
1393 
1394 	/* superblock is rarely larger than 1K, but it can be larger,
1395 	 * and it is safe to read 4k, so we do that
1396 	 */
1397 	ret = read_disk_sb(rdev, 4096);
1398 	if (ret) return ret;
1399 
1400 	sb = page_address(rdev->sb_page);
1401 
1402 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1403 	    sb->major_version != cpu_to_le32(1) ||
1404 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1405 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1406 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1407 		return -EINVAL;
1408 
1409 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1410 		printk("md: invalid superblock checksum on %s\n",
1411 			bdevname(rdev->bdev,b));
1412 		return -EINVAL;
1413 	}
1414 	if (le64_to_cpu(sb->data_size) < 10) {
1415 		printk("md: data_size too small on %s\n",
1416 		       bdevname(rdev->bdev,b));
1417 		return -EINVAL;
1418 	}
1419 	if (sb->pad0 ||
1420 	    sb->pad3[0] ||
1421 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1422 		/* Some padding is non-zero, might be a new feature */
1423 		return -EINVAL;
1424 
1425 	rdev->preferred_minor = 0xffff;
1426 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1427 	rdev->new_data_offset = rdev->data_offset;
1428 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1429 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1430 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1431 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1432 
1433 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1434 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1435 	if (rdev->sb_size & bmask)
1436 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1437 
1438 	if (minor_version
1439 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1440 		return -EINVAL;
1441 	if (minor_version
1442 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1443 		return -EINVAL;
1444 
1445 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1446 		rdev->desc_nr = -1;
1447 	else
1448 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1449 
1450 	if (!rdev->bb_page) {
1451 		rdev->bb_page = alloc_page(GFP_KERNEL);
1452 		if (!rdev->bb_page)
1453 			return -ENOMEM;
1454 	}
1455 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1456 	    rdev->badblocks.count == 0) {
1457 		/* need to load the bad block list.
1458 		 * Currently we limit it to one page.
1459 		 */
1460 		s32 offset;
1461 		sector_t bb_sector;
1462 		u64 *bbp;
1463 		int i;
1464 		int sectors = le16_to_cpu(sb->bblog_size);
1465 		if (sectors > (PAGE_SIZE / 512))
1466 			return -EINVAL;
1467 		offset = le32_to_cpu(sb->bblog_offset);
1468 		if (offset == 0)
1469 			return -EINVAL;
1470 		bb_sector = (long long)offset;
1471 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1472 				  rdev->bb_page, READ, true))
1473 			return -EIO;
1474 		bbp = (u64 *)page_address(rdev->bb_page);
1475 		rdev->badblocks.shift = sb->bblog_shift;
1476 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1477 			u64 bb = le64_to_cpu(*bbp);
1478 			int count = bb & (0x3ff);
1479 			u64 sector = bb >> 10;
1480 			sector <<= sb->bblog_shift;
1481 			count <<= sb->bblog_shift;
1482 			if (bb + 1 == 0)
1483 				break;
1484 			if (md_set_badblocks(&rdev->badblocks,
1485 					     sector, count, 1) == 0)
1486 				return -EINVAL;
1487 		}
1488 	} else if (sb->bblog_offset != 0)
1489 		rdev->badblocks.shift = 0;
1490 
1491 	if (!refdev) {
1492 		ret = 1;
1493 	} else {
1494 		__u64 ev1, ev2;
1495 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1496 
1497 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1498 		    sb->level != refsb->level ||
1499 		    sb->layout != refsb->layout ||
1500 		    sb->chunksize != refsb->chunksize) {
1501 			printk(KERN_WARNING "md: %s has strangely different"
1502 				" superblock to %s\n",
1503 				bdevname(rdev->bdev,b),
1504 				bdevname(refdev->bdev,b2));
1505 			return -EINVAL;
1506 		}
1507 		ev1 = le64_to_cpu(sb->events);
1508 		ev2 = le64_to_cpu(refsb->events);
1509 
1510 		if (ev1 > ev2)
1511 			ret = 1;
1512 		else
1513 			ret = 0;
1514 	}
1515 	if (minor_version) {
1516 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1517 		sectors -= rdev->data_offset;
1518 	} else
1519 		sectors = rdev->sb_start;
1520 	if (sectors < le64_to_cpu(sb->data_size))
1521 		return -EINVAL;
1522 	rdev->sectors = le64_to_cpu(sb->data_size);
1523 	return ret;
1524 }
1525 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1526 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1527 {
1528 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1529 	__u64 ev1 = le64_to_cpu(sb->events);
1530 
1531 	rdev->raid_disk = -1;
1532 	clear_bit(Faulty, &rdev->flags);
1533 	clear_bit(In_sync, &rdev->flags);
1534 	clear_bit(Bitmap_sync, &rdev->flags);
1535 	clear_bit(WriteMostly, &rdev->flags);
1536 
1537 	if (mddev->raid_disks == 0) {
1538 		mddev->major_version = 1;
1539 		mddev->patch_version = 0;
1540 		mddev->external = 0;
1541 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1542 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1543 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1544 		mddev->level = le32_to_cpu(sb->level);
1545 		mddev->clevel[0] = 0;
1546 		mddev->layout = le32_to_cpu(sb->layout);
1547 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1548 		mddev->dev_sectors = le64_to_cpu(sb->size);
1549 		mddev->events = ev1;
1550 		mddev->bitmap_info.offset = 0;
1551 		mddev->bitmap_info.space = 0;
1552 		/* Default location for bitmap is 1K after superblock
1553 		 * using 3K - total of 4K
1554 		 */
1555 		mddev->bitmap_info.default_offset = 1024 >> 9;
1556 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1557 		mddev->reshape_backwards = 0;
1558 
1559 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1560 		memcpy(mddev->uuid, sb->set_uuid, 16);
1561 
1562 		mddev->max_disks =  (4096-256)/2;
1563 
1564 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1565 		    mddev->bitmap_info.file == NULL) {
1566 			mddev->bitmap_info.offset =
1567 				(__s32)le32_to_cpu(sb->bitmap_offset);
1568 			/* Metadata doesn't record how much space is available.
1569 			 * For 1.0, we assume we can use up to the superblock
1570 			 * if before, else to 4K beyond superblock.
1571 			 * For others, assume no change is possible.
1572 			 */
1573 			if (mddev->minor_version > 0)
1574 				mddev->bitmap_info.space = 0;
1575 			else if (mddev->bitmap_info.offset > 0)
1576 				mddev->bitmap_info.space =
1577 					8 - mddev->bitmap_info.offset;
1578 			else
1579 				mddev->bitmap_info.space =
1580 					-mddev->bitmap_info.offset;
1581 		}
1582 
1583 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1584 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1585 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1586 			mddev->new_level = le32_to_cpu(sb->new_level);
1587 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1588 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1589 			if (mddev->delta_disks < 0 ||
1590 			    (mddev->delta_disks == 0 &&
1591 			     (le32_to_cpu(sb->feature_map)
1592 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1593 				mddev->reshape_backwards = 1;
1594 		} else {
1595 			mddev->reshape_position = MaxSector;
1596 			mddev->delta_disks = 0;
1597 			mddev->new_level = mddev->level;
1598 			mddev->new_layout = mddev->layout;
1599 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1600 		}
1601 
1602 	} else if (mddev->pers == NULL) {
1603 		/* Insist of good event counter while assembling, except for
1604 		 * spares (which don't need an event count) */
1605 		++ev1;
1606 		if (rdev->desc_nr >= 0 &&
1607 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1608 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1609 			if (ev1 < mddev->events)
1610 				return -EINVAL;
1611 	} else if (mddev->bitmap) {
1612 		/* If adding to array with a bitmap, then we can accept an
1613 		 * older device, but not too old.
1614 		 */
1615 		if (ev1 < mddev->bitmap->events_cleared)
1616 			return 0;
1617 		if (ev1 < mddev->events)
1618 			set_bit(Bitmap_sync, &rdev->flags);
1619 	} else {
1620 		if (ev1 < mddev->events)
1621 			/* just a hot-add of a new device, leave raid_disk at -1 */
1622 			return 0;
1623 	}
1624 	if (mddev->level != LEVEL_MULTIPATH) {
1625 		int role;
1626 		if (rdev->desc_nr < 0 ||
1627 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1628 			role = 0xffff;
1629 			rdev->desc_nr = -1;
1630 		} else
1631 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1632 		switch(role) {
1633 		case 0xffff: /* spare */
1634 			break;
1635 		case 0xfffe: /* faulty */
1636 			set_bit(Faulty, &rdev->flags);
1637 			break;
1638 		default:
1639 			rdev->saved_raid_disk = role;
1640 			if ((le32_to_cpu(sb->feature_map) &
1641 			     MD_FEATURE_RECOVERY_OFFSET)) {
1642 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1643 				if (!(le32_to_cpu(sb->feature_map) &
1644 				      MD_FEATURE_RECOVERY_BITMAP))
1645 					rdev->saved_raid_disk = -1;
1646 			} else
1647 				set_bit(In_sync, &rdev->flags);
1648 			rdev->raid_disk = role;
1649 			break;
1650 		}
1651 		if (sb->devflags & WriteMostly1)
1652 			set_bit(WriteMostly, &rdev->flags);
1653 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1654 			set_bit(Replacement, &rdev->flags);
1655 	} else /* MULTIPATH are always insync */
1656 		set_bit(In_sync, &rdev->flags);
1657 
1658 	return 0;
1659 }
1660 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1661 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1662 {
1663 	struct mdp_superblock_1 *sb;
1664 	struct md_rdev *rdev2;
1665 	int max_dev, i;
1666 	/* make rdev->sb match mddev and rdev data. */
1667 
1668 	sb = page_address(rdev->sb_page);
1669 
1670 	sb->feature_map = 0;
1671 	sb->pad0 = 0;
1672 	sb->recovery_offset = cpu_to_le64(0);
1673 	memset(sb->pad3, 0, sizeof(sb->pad3));
1674 
1675 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1676 	sb->events = cpu_to_le64(mddev->events);
1677 	if (mddev->in_sync)
1678 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1679 	else
1680 		sb->resync_offset = cpu_to_le64(0);
1681 
1682 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1683 
1684 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1685 	sb->size = cpu_to_le64(mddev->dev_sectors);
1686 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1687 	sb->level = cpu_to_le32(mddev->level);
1688 	sb->layout = cpu_to_le32(mddev->layout);
1689 
1690 	if (test_bit(WriteMostly, &rdev->flags))
1691 		sb->devflags |= WriteMostly1;
1692 	else
1693 		sb->devflags &= ~WriteMostly1;
1694 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1695 	sb->data_size = cpu_to_le64(rdev->sectors);
1696 
1697 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1698 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1699 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1700 	}
1701 
1702 	if (rdev->raid_disk >= 0 &&
1703 	    !test_bit(In_sync, &rdev->flags)) {
1704 		sb->feature_map |=
1705 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1706 		sb->recovery_offset =
1707 			cpu_to_le64(rdev->recovery_offset);
1708 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1709 			sb->feature_map |=
1710 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1711 	}
1712 	if (test_bit(Replacement, &rdev->flags))
1713 		sb->feature_map |=
1714 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1715 
1716 	if (mddev->reshape_position != MaxSector) {
1717 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1718 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1719 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1720 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1721 		sb->new_level = cpu_to_le32(mddev->new_level);
1722 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1723 		if (mddev->delta_disks == 0 &&
1724 		    mddev->reshape_backwards)
1725 			sb->feature_map
1726 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1727 		if (rdev->new_data_offset != rdev->data_offset) {
1728 			sb->feature_map
1729 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1730 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1731 							     - rdev->data_offset));
1732 		}
1733 	}
1734 
1735 	if (rdev->badblocks.count == 0)
1736 		/* Nothing to do for bad blocks*/ ;
1737 	else if (sb->bblog_offset == 0)
1738 		/* Cannot record bad blocks on this device */
1739 		md_error(mddev, rdev);
1740 	else {
1741 		struct badblocks *bb = &rdev->badblocks;
1742 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1743 		u64 *p = bb->page;
1744 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1745 		if (bb->changed) {
1746 			unsigned seq;
1747 
1748 retry:
1749 			seq = read_seqbegin(&bb->lock);
1750 
1751 			memset(bbp, 0xff, PAGE_SIZE);
1752 
1753 			for (i = 0 ; i < bb->count ; i++) {
1754 				u64 internal_bb = p[i];
1755 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1756 						| BB_LEN(internal_bb));
1757 				bbp[i] = cpu_to_le64(store_bb);
1758 			}
1759 			bb->changed = 0;
1760 			if (read_seqretry(&bb->lock, seq))
1761 				goto retry;
1762 
1763 			bb->sector = (rdev->sb_start +
1764 				      (int)le32_to_cpu(sb->bblog_offset));
1765 			bb->size = le16_to_cpu(sb->bblog_size);
1766 		}
1767 	}
1768 
1769 	max_dev = 0;
1770 	rdev_for_each(rdev2, mddev)
1771 		if (rdev2->desc_nr+1 > max_dev)
1772 			max_dev = rdev2->desc_nr+1;
1773 
1774 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1775 		int bmask;
1776 		sb->max_dev = cpu_to_le32(max_dev);
1777 		rdev->sb_size = max_dev * 2 + 256;
1778 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1779 		if (rdev->sb_size & bmask)
1780 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1781 	} else
1782 		max_dev = le32_to_cpu(sb->max_dev);
1783 
1784 	for (i=0; i<max_dev;i++)
1785 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1786 
1787 	rdev_for_each(rdev2, mddev) {
1788 		i = rdev2->desc_nr;
1789 		if (test_bit(Faulty, &rdev2->flags))
1790 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1791 		else if (test_bit(In_sync, &rdev2->flags))
1792 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1793 		else if (rdev2->raid_disk >= 0)
1794 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1795 		else
1796 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1797 	}
1798 
1799 	sb->sb_csum = calc_sb_1_csum(sb);
1800 }
1801 
1802 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1803 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1804 {
1805 	struct mdp_superblock_1 *sb;
1806 	sector_t max_sectors;
1807 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1808 		return 0; /* component must fit device */
1809 	if (rdev->data_offset != rdev->new_data_offset)
1810 		return 0; /* too confusing */
1811 	if (rdev->sb_start < rdev->data_offset) {
1812 		/* minor versions 1 and 2; superblock before data */
1813 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1814 		max_sectors -= rdev->data_offset;
1815 		if (!num_sectors || num_sectors > max_sectors)
1816 			num_sectors = max_sectors;
1817 	} else if (rdev->mddev->bitmap_info.offset) {
1818 		/* minor version 0 with bitmap we can't move */
1819 		return 0;
1820 	} else {
1821 		/* minor version 0; superblock after data */
1822 		sector_t sb_start;
1823 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1824 		sb_start &= ~(sector_t)(4*2 - 1);
1825 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1826 		if (!num_sectors || num_sectors > max_sectors)
1827 			num_sectors = max_sectors;
1828 		rdev->sb_start = sb_start;
1829 	}
1830 	sb = page_address(rdev->sb_page);
1831 	sb->data_size = cpu_to_le64(num_sectors);
1832 	sb->super_offset = cpu_to_le64(rdev->sb_start);
1833 	sb->sb_csum = calc_sb_1_csum(sb);
1834 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1835 		       rdev->sb_page);
1836 	md_super_wait(rdev->mddev);
1837 	return num_sectors;
1838 
1839 }
1840 
1841 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1842 super_1_allow_new_offset(struct md_rdev *rdev,
1843 			 unsigned long long new_offset)
1844 {
1845 	/* All necessary checks on new >= old have been done */
1846 	struct bitmap *bitmap;
1847 	if (new_offset >= rdev->data_offset)
1848 		return 1;
1849 
1850 	/* with 1.0 metadata, there is no metadata to tread on
1851 	 * so we can always move back */
1852 	if (rdev->mddev->minor_version == 0)
1853 		return 1;
1854 
1855 	/* otherwise we must be sure not to step on
1856 	 * any metadata, so stay:
1857 	 * 36K beyond start of superblock
1858 	 * beyond end of badblocks
1859 	 * beyond write-intent bitmap
1860 	 */
1861 	if (rdev->sb_start + (32+4)*2 > new_offset)
1862 		return 0;
1863 	bitmap = rdev->mddev->bitmap;
1864 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1865 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1866 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1867 		return 0;
1868 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1869 		return 0;
1870 
1871 	return 1;
1872 }
1873 
1874 static struct super_type super_types[] = {
1875 	[0] = {
1876 		.name	= "0.90.0",
1877 		.owner	= THIS_MODULE,
1878 		.load_super	    = super_90_load,
1879 		.validate_super	    = super_90_validate,
1880 		.sync_super	    = super_90_sync,
1881 		.rdev_size_change   = super_90_rdev_size_change,
1882 		.allow_new_offset   = super_90_allow_new_offset,
1883 	},
1884 	[1] = {
1885 		.name	= "md-1",
1886 		.owner	= THIS_MODULE,
1887 		.load_super	    = super_1_load,
1888 		.validate_super	    = super_1_validate,
1889 		.sync_super	    = super_1_sync,
1890 		.rdev_size_change   = super_1_rdev_size_change,
1891 		.allow_new_offset   = super_1_allow_new_offset,
1892 	},
1893 };
1894 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1895 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1896 {
1897 	if (mddev->sync_super) {
1898 		mddev->sync_super(mddev, rdev);
1899 		return;
1900 	}
1901 
1902 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1903 
1904 	super_types[mddev->major_version].sync_super(mddev, rdev);
1905 }
1906 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1907 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1908 {
1909 	struct md_rdev *rdev, *rdev2;
1910 
1911 	rcu_read_lock();
1912 	rdev_for_each_rcu(rdev, mddev1)
1913 		rdev_for_each_rcu(rdev2, mddev2)
1914 			if (rdev->bdev->bd_contains ==
1915 			    rdev2->bdev->bd_contains) {
1916 				rcu_read_unlock();
1917 				return 1;
1918 			}
1919 	rcu_read_unlock();
1920 	return 0;
1921 }
1922 
1923 static LIST_HEAD(pending_raid_disks);
1924 
1925 /*
1926  * Try to register data integrity profile for an mddev
1927  *
1928  * This is called when an array is started and after a disk has been kicked
1929  * from the array. It only succeeds if all working and active component devices
1930  * are integrity capable with matching profiles.
1931  */
md_integrity_register(struct mddev * mddev)1932 int md_integrity_register(struct mddev *mddev)
1933 {
1934 	struct md_rdev *rdev, *reference = NULL;
1935 
1936 	if (list_empty(&mddev->disks))
1937 		return 0; /* nothing to do */
1938 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1939 		return 0; /* shouldn't register, or already is */
1940 	rdev_for_each(rdev, mddev) {
1941 		/* skip spares and non-functional disks */
1942 		if (test_bit(Faulty, &rdev->flags))
1943 			continue;
1944 		if (rdev->raid_disk < 0)
1945 			continue;
1946 		if (!reference) {
1947 			/* Use the first rdev as the reference */
1948 			reference = rdev;
1949 			continue;
1950 		}
1951 		/* does this rdev's profile match the reference profile? */
1952 		if (blk_integrity_compare(reference->bdev->bd_disk,
1953 				rdev->bdev->bd_disk) < 0)
1954 			return -EINVAL;
1955 	}
1956 	if (!reference || !bdev_get_integrity(reference->bdev))
1957 		return 0;
1958 	/*
1959 	 * All component devices are integrity capable and have matching
1960 	 * profiles, register the common profile for the md device.
1961 	 */
1962 	if (blk_integrity_register(mddev->gendisk,
1963 			bdev_get_integrity(reference->bdev)) != 0) {
1964 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1965 			mdname(mddev));
1966 		return -EINVAL;
1967 	}
1968 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1969 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1970 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1971 		       mdname(mddev));
1972 		return -EINVAL;
1973 	}
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(md_integrity_register);
1977 
1978 /* Disable data integrity if non-capable/non-matching disk is being added */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)1979 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1980 {
1981 	struct blk_integrity *bi_rdev;
1982 	struct blk_integrity *bi_mddev;
1983 
1984 	if (!mddev->gendisk)
1985 		return;
1986 
1987 	bi_rdev = bdev_get_integrity(rdev->bdev);
1988 	bi_mddev = blk_get_integrity(mddev->gendisk);
1989 
1990 	if (!bi_mddev) /* nothing to do */
1991 		return;
1992 	if (rdev->raid_disk < 0) /* skip spares */
1993 		return;
1994 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1995 					     rdev->bdev->bd_disk) >= 0)
1996 		return;
1997 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1998 	blk_integrity_unregister(mddev->gendisk);
1999 }
2000 EXPORT_SYMBOL(md_integrity_add_rdev);
2001 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2002 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2003 {
2004 	char b[BDEVNAME_SIZE];
2005 	struct kobject *ko;
2006 	char *s;
2007 	int err;
2008 
2009 	/* prevent duplicates */
2010 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2011 		return -EEXIST;
2012 
2013 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2014 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2015 			rdev->sectors < mddev->dev_sectors)) {
2016 		if (mddev->pers) {
2017 			/* Cannot change size, so fail
2018 			 * If mddev->level <= 0, then we don't care
2019 			 * about aligning sizes (e.g. linear)
2020 			 */
2021 			if (mddev->level > 0)
2022 				return -ENOSPC;
2023 		} else
2024 			mddev->dev_sectors = rdev->sectors;
2025 	}
2026 
2027 	/* Verify rdev->desc_nr is unique.
2028 	 * If it is -1, assign a free number, else
2029 	 * check number is not in use
2030 	 */
2031 	rcu_read_lock();
2032 	if (rdev->desc_nr < 0) {
2033 		int choice = 0;
2034 		if (mddev->pers)
2035 			choice = mddev->raid_disks;
2036 		while (find_rdev_nr_rcu(mddev, choice))
2037 			choice++;
2038 		rdev->desc_nr = choice;
2039 	} else {
2040 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2041 			rcu_read_unlock();
2042 			return -EBUSY;
2043 		}
2044 	}
2045 	rcu_read_unlock();
2046 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2047 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2048 		       mdname(mddev), mddev->max_disks);
2049 		return -EBUSY;
2050 	}
2051 	bdevname(rdev->bdev,b);
2052 	while ( (s=strchr(b, '/')) != NULL)
2053 		*s = '!';
2054 
2055 	rdev->mddev = mddev;
2056 	printk(KERN_INFO "md: bind<%s>\n", b);
2057 
2058 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2059 		goto fail;
2060 
2061 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2062 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2063 		/* failure here is OK */;
2064 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2065 
2066 	list_add_rcu(&rdev->same_set, &mddev->disks);
2067 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2068 
2069 	/* May as well allow recovery to be retried once */
2070 	mddev->recovery_disabled++;
2071 
2072 	return 0;
2073 
2074  fail:
2075 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2076 	       b, mdname(mddev));
2077 	return err;
2078 }
2079 
md_delayed_delete(struct work_struct * ws)2080 static void md_delayed_delete(struct work_struct *ws)
2081 {
2082 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2083 	kobject_del(&rdev->kobj);
2084 	kobject_put(&rdev->kobj);
2085 }
2086 
unbind_rdev_from_array(struct md_rdev * rdev)2087 static void unbind_rdev_from_array(struct md_rdev *rdev)
2088 {
2089 	char b[BDEVNAME_SIZE];
2090 
2091 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2092 	list_del_rcu(&rdev->same_set);
2093 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2094 	rdev->mddev = NULL;
2095 	sysfs_remove_link(&rdev->kobj, "block");
2096 	sysfs_put(rdev->sysfs_state);
2097 	rdev->sysfs_state = NULL;
2098 	rdev->badblocks.count = 0;
2099 	/* We need to delay this, otherwise we can deadlock when
2100 	 * writing to 'remove' to "dev/state".  We also need
2101 	 * to delay it due to rcu usage.
2102 	 */
2103 	synchronize_rcu();
2104 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2105 	kobject_get(&rdev->kobj);
2106 	queue_work(md_misc_wq, &rdev->del_work);
2107 }
2108 
2109 /*
2110  * prevent the device from being mounted, repartitioned or
2111  * otherwise reused by a RAID array (or any other kernel
2112  * subsystem), by bd_claiming the device.
2113  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2114 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2115 {
2116 	int err = 0;
2117 	struct block_device *bdev;
2118 	char b[BDEVNAME_SIZE];
2119 
2120 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2121 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2122 	if (IS_ERR(bdev)) {
2123 		printk(KERN_ERR "md: could not open %s.\n",
2124 			__bdevname(dev, b));
2125 		return PTR_ERR(bdev);
2126 	}
2127 	rdev->bdev = bdev;
2128 	return err;
2129 }
2130 
unlock_rdev(struct md_rdev * rdev)2131 static void unlock_rdev(struct md_rdev *rdev)
2132 {
2133 	struct block_device *bdev = rdev->bdev;
2134 	rdev->bdev = NULL;
2135 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2136 }
2137 
2138 void md_autodetect_dev(dev_t dev);
2139 
export_rdev(struct md_rdev * rdev)2140 static void export_rdev(struct md_rdev *rdev)
2141 {
2142 	char b[BDEVNAME_SIZE];
2143 
2144 	printk(KERN_INFO "md: export_rdev(%s)\n",
2145 		bdevname(rdev->bdev,b));
2146 	md_rdev_clear(rdev);
2147 #ifndef MODULE
2148 	if (test_bit(AutoDetected, &rdev->flags))
2149 		md_autodetect_dev(rdev->bdev->bd_dev);
2150 #endif
2151 	unlock_rdev(rdev);
2152 	kobject_put(&rdev->kobj);
2153 }
2154 
kick_rdev_from_array(struct md_rdev * rdev)2155 static void kick_rdev_from_array(struct md_rdev *rdev)
2156 {
2157 	unbind_rdev_from_array(rdev);
2158 	export_rdev(rdev);
2159 }
2160 
export_array(struct mddev * mddev)2161 static void export_array(struct mddev *mddev)
2162 {
2163 	struct md_rdev *rdev;
2164 
2165 	while (!list_empty(&mddev->disks)) {
2166 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2167 					same_set);
2168 		kick_rdev_from_array(rdev);
2169 	}
2170 	mddev->raid_disks = 0;
2171 	mddev->major_version = 0;
2172 }
2173 
sync_sbs(struct mddev * mddev,int nospares)2174 static void sync_sbs(struct mddev *mddev, int nospares)
2175 {
2176 	/* Update each superblock (in-memory image), but
2177 	 * if we are allowed to, skip spares which already
2178 	 * have the right event counter, or have one earlier
2179 	 * (which would mean they aren't being marked as dirty
2180 	 * with the rest of the array)
2181 	 */
2182 	struct md_rdev *rdev;
2183 	rdev_for_each(rdev, mddev) {
2184 		if (rdev->sb_events == mddev->events ||
2185 		    (nospares &&
2186 		     rdev->raid_disk < 0 &&
2187 		     rdev->sb_events+1 == mddev->events)) {
2188 			/* Don't update this superblock */
2189 			rdev->sb_loaded = 2;
2190 		} else {
2191 			sync_super(mddev, rdev);
2192 			rdev->sb_loaded = 1;
2193 		}
2194 	}
2195 }
2196 
md_update_sb(struct mddev * mddev,int force_change)2197 static void md_update_sb(struct mddev *mddev, int force_change)
2198 {
2199 	struct md_rdev *rdev;
2200 	int sync_req;
2201 	int nospares = 0;
2202 	int any_badblocks_changed = 0;
2203 
2204 	if (mddev->ro) {
2205 		if (force_change)
2206 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2207 		return;
2208 	}
2209 repeat:
2210 	/* First make sure individual recovery_offsets are correct */
2211 	rdev_for_each(rdev, mddev) {
2212 		if (rdev->raid_disk >= 0 &&
2213 		    mddev->delta_disks >= 0 &&
2214 		    !test_bit(In_sync, &rdev->flags) &&
2215 		    mddev->curr_resync_completed > rdev->recovery_offset)
2216 				rdev->recovery_offset = mddev->curr_resync_completed;
2217 
2218 	}
2219 	if (!mddev->persistent) {
2220 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2221 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2222 		if (!mddev->external) {
2223 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2224 			rdev_for_each(rdev, mddev) {
2225 				if (rdev->badblocks.changed) {
2226 					rdev->badblocks.changed = 0;
2227 					md_ack_all_badblocks(&rdev->badblocks);
2228 					md_error(mddev, rdev);
2229 				}
2230 				clear_bit(Blocked, &rdev->flags);
2231 				clear_bit(BlockedBadBlocks, &rdev->flags);
2232 				wake_up(&rdev->blocked_wait);
2233 			}
2234 		}
2235 		wake_up(&mddev->sb_wait);
2236 		return;
2237 	}
2238 
2239 	spin_lock_irq(&mddev->write_lock);
2240 
2241 	mddev->utime = get_seconds();
2242 
2243 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2244 		force_change = 1;
2245 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2246 		/* just a clean<-> dirty transition, possibly leave spares alone,
2247 		 * though if events isn't the right even/odd, we will have to do
2248 		 * spares after all
2249 		 */
2250 		nospares = 1;
2251 	if (force_change)
2252 		nospares = 0;
2253 	if (mddev->degraded)
2254 		/* If the array is degraded, then skipping spares is both
2255 		 * dangerous and fairly pointless.
2256 		 * Dangerous because a device that was removed from the array
2257 		 * might have a event_count that still looks up-to-date,
2258 		 * so it can be re-added without a resync.
2259 		 * Pointless because if there are any spares to skip,
2260 		 * then a recovery will happen and soon that array won't
2261 		 * be degraded any more and the spare can go back to sleep then.
2262 		 */
2263 		nospares = 0;
2264 
2265 	sync_req = mddev->in_sync;
2266 
2267 	/* If this is just a dirty<->clean transition, and the array is clean
2268 	 * and 'events' is odd, we can roll back to the previous clean state */
2269 	if (nospares
2270 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2271 	    && mddev->can_decrease_events
2272 	    && mddev->events != 1) {
2273 		mddev->events--;
2274 		mddev->can_decrease_events = 0;
2275 	} else {
2276 		/* otherwise we have to go forward and ... */
2277 		mddev->events ++;
2278 		mddev->can_decrease_events = nospares;
2279 	}
2280 
2281 	/*
2282 	 * This 64-bit counter should never wrap.
2283 	 * Either we are in around ~1 trillion A.C., assuming
2284 	 * 1 reboot per second, or we have a bug...
2285 	 */
2286 	WARN_ON(mddev->events == 0);
2287 
2288 	rdev_for_each(rdev, mddev) {
2289 		if (rdev->badblocks.changed)
2290 			any_badblocks_changed++;
2291 		if (test_bit(Faulty, &rdev->flags))
2292 			set_bit(FaultRecorded, &rdev->flags);
2293 	}
2294 
2295 	sync_sbs(mddev, nospares);
2296 	spin_unlock_irq(&mddev->write_lock);
2297 
2298 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2299 		 mdname(mddev), mddev->in_sync);
2300 
2301 	bitmap_update_sb(mddev->bitmap);
2302 	rdev_for_each(rdev, mddev) {
2303 		char b[BDEVNAME_SIZE];
2304 
2305 		if (rdev->sb_loaded != 1)
2306 			continue; /* no noise on spare devices */
2307 
2308 		if (!test_bit(Faulty, &rdev->flags)) {
2309 			md_super_write(mddev,rdev,
2310 				       rdev->sb_start, rdev->sb_size,
2311 				       rdev->sb_page);
2312 			pr_debug("md: (write) %s's sb offset: %llu\n",
2313 				 bdevname(rdev->bdev, b),
2314 				 (unsigned long long)rdev->sb_start);
2315 			rdev->sb_events = mddev->events;
2316 			if (rdev->badblocks.size) {
2317 				md_super_write(mddev, rdev,
2318 					       rdev->badblocks.sector,
2319 					       rdev->badblocks.size << 9,
2320 					       rdev->bb_page);
2321 				rdev->badblocks.size = 0;
2322 			}
2323 
2324 		} else
2325 			pr_debug("md: %s (skipping faulty)\n",
2326 				 bdevname(rdev->bdev, b));
2327 
2328 		if (mddev->level == LEVEL_MULTIPATH)
2329 			/* only need to write one superblock... */
2330 			break;
2331 	}
2332 	md_super_wait(mddev);
2333 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2334 
2335 	spin_lock_irq(&mddev->write_lock);
2336 	if (mddev->in_sync != sync_req ||
2337 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2338 		/* have to write it out again */
2339 		spin_unlock_irq(&mddev->write_lock);
2340 		goto repeat;
2341 	}
2342 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2343 	spin_unlock_irq(&mddev->write_lock);
2344 	wake_up(&mddev->sb_wait);
2345 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2346 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2347 
2348 	rdev_for_each(rdev, mddev) {
2349 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2350 			clear_bit(Blocked, &rdev->flags);
2351 
2352 		if (any_badblocks_changed)
2353 			md_ack_all_badblocks(&rdev->badblocks);
2354 		clear_bit(BlockedBadBlocks, &rdev->flags);
2355 		wake_up(&rdev->blocked_wait);
2356 	}
2357 }
2358 
2359 /* words written to sysfs files may, or may not, be \n terminated.
2360  * We want to accept with case. For this we use cmd_match.
2361  */
cmd_match(const char * cmd,const char * str)2362 static int cmd_match(const char *cmd, const char *str)
2363 {
2364 	/* See if cmd, written into a sysfs file, matches
2365 	 * str.  They must either be the same, or cmd can
2366 	 * have a trailing newline
2367 	 */
2368 	while (*cmd && *str && *cmd == *str) {
2369 		cmd++;
2370 		str++;
2371 	}
2372 	if (*cmd == '\n')
2373 		cmd++;
2374 	if (*str || *cmd)
2375 		return 0;
2376 	return 1;
2377 }
2378 
2379 struct rdev_sysfs_entry {
2380 	struct attribute attr;
2381 	ssize_t (*show)(struct md_rdev *, char *);
2382 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2383 };
2384 
2385 static ssize_t
state_show(struct md_rdev * rdev,char * page)2386 state_show(struct md_rdev *rdev, char *page)
2387 {
2388 	char *sep = "";
2389 	size_t len = 0;
2390 
2391 	if (test_bit(Faulty, &rdev->flags) ||
2392 	    rdev->badblocks.unacked_exist) {
2393 		len+= sprintf(page+len, "%sfaulty",sep);
2394 		sep = ",";
2395 	}
2396 	if (test_bit(In_sync, &rdev->flags)) {
2397 		len += sprintf(page+len, "%sin_sync",sep);
2398 		sep = ",";
2399 	}
2400 	if (test_bit(WriteMostly, &rdev->flags)) {
2401 		len += sprintf(page+len, "%swrite_mostly",sep);
2402 		sep = ",";
2403 	}
2404 	if (test_bit(Blocked, &rdev->flags) ||
2405 	    (rdev->badblocks.unacked_exist
2406 	     && !test_bit(Faulty, &rdev->flags))) {
2407 		len += sprintf(page+len, "%sblocked", sep);
2408 		sep = ",";
2409 	}
2410 	if (!test_bit(Faulty, &rdev->flags) &&
2411 	    !test_bit(In_sync, &rdev->flags)) {
2412 		len += sprintf(page+len, "%sspare", sep);
2413 		sep = ",";
2414 	}
2415 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2416 		len += sprintf(page+len, "%swrite_error", sep);
2417 		sep = ",";
2418 	}
2419 	if (test_bit(WantReplacement, &rdev->flags)) {
2420 		len += sprintf(page+len, "%swant_replacement", sep);
2421 		sep = ",";
2422 	}
2423 	if (test_bit(Replacement, &rdev->flags)) {
2424 		len += sprintf(page+len, "%sreplacement", sep);
2425 		sep = ",";
2426 	}
2427 
2428 	return len+sprintf(page+len, "\n");
2429 }
2430 
2431 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2432 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2433 {
2434 	/* can write
2435 	 *  faulty  - simulates an error
2436 	 *  remove  - disconnects the device
2437 	 *  writemostly - sets write_mostly
2438 	 *  -writemostly - clears write_mostly
2439 	 *  blocked - sets the Blocked flags
2440 	 *  -blocked - clears the Blocked and possibly simulates an error
2441 	 *  insync - sets Insync providing device isn't active
2442 	 *  -insync - clear Insync for a device with a slot assigned,
2443 	 *            so that it gets rebuilt based on bitmap
2444 	 *  write_error - sets WriteErrorSeen
2445 	 *  -write_error - clears WriteErrorSeen
2446 	 */
2447 	int err = -EINVAL;
2448 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2449 		md_error(rdev->mddev, rdev);
2450 		if (test_bit(Faulty, &rdev->flags))
2451 			err = 0;
2452 		else
2453 			err = -EBUSY;
2454 	} else if (cmd_match(buf, "remove")) {
2455 		if (rdev->raid_disk >= 0)
2456 			err = -EBUSY;
2457 		else {
2458 			struct mddev *mddev = rdev->mddev;
2459 			kick_rdev_from_array(rdev);
2460 			if (mddev->pers)
2461 				md_update_sb(mddev, 1);
2462 			md_new_event(mddev);
2463 			err = 0;
2464 		}
2465 	} else if (cmd_match(buf, "writemostly")) {
2466 		set_bit(WriteMostly, &rdev->flags);
2467 		err = 0;
2468 	} else if (cmd_match(buf, "-writemostly")) {
2469 		clear_bit(WriteMostly, &rdev->flags);
2470 		err = 0;
2471 	} else if (cmd_match(buf, "blocked")) {
2472 		set_bit(Blocked, &rdev->flags);
2473 		err = 0;
2474 	} else if (cmd_match(buf, "-blocked")) {
2475 		if (!test_bit(Faulty, &rdev->flags) &&
2476 		    rdev->badblocks.unacked_exist) {
2477 			/* metadata handler doesn't understand badblocks,
2478 			 * so we need to fail the device
2479 			 */
2480 			md_error(rdev->mddev, rdev);
2481 		}
2482 		clear_bit(Blocked, &rdev->flags);
2483 		clear_bit(BlockedBadBlocks, &rdev->flags);
2484 		wake_up(&rdev->blocked_wait);
2485 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2486 		md_wakeup_thread(rdev->mddev->thread);
2487 
2488 		err = 0;
2489 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2490 		set_bit(In_sync, &rdev->flags);
2491 		err = 0;
2492 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2493 		if (rdev->mddev->pers == NULL) {
2494 			clear_bit(In_sync, &rdev->flags);
2495 			rdev->saved_raid_disk = rdev->raid_disk;
2496 			rdev->raid_disk = -1;
2497 			err = 0;
2498 		}
2499 	} else if (cmd_match(buf, "write_error")) {
2500 		set_bit(WriteErrorSeen, &rdev->flags);
2501 		err = 0;
2502 	} else if (cmd_match(buf, "-write_error")) {
2503 		clear_bit(WriteErrorSeen, &rdev->flags);
2504 		err = 0;
2505 	} else if (cmd_match(buf, "want_replacement")) {
2506 		/* Any non-spare device that is not a replacement can
2507 		 * become want_replacement at any time, but we then need to
2508 		 * check if recovery is needed.
2509 		 */
2510 		if (rdev->raid_disk >= 0 &&
2511 		    !test_bit(Replacement, &rdev->flags))
2512 			set_bit(WantReplacement, &rdev->flags);
2513 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2514 		md_wakeup_thread(rdev->mddev->thread);
2515 		err = 0;
2516 	} else if (cmd_match(buf, "-want_replacement")) {
2517 		/* Clearing 'want_replacement' is always allowed.
2518 		 * Once replacements starts it is too late though.
2519 		 */
2520 		err = 0;
2521 		clear_bit(WantReplacement, &rdev->flags);
2522 	} else if (cmd_match(buf, "replacement")) {
2523 		/* Can only set a device as a replacement when array has not
2524 		 * yet been started.  Once running, replacement is automatic
2525 		 * from spares, or by assigning 'slot'.
2526 		 */
2527 		if (rdev->mddev->pers)
2528 			err = -EBUSY;
2529 		else {
2530 			set_bit(Replacement, &rdev->flags);
2531 			err = 0;
2532 		}
2533 	} else if (cmd_match(buf, "-replacement")) {
2534 		/* Similarly, can only clear Replacement before start */
2535 		if (rdev->mddev->pers)
2536 			err = -EBUSY;
2537 		else {
2538 			clear_bit(Replacement, &rdev->flags);
2539 			err = 0;
2540 		}
2541 	}
2542 	if (!err)
2543 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2544 	return err ? err : len;
2545 }
2546 static struct rdev_sysfs_entry rdev_state =
2547 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2548 
2549 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2550 errors_show(struct md_rdev *rdev, char *page)
2551 {
2552 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2553 }
2554 
2555 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2556 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2557 {
2558 	char *e;
2559 	unsigned long n = simple_strtoul(buf, &e, 10);
2560 	if (*buf && (*e == 0 || *e == '\n')) {
2561 		atomic_set(&rdev->corrected_errors, n);
2562 		return len;
2563 	}
2564 	return -EINVAL;
2565 }
2566 static struct rdev_sysfs_entry rdev_errors =
2567 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2568 
2569 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2570 slot_show(struct md_rdev *rdev, char *page)
2571 {
2572 	if (rdev->raid_disk < 0)
2573 		return sprintf(page, "none\n");
2574 	else
2575 		return sprintf(page, "%d\n", rdev->raid_disk);
2576 }
2577 
2578 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2579 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2580 {
2581 	char *e;
2582 	int err;
2583 	int slot = simple_strtoul(buf, &e, 10);
2584 	if (strncmp(buf, "none", 4)==0)
2585 		slot = -1;
2586 	else if (e==buf || (*e && *e!= '\n'))
2587 		return -EINVAL;
2588 	if (rdev->mddev->pers && slot == -1) {
2589 		/* Setting 'slot' on an active array requires also
2590 		 * updating the 'rd%d' link, and communicating
2591 		 * with the personality with ->hot_*_disk.
2592 		 * For now we only support removing
2593 		 * failed/spare devices.  This normally happens automatically,
2594 		 * but not when the metadata is externally managed.
2595 		 */
2596 		if (rdev->raid_disk == -1)
2597 			return -EEXIST;
2598 		/* personality does all needed checks */
2599 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2600 			return -EINVAL;
2601 		clear_bit(Blocked, &rdev->flags);
2602 		remove_and_add_spares(rdev->mddev, rdev);
2603 		if (rdev->raid_disk >= 0)
2604 			return -EBUSY;
2605 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2606 		md_wakeup_thread(rdev->mddev->thread);
2607 	} else if (rdev->mddev->pers) {
2608 		/* Activating a spare .. or possibly reactivating
2609 		 * if we ever get bitmaps working here.
2610 		 */
2611 
2612 		if (rdev->raid_disk != -1)
2613 			return -EBUSY;
2614 
2615 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2616 			return -EBUSY;
2617 
2618 		if (rdev->mddev->pers->hot_add_disk == NULL)
2619 			return -EINVAL;
2620 
2621 		if (slot >= rdev->mddev->raid_disks &&
2622 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2623 			return -ENOSPC;
2624 
2625 		rdev->raid_disk = slot;
2626 		if (test_bit(In_sync, &rdev->flags))
2627 			rdev->saved_raid_disk = slot;
2628 		else
2629 			rdev->saved_raid_disk = -1;
2630 		clear_bit(In_sync, &rdev->flags);
2631 		clear_bit(Bitmap_sync, &rdev->flags);
2632 		err = rdev->mddev->pers->
2633 			hot_add_disk(rdev->mddev, rdev);
2634 		if (err) {
2635 			rdev->raid_disk = -1;
2636 			return err;
2637 		} else
2638 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2639 		if (sysfs_link_rdev(rdev->mddev, rdev))
2640 			/* failure here is OK */;
2641 		/* don't wakeup anyone, leave that to userspace. */
2642 	} else {
2643 		if (slot >= rdev->mddev->raid_disks &&
2644 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2645 			return -ENOSPC;
2646 		rdev->raid_disk = slot;
2647 		/* assume it is working */
2648 		clear_bit(Faulty, &rdev->flags);
2649 		clear_bit(WriteMostly, &rdev->flags);
2650 		set_bit(In_sync, &rdev->flags);
2651 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2652 	}
2653 	return len;
2654 }
2655 
2656 static struct rdev_sysfs_entry rdev_slot =
2657 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2658 
2659 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2660 offset_show(struct md_rdev *rdev, char *page)
2661 {
2662 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2663 }
2664 
2665 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2666 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2667 {
2668 	unsigned long long offset;
2669 	if (kstrtoull(buf, 10, &offset) < 0)
2670 		return -EINVAL;
2671 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2672 		return -EBUSY;
2673 	if (rdev->sectors && rdev->mddev->external)
2674 		/* Must set offset before size, so overlap checks
2675 		 * can be sane */
2676 		return -EBUSY;
2677 	rdev->data_offset = offset;
2678 	rdev->new_data_offset = offset;
2679 	return len;
2680 }
2681 
2682 static struct rdev_sysfs_entry rdev_offset =
2683 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2684 
new_offset_show(struct md_rdev * rdev,char * page)2685 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2686 {
2687 	return sprintf(page, "%llu\n",
2688 		       (unsigned long long)rdev->new_data_offset);
2689 }
2690 
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2691 static ssize_t new_offset_store(struct md_rdev *rdev,
2692 				const char *buf, size_t len)
2693 {
2694 	unsigned long long new_offset;
2695 	struct mddev *mddev = rdev->mddev;
2696 
2697 	if (kstrtoull(buf, 10, &new_offset) < 0)
2698 		return -EINVAL;
2699 
2700 	if (mddev->sync_thread)
2701 		return -EBUSY;
2702 	if (new_offset == rdev->data_offset)
2703 		/* reset is always permitted */
2704 		;
2705 	else if (new_offset > rdev->data_offset) {
2706 		/* must not push array size beyond rdev_sectors */
2707 		if (new_offset - rdev->data_offset
2708 		    + mddev->dev_sectors > rdev->sectors)
2709 				return -E2BIG;
2710 	}
2711 	/* Metadata worries about other space details. */
2712 
2713 	/* decreasing the offset is inconsistent with a backwards
2714 	 * reshape.
2715 	 */
2716 	if (new_offset < rdev->data_offset &&
2717 	    mddev->reshape_backwards)
2718 		return -EINVAL;
2719 	/* Increasing offset is inconsistent with forwards
2720 	 * reshape.  reshape_direction should be set to
2721 	 * 'backwards' first.
2722 	 */
2723 	if (new_offset > rdev->data_offset &&
2724 	    !mddev->reshape_backwards)
2725 		return -EINVAL;
2726 
2727 	if (mddev->pers && mddev->persistent &&
2728 	    !super_types[mddev->major_version]
2729 	    .allow_new_offset(rdev, new_offset))
2730 		return -E2BIG;
2731 	rdev->new_data_offset = new_offset;
2732 	if (new_offset > rdev->data_offset)
2733 		mddev->reshape_backwards = 1;
2734 	else if (new_offset < rdev->data_offset)
2735 		mddev->reshape_backwards = 0;
2736 
2737 	return len;
2738 }
2739 static struct rdev_sysfs_entry rdev_new_offset =
2740 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2741 
2742 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2743 rdev_size_show(struct md_rdev *rdev, char *page)
2744 {
2745 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2746 }
2747 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2748 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2749 {
2750 	/* check if two start/length pairs overlap */
2751 	if (s1+l1 <= s2)
2752 		return 0;
2753 	if (s2+l2 <= s1)
2754 		return 0;
2755 	return 1;
2756 }
2757 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2758 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2759 {
2760 	unsigned long long blocks;
2761 	sector_t new;
2762 
2763 	if (kstrtoull(buf, 10, &blocks) < 0)
2764 		return -EINVAL;
2765 
2766 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2767 		return -EINVAL; /* sector conversion overflow */
2768 
2769 	new = blocks * 2;
2770 	if (new != blocks * 2)
2771 		return -EINVAL; /* unsigned long long to sector_t overflow */
2772 
2773 	*sectors = new;
2774 	return 0;
2775 }
2776 
2777 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2778 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780 	struct mddev *my_mddev = rdev->mddev;
2781 	sector_t oldsectors = rdev->sectors;
2782 	sector_t sectors;
2783 
2784 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2785 		return -EINVAL;
2786 	if (rdev->data_offset != rdev->new_data_offset)
2787 		return -EINVAL; /* too confusing */
2788 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2789 		if (my_mddev->persistent) {
2790 			sectors = super_types[my_mddev->major_version].
2791 				rdev_size_change(rdev, sectors);
2792 			if (!sectors)
2793 				return -EBUSY;
2794 		} else if (!sectors)
2795 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2796 				rdev->data_offset;
2797 		if (!my_mddev->pers->resize)
2798 			/* Cannot change size for RAID0 or Linear etc */
2799 			return -EINVAL;
2800 	}
2801 	if (sectors < my_mddev->dev_sectors)
2802 		return -EINVAL; /* component must fit device */
2803 
2804 	rdev->sectors = sectors;
2805 	if (sectors > oldsectors && my_mddev->external) {
2806 		/* Need to check that all other rdevs with the same
2807 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2808 		 * the rdev lists safely.
2809 		 * This check does not provide a hard guarantee, it
2810 		 * just helps avoid dangerous mistakes.
2811 		 */
2812 		struct mddev *mddev;
2813 		int overlap = 0;
2814 		struct list_head *tmp;
2815 
2816 		rcu_read_lock();
2817 		for_each_mddev(mddev, tmp) {
2818 			struct md_rdev *rdev2;
2819 
2820 			rdev_for_each(rdev2, mddev)
2821 				if (rdev->bdev == rdev2->bdev &&
2822 				    rdev != rdev2 &&
2823 				    overlaps(rdev->data_offset, rdev->sectors,
2824 					     rdev2->data_offset,
2825 					     rdev2->sectors)) {
2826 					overlap = 1;
2827 					break;
2828 				}
2829 			if (overlap) {
2830 				mddev_put(mddev);
2831 				break;
2832 			}
2833 		}
2834 		rcu_read_unlock();
2835 		if (overlap) {
2836 			/* Someone else could have slipped in a size
2837 			 * change here, but doing so is just silly.
2838 			 * We put oldsectors back because we *know* it is
2839 			 * safe, and trust userspace not to race with
2840 			 * itself
2841 			 */
2842 			rdev->sectors = oldsectors;
2843 			return -EBUSY;
2844 		}
2845 	}
2846 	return len;
2847 }
2848 
2849 static struct rdev_sysfs_entry rdev_size =
2850 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2851 
recovery_start_show(struct md_rdev * rdev,char * page)2852 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2853 {
2854 	unsigned long long recovery_start = rdev->recovery_offset;
2855 
2856 	if (test_bit(In_sync, &rdev->flags) ||
2857 	    recovery_start == MaxSector)
2858 		return sprintf(page, "none\n");
2859 
2860 	return sprintf(page, "%llu\n", recovery_start);
2861 }
2862 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)2863 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865 	unsigned long long recovery_start;
2866 
2867 	if (cmd_match(buf, "none"))
2868 		recovery_start = MaxSector;
2869 	else if (kstrtoull(buf, 10, &recovery_start))
2870 		return -EINVAL;
2871 
2872 	if (rdev->mddev->pers &&
2873 	    rdev->raid_disk >= 0)
2874 		return -EBUSY;
2875 
2876 	rdev->recovery_offset = recovery_start;
2877 	if (recovery_start == MaxSector)
2878 		set_bit(In_sync, &rdev->flags);
2879 	else
2880 		clear_bit(In_sync, &rdev->flags);
2881 	return len;
2882 }
2883 
2884 static struct rdev_sysfs_entry rdev_recovery_start =
2885 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2886 
2887 static ssize_t
2888 badblocks_show(struct badblocks *bb, char *page, int unack);
2889 static ssize_t
2890 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2891 
bb_show(struct md_rdev * rdev,char * page)2892 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2893 {
2894 	return badblocks_show(&rdev->badblocks, page, 0);
2895 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)2896 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2897 {
2898 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2899 	/* Maybe that ack was all we needed */
2900 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2901 		wake_up(&rdev->blocked_wait);
2902 	return rv;
2903 }
2904 static struct rdev_sysfs_entry rdev_bad_blocks =
2905 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2906 
ubb_show(struct md_rdev * rdev,char * page)2907 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2908 {
2909 	return badblocks_show(&rdev->badblocks, page, 1);
2910 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)2911 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2912 {
2913 	return badblocks_store(&rdev->badblocks, page, len, 1);
2914 }
2915 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2916 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2917 
2918 static struct attribute *rdev_default_attrs[] = {
2919 	&rdev_state.attr,
2920 	&rdev_errors.attr,
2921 	&rdev_slot.attr,
2922 	&rdev_offset.attr,
2923 	&rdev_new_offset.attr,
2924 	&rdev_size.attr,
2925 	&rdev_recovery_start.attr,
2926 	&rdev_bad_blocks.attr,
2927 	&rdev_unack_bad_blocks.attr,
2928 	NULL,
2929 };
2930 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)2931 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2932 {
2933 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2934 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2935 	struct mddev *mddev = rdev->mddev;
2936 	ssize_t rv;
2937 
2938 	if (!entry->show)
2939 		return -EIO;
2940 
2941 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2942 	if (!rv) {
2943 		if (rdev->mddev == NULL)
2944 			rv = -EBUSY;
2945 		else
2946 			rv = entry->show(rdev, page);
2947 		mddev_unlock(mddev);
2948 	}
2949 	return rv;
2950 }
2951 
2952 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)2953 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2954 	      const char *page, size_t length)
2955 {
2956 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2957 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2958 	ssize_t rv;
2959 	struct mddev *mddev = rdev->mddev;
2960 
2961 	if (!entry->store)
2962 		return -EIO;
2963 	if (!capable(CAP_SYS_ADMIN))
2964 		return -EACCES;
2965 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2966 	if (!rv) {
2967 		if (rdev->mddev == NULL)
2968 			rv = -EBUSY;
2969 		else
2970 			rv = entry->store(rdev, page, length);
2971 		mddev_unlock(mddev);
2972 	}
2973 	return rv;
2974 }
2975 
rdev_free(struct kobject * ko)2976 static void rdev_free(struct kobject *ko)
2977 {
2978 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2979 	kfree(rdev);
2980 }
2981 static const struct sysfs_ops rdev_sysfs_ops = {
2982 	.show		= rdev_attr_show,
2983 	.store		= rdev_attr_store,
2984 };
2985 static struct kobj_type rdev_ktype = {
2986 	.release	= rdev_free,
2987 	.sysfs_ops	= &rdev_sysfs_ops,
2988 	.default_attrs	= rdev_default_attrs,
2989 };
2990 
md_rdev_init(struct md_rdev * rdev)2991 int md_rdev_init(struct md_rdev *rdev)
2992 {
2993 	rdev->desc_nr = -1;
2994 	rdev->saved_raid_disk = -1;
2995 	rdev->raid_disk = -1;
2996 	rdev->flags = 0;
2997 	rdev->data_offset = 0;
2998 	rdev->new_data_offset = 0;
2999 	rdev->sb_events = 0;
3000 	rdev->last_read_error.tv_sec  = 0;
3001 	rdev->last_read_error.tv_nsec = 0;
3002 	rdev->sb_loaded = 0;
3003 	rdev->bb_page = NULL;
3004 	atomic_set(&rdev->nr_pending, 0);
3005 	atomic_set(&rdev->read_errors, 0);
3006 	atomic_set(&rdev->corrected_errors, 0);
3007 
3008 	INIT_LIST_HEAD(&rdev->same_set);
3009 	init_waitqueue_head(&rdev->blocked_wait);
3010 
3011 	/* Add space to store bad block list.
3012 	 * This reserves the space even on arrays where it cannot
3013 	 * be used - I wonder if that matters
3014 	 */
3015 	rdev->badblocks.count = 0;
3016 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3017 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3018 	seqlock_init(&rdev->badblocks.lock);
3019 	if (rdev->badblocks.page == NULL)
3020 		return -ENOMEM;
3021 
3022 	return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(md_rdev_init);
3025 /*
3026  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3027  *
3028  * mark the device faulty if:
3029  *
3030  *   - the device is nonexistent (zero size)
3031  *   - the device has no valid superblock
3032  *
3033  * a faulty rdev _never_ has rdev->sb set.
3034  */
md_import_device(dev_t newdev,int super_format,int super_minor)3035 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3036 {
3037 	char b[BDEVNAME_SIZE];
3038 	int err;
3039 	struct md_rdev *rdev;
3040 	sector_t size;
3041 
3042 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3043 	if (!rdev) {
3044 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3045 		return ERR_PTR(-ENOMEM);
3046 	}
3047 
3048 	err = md_rdev_init(rdev);
3049 	if (err)
3050 		goto abort_free;
3051 	err = alloc_disk_sb(rdev);
3052 	if (err)
3053 		goto abort_free;
3054 
3055 	err = lock_rdev(rdev, newdev, super_format == -2);
3056 	if (err)
3057 		goto abort_free;
3058 
3059 	kobject_init(&rdev->kobj, &rdev_ktype);
3060 
3061 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3062 	if (!size) {
3063 		printk(KERN_WARNING
3064 			"md: %s has zero or unknown size, marking faulty!\n",
3065 			bdevname(rdev->bdev,b));
3066 		err = -EINVAL;
3067 		goto abort_free;
3068 	}
3069 
3070 	if (super_format >= 0) {
3071 		err = super_types[super_format].
3072 			load_super(rdev, NULL, super_minor);
3073 		if (err == -EINVAL) {
3074 			printk(KERN_WARNING
3075 				"md: %s does not have a valid v%d.%d "
3076 			       "superblock, not importing!\n",
3077 				bdevname(rdev->bdev,b),
3078 			       super_format, super_minor);
3079 			goto abort_free;
3080 		}
3081 		if (err < 0) {
3082 			printk(KERN_WARNING
3083 				"md: could not read %s's sb, not importing!\n",
3084 				bdevname(rdev->bdev,b));
3085 			goto abort_free;
3086 		}
3087 	}
3088 
3089 	return rdev;
3090 
3091 abort_free:
3092 	if (rdev->bdev)
3093 		unlock_rdev(rdev);
3094 	md_rdev_clear(rdev);
3095 	kfree(rdev);
3096 	return ERR_PTR(err);
3097 }
3098 
3099 /*
3100  * Check a full RAID array for plausibility
3101  */
3102 
analyze_sbs(struct mddev * mddev)3103 static void analyze_sbs(struct mddev *mddev)
3104 {
3105 	int i;
3106 	struct md_rdev *rdev, *freshest, *tmp;
3107 	char b[BDEVNAME_SIZE];
3108 
3109 	freshest = NULL;
3110 	rdev_for_each_safe(rdev, tmp, mddev)
3111 		switch (super_types[mddev->major_version].
3112 			load_super(rdev, freshest, mddev->minor_version)) {
3113 		case 1:
3114 			freshest = rdev;
3115 			break;
3116 		case 0:
3117 			break;
3118 		default:
3119 			printk( KERN_ERR \
3120 				"md: fatal superblock inconsistency in %s"
3121 				" -- removing from array\n",
3122 				bdevname(rdev->bdev,b));
3123 			kick_rdev_from_array(rdev);
3124 		}
3125 
3126 	super_types[mddev->major_version].
3127 		validate_super(mddev, freshest);
3128 
3129 	i = 0;
3130 	rdev_for_each_safe(rdev, tmp, mddev) {
3131 		if (mddev->max_disks &&
3132 		    (rdev->desc_nr >= mddev->max_disks ||
3133 		     i > mddev->max_disks)) {
3134 			printk(KERN_WARNING
3135 			       "md: %s: %s: only %d devices permitted\n",
3136 			       mdname(mddev), bdevname(rdev->bdev, b),
3137 			       mddev->max_disks);
3138 			kick_rdev_from_array(rdev);
3139 			continue;
3140 		}
3141 		if (rdev != freshest)
3142 			if (super_types[mddev->major_version].
3143 			    validate_super(mddev, rdev)) {
3144 				printk(KERN_WARNING "md: kicking non-fresh %s"
3145 					" from array!\n",
3146 					bdevname(rdev->bdev,b));
3147 				kick_rdev_from_array(rdev);
3148 				continue;
3149 			}
3150 		if (mddev->level == LEVEL_MULTIPATH) {
3151 			rdev->desc_nr = i++;
3152 			rdev->raid_disk = rdev->desc_nr;
3153 			set_bit(In_sync, &rdev->flags);
3154 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3155 			rdev->raid_disk = -1;
3156 			clear_bit(In_sync, &rdev->flags);
3157 		}
3158 	}
3159 }
3160 
3161 /* Read a fixed-point number.
3162  * Numbers in sysfs attributes should be in "standard" units where
3163  * possible, so time should be in seconds.
3164  * However we internally use a a much smaller unit such as
3165  * milliseconds or jiffies.
3166  * This function takes a decimal number with a possible fractional
3167  * component, and produces an integer which is the result of
3168  * multiplying that number by 10^'scale'.
3169  * all without any floating-point arithmetic.
3170  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3171 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3172 {
3173 	unsigned long result = 0;
3174 	long decimals = -1;
3175 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3176 		if (*cp == '.')
3177 			decimals = 0;
3178 		else if (decimals < scale) {
3179 			unsigned int value;
3180 			value = *cp - '0';
3181 			result = result * 10 + value;
3182 			if (decimals >= 0)
3183 				decimals++;
3184 		}
3185 		cp++;
3186 	}
3187 	if (*cp == '\n')
3188 		cp++;
3189 	if (*cp)
3190 		return -EINVAL;
3191 	if (decimals < 0)
3192 		decimals = 0;
3193 	while (decimals < scale) {
3194 		result *= 10;
3195 		decimals ++;
3196 	}
3197 	*res = result;
3198 	return 0;
3199 }
3200 
3201 static void md_safemode_timeout(unsigned long data);
3202 
3203 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3204 safe_delay_show(struct mddev *mddev, char *page)
3205 {
3206 	int msec = (mddev->safemode_delay*1000)/HZ;
3207 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3208 }
3209 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3210 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3211 {
3212 	unsigned long msec;
3213 
3214 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3215 		return -EINVAL;
3216 	if (msec == 0)
3217 		mddev->safemode_delay = 0;
3218 	else {
3219 		unsigned long old_delay = mddev->safemode_delay;
3220 		mddev->safemode_delay = (msec*HZ)/1000;
3221 		if (mddev->safemode_delay == 0)
3222 			mddev->safemode_delay = 1;
3223 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3224 			md_safemode_timeout((unsigned long)mddev);
3225 	}
3226 	return len;
3227 }
3228 static struct md_sysfs_entry md_safe_delay =
3229 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3230 
3231 static ssize_t
level_show(struct mddev * mddev,char * page)3232 level_show(struct mddev *mddev, char *page)
3233 {
3234 	struct md_personality *p = mddev->pers;
3235 	if (p)
3236 		return sprintf(page, "%s\n", p->name);
3237 	else if (mddev->clevel[0])
3238 		return sprintf(page, "%s\n", mddev->clevel);
3239 	else if (mddev->level != LEVEL_NONE)
3240 		return sprintf(page, "%d\n", mddev->level);
3241 	else
3242 		return 0;
3243 }
3244 
3245 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3246 level_store(struct mddev *mddev, const char *buf, size_t len)
3247 {
3248 	char clevel[16];
3249 	ssize_t rv = len;
3250 	struct md_personality *pers;
3251 	long level;
3252 	void *priv;
3253 	struct md_rdev *rdev;
3254 
3255 	if (mddev->pers == NULL) {
3256 		if (len == 0)
3257 			return 0;
3258 		if (len >= sizeof(mddev->clevel))
3259 			return -ENOSPC;
3260 		strncpy(mddev->clevel, buf, len);
3261 		if (mddev->clevel[len-1] == '\n')
3262 			len--;
3263 		mddev->clevel[len] = 0;
3264 		mddev->level = LEVEL_NONE;
3265 		return rv;
3266 	}
3267 	if (mddev->ro)
3268 		return  -EROFS;
3269 
3270 	/* request to change the personality.  Need to ensure:
3271 	 *  - array is not engaged in resync/recovery/reshape
3272 	 *  - old personality can be suspended
3273 	 *  - new personality will access other array.
3274 	 */
3275 
3276 	if (mddev->sync_thread ||
3277 	    mddev->reshape_position != MaxSector ||
3278 	    mddev->sysfs_active)
3279 		return -EBUSY;
3280 
3281 	if (!mddev->pers->quiesce) {
3282 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3283 		       mdname(mddev), mddev->pers->name);
3284 		return -EINVAL;
3285 	}
3286 
3287 	/* Now find the new personality */
3288 	if (len == 0 || len >= sizeof(clevel))
3289 		return -EINVAL;
3290 	strncpy(clevel, buf, len);
3291 	if (clevel[len-1] == '\n')
3292 		len--;
3293 	clevel[len] = 0;
3294 	if (kstrtol(clevel, 10, &level))
3295 		level = LEVEL_NONE;
3296 
3297 	if (request_module("md-%s", clevel) != 0)
3298 		request_module("md-level-%s", clevel);
3299 	spin_lock(&pers_lock);
3300 	pers = find_pers(level, clevel);
3301 	if (!pers || !try_module_get(pers->owner)) {
3302 		spin_unlock(&pers_lock);
3303 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3304 		return -EINVAL;
3305 	}
3306 	spin_unlock(&pers_lock);
3307 
3308 	if (pers == mddev->pers) {
3309 		/* Nothing to do! */
3310 		module_put(pers->owner);
3311 		return rv;
3312 	}
3313 	if (!pers->takeover) {
3314 		module_put(pers->owner);
3315 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3316 		       mdname(mddev), clevel);
3317 		return -EINVAL;
3318 	}
3319 
3320 	rdev_for_each(rdev, mddev)
3321 		rdev->new_raid_disk = rdev->raid_disk;
3322 
3323 	/* ->takeover must set new_* and/or delta_disks
3324 	 * if it succeeds, and may set them when it fails.
3325 	 */
3326 	priv = pers->takeover(mddev);
3327 	if (IS_ERR(priv)) {
3328 		mddev->new_level = mddev->level;
3329 		mddev->new_layout = mddev->layout;
3330 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3331 		mddev->raid_disks -= mddev->delta_disks;
3332 		mddev->delta_disks = 0;
3333 		mddev->reshape_backwards = 0;
3334 		module_put(pers->owner);
3335 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3336 		       mdname(mddev), clevel);
3337 		return PTR_ERR(priv);
3338 	}
3339 
3340 	/* Looks like we have a winner */
3341 	mddev_suspend(mddev);
3342 	mddev->pers->stop(mddev);
3343 
3344 	if (mddev->pers->sync_request == NULL &&
3345 	    pers->sync_request != NULL) {
3346 		/* need to add the md_redundancy_group */
3347 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3348 			printk(KERN_WARNING
3349 			       "md: cannot register extra attributes for %s\n",
3350 			       mdname(mddev));
3351 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3352 	}
3353 	if (mddev->pers->sync_request != NULL &&
3354 	    pers->sync_request == NULL) {
3355 		/* need to remove the md_redundancy_group */
3356 		if (mddev->to_remove == NULL)
3357 			mddev->to_remove = &md_redundancy_group;
3358 	}
3359 
3360 	if (mddev->pers->sync_request == NULL &&
3361 	    mddev->external) {
3362 		/* We are converting from a no-redundancy array
3363 		 * to a redundancy array and metadata is managed
3364 		 * externally so we need to be sure that writes
3365 		 * won't block due to a need to transition
3366 		 *      clean->dirty
3367 		 * until external management is started.
3368 		 */
3369 		mddev->in_sync = 0;
3370 		mddev->safemode_delay = 0;
3371 		mddev->safemode = 0;
3372 	}
3373 
3374 	rdev_for_each(rdev, mddev) {
3375 		if (rdev->raid_disk < 0)
3376 			continue;
3377 		if (rdev->new_raid_disk >= mddev->raid_disks)
3378 			rdev->new_raid_disk = -1;
3379 		if (rdev->new_raid_disk == rdev->raid_disk)
3380 			continue;
3381 		sysfs_unlink_rdev(mddev, rdev);
3382 	}
3383 	rdev_for_each(rdev, mddev) {
3384 		if (rdev->raid_disk < 0)
3385 			continue;
3386 		if (rdev->new_raid_disk == rdev->raid_disk)
3387 			continue;
3388 		rdev->raid_disk = rdev->new_raid_disk;
3389 		if (rdev->raid_disk < 0)
3390 			clear_bit(In_sync, &rdev->flags);
3391 		else {
3392 			if (sysfs_link_rdev(mddev, rdev))
3393 				printk(KERN_WARNING "md: cannot register rd%d"
3394 				       " for %s after level change\n",
3395 				       rdev->raid_disk, mdname(mddev));
3396 		}
3397 	}
3398 
3399 	module_put(mddev->pers->owner);
3400 	mddev->pers = pers;
3401 	mddev->private = priv;
3402 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3403 	mddev->level = mddev->new_level;
3404 	mddev->layout = mddev->new_layout;
3405 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3406 	mddev->delta_disks = 0;
3407 	mddev->reshape_backwards = 0;
3408 	mddev->degraded = 0;
3409 	if (mddev->pers->sync_request == NULL) {
3410 		/* this is now an array without redundancy, so
3411 		 * it must always be in_sync
3412 		 */
3413 		mddev->in_sync = 1;
3414 		del_timer_sync(&mddev->safemode_timer);
3415 	}
3416 	blk_set_stacking_limits(&mddev->queue->limits);
3417 	pers->run(mddev);
3418 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3419 	mddev_resume(mddev);
3420 	if (!mddev->thread)
3421 		md_update_sb(mddev, 1);
3422 	sysfs_notify(&mddev->kobj, NULL, "level");
3423 	md_new_event(mddev);
3424 	return rv;
3425 }
3426 
3427 static struct md_sysfs_entry md_level =
3428 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3429 
3430 static ssize_t
layout_show(struct mddev * mddev,char * page)3431 layout_show(struct mddev *mddev, char *page)
3432 {
3433 	/* just a number, not meaningful for all levels */
3434 	if (mddev->reshape_position != MaxSector &&
3435 	    mddev->layout != mddev->new_layout)
3436 		return sprintf(page, "%d (%d)\n",
3437 			       mddev->new_layout, mddev->layout);
3438 	return sprintf(page, "%d\n", mddev->layout);
3439 }
3440 
3441 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3442 layout_store(struct mddev *mddev, const char *buf, size_t len)
3443 {
3444 	char *e;
3445 	unsigned long n = simple_strtoul(buf, &e, 10);
3446 
3447 	if (!*buf || (*e && *e != '\n'))
3448 		return -EINVAL;
3449 
3450 	if (mddev->pers) {
3451 		int err;
3452 		if (mddev->pers->check_reshape == NULL)
3453 			return -EBUSY;
3454 		if (mddev->ro)
3455 			return -EROFS;
3456 		mddev->new_layout = n;
3457 		err = mddev->pers->check_reshape(mddev);
3458 		if (err) {
3459 			mddev->new_layout = mddev->layout;
3460 			return err;
3461 		}
3462 	} else {
3463 		mddev->new_layout = n;
3464 		if (mddev->reshape_position == MaxSector)
3465 			mddev->layout = n;
3466 	}
3467 	return len;
3468 }
3469 static struct md_sysfs_entry md_layout =
3470 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3471 
3472 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3473 raid_disks_show(struct mddev *mddev, char *page)
3474 {
3475 	if (mddev->raid_disks == 0)
3476 		return 0;
3477 	if (mddev->reshape_position != MaxSector &&
3478 	    mddev->delta_disks != 0)
3479 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3480 			       mddev->raid_disks - mddev->delta_disks);
3481 	return sprintf(page, "%d\n", mddev->raid_disks);
3482 }
3483 
3484 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3485 
3486 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3487 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3488 {
3489 	char *e;
3490 	int rv = 0;
3491 	unsigned long n = simple_strtoul(buf, &e, 10);
3492 
3493 	if (!*buf || (*e && *e != '\n'))
3494 		return -EINVAL;
3495 
3496 	if (mddev->pers)
3497 		rv = update_raid_disks(mddev, n);
3498 	else if (mddev->reshape_position != MaxSector) {
3499 		struct md_rdev *rdev;
3500 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3501 
3502 		rdev_for_each(rdev, mddev) {
3503 			if (olddisks < n &&
3504 			    rdev->data_offset < rdev->new_data_offset)
3505 				return -EINVAL;
3506 			if (olddisks > n &&
3507 			    rdev->data_offset > rdev->new_data_offset)
3508 				return -EINVAL;
3509 		}
3510 		mddev->delta_disks = n - olddisks;
3511 		mddev->raid_disks = n;
3512 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3513 	} else
3514 		mddev->raid_disks = n;
3515 	return rv ? rv : len;
3516 }
3517 static struct md_sysfs_entry md_raid_disks =
3518 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3519 
3520 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3521 chunk_size_show(struct mddev *mddev, char *page)
3522 {
3523 	if (mddev->reshape_position != MaxSector &&
3524 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3525 		return sprintf(page, "%d (%d)\n",
3526 			       mddev->new_chunk_sectors << 9,
3527 			       mddev->chunk_sectors << 9);
3528 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3529 }
3530 
3531 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3532 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3533 {
3534 	char *e;
3535 	unsigned long n = simple_strtoul(buf, &e, 10);
3536 
3537 	if (!*buf || (*e && *e != '\n'))
3538 		return -EINVAL;
3539 
3540 	if (mddev->pers) {
3541 		int err;
3542 		if (mddev->pers->check_reshape == NULL)
3543 			return -EBUSY;
3544 		if (mddev->ro)
3545 			return -EROFS;
3546 		mddev->new_chunk_sectors = n >> 9;
3547 		err = mddev->pers->check_reshape(mddev);
3548 		if (err) {
3549 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3550 			return err;
3551 		}
3552 	} else {
3553 		mddev->new_chunk_sectors = n >> 9;
3554 		if (mddev->reshape_position == MaxSector)
3555 			mddev->chunk_sectors = n >> 9;
3556 	}
3557 	return len;
3558 }
3559 static struct md_sysfs_entry md_chunk_size =
3560 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3561 
3562 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3563 resync_start_show(struct mddev *mddev, char *page)
3564 {
3565 	if (mddev->recovery_cp == MaxSector)
3566 		return sprintf(page, "none\n");
3567 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3568 }
3569 
3570 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3571 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573 	char *e;
3574 	unsigned long long n = simple_strtoull(buf, &e, 10);
3575 
3576 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3577 		return -EBUSY;
3578 	if (cmd_match(buf, "none"))
3579 		n = MaxSector;
3580 	else if (!*buf || (*e && *e != '\n'))
3581 		return -EINVAL;
3582 
3583 	mddev->recovery_cp = n;
3584 	if (mddev->pers)
3585 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3586 	return len;
3587 }
3588 static struct md_sysfs_entry md_resync_start =
3589 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3590 
3591 /*
3592  * The array state can be:
3593  *
3594  * clear
3595  *     No devices, no size, no level
3596  *     Equivalent to STOP_ARRAY ioctl
3597  * inactive
3598  *     May have some settings, but array is not active
3599  *        all IO results in error
3600  *     When written, doesn't tear down array, but just stops it
3601  * suspended (not supported yet)
3602  *     All IO requests will block. The array can be reconfigured.
3603  *     Writing this, if accepted, will block until array is quiescent
3604  * readonly
3605  *     no resync can happen.  no superblocks get written.
3606  *     write requests fail
3607  * read-auto
3608  *     like readonly, but behaves like 'clean' on a write request.
3609  *
3610  * clean - no pending writes, but otherwise active.
3611  *     When written to inactive array, starts without resync
3612  *     If a write request arrives then
3613  *       if metadata is known, mark 'dirty' and switch to 'active'.
3614  *       if not known, block and switch to write-pending
3615  *     If written to an active array that has pending writes, then fails.
3616  * active
3617  *     fully active: IO and resync can be happening.
3618  *     When written to inactive array, starts with resync
3619  *
3620  * write-pending
3621  *     clean, but writes are blocked waiting for 'active' to be written.
3622  *
3623  * active-idle
3624  *     like active, but no writes have been seen for a while (100msec).
3625  *
3626  */
3627 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3628 		   write_pending, active_idle, bad_word};
3629 static char *array_states[] = {
3630 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3631 	"write-pending", "active-idle", NULL };
3632 
match_word(const char * word,char ** list)3633 static int match_word(const char *word, char **list)
3634 {
3635 	int n;
3636 	for (n=0; list[n]; n++)
3637 		if (cmd_match(word, list[n]))
3638 			break;
3639 	return n;
3640 }
3641 
3642 static ssize_t
array_state_show(struct mddev * mddev,char * page)3643 array_state_show(struct mddev *mddev, char *page)
3644 {
3645 	enum array_state st = inactive;
3646 
3647 	if (mddev->pers)
3648 		switch(mddev->ro) {
3649 		case 1:
3650 			st = readonly;
3651 			break;
3652 		case 2:
3653 			st = read_auto;
3654 			break;
3655 		case 0:
3656 			if (mddev->in_sync)
3657 				st = clean;
3658 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3659 				st = write_pending;
3660 			else if (mddev->safemode)
3661 				st = active_idle;
3662 			else
3663 				st = active;
3664 		}
3665 	else {
3666 		if (list_empty(&mddev->disks) &&
3667 		    mddev->raid_disks == 0 &&
3668 		    mddev->dev_sectors == 0)
3669 			st = clear;
3670 		else
3671 			st = inactive;
3672 	}
3673 	return sprintf(page, "%s\n", array_states[st]);
3674 }
3675 
3676 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3677 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3678 static int do_md_run(struct mddev *mddev);
3679 static int restart_array(struct mddev *mddev);
3680 
3681 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3682 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3683 {
3684 	int err = -EINVAL;
3685 	enum array_state st = match_word(buf, array_states);
3686 	switch(st) {
3687 	case bad_word:
3688 		break;
3689 	case clear:
3690 		/* stopping an active array */
3691 		err = do_md_stop(mddev, 0, NULL);
3692 		break;
3693 	case inactive:
3694 		/* stopping an active array */
3695 		if (mddev->pers)
3696 			err = do_md_stop(mddev, 2, NULL);
3697 		else
3698 			err = 0; /* already inactive */
3699 		break;
3700 	case suspended:
3701 		break; /* not supported yet */
3702 	case readonly:
3703 		if (mddev->pers)
3704 			err = md_set_readonly(mddev, NULL);
3705 		else {
3706 			mddev->ro = 1;
3707 			set_disk_ro(mddev->gendisk, 1);
3708 			err = do_md_run(mddev);
3709 		}
3710 		break;
3711 	case read_auto:
3712 		if (mddev->pers) {
3713 			if (mddev->ro == 0)
3714 				err = md_set_readonly(mddev, NULL);
3715 			else if (mddev->ro == 1)
3716 				err = restart_array(mddev);
3717 			if (err == 0) {
3718 				mddev->ro = 2;
3719 				set_disk_ro(mddev->gendisk, 0);
3720 			}
3721 		} else {
3722 			mddev->ro = 2;
3723 			err = do_md_run(mddev);
3724 		}
3725 		break;
3726 	case clean:
3727 		if (mddev->pers) {
3728 			restart_array(mddev);
3729 			spin_lock_irq(&mddev->write_lock);
3730 			if (atomic_read(&mddev->writes_pending) == 0) {
3731 				if (mddev->in_sync == 0) {
3732 					mddev->in_sync = 1;
3733 					if (mddev->safemode == 1)
3734 						mddev->safemode = 0;
3735 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3736 				}
3737 				err = 0;
3738 			} else
3739 				err = -EBUSY;
3740 			spin_unlock_irq(&mddev->write_lock);
3741 		} else
3742 			err = -EINVAL;
3743 		break;
3744 	case active:
3745 		if (mddev->pers) {
3746 			restart_array(mddev);
3747 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3748 			wake_up(&mddev->sb_wait);
3749 			err = 0;
3750 		} else {
3751 			mddev->ro = 0;
3752 			set_disk_ro(mddev->gendisk, 0);
3753 			err = do_md_run(mddev);
3754 		}
3755 		break;
3756 	case write_pending:
3757 	case active_idle:
3758 		/* these cannot be set */
3759 		break;
3760 	}
3761 	if (err)
3762 		return err;
3763 	else {
3764 		if (mddev->hold_active == UNTIL_IOCTL)
3765 			mddev->hold_active = 0;
3766 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3767 		return len;
3768 	}
3769 }
3770 static struct md_sysfs_entry md_array_state =
3771 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3772 
3773 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)3774 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3775 	return sprintf(page, "%d\n",
3776 		       atomic_read(&mddev->max_corr_read_errors));
3777 }
3778 
3779 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)3780 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 	char *e;
3783 	unsigned long n = simple_strtoul(buf, &e, 10);
3784 
3785 	if (*buf && (*e == 0 || *e == '\n')) {
3786 		atomic_set(&mddev->max_corr_read_errors, n);
3787 		return len;
3788 	}
3789 	return -EINVAL;
3790 }
3791 
3792 static struct md_sysfs_entry max_corr_read_errors =
3793 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3794 	max_corrected_read_errors_store);
3795 
3796 static ssize_t
null_show(struct mddev * mddev,char * page)3797 null_show(struct mddev *mddev, char *page)
3798 {
3799 	return -EINVAL;
3800 }
3801 
3802 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)3803 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805 	/* buf must be %d:%d\n? giving major and minor numbers */
3806 	/* The new device is added to the array.
3807 	 * If the array has a persistent superblock, we read the
3808 	 * superblock to initialise info and check validity.
3809 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3810 	 * which mainly checks size.
3811 	 */
3812 	char *e;
3813 	int major = simple_strtoul(buf, &e, 10);
3814 	int minor;
3815 	dev_t dev;
3816 	struct md_rdev *rdev;
3817 	int err;
3818 
3819 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3820 		return -EINVAL;
3821 	minor = simple_strtoul(e+1, &e, 10);
3822 	if (*e && *e != '\n')
3823 		return -EINVAL;
3824 	dev = MKDEV(major, minor);
3825 	if (major != MAJOR(dev) ||
3826 	    minor != MINOR(dev))
3827 		return -EOVERFLOW;
3828 
3829 	if (mddev->persistent) {
3830 		rdev = md_import_device(dev, mddev->major_version,
3831 					mddev->minor_version);
3832 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3833 			struct md_rdev *rdev0
3834 				= list_entry(mddev->disks.next,
3835 					     struct md_rdev, same_set);
3836 			err = super_types[mddev->major_version]
3837 				.load_super(rdev, rdev0, mddev->minor_version);
3838 			if (err < 0)
3839 				goto out;
3840 		}
3841 	} else if (mddev->external)
3842 		rdev = md_import_device(dev, -2, -1);
3843 	else
3844 		rdev = md_import_device(dev, -1, -1);
3845 
3846 	if (IS_ERR(rdev))
3847 		return PTR_ERR(rdev);
3848 	err = bind_rdev_to_array(rdev, mddev);
3849  out:
3850 	if (err)
3851 		export_rdev(rdev);
3852 	return err ? err : len;
3853 }
3854 
3855 static struct md_sysfs_entry md_new_device =
3856 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3857 
3858 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)3859 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3860 {
3861 	char *end;
3862 	unsigned long chunk, end_chunk;
3863 
3864 	if (!mddev->bitmap)
3865 		goto out;
3866 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3867 	while (*buf) {
3868 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3869 		if (buf == end) break;
3870 		if (*end == '-') { /* range */
3871 			buf = end + 1;
3872 			end_chunk = simple_strtoul(buf, &end, 0);
3873 			if (buf == end) break;
3874 		}
3875 		if (*end && !isspace(*end)) break;
3876 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3877 		buf = skip_spaces(end);
3878 	}
3879 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3880 out:
3881 	return len;
3882 }
3883 
3884 static struct md_sysfs_entry md_bitmap =
3885 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3886 
3887 static ssize_t
size_show(struct mddev * mddev,char * page)3888 size_show(struct mddev *mddev, char *page)
3889 {
3890 	return sprintf(page, "%llu\n",
3891 		(unsigned long long)mddev->dev_sectors / 2);
3892 }
3893 
3894 static int update_size(struct mddev *mddev, sector_t num_sectors);
3895 
3896 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)3897 size_store(struct mddev *mddev, const char *buf, size_t len)
3898 {
3899 	/* If array is inactive, we can reduce the component size, but
3900 	 * not increase it (except from 0).
3901 	 * If array is active, we can try an on-line resize
3902 	 */
3903 	sector_t sectors;
3904 	int err = strict_blocks_to_sectors(buf, &sectors);
3905 
3906 	if (err < 0)
3907 		return err;
3908 	if (mddev->pers) {
3909 		err = update_size(mddev, sectors);
3910 		md_update_sb(mddev, 1);
3911 	} else {
3912 		if (mddev->dev_sectors == 0 ||
3913 		    mddev->dev_sectors > sectors)
3914 			mddev->dev_sectors = sectors;
3915 		else
3916 			err = -ENOSPC;
3917 	}
3918 	return err ? err : len;
3919 }
3920 
3921 static struct md_sysfs_entry md_size =
3922 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3923 
3924 /* Metadata version.
3925  * This is one of
3926  *   'none' for arrays with no metadata (good luck...)
3927  *   'external' for arrays with externally managed metadata,
3928  * or N.M for internally known formats
3929  */
3930 static ssize_t
metadata_show(struct mddev * mddev,char * page)3931 metadata_show(struct mddev *mddev, char *page)
3932 {
3933 	if (mddev->persistent)
3934 		return sprintf(page, "%d.%d\n",
3935 			       mddev->major_version, mddev->minor_version);
3936 	else if (mddev->external)
3937 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3938 	else
3939 		return sprintf(page, "none\n");
3940 }
3941 
3942 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)3943 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3944 {
3945 	int major, minor;
3946 	char *e;
3947 	/* Changing the details of 'external' metadata is
3948 	 * always permitted.  Otherwise there must be
3949 	 * no devices attached to the array.
3950 	 */
3951 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3952 		;
3953 	else if (!list_empty(&mddev->disks))
3954 		return -EBUSY;
3955 
3956 	if (cmd_match(buf, "none")) {
3957 		mddev->persistent = 0;
3958 		mddev->external = 0;
3959 		mddev->major_version = 0;
3960 		mddev->minor_version = 90;
3961 		return len;
3962 	}
3963 	if (strncmp(buf, "external:", 9) == 0) {
3964 		size_t namelen = len-9;
3965 		if (namelen >= sizeof(mddev->metadata_type))
3966 			namelen = sizeof(mddev->metadata_type)-1;
3967 		strncpy(mddev->metadata_type, buf+9, namelen);
3968 		mddev->metadata_type[namelen] = 0;
3969 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3970 			mddev->metadata_type[--namelen] = 0;
3971 		mddev->persistent = 0;
3972 		mddev->external = 1;
3973 		mddev->major_version = 0;
3974 		mddev->minor_version = 90;
3975 		return len;
3976 	}
3977 	major = simple_strtoul(buf, &e, 10);
3978 	if (e==buf || *e != '.')
3979 		return -EINVAL;
3980 	buf = e+1;
3981 	minor = simple_strtoul(buf, &e, 10);
3982 	if (e==buf || (*e && *e != '\n') )
3983 		return -EINVAL;
3984 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3985 		return -ENOENT;
3986 	mddev->major_version = major;
3987 	mddev->minor_version = minor;
3988 	mddev->persistent = 1;
3989 	mddev->external = 0;
3990 	return len;
3991 }
3992 
3993 static struct md_sysfs_entry md_metadata =
3994 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3995 
3996 static ssize_t
action_show(struct mddev * mddev,char * page)3997 action_show(struct mddev *mddev, char *page)
3998 {
3999 	char *type = "idle";
4000 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4001 		type = "frozen";
4002 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4003 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4004 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4005 			type = "reshape";
4006 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4007 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4008 				type = "resync";
4009 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4010 				type = "check";
4011 			else
4012 				type = "repair";
4013 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4014 			type = "recover";
4015 	}
4016 	return sprintf(page, "%s\n", type);
4017 }
4018 
4019 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4020 action_store(struct mddev *mddev, const char *page, size_t len)
4021 {
4022 	if (!mddev->pers || !mddev->pers->sync_request)
4023 		return -EINVAL;
4024 
4025 	if (cmd_match(page, "frozen"))
4026 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4027 	else
4028 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4029 
4030 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4031 		if (mddev->sync_thread) {
4032 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4033 			md_reap_sync_thread(mddev);
4034 		}
4035 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4036 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4037 		return -EBUSY;
4038 	else if (cmd_match(page, "resync"))
4039 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4040 	else if (cmd_match(page, "recover")) {
4041 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4042 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4043 	} else if (cmd_match(page, "reshape")) {
4044 		int err;
4045 		if (mddev->pers->start_reshape == NULL)
4046 			return -EINVAL;
4047 		err = mddev->pers->start_reshape(mddev);
4048 		if (err)
4049 			return err;
4050 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4051 	} else {
4052 		if (cmd_match(page, "check"))
4053 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4054 		else if (!cmd_match(page, "repair"))
4055 			return -EINVAL;
4056 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4057 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4058 	}
4059 	if (mddev->ro == 2) {
4060 		/* A write to sync_action is enough to justify
4061 		 * canceling read-auto mode
4062 		 */
4063 		mddev->ro = 0;
4064 		md_wakeup_thread(mddev->sync_thread);
4065 	}
4066 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067 	md_wakeup_thread(mddev->thread);
4068 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4069 	return len;
4070 }
4071 
4072 static struct md_sysfs_entry md_scan_mode =
4073 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4074 
4075 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4076 last_sync_action_show(struct mddev *mddev, char *page)
4077 {
4078 	return sprintf(page, "%s\n", mddev->last_sync_action);
4079 }
4080 
4081 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4082 
4083 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4084 mismatch_cnt_show(struct mddev *mddev, char *page)
4085 {
4086 	return sprintf(page, "%llu\n",
4087 		       (unsigned long long)
4088 		       atomic64_read(&mddev->resync_mismatches));
4089 }
4090 
4091 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4092 
4093 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4094 sync_min_show(struct mddev *mddev, char *page)
4095 {
4096 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4097 		       mddev->sync_speed_min ? "local": "system");
4098 }
4099 
4100 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4101 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4102 {
4103 	int min;
4104 	char *e;
4105 	if (strncmp(buf, "system", 6)==0) {
4106 		mddev->sync_speed_min = 0;
4107 		return len;
4108 	}
4109 	min = simple_strtoul(buf, &e, 10);
4110 	if (buf == e || (*e && *e != '\n') || min <= 0)
4111 		return -EINVAL;
4112 	mddev->sync_speed_min = min;
4113 	return len;
4114 }
4115 
4116 static struct md_sysfs_entry md_sync_min =
4117 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4118 
4119 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4120 sync_max_show(struct mddev *mddev, char *page)
4121 {
4122 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4123 		       mddev->sync_speed_max ? "local": "system");
4124 }
4125 
4126 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4127 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4128 {
4129 	int max;
4130 	char *e;
4131 	if (strncmp(buf, "system", 6)==0) {
4132 		mddev->sync_speed_max = 0;
4133 		return len;
4134 	}
4135 	max = simple_strtoul(buf, &e, 10);
4136 	if (buf == e || (*e && *e != '\n') || max <= 0)
4137 		return -EINVAL;
4138 	mddev->sync_speed_max = max;
4139 	return len;
4140 }
4141 
4142 static struct md_sysfs_entry md_sync_max =
4143 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4144 
4145 static ssize_t
degraded_show(struct mddev * mddev,char * page)4146 degraded_show(struct mddev *mddev, char *page)
4147 {
4148 	return sprintf(page, "%d\n", mddev->degraded);
4149 }
4150 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4151 
4152 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4153 sync_force_parallel_show(struct mddev *mddev, char *page)
4154 {
4155 	return sprintf(page, "%d\n", mddev->parallel_resync);
4156 }
4157 
4158 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4159 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161 	long n;
4162 
4163 	if (kstrtol(buf, 10, &n))
4164 		return -EINVAL;
4165 
4166 	if (n != 0 && n != 1)
4167 		return -EINVAL;
4168 
4169 	mddev->parallel_resync = n;
4170 
4171 	if (mddev->sync_thread)
4172 		wake_up(&resync_wait);
4173 
4174 	return len;
4175 }
4176 
4177 /* force parallel resync, even with shared block devices */
4178 static struct md_sysfs_entry md_sync_force_parallel =
4179 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4180        sync_force_parallel_show, sync_force_parallel_store);
4181 
4182 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4183 sync_speed_show(struct mddev *mddev, char *page)
4184 {
4185 	unsigned long resync, dt, db;
4186 	if (mddev->curr_resync == 0)
4187 		return sprintf(page, "none\n");
4188 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4189 	dt = (jiffies - mddev->resync_mark) / HZ;
4190 	if (!dt) dt++;
4191 	db = resync - mddev->resync_mark_cnt;
4192 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4193 }
4194 
4195 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4196 
4197 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4198 sync_completed_show(struct mddev *mddev, char *page)
4199 {
4200 	unsigned long long max_sectors, resync;
4201 
4202 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4203 		return sprintf(page, "none\n");
4204 
4205 	if (mddev->curr_resync == 1 ||
4206 	    mddev->curr_resync == 2)
4207 		return sprintf(page, "delayed\n");
4208 
4209 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4210 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4211 		max_sectors = mddev->resync_max_sectors;
4212 	else
4213 		max_sectors = mddev->dev_sectors;
4214 
4215 	resync = mddev->curr_resync_completed;
4216 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4217 }
4218 
4219 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4220 
4221 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4222 min_sync_show(struct mddev *mddev, char *page)
4223 {
4224 	return sprintf(page, "%llu\n",
4225 		       (unsigned long long)mddev->resync_min);
4226 }
4227 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4228 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4229 {
4230 	unsigned long long min;
4231 	if (kstrtoull(buf, 10, &min))
4232 		return -EINVAL;
4233 	if (min > mddev->resync_max)
4234 		return -EINVAL;
4235 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4236 		return -EBUSY;
4237 
4238 	/* Must be a multiple of chunk_size */
4239 	if (mddev->chunk_sectors) {
4240 		sector_t temp = min;
4241 		if (sector_div(temp, mddev->chunk_sectors))
4242 			return -EINVAL;
4243 	}
4244 	mddev->resync_min = min;
4245 
4246 	return len;
4247 }
4248 
4249 static struct md_sysfs_entry md_min_sync =
4250 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4251 
4252 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4253 max_sync_show(struct mddev *mddev, char *page)
4254 {
4255 	if (mddev->resync_max == MaxSector)
4256 		return sprintf(page, "max\n");
4257 	else
4258 		return sprintf(page, "%llu\n",
4259 			       (unsigned long long)mddev->resync_max);
4260 }
4261 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4262 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4263 {
4264 	if (strncmp(buf, "max", 3) == 0)
4265 		mddev->resync_max = MaxSector;
4266 	else {
4267 		unsigned long long max;
4268 		if (kstrtoull(buf, 10, &max))
4269 			return -EINVAL;
4270 		if (max < mddev->resync_min)
4271 			return -EINVAL;
4272 		if (max < mddev->resync_max &&
4273 		    mddev->ro == 0 &&
4274 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4275 			return -EBUSY;
4276 
4277 		/* Must be a multiple of chunk_size */
4278 		if (mddev->chunk_sectors) {
4279 			sector_t temp = max;
4280 			if (sector_div(temp, mddev->chunk_sectors))
4281 				return -EINVAL;
4282 		}
4283 		mddev->resync_max = max;
4284 	}
4285 	wake_up(&mddev->recovery_wait);
4286 	return len;
4287 }
4288 
4289 static struct md_sysfs_entry md_max_sync =
4290 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4291 
4292 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4293 suspend_lo_show(struct mddev *mddev, char *page)
4294 {
4295 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4296 }
4297 
4298 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4299 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 	char *e;
4302 	unsigned long long new = simple_strtoull(buf, &e, 10);
4303 	unsigned long long old = mddev->suspend_lo;
4304 
4305 	if (mddev->pers == NULL ||
4306 	    mddev->pers->quiesce == NULL)
4307 		return -EINVAL;
4308 	if (buf == e || (*e && *e != '\n'))
4309 		return -EINVAL;
4310 
4311 	mddev->suspend_lo = new;
4312 	if (new >= old)
4313 		/* Shrinking suspended region */
4314 		mddev->pers->quiesce(mddev, 2);
4315 	else {
4316 		/* Expanding suspended region - need to wait */
4317 		mddev->pers->quiesce(mddev, 1);
4318 		mddev->pers->quiesce(mddev, 0);
4319 	}
4320 	return len;
4321 }
4322 static struct md_sysfs_entry md_suspend_lo =
4323 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4324 
4325 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4326 suspend_hi_show(struct mddev *mddev, char *page)
4327 {
4328 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4329 }
4330 
4331 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4332 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4333 {
4334 	char *e;
4335 	unsigned long long new = simple_strtoull(buf, &e, 10);
4336 	unsigned long long old = mddev->suspend_hi;
4337 
4338 	if (mddev->pers == NULL ||
4339 	    mddev->pers->quiesce == NULL)
4340 		return -EINVAL;
4341 	if (buf == e || (*e && *e != '\n'))
4342 		return -EINVAL;
4343 
4344 	mddev->suspend_hi = new;
4345 	if (new <= old)
4346 		/* Shrinking suspended region */
4347 		mddev->pers->quiesce(mddev, 2);
4348 	else {
4349 		/* Expanding suspended region - need to wait */
4350 		mddev->pers->quiesce(mddev, 1);
4351 		mddev->pers->quiesce(mddev, 0);
4352 	}
4353 	return len;
4354 }
4355 static struct md_sysfs_entry md_suspend_hi =
4356 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4357 
4358 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4359 reshape_position_show(struct mddev *mddev, char *page)
4360 {
4361 	if (mddev->reshape_position != MaxSector)
4362 		return sprintf(page, "%llu\n",
4363 			       (unsigned long long)mddev->reshape_position);
4364 	strcpy(page, "none\n");
4365 	return 5;
4366 }
4367 
4368 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4369 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4370 {
4371 	struct md_rdev *rdev;
4372 	char *e;
4373 	unsigned long long new = simple_strtoull(buf, &e, 10);
4374 	if (mddev->pers)
4375 		return -EBUSY;
4376 	if (buf == e || (*e && *e != '\n'))
4377 		return -EINVAL;
4378 	mddev->reshape_position = new;
4379 	mddev->delta_disks = 0;
4380 	mddev->reshape_backwards = 0;
4381 	mddev->new_level = mddev->level;
4382 	mddev->new_layout = mddev->layout;
4383 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4384 	rdev_for_each(rdev, mddev)
4385 		rdev->new_data_offset = rdev->data_offset;
4386 	return len;
4387 }
4388 
4389 static struct md_sysfs_entry md_reshape_position =
4390 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4391        reshape_position_store);
4392 
4393 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4394 reshape_direction_show(struct mddev *mddev, char *page)
4395 {
4396 	return sprintf(page, "%s\n",
4397 		       mddev->reshape_backwards ? "backwards" : "forwards");
4398 }
4399 
4400 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4401 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 	int backwards = 0;
4404 	if (cmd_match(buf, "forwards"))
4405 		backwards = 0;
4406 	else if (cmd_match(buf, "backwards"))
4407 		backwards = 1;
4408 	else
4409 		return -EINVAL;
4410 	if (mddev->reshape_backwards == backwards)
4411 		return len;
4412 
4413 	/* check if we are allowed to change */
4414 	if (mddev->delta_disks)
4415 		return -EBUSY;
4416 
4417 	if (mddev->persistent &&
4418 	    mddev->major_version == 0)
4419 		return -EINVAL;
4420 
4421 	mddev->reshape_backwards = backwards;
4422 	return len;
4423 }
4424 
4425 static struct md_sysfs_entry md_reshape_direction =
4426 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4427        reshape_direction_store);
4428 
4429 static ssize_t
array_size_show(struct mddev * mddev,char * page)4430 array_size_show(struct mddev *mddev, char *page)
4431 {
4432 	if (mddev->external_size)
4433 		return sprintf(page, "%llu\n",
4434 			       (unsigned long long)mddev->array_sectors/2);
4435 	else
4436 		return sprintf(page, "default\n");
4437 }
4438 
4439 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4440 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4441 {
4442 	sector_t sectors;
4443 
4444 	if (strncmp(buf, "default", 7) == 0) {
4445 		if (mddev->pers)
4446 			sectors = mddev->pers->size(mddev, 0, 0);
4447 		else
4448 			sectors = mddev->array_sectors;
4449 
4450 		mddev->external_size = 0;
4451 	} else {
4452 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4453 			return -EINVAL;
4454 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4455 			return -E2BIG;
4456 
4457 		mddev->external_size = 1;
4458 	}
4459 
4460 	mddev->array_sectors = sectors;
4461 	if (mddev->pers) {
4462 		set_capacity(mddev->gendisk, mddev->array_sectors);
4463 		revalidate_disk(mddev->gendisk);
4464 	}
4465 	return len;
4466 }
4467 
4468 static struct md_sysfs_entry md_array_size =
4469 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4470        array_size_store);
4471 
4472 static struct attribute *md_default_attrs[] = {
4473 	&md_level.attr,
4474 	&md_layout.attr,
4475 	&md_raid_disks.attr,
4476 	&md_chunk_size.attr,
4477 	&md_size.attr,
4478 	&md_resync_start.attr,
4479 	&md_metadata.attr,
4480 	&md_new_device.attr,
4481 	&md_safe_delay.attr,
4482 	&md_array_state.attr,
4483 	&md_reshape_position.attr,
4484 	&md_reshape_direction.attr,
4485 	&md_array_size.attr,
4486 	&max_corr_read_errors.attr,
4487 	NULL,
4488 };
4489 
4490 static struct attribute *md_redundancy_attrs[] = {
4491 	&md_scan_mode.attr,
4492 	&md_last_scan_mode.attr,
4493 	&md_mismatches.attr,
4494 	&md_sync_min.attr,
4495 	&md_sync_max.attr,
4496 	&md_sync_speed.attr,
4497 	&md_sync_force_parallel.attr,
4498 	&md_sync_completed.attr,
4499 	&md_min_sync.attr,
4500 	&md_max_sync.attr,
4501 	&md_suspend_lo.attr,
4502 	&md_suspend_hi.attr,
4503 	&md_bitmap.attr,
4504 	&md_degraded.attr,
4505 	NULL,
4506 };
4507 static struct attribute_group md_redundancy_group = {
4508 	.name = NULL,
4509 	.attrs = md_redundancy_attrs,
4510 };
4511 
4512 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4513 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4514 {
4515 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4516 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4517 	ssize_t rv;
4518 
4519 	if (!entry->show)
4520 		return -EIO;
4521 	spin_lock(&all_mddevs_lock);
4522 	if (list_empty(&mddev->all_mddevs)) {
4523 		spin_unlock(&all_mddevs_lock);
4524 		return -EBUSY;
4525 	}
4526 	mddev_get(mddev);
4527 	spin_unlock(&all_mddevs_lock);
4528 
4529 	rv = mddev_lock(mddev);
4530 	if (!rv) {
4531 		rv = entry->show(mddev, page);
4532 		mddev_unlock(mddev);
4533 	}
4534 	mddev_put(mddev);
4535 	return rv;
4536 }
4537 
4538 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4539 md_attr_store(struct kobject *kobj, struct attribute *attr,
4540 	      const char *page, size_t length)
4541 {
4542 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4543 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4544 	ssize_t rv;
4545 
4546 	if (!entry->store)
4547 		return -EIO;
4548 	if (!capable(CAP_SYS_ADMIN))
4549 		return -EACCES;
4550 	spin_lock(&all_mddevs_lock);
4551 	if (list_empty(&mddev->all_mddevs)) {
4552 		spin_unlock(&all_mddevs_lock);
4553 		return -EBUSY;
4554 	}
4555 	mddev_get(mddev);
4556 	spin_unlock(&all_mddevs_lock);
4557 	if (entry->store == new_dev_store)
4558 		flush_workqueue(md_misc_wq);
4559 	rv = mddev_lock(mddev);
4560 	if (!rv) {
4561 		rv = entry->store(mddev, page, length);
4562 		mddev_unlock(mddev);
4563 	}
4564 	mddev_put(mddev);
4565 	return rv;
4566 }
4567 
md_free(struct kobject * ko)4568 static void md_free(struct kobject *ko)
4569 {
4570 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4571 
4572 	if (mddev->sysfs_state)
4573 		sysfs_put(mddev->sysfs_state);
4574 
4575 	if (mddev->gendisk) {
4576 		del_gendisk(mddev->gendisk);
4577 		put_disk(mddev->gendisk);
4578 	}
4579 	if (mddev->queue)
4580 		blk_cleanup_queue(mddev->queue);
4581 
4582 	kfree(mddev);
4583 }
4584 
4585 static const struct sysfs_ops md_sysfs_ops = {
4586 	.show	= md_attr_show,
4587 	.store	= md_attr_store,
4588 };
4589 static struct kobj_type md_ktype = {
4590 	.release	= md_free,
4591 	.sysfs_ops	= &md_sysfs_ops,
4592 	.default_attrs	= md_default_attrs,
4593 };
4594 
4595 int mdp_major = 0;
4596 
mddev_delayed_delete(struct work_struct * ws)4597 static void mddev_delayed_delete(struct work_struct *ws)
4598 {
4599 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4600 
4601 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4602 	kobject_del(&mddev->kobj);
4603 	kobject_put(&mddev->kobj);
4604 }
4605 
md_alloc(dev_t dev,char * name)4606 static int md_alloc(dev_t dev, char *name)
4607 {
4608 	static DEFINE_MUTEX(disks_mutex);
4609 	struct mddev *mddev = mddev_find(dev);
4610 	struct gendisk *disk;
4611 	int partitioned;
4612 	int shift;
4613 	int unit;
4614 	int error;
4615 
4616 	if (!mddev)
4617 		return -ENODEV;
4618 
4619 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4620 	shift = partitioned ? MdpMinorShift : 0;
4621 	unit = MINOR(mddev->unit) >> shift;
4622 
4623 	/* wait for any previous instance of this device to be
4624 	 * completely removed (mddev_delayed_delete).
4625 	 */
4626 	flush_workqueue(md_misc_wq);
4627 
4628 	mutex_lock(&disks_mutex);
4629 	error = -EEXIST;
4630 	if (mddev->gendisk)
4631 		goto abort;
4632 
4633 	if (name) {
4634 		/* Need to ensure that 'name' is not a duplicate.
4635 		 */
4636 		struct mddev *mddev2;
4637 		spin_lock(&all_mddevs_lock);
4638 
4639 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4640 			if (mddev2->gendisk &&
4641 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4642 				spin_unlock(&all_mddevs_lock);
4643 				goto abort;
4644 			}
4645 		spin_unlock(&all_mddevs_lock);
4646 	}
4647 
4648 	error = -ENOMEM;
4649 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4650 	if (!mddev->queue)
4651 		goto abort;
4652 	mddev->queue->queuedata = mddev;
4653 
4654 	blk_queue_make_request(mddev->queue, md_make_request);
4655 	blk_set_stacking_limits(&mddev->queue->limits);
4656 
4657 	disk = alloc_disk(1 << shift);
4658 	if (!disk) {
4659 		blk_cleanup_queue(mddev->queue);
4660 		mddev->queue = NULL;
4661 		goto abort;
4662 	}
4663 	disk->major = MAJOR(mddev->unit);
4664 	disk->first_minor = unit << shift;
4665 	if (name)
4666 		strcpy(disk->disk_name, name);
4667 	else if (partitioned)
4668 		sprintf(disk->disk_name, "md_d%d", unit);
4669 	else
4670 		sprintf(disk->disk_name, "md%d", unit);
4671 	disk->fops = &md_fops;
4672 	disk->private_data = mddev;
4673 	disk->queue = mddev->queue;
4674 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4675 	/* Allow extended partitions.  This makes the
4676 	 * 'mdp' device redundant, but we can't really
4677 	 * remove it now.
4678 	 */
4679 	disk->flags |= GENHD_FL_EXT_DEVT;
4680 	mddev->gendisk = disk;
4681 	/* As soon as we call add_disk(), another thread could get
4682 	 * through to md_open, so make sure it doesn't get too far
4683 	 */
4684 	mutex_lock(&mddev->open_mutex);
4685 	add_disk(disk);
4686 
4687 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4688 				     &disk_to_dev(disk)->kobj, "%s", "md");
4689 	if (error) {
4690 		/* This isn't possible, but as kobject_init_and_add is marked
4691 		 * __must_check, we must do something with the result
4692 		 */
4693 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4694 		       disk->disk_name);
4695 		error = 0;
4696 	}
4697 	if (mddev->kobj.sd &&
4698 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4699 		printk(KERN_DEBUG "pointless warning\n");
4700 	mutex_unlock(&mddev->open_mutex);
4701  abort:
4702 	mutex_unlock(&disks_mutex);
4703 	if (!error && mddev->kobj.sd) {
4704 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4705 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4706 	}
4707 	mddev_put(mddev);
4708 	return error;
4709 }
4710 
md_probe(dev_t dev,int * part,void * data)4711 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4712 {
4713 	md_alloc(dev, NULL);
4714 	return NULL;
4715 }
4716 
add_named_array(const char * val,struct kernel_param * kp)4717 static int add_named_array(const char *val, struct kernel_param *kp)
4718 {
4719 	/* val must be "md_*" where * is not all digits.
4720 	 * We allocate an array with a large free minor number, and
4721 	 * set the name to val.  val must not already be an active name.
4722 	 */
4723 	int len = strlen(val);
4724 	char buf[DISK_NAME_LEN];
4725 
4726 	while (len && val[len-1] == '\n')
4727 		len--;
4728 	if (len >= DISK_NAME_LEN)
4729 		return -E2BIG;
4730 	strlcpy(buf, val, len+1);
4731 	if (strncmp(buf, "md_", 3) != 0)
4732 		return -EINVAL;
4733 	return md_alloc(0, buf);
4734 }
4735 
md_safemode_timeout(unsigned long data)4736 static void md_safemode_timeout(unsigned long data)
4737 {
4738 	struct mddev *mddev = (struct mddev *) data;
4739 
4740 	if (!atomic_read(&mddev->writes_pending)) {
4741 		mddev->safemode = 1;
4742 		if (mddev->external)
4743 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4744 	}
4745 	md_wakeup_thread(mddev->thread);
4746 }
4747 
4748 static int start_dirty_degraded;
4749 
md_run(struct mddev * mddev)4750 int md_run(struct mddev *mddev)
4751 {
4752 	int err;
4753 	struct md_rdev *rdev;
4754 	struct md_personality *pers;
4755 
4756 	if (list_empty(&mddev->disks))
4757 		/* cannot run an array with no devices.. */
4758 		return -EINVAL;
4759 
4760 	if (mddev->pers)
4761 		return -EBUSY;
4762 	/* Cannot run until previous stop completes properly */
4763 	if (mddev->sysfs_active)
4764 		return -EBUSY;
4765 
4766 	/*
4767 	 * Analyze all RAID superblock(s)
4768 	 */
4769 	if (!mddev->raid_disks) {
4770 		if (!mddev->persistent)
4771 			return -EINVAL;
4772 		analyze_sbs(mddev);
4773 	}
4774 
4775 	if (mddev->level != LEVEL_NONE)
4776 		request_module("md-level-%d", mddev->level);
4777 	else if (mddev->clevel[0])
4778 		request_module("md-%s", mddev->clevel);
4779 
4780 	/*
4781 	 * Drop all container device buffers, from now on
4782 	 * the only valid external interface is through the md
4783 	 * device.
4784 	 */
4785 	rdev_for_each(rdev, mddev) {
4786 		if (test_bit(Faulty, &rdev->flags))
4787 			continue;
4788 		sync_blockdev(rdev->bdev);
4789 		invalidate_bdev(rdev->bdev);
4790 
4791 		/* perform some consistency tests on the device.
4792 		 * We don't want the data to overlap the metadata,
4793 		 * Internal Bitmap issues have been handled elsewhere.
4794 		 */
4795 		if (rdev->meta_bdev) {
4796 			/* Nothing to check */;
4797 		} else if (rdev->data_offset < rdev->sb_start) {
4798 			if (mddev->dev_sectors &&
4799 			    rdev->data_offset + mddev->dev_sectors
4800 			    > rdev->sb_start) {
4801 				printk("md: %s: data overlaps metadata\n",
4802 				       mdname(mddev));
4803 				return -EINVAL;
4804 			}
4805 		} else {
4806 			if (rdev->sb_start + rdev->sb_size/512
4807 			    > rdev->data_offset) {
4808 				printk("md: %s: metadata overlaps data\n",
4809 				       mdname(mddev));
4810 				return -EINVAL;
4811 			}
4812 		}
4813 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4814 	}
4815 
4816 	if (mddev->bio_set == NULL)
4817 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4818 
4819 	spin_lock(&pers_lock);
4820 	pers = find_pers(mddev->level, mddev->clevel);
4821 	if (!pers || !try_module_get(pers->owner)) {
4822 		spin_unlock(&pers_lock);
4823 		if (mddev->level != LEVEL_NONE)
4824 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4825 			       mddev->level);
4826 		else
4827 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4828 			       mddev->clevel);
4829 		return -EINVAL;
4830 	}
4831 	mddev->pers = pers;
4832 	spin_unlock(&pers_lock);
4833 	if (mddev->level != pers->level) {
4834 		mddev->level = pers->level;
4835 		mddev->new_level = pers->level;
4836 	}
4837 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4838 
4839 	if (mddev->reshape_position != MaxSector &&
4840 	    pers->start_reshape == NULL) {
4841 		/* This personality cannot handle reshaping... */
4842 		mddev->pers = NULL;
4843 		module_put(pers->owner);
4844 		return -EINVAL;
4845 	}
4846 
4847 	if (pers->sync_request) {
4848 		/* Warn if this is a potentially silly
4849 		 * configuration.
4850 		 */
4851 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4852 		struct md_rdev *rdev2;
4853 		int warned = 0;
4854 
4855 		rdev_for_each(rdev, mddev)
4856 			rdev_for_each(rdev2, mddev) {
4857 				if (rdev < rdev2 &&
4858 				    rdev->bdev->bd_contains ==
4859 				    rdev2->bdev->bd_contains) {
4860 					printk(KERN_WARNING
4861 					       "%s: WARNING: %s appears to be"
4862 					       " on the same physical disk as"
4863 					       " %s.\n",
4864 					       mdname(mddev),
4865 					       bdevname(rdev->bdev,b),
4866 					       bdevname(rdev2->bdev,b2));
4867 					warned = 1;
4868 				}
4869 			}
4870 
4871 		if (warned)
4872 			printk(KERN_WARNING
4873 			       "True protection against single-disk"
4874 			       " failure might be compromised.\n");
4875 	}
4876 
4877 	mddev->recovery = 0;
4878 	/* may be over-ridden by personality */
4879 	mddev->resync_max_sectors = mddev->dev_sectors;
4880 
4881 	mddev->ok_start_degraded = start_dirty_degraded;
4882 
4883 	if (start_readonly && mddev->ro == 0)
4884 		mddev->ro = 2; /* read-only, but switch on first write */
4885 
4886 	err = mddev->pers->run(mddev);
4887 	if (err)
4888 		printk(KERN_ERR "md: pers->run() failed ...\n");
4889 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4890 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4891 			  " but 'external_size' not in effect?\n", __func__);
4892 		printk(KERN_ERR
4893 		       "md: invalid array_size %llu > default size %llu\n",
4894 		       (unsigned long long)mddev->array_sectors / 2,
4895 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4896 		err = -EINVAL;
4897 		mddev->pers->stop(mddev);
4898 	}
4899 	if (err == 0 && mddev->pers->sync_request &&
4900 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4901 		err = bitmap_create(mddev);
4902 		if (err) {
4903 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4904 			       mdname(mddev), err);
4905 			mddev->pers->stop(mddev);
4906 		}
4907 	}
4908 	if (err) {
4909 		module_put(mddev->pers->owner);
4910 		mddev->pers = NULL;
4911 		bitmap_destroy(mddev);
4912 		return err;
4913 	}
4914 	if (mddev->pers->sync_request) {
4915 		if (mddev->kobj.sd &&
4916 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4917 			printk(KERN_WARNING
4918 			       "md: cannot register extra attributes for %s\n",
4919 			       mdname(mddev));
4920 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4921 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4922 		mddev->ro = 0;
4923 
4924 	atomic_set(&mddev->writes_pending,0);
4925 	atomic_set(&mddev->max_corr_read_errors,
4926 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4927 	mddev->safemode = 0;
4928 	mddev->safemode_timer.function = md_safemode_timeout;
4929 	mddev->safemode_timer.data = (unsigned long) mddev;
4930 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4931 	mddev->in_sync = 1;
4932 	smp_wmb();
4933 	mddev->ready = 1;
4934 	rdev_for_each(rdev, mddev)
4935 		if (rdev->raid_disk >= 0)
4936 			if (sysfs_link_rdev(mddev, rdev))
4937 				/* failure here is OK */;
4938 
4939 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4940 
4941 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
4942 		md_update_sb(mddev, 0);
4943 
4944 	md_new_event(mddev);
4945 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4946 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4947 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4948 	return 0;
4949 }
4950 EXPORT_SYMBOL_GPL(md_run);
4951 
do_md_run(struct mddev * mddev)4952 static int do_md_run(struct mddev *mddev)
4953 {
4954 	int err;
4955 
4956 	err = md_run(mddev);
4957 	if (err)
4958 		goto out;
4959 	err = bitmap_load(mddev);
4960 	if (err) {
4961 		bitmap_destroy(mddev);
4962 		goto out;
4963 	}
4964 
4965 	md_wakeup_thread(mddev->thread);
4966 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4967 
4968 	set_capacity(mddev->gendisk, mddev->array_sectors);
4969 	revalidate_disk(mddev->gendisk);
4970 	mddev->changed = 1;
4971 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4972 out:
4973 	return err;
4974 }
4975 
restart_array(struct mddev * mddev)4976 static int restart_array(struct mddev *mddev)
4977 {
4978 	struct gendisk *disk = mddev->gendisk;
4979 
4980 	/* Complain if it has no devices */
4981 	if (list_empty(&mddev->disks))
4982 		return -ENXIO;
4983 	if (!mddev->pers)
4984 		return -EINVAL;
4985 	if (!mddev->ro)
4986 		return -EBUSY;
4987 	mddev->safemode = 0;
4988 	mddev->ro = 0;
4989 	set_disk_ro(disk, 0);
4990 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4991 		mdname(mddev));
4992 	/* Kick recovery or resync if necessary */
4993 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4994 	md_wakeup_thread(mddev->thread);
4995 	md_wakeup_thread(mddev->sync_thread);
4996 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4997 	return 0;
4998 }
4999 
md_clean(struct mddev * mddev)5000 static void md_clean(struct mddev *mddev)
5001 {
5002 	mddev->array_sectors = 0;
5003 	mddev->external_size = 0;
5004 	mddev->dev_sectors = 0;
5005 	mddev->raid_disks = 0;
5006 	mddev->recovery_cp = 0;
5007 	mddev->resync_min = 0;
5008 	mddev->resync_max = MaxSector;
5009 	mddev->reshape_position = MaxSector;
5010 	mddev->external = 0;
5011 	mddev->persistent = 0;
5012 	mddev->level = LEVEL_NONE;
5013 	mddev->clevel[0] = 0;
5014 	mddev->flags = 0;
5015 	mddev->ro = 0;
5016 	mddev->metadata_type[0] = 0;
5017 	mddev->chunk_sectors = 0;
5018 	mddev->ctime = mddev->utime = 0;
5019 	mddev->layout = 0;
5020 	mddev->max_disks = 0;
5021 	mddev->events = 0;
5022 	mddev->can_decrease_events = 0;
5023 	mddev->delta_disks = 0;
5024 	mddev->reshape_backwards = 0;
5025 	mddev->new_level = LEVEL_NONE;
5026 	mddev->new_layout = 0;
5027 	mddev->new_chunk_sectors = 0;
5028 	mddev->curr_resync = 0;
5029 	atomic64_set(&mddev->resync_mismatches, 0);
5030 	mddev->suspend_lo = mddev->suspend_hi = 0;
5031 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5032 	mddev->recovery = 0;
5033 	mddev->in_sync = 0;
5034 	mddev->changed = 0;
5035 	mddev->degraded = 0;
5036 	mddev->safemode = 0;
5037 	mddev->merge_check_needed = 0;
5038 	mddev->bitmap_info.offset = 0;
5039 	mddev->bitmap_info.default_offset = 0;
5040 	mddev->bitmap_info.default_space = 0;
5041 	mddev->bitmap_info.chunksize = 0;
5042 	mddev->bitmap_info.daemon_sleep = 0;
5043 	mddev->bitmap_info.max_write_behind = 0;
5044 }
5045 
__md_stop_writes(struct mddev * mddev)5046 static void __md_stop_writes(struct mddev *mddev)
5047 {
5048 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5049 	if (mddev->sync_thread) {
5050 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5051 		md_reap_sync_thread(mddev);
5052 	}
5053 
5054 	del_timer_sync(&mddev->safemode_timer);
5055 
5056 	bitmap_flush(mddev);
5057 	md_super_wait(mddev);
5058 
5059 	if (mddev->ro == 0 &&
5060 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5061 		/* mark array as shutdown cleanly */
5062 		mddev->in_sync = 1;
5063 		md_update_sb(mddev, 1);
5064 	}
5065 }
5066 
md_stop_writes(struct mddev * mddev)5067 void md_stop_writes(struct mddev *mddev)
5068 {
5069 	mddev_lock_nointr(mddev);
5070 	__md_stop_writes(mddev);
5071 	mddev_unlock(mddev);
5072 }
5073 EXPORT_SYMBOL_GPL(md_stop_writes);
5074 
__md_stop(struct mddev * mddev)5075 static void __md_stop(struct mddev *mddev)
5076 {
5077 	mddev->ready = 0;
5078 	/* Ensure ->event_work is done */
5079 	flush_workqueue(md_misc_wq);
5080 	mddev->pers->stop(mddev);
5081 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5082 		mddev->to_remove = &md_redundancy_group;
5083 	module_put(mddev->pers->owner);
5084 	mddev->pers = NULL;
5085 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5086 }
5087 
md_stop(struct mddev * mddev)5088 void md_stop(struct mddev *mddev)
5089 {
5090 	/* stop the array and free an attached data structures.
5091 	 * This is called from dm-raid
5092 	 */
5093 	__md_stop(mddev);
5094 	bitmap_destroy(mddev);
5095 	if (mddev->bio_set)
5096 		bioset_free(mddev->bio_set);
5097 }
5098 
5099 EXPORT_SYMBOL_GPL(md_stop);
5100 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5101 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5102 {
5103 	int err = 0;
5104 	int did_freeze = 0;
5105 
5106 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5107 		did_freeze = 1;
5108 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5109 		md_wakeup_thread(mddev->thread);
5110 	}
5111 	if (mddev->sync_thread) {
5112 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5113 		/* Thread might be blocked waiting for metadata update
5114 		 * which will now never happen */
5115 		wake_up_process(mddev->sync_thread->tsk);
5116 	}
5117 	mddev_unlock(mddev);
5118 	wait_event(resync_wait, mddev->sync_thread == NULL);
5119 	mddev_lock_nointr(mddev);
5120 
5121 	mutex_lock(&mddev->open_mutex);
5122 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5123 	    mddev->sync_thread ||
5124 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5125 		printk("md: %s still in use.\n",mdname(mddev));
5126 		if (did_freeze) {
5127 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5128 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5129 			md_wakeup_thread(mddev->thread);
5130 		}
5131 		err = -EBUSY;
5132 		goto out;
5133 	}
5134 	if (mddev->pers) {
5135 		__md_stop_writes(mddev);
5136 
5137 		err  = -ENXIO;
5138 		if (mddev->ro==1)
5139 			goto out;
5140 		mddev->ro = 1;
5141 		set_disk_ro(mddev->gendisk, 1);
5142 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5143 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5144 		md_wakeup_thread(mddev->thread);
5145 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5146 		err = 0;
5147 	}
5148 out:
5149 	mutex_unlock(&mddev->open_mutex);
5150 	return err;
5151 }
5152 
5153 /* mode:
5154  *   0 - completely stop and dis-assemble array
5155  *   2 - stop but do not disassemble array
5156  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5157 static int do_md_stop(struct mddev *mddev, int mode,
5158 		      struct block_device *bdev)
5159 {
5160 	struct gendisk *disk = mddev->gendisk;
5161 	struct md_rdev *rdev;
5162 	int did_freeze = 0;
5163 
5164 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5165 		did_freeze = 1;
5166 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5167 		md_wakeup_thread(mddev->thread);
5168 	}
5169 	if (mddev->sync_thread) {
5170 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5171 		/* Thread might be blocked waiting for metadata update
5172 		 * which will now never happen */
5173 		wake_up_process(mddev->sync_thread->tsk);
5174 	}
5175 	mddev_unlock(mddev);
5176 	wait_event(resync_wait, mddev->sync_thread == NULL);
5177 	mddev_lock_nointr(mddev);
5178 
5179 	mutex_lock(&mddev->open_mutex);
5180 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5181 	    mddev->sysfs_active ||
5182 	    mddev->sync_thread ||
5183 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5184 		printk("md: %s still in use.\n",mdname(mddev));
5185 		mutex_unlock(&mddev->open_mutex);
5186 		if (did_freeze) {
5187 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5188 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5189 			md_wakeup_thread(mddev->thread);
5190 		}
5191 		return -EBUSY;
5192 	}
5193 	if (mddev->pers) {
5194 		if (mddev->ro)
5195 			set_disk_ro(disk, 0);
5196 
5197 		__md_stop_writes(mddev);
5198 		__md_stop(mddev);
5199 		mddev->queue->merge_bvec_fn = NULL;
5200 		mddev->queue->backing_dev_info.congested_fn = NULL;
5201 
5202 		/* tell userspace to handle 'inactive' */
5203 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5204 
5205 		rdev_for_each(rdev, mddev)
5206 			if (rdev->raid_disk >= 0)
5207 				sysfs_unlink_rdev(mddev, rdev);
5208 
5209 		set_capacity(disk, 0);
5210 		mutex_unlock(&mddev->open_mutex);
5211 		mddev->changed = 1;
5212 		revalidate_disk(disk);
5213 
5214 		if (mddev->ro)
5215 			mddev->ro = 0;
5216 	} else
5217 		mutex_unlock(&mddev->open_mutex);
5218 	/*
5219 	 * Free resources if final stop
5220 	 */
5221 	if (mode == 0) {
5222 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5223 
5224 		bitmap_destroy(mddev);
5225 		if (mddev->bitmap_info.file) {
5226 			fput(mddev->bitmap_info.file);
5227 			mddev->bitmap_info.file = NULL;
5228 		}
5229 		mddev->bitmap_info.offset = 0;
5230 
5231 		export_array(mddev);
5232 
5233 		md_clean(mddev);
5234 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5235 		if (mddev->hold_active == UNTIL_STOP)
5236 			mddev->hold_active = 0;
5237 	}
5238 	blk_integrity_unregister(disk);
5239 	md_new_event(mddev);
5240 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5241 	return 0;
5242 }
5243 
5244 #ifndef MODULE
autorun_array(struct mddev * mddev)5245 static void autorun_array(struct mddev *mddev)
5246 {
5247 	struct md_rdev *rdev;
5248 	int err;
5249 
5250 	if (list_empty(&mddev->disks))
5251 		return;
5252 
5253 	printk(KERN_INFO "md: running: ");
5254 
5255 	rdev_for_each(rdev, mddev) {
5256 		char b[BDEVNAME_SIZE];
5257 		printk("<%s>", bdevname(rdev->bdev,b));
5258 	}
5259 	printk("\n");
5260 
5261 	err = do_md_run(mddev);
5262 	if (err) {
5263 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5264 		do_md_stop(mddev, 0, NULL);
5265 	}
5266 }
5267 
5268 /*
5269  * lets try to run arrays based on all disks that have arrived
5270  * until now. (those are in pending_raid_disks)
5271  *
5272  * the method: pick the first pending disk, collect all disks with
5273  * the same UUID, remove all from the pending list and put them into
5274  * the 'same_array' list. Then order this list based on superblock
5275  * update time (freshest comes first), kick out 'old' disks and
5276  * compare superblocks. If everything's fine then run it.
5277  *
5278  * If "unit" is allocated, then bump its reference count
5279  */
autorun_devices(int part)5280 static void autorun_devices(int part)
5281 {
5282 	struct md_rdev *rdev0, *rdev, *tmp;
5283 	struct mddev *mddev;
5284 	char b[BDEVNAME_SIZE];
5285 
5286 	printk(KERN_INFO "md: autorun ...\n");
5287 	while (!list_empty(&pending_raid_disks)) {
5288 		int unit;
5289 		dev_t dev;
5290 		LIST_HEAD(candidates);
5291 		rdev0 = list_entry(pending_raid_disks.next,
5292 					 struct md_rdev, same_set);
5293 
5294 		printk(KERN_INFO "md: considering %s ...\n",
5295 			bdevname(rdev0->bdev,b));
5296 		INIT_LIST_HEAD(&candidates);
5297 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5298 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5299 				printk(KERN_INFO "md:  adding %s ...\n",
5300 					bdevname(rdev->bdev,b));
5301 				list_move(&rdev->same_set, &candidates);
5302 			}
5303 		/*
5304 		 * now we have a set of devices, with all of them having
5305 		 * mostly sane superblocks. It's time to allocate the
5306 		 * mddev.
5307 		 */
5308 		if (part) {
5309 			dev = MKDEV(mdp_major,
5310 				    rdev0->preferred_minor << MdpMinorShift);
5311 			unit = MINOR(dev) >> MdpMinorShift;
5312 		} else {
5313 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5314 			unit = MINOR(dev);
5315 		}
5316 		if (rdev0->preferred_minor != unit) {
5317 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5318 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5319 			break;
5320 		}
5321 
5322 		md_probe(dev, NULL, NULL);
5323 		mddev = mddev_find(dev);
5324 		if (!mddev || !mddev->gendisk) {
5325 			if (mddev)
5326 				mddev_put(mddev);
5327 			printk(KERN_ERR
5328 				"md: cannot allocate memory for md drive.\n");
5329 			break;
5330 		}
5331 		if (mddev_lock(mddev))
5332 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5333 			       mdname(mddev));
5334 		else if (mddev->raid_disks || mddev->major_version
5335 			 || !list_empty(&mddev->disks)) {
5336 			printk(KERN_WARNING
5337 				"md: %s already running, cannot run %s\n",
5338 				mdname(mddev), bdevname(rdev0->bdev,b));
5339 			mddev_unlock(mddev);
5340 		} else {
5341 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5342 			mddev->persistent = 1;
5343 			rdev_for_each_list(rdev, tmp, &candidates) {
5344 				list_del_init(&rdev->same_set);
5345 				if (bind_rdev_to_array(rdev, mddev))
5346 					export_rdev(rdev);
5347 			}
5348 			autorun_array(mddev);
5349 			mddev_unlock(mddev);
5350 		}
5351 		/* on success, candidates will be empty, on error
5352 		 * it won't...
5353 		 */
5354 		rdev_for_each_list(rdev, tmp, &candidates) {
5355 			list_del_init(&rdev->same_set);
5356 			export_rdev(rdev);
5357 		}
5358 		mddev_put(mddev);
5359 	}
5360 	printk(KERN_INFO "md: ... autorun DONE.\n");
5361 }
5362 #endif /* !MODULE */
5363 
get_version(void __user * arg)5364 static int get_version(void __user *arg)
5365 {
5366 	mdu_version_t ver;
5367 
5368 	ver.major = MD_MAJOR_VERSION;
5369 	ver.minor = MD_MINOR_VERSION;
5370 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5371 
5372 	if (copy_to_user(arg, &ver, sizeof(ver)))
5373 		return -EFAULT;
5374 
5375 	return 0;
5376 }
5377 
get_array_info(struct mddev * mddev,void __user * arg)5378 static int get_array_info(struct mddev *mddev, void __user *arg)
5379 {
5380 	mdu_array_info_t info;
5381 	int nr,working,insync,failed,spare;
5382 	struct md_rdev *rdev;
5383 
5384 	nr = working = insync = failed = spare = 0;
5385 	rcu_read_lock();
5386 	rdev_for_each_rcu(rdev, mddev) {
5387 		nr++;
5388 		if (test_bit(Faulty, &rdev->flags))
5389 			failed++;
5390 		else {
5391 			working++;
5392 			if (test_bit(In_sync, &rdev->flags))
5393 				insync++;
5394 			else
5395 				spare++;
5396 		}
5397 	}
5398 	rcu_read_unlock();
5399 
5400 	info.major_version = mddev->major_version;
5401 	info.minor_version = mddev->minor_version;
5402 	info.patch_version = MD_PATCHLEVEL_VERSION;
5403 	info.ctime         = mddev->ctime;
5404 	info.level         = mddev->level;
5405 	info.size          = mddev->dev_sectors / 2;
5406 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5407 		info.size = -1;
5408 	info.nr_disks      = nr;
5409 	info.raid_disks    = mddev->raid_disks;
5410 	info.md_minor      = mddev->md_minor;
5411 	info.not_persistent= !mddev->persistent;
5412 
5413 	info.utime         = mddev->utime;
5414 	info.state         = 0;
5415 	if (mddev->in_sync)
5416 		info.state = (1<<MD_SB_CLEAN);
5417 	if (mddev->bitmap && mddev->bitmap_info.offset)
5418 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5419 	info.active_disks  = insync;
5420 	info.working_disks = working;
5421 	info.failed_disks  = failed;
5422 	info.spare_disks   = spare;
5423 
5424 	info.layout        = mddev->layout;
5425 	info.chunk_size    = mddev->chunk_sectors << 9;
5426 
5427 	if (copy_to_user(arg, &info, sizeof(info)))
5428 		return -EFAULT;
5429 
5430 	return 0;
5431 }
5432 
get_bitmap_file(struct mddev * mddev,void __user * arg)5433 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5434 {
5435 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5436 	char *ptr, *buf = NULL;
5437 	int err = -ENOMEM;
5438 
5439 	file = kzalloc(sizeof(*file), GFP_NOIO);
5440 	if (!file)
5441 		goto out;
5442 
5443 	/* bitmap disabled, zero the first byte and copy out */
5444 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5445 		file->pathname[0] = '\0';
5446 		goto copy_out;
5447 	}
5448 
5449 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5450 	if (!buf)
5451 		goto out;
5452 
5453 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5454 		     buf, sizeof(file->pathname));
5455 	if (IS_ERR(ptr))
5456 		goto out;
5457 
5458 	strcpy(file->pathname, ptr);
5459 
5460 copy_out:
5461 	err = 0;
5462 	if (copy_to_user(arg, file, sizeof(*file)))
5463 		err = -EFAULT;
5464 out:
5465 	kfree(buf);
5466 	kfree(file);
5467 	return err;
5468 }
5469 
get_disk_info(struct mddev * mddev,void __user * arg)5470 static int get_disk_info(struct mddev *mddev, void __user * arg)
5471 {
5472 	mdu_disk_info_t info;
5473 	struct md_rdev *rdev;
5474 
5475 	if (copy_from_user(&info, arg, sizeof(info)))
5476 		return -EFAULT;
5477 
5478 	rcu_read_lock();
5479 	rdev = find_rdev_nr_rcu(mddev, info.number);
5480 	if (rdev) {
5481 		info.major = MAJOR(rdev->bdev->bd_dev);
5482 		info.minor = MINOR(rdev->bdev->bd_dev);
5483 		info.raid_disk = rdev->raid_disk;
5484 		info.state = 0;
5485 		if (test_bit(Faulty, &rdev->flags))
5486 			info.state |= (1<<MD_DISK_FAULTY);
5487 		else if (test_bit(In_sync, &rdev->flags)) {
5488 			info.state |= (1<<MD_DISK_ACTIVE);
5489 			info.state |= (1<<MD_DISK_SYNC);
5490 		}
5491 		if (test_bit(WriteMostly, &rdev->flags))
5492 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5493 	} else {
5494 		info.major = info.minor = 0;
5495 		info.raid_disk = -1;
5496 		info.state = (1<<MD_DISK_REMOVED);
5497 	}
5498 	rcu_read_unlock();
5499 
5500 	if (copy_to_user(arg, &info, sizeof(info)))
5501 		return -EFAULT;
5502 
5503 	return 0;
5504 }
5505 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5506 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5507 {
5508 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5509 	struct md_rdev *rdev;
5510 	dev_t dev = MKDEV(info->major,info->minor);
5511 
5512 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5513 		return -EOVERFLOW;
5514 
5515 	if (!mddev->raid_disks) {
5516 		int err;
5517 		/* expecting a device which has a superblock */
5518 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5519 		if (IS_ERR(rdev)) {
5520 			printk(KERN_WARNING
5521 				"md: md_import_device returned %ld\n",
5522 				PTR_ERR(rdev));
5523 			return PTR_ERR(rdev);
5524 		}
5525 		if (!list_empty(&mddev->disks)) {
5526 			struct md_rdev *rdev0
5527 				= list_entry(mddev->disks.next,
5528 					     struct md_rdev, same_set);
5529 			err = super_types[mddev->major_version]
5530 				.load_super(rdev, rdev0, mddev->minor_version);
5531 			if (err < 0) {
5532 				printk(KERN_WARNING
5533 					"md: %s has different UUID to %s\n",
5534 					bdevname(rdev->bdev,b),
5535 					bdevname(rdev0->bdev,b2));
5536 				export_rdev(rdev);
5537 				return -EINVAL;
5538 			}
5539 		}
5540 		err = bind_rdev_to_array(rdev, mddev);
5541 		if (err)
5542 			export_rdev(rdev);
5543 		return err;
5544 	}
5545 
5546 	/*
5547 	 * add_new_disk can be used once the array is assembled
5548 	 * to add "hot spares".  They must already have a superblock
5549 	 * written
5550 	 */
5551 	if (mddev->pers) {
5552 		int err;
5553 		if (!mddev->pers->hot_add_disk) {
5554 			printk(KERN_WARNING
5555 				"%s: personality does not support diskops!\n",
5556 			       mdname(mddev));
5557 			return -EINVAL;
5558 		}
5559 		if (mddev->persistent)
5560 			rdev = md_import_device(dev, mddev->major_version,
5561 						mddev->minor_version);
5562 		else
5563 			rdev = md_import_device(dev, -1, -1);
5564 		if (IS_ERR(rdev)) {
5565 			printk(KERN_WARNING
5566 				"md: md_import_device returned %ld\n",
5567 				PTR_ERR(rdev));
5568 			return PTR_ERR(rdev);
5569 		}
5570 		/* set saved_raid_disk if appropriate */
5571 		if (!mddev->persistent) {
5572 			if (info->state & (1<<MD_DISK_SYNC)  &&
5573 			    info->raid_disk < mddev->raid_disks) {
5574 				rdev->raid_disk = info->raid_disk;
5575 				set_bit(In_sync, &rdev->flags);
5576 				clear_bit(Bitmap_sync, &rdev->flags);
5577 			} else
5578 				rdev->raid_disk = -1;
5579 			rdev->saved_raid_disk = rdev->raid_disk;
5580 		} else
5581 			super_types[mddev->major_version].
5582 				validate_super(mddev, rdev);
5583 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5584 		     rdev->raid_disk != info->raid_disk) {
5585 			/* This was a hot-add request, but events doesn't
5586 			 * match, so reject it.
5587 			 */
5588 			export_rdev(rdev);
5589 			return -EINVAL;
5590 		}
5591 
5592 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5593 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5594 			set_bit(WriteMostly, &rdev->flags);
5595 		else
5596 			clear_bit(WriteMostly, &rdev->flags);
5597 
5598 		rdev->raid_disk = -1;
5599 		err = bind_rdev_to_array(rdev, mddev);
5600 		if (!err && !mddev->pers->hot_remove_disk) {
5601 			/* If there is hot_add_disk but no hot_remove_disk
5602 			 * then added disks for geometry changes,
5603 			 * and should be added immediately.
5604 			 */
5605 			super_types[mddev->major_version].
5606 				validate_super(mddev, rdev);
5607 			err = mddev->pers->hot_add_disk(mddev, rdev);
5608 			if (err)
5609 				unbind_rdev_from_array(rdev);
5610 		}
5611 		if (err)
5612 			export_rdev(rdev);
5613 		else
5614 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5615 
5616 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5617 		if (mddev->degraded)
5618 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5619 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5620 		if (!err)
5621 			md_new_event(mddev);
5622 		md_wakeup_thread(mddev->thread);
5623 		return err;
5624 	}
5625 
5626 	/* otherwise, add_new_disk is only allowed
5627 	 * for major_version==0 superblocks
5628 	 */
5629 	if (mddev->major_version != 0) {
5630 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5631 		       mdname(mddev));
5632 		return -EINVAL;
5633 	}
5634 
5635 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5636 		int err;
5637 		rdev = md_import_device(dev, -1, 0);
5638 		if (IS_ERR(rdev)) {
5639 			printk(KERN_WARNING
5640 				"md: error, md_import_device() returned %ld\n",
5641 				PTR_ERR(rdev));
5642 			return PTR_ERR(rdev);
5643 		}
5644 		rdev->desc_nr = info->number;
5645 		if (info->raid_disk < mddev->raid_disks)
5646 			rdev->raid_disk = info->raid_disk;
5647 		else
5648 			rdev->raid_disk = -1;
5649 
5650 		if (rdev->raid_disk < mddev->raid_disks)
5651 			if (info->state & (1<<MD_DISK_SYNC))
5652 				set_bit(In_sync, &rdev->flags);
5653 
5654 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5655 			set_bit(WriteMostly, &rdev->flags);
5656 
5657 		if (!mddev->persistent) {
5658 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5659 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5660 		} else
5661 			rdev->sb_start = calc_dev_sboffset(rdev);
5662 		rdev->sectors = rdev->sb_start;
5663 
5664 		err = bind_rdev_to_array(rdev, mddev);
5665 		if (err) {
5666 			export_rdev(rdev);
5667 			return err;
5668 		}
5669 	}
5670 
5671 	return 0;
5672 }
5673 
hot_remove_disk(struct mddev * mddev,dev_t dev)5674 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5675 {
5676 	char b[BDEVNAME_SIZE];
5677 	struct md_rdev *rdev;
5678 
5679 	rdev = find_rdev(mddev, dev);
5680 	if (!rdev)
5681 		return -ENXIO;
5682 
5683 	clear_bit(Blocked, &rdev->flags);
5684 	remove_and_add_spares(mddev, rdev);
5685 
5686 	if (rdev->raid_disk >= 0)
5687 		goto busy;
5688 
5689 	kick_rdev_from_array(rdev);
5690 	md_update_sb(mddev, 1);
5691 	md_new_event(mddev);
5692 
5693 	return 0;
5694 busy:
5695 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5696 		bdevname(rdev->bdev,b), mdname(mddev));
5697 	return -EBUSY;
5698 }
5699 
hot_add_disk(struct mddev * mddev,dev_t dev)5700 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5701 {
5702 	char b[BDEVNAME_SIZE];
5703 	int err;
5704 	struct md_rdev *rdev;
5705 
5706 	if (!mddev->pers)
5707 		return -ENODEV;
5708 
5709 	if (mddev->major_version != 0) {
5710 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5711 			" version-0 superblocks.\n",
5712 			mdname(mddev));
5713 		return -EINVAL;
5714 	}
5715 	if (!mddev->pers->hot_add_disk) {
5716 		printk(KERN_WARNING
5717 			"%s: personality does not support diskops!\n",
5718 			mdname(mddev));
5719 		return -EINVAL;
5720 	}
5721 
5722 	rdev = md_import_device(dev, -1, 0);
5723 	if (IS_ERR(rdev)) {
5724 		printk(KERN_WARNING
5725 			"md: error, md_import_device() returned %ld\n",
5726 			PTR_ERR(rdev));
5727 		return -EINVAL;
5728 	}
5729 
5730 	if (mddev->persistent)
5731 		rdev->sb_start = calc_dev_sboffset(rdev);
5732 	else
5733 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5734 
5735 	rdev->sectors = rdev->sb_start;
5736 
5737 	if (test_bit(Faulty, &rdev->flags)) {
5738 		printk(KERN_WARNING
5739 			"md: can not hot-add faulty %s disk to %s!\n",
5740 			bdevname(rdev->bdev,b), mdname(mddev));
5741 		err = -EINVAL;
5742 		goto abort_export;
5743 	}
5744 	clear_bit(In_sync, &rdev->flags);
5745 	rdev->desc_nr = -1;
5746 	rdev->saved_raid_disk = -1;
5747 	err = bind_rdev_to_array(rdev, mddev);
5748 	if (err)
5749 		goto abort_export;
5750 
5751 	/*
5752 	 * The rest should better be atomic, we can have disk failures
5753 	 * noticed in interrupt contexts ...
5754 	 */
5755 
5756 	rdev->raid_disk = -1;
5757 
5758 	md_update_sb(mddev, 1);
5759 
5760 	/*
5761 	 * Kick recovery, maybe this spare has to be added to the
5762 	 * array immediately.
5763 	 */
5764 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5765 	md_wakeup_thread(mddev->thread);
5766 	md_new_event(mddev);
5767 	return 0;
5768 
5769 abort_export:
5770 	export_rdev(rdev);
5771 	return err;
5772 }
5773 
set_bitmap_file(struct mddev * mddev,int fd)5774 static int set_bitmap_file(struct mddev *mddev, int fd)
5775 {
5776 	int err = 0;
5777 
5778 	if (mddev->pers) {
5779 		if (!mddev->pers->quiesce || !mddev->thread)
5780 			return -EBUSY;
5781 		if (mddev->recovery || mddev->sync_thread)
5782 			return -EBUSY;
5783 		/* we should be able to change the bitmap.. */
5784 	}
5785 
5786 	if (fd >= 0) {
5787 		struct inode *inode;
5788 		if (mddev->bitmap)
5789 			return -EEXIST; /* cannot add when bitmap is present */
5790 		mddev->bitmap_info.file = fget(fd);
5791 
5792 		if (mddev->bitmap_info.file == NULL) {
5793 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5794 			       mdname(mddev));
5795 			return -EBADF;
5796 		}
5797 
5798 		inode = mddev->bitmap_info.file->f_mapping->host;
5799 		if (!S_ISREG(inode->i_mode)) {
5800 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5801 			       mdname(mddev));
5802 			err = -EBADF;
5803 		} else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5804 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5805 			       mdname(mddev));
5806 			err = -EBADF;
5807 		} else if (atomic_read(&inode->i_writecount) != 1) {
5808 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5809 			       mdname(mddev));
5810 			err = -EBUSY;
5811 		}
5812 		if (err) {
5813 			fput(mddev->bitmap_info.file);
5814 			mddev->bitmap_info.file = NULL;
5815 			return err;
5816 		}
5817 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5818 	} else if (mddev->bitmap == NULL)
5819 		return -ENOENT; /* cannot remove what isn't there */
5820 	err = 0;
5821 	if (mddev->pers) {
5822 		mddev->pers->quiesce(mddev, 1);
5823 		if (fd >= 0) {
5824 			err = bitmap_create(mddev);
5825 			if (!err)
5826 				err = bitmap_load(mddev);
5827 		}
5828 		if (fd < 0 || err) {
5829 			bitmap_destroy(mddev);
5830 			fd = -1; /* make sure to put the file */
5831 		}
5832 		mddev->pers->quiesce(mddev, 0);
5833 	}
5834 	if (fd < 0) {
5835 		if (mddev->bitmap_info.file)
5836 			fput(mddev->bitmap_info.file);
5837 		mddev->bitmap_info.file = NULL;
5838 	}
5839 
5840 	return err;
5841 }
5842 
5843 /*
5844  * set_array_info is used two different ways
5845  * The original usage is when creating a new array.
5846  * In this usage, raid_disks is > 0 and it together with
5847  *  level, size, not_persistent,layout,chunksize determine the
5848  *  shape of the array.
5849  *  This will always create an array with a type-0.90.0 superblock.
5850  * The newer usage is when assembling an array.
5851  *  In this case raid_disks will be 0, and the major_version field is
5852  *  use to determine which style super-blocks are to be found on the devices.
5853  *  The minor and patch _version numbers are also kept incase the
5854  *  super_block handler wishes to interpret them.
5855  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)5856 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5857 {
5858 
5859 	if (info->raid_disks == 0) {
5860 		/* just setting version number for superblock loading */
5861 		if (info->major_version < 0 ||
5862 		    info->major_version >= ARRAY_SIZE(super_types) ||
5863 		    super_types[info->major_version].name == NULL) {
5864 			/* maybe try to auto-load a module? */
5865 			printk(KERN_INFO
5866 				"md: superblock version %d not known\n",
5867 				info->major_version);
5868 			return -EINVAL;
5869 		}
5870 		mddev->major_version = info->major_version;
5871 		mddev->minor_version = info->minor_version;
5872 		mddev->patch_version = info->patch_version;
5873 		mddev->persistent = !info->not_persistent;
5874 		/* ensure mddev_put doesn't delete this now that there
5875 		 * is some minimal configuration.
5876 		 */
5877 		mddev->ctime         = get_seconds();
5878 		return 0;
5879 	}
5880 	mddev->major_version = MD_MAJOR_VERSION;
5881 	mddev->minor_version = MD_MINOR_VERSION;
5882 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5883 	mddev->ctime         = get_seconds();
5884 
5885 	mddev->level         = info->level;
5886 	mddev->clevel[0]     = 0;
5887 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5888 	mddev->raid_disks    = info->raid_disks;
5889 	/* don't set md_minor, it is determined by which /dev/md* was
5890 	 * openned
5891 	 */
5892 	if (info->state & (1<<MD_SB_CLEAN))
5893 		mddev->recovery_cp = MaxSector;
5894 	else
5895 		mddev->recovery_cp = 0;
5896 	mddev->persistent    = ! info->not_persistent;
5897 	mddev->external	     = 0;
5898 
5899 	mddev->layout        = info->layout;
5900 	mddev->chunk_sectors = info->chunk_size >> 9;
5901 
5902 	mddev->max_disks     = MD_SB_DISKS;
5903 
5904 	if (mddev->persistent)
5905 		mddev->flags         = 0;
5906 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5907 
5908 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5909 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5910 	mddev->bitmap_info.offset = 0;
5911 
5912 	mddev->reshape_position = MaxSector;
5913 
5914 	/*
5915 	 * Generate a 128 bit UUID
5916 	 */
5917 	get_random_bytes(mddev->uuid, 16);
5918 
5919 	mddev->new_level = mddev->level;
5920 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5921 	mddev->new_layout = mddev->layout;
5922 	mddev->delta_disks = 0;
5923 	mddev->reshape_backwards = 0;
5924 
5925 	return 0;
5926 }
5927 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)5928 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5929 {
5930 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5931 
5932 	if (mddev->external_size)
5933 		return;
5934 
5935 	mddev->array_sectors = array_sectors;
5936 }
5937 EXPORT_SYMBOL(md_set_array_sectors);
5938 
update_size(struct mddev * mddev,sector_t num_sectors)5939 static int update_size(struct mddev *mddev, sector_t num_sectors)
5940 {
5941 	struct md_rdev *rdev;
5942 	int rv;
5943 	int fit = (num_sectors == 0);
5944 
5945 	if (mddev->pers->resize == NULL)
5946 		return -EINVAL;
5947 	/* The "num_sectors" is the number of sectors of each device that
5948 	 * is used.  This can only make sense for arrays with redundancy.
5949 	 * linear and raid0 always use whatever space is available. We can only
5950 	 * consider changing this number if no resync or reconstruction is
5951 	 * happening, and if the new size is acceptable. It must fit before the
5952 	 * sb_start or, if that is <data_offset, it must fit before the size
5953 	 * of each device.  If num_sectors is zero, we find the largest size
5954 	 * that fits.
5955 	 */
5956 	if (mddev->sync_thread)
5957 		return -EBUSY;
5958 	if (mddev->ro)
5959 		return -EROFS;
5960 
5961 	rdev_for_each(rdev, mddev) {
5962 		sector_t avail = rdev->sectors;
5963 
5964 		if (fit && (num_sectors == 0 || num_sectors > avail))
5965 			num_sectors = avail;
5966 		if (avail < num_sectors)
5967 			return -ENOSPC;
5968 	}
5969 	rv = mddev->pers->resize(mddev, num_sectors);
5970 	if (!rv)
5971 		revalidate_disk(mddev->gendisk);
5972 	return rv;
5973 }
5974 
update_raid_disks(struct mddev * mddev,int raid_disks)5975 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5976 {
5977 	int rv;
5978 	struct md_rdev *rdev;
5979 	/* change the number of raid disks */
5980 	if (mddev->pers->check_reshape == NULL)
5981 		return -EINVAL;
5982 	if (mddev->ro)
5983 		return -EROFS;
5984 	if (raid_disks <= 0 ||
5985 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5986 		return -EINVAL;
5987 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5988 		return -EBUSY;
5989 
5990 	rdev_for_each(rdev, mddev) {
5991 		if (mddev->raid_disks < raid_disks &&
5992 		    rdev->data_offset < rdev->new_data_offset)
5993 			return -EINVAL;
5994 		if (mddev->raid_disks > raid_disks &&
5995 		    rdev->data_offset > rdev->new_data_offset)
5996 			return -EINVAL;
5997 	}
5998 
5999 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6000 	if (mddev->delta_disks < 0)
6001 		mddev->reshape_backwards = 1;
6002 	else if (mddev->delta_disks > 0)
6003 		mddev->reshape_backwards = 0;
6004 
6005 	rv = mddev->pers->check_reshape(mddev);
6006 	if (rv < 0) {
6007 		mddev->delta_disks = 0;
6008 		mddev->reshape_backwards = 0;
6009 	}
6010 	return rv;
6011 }
6012 
6013 /*
6014  * update_array_info is used to change the configuration of an
6015  * on-line array.
6016  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6017  * fields in the info are checked against the array.
6018  * Any differences that cannot be handled will cause an error.
6019  * Normally, only one change can be managed at a time.
6020  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6021 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6022 {
6023 	int rv = 0;
6024 	int cnt = 0;
6025 	int state = 0;
6026 
6027 	/* calculate expected state,ignoring low bits */
6028 	if (mddev->bitmap && mddev->bitmap_info.offset)
6029 		state |= (1 << MD_SB_BITMAP_PRESENT);
6030 
6031 	if (mddev->major_version != info->major_version ||
6032 	    mddev->minor_version != info->minor_version ||
6033 /*	    mddev->patch_version != info->patch_version || */
6034 	    mddev->ctime         != info->ctime         ||
6035 	    mddev->level         != info->level         ||
6036 /*	    mddev->layout        != info->layout        || */
6037 	    mddev->persistent	 != !info->not_persistent ||
6038 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6039 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6040 	    ((state^info->state) & 0xfffffe00)
6041 		)
6042 		return -EINVAL;
6043 	/* Check there is only one change */
6044 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6045 		cnt++;
6046 	if (mddev->raid_disks != info->raid_disks)
6047 		cnt++;
6048 	if (mddev->layout != info->layout)
6049 		cnt++;
6050 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6051 		cnt++;
6052 	if (cnt == 0)
6053 		return 0;
6054 	if (cnt > 1)
6055 		return -EINVAL;
6056 
6057 	if (mddev->layout != info->layout) {
6058 		/* Change layout
6059 		 * we don't need to do anything at the md level, the
6060 		 * personality will take care of it all.
6061 		 */
6062 		if (mddev->pers->check_reshape == NULL)
6063 			return -EINVAL;
6064 		else {
6065 			mddev->new_layout = info->layout;
6066 			rv = mddev->pers->check_reshape(mddev);
6067 			if (rv)
6068 				mddev->new_layout = mddev->layout;
6069 			return rv;
6070 		}
6071 	}
6072 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6073 		rv = update_size(mddev, (sector_t)info->size * 2);
6074 
6075 	if (mddev->raid_disks    != info->raid_disks)
6076 		rv = update_raid_disks(mddev, info->raid_disks);
6077 
6078 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6079 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6080 			return -EINVAL;
6081 		if (mddev->recovery || mddev->sync_thread)
6082 			return -EBUSY;
6083 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6084 			/* add the bitmap */
6085 			if (mddev->bitmap)
6086 				return -EEXIST;
6087 			if (mddev->bitmap_info.default_offset == 0)
6088 				return -EINVAL;
6089 			mddev->bitmap_info.offset =
6090 				mddev->bitmap_info.default_offset;
6091 			mddev->bitmap_info.space =
6092 				mddev->bitmap_info.default_space;
6093 			mddev->pers->quiesce(mddev, 1);
6094 			rv = bitmap_create(mddev);
6095 			if (!rv)
6096 				rv = bitmap_load(mddev);
6097 			if (rv)
6098 				bitmap_destroy(mddev);
6099 			mddev->pers->quiesce(mddev, 0);
6100 		} else {
6101 			/* remove the bitmap */
6102 			if (!mddev->bitmap)
6103 				return -ENOENT;
6104 			if (mddev->bitmap->storage.file)
6105 				return -EINVAL;
6106 			mddev->pers->quiesce(mddev, 1);
6107 			bitmap_destroy(mddev);
6108 			mddev->pers->quiesce(mddev, 0);
6109 			mddev->bitmap_info.offset = 0;
6110 		}
6111 	}
6112 	md_update_sb(mddev, 1);
6113 	return rv;
6114 }
6115 
set_disk_faulty(struct mddev * mddev,dev_t dev)6116 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6117 {
6118 	struct md_rdev *rdev;
6119 	int err = 0;
6120 
6121 	if (mddev->pers == NULL)
6122 		return -ENODEV;
6123 
6124 	rcu_read_lock();
6125 	rdev = find_rdev_rcu(mddev, dev);
6126 	if (!rdev)
6127 		err =  -ENODEV;
6128 	else {
6129 		md_error(mddev, rdev);
6130 		if (!test_bit(Faulty, &rdev->flags))
6131 			err = -EBUSY;
6132 	}
6133 	rcu_read_unlock();
6134 	return err;
6135 }
6136 
6137 /*
6138  * We have a problem here : there is no easy way to give a CHS
6139  * virtual geometry. We currently pretend that we have a 2 heads
6140  * 4 sectors (with a BIG number of cylinders...). This drives
6141  * dosfs just mad... ;-)
6142  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6143 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6144 {
6145 	struct mddev *mddev = bdev->bd_disk->private_data;
6146 
6147 	geo->heads = 2;
6148 	geo->sectors = 4;
6149 	geo->cylinders = mddev->array_sectors / 8;
6150 	return 0;
6151 }
6152 
md_ioctl_valid(unsigned int cmd)6153 static inline bool md_ioctl_valid(unsigned int cmd)
6154 {
6155 	switch (cmd) {
6156 	case ADD_NEW_DISK:
6157 	case BLKROSET:
6158 	case GET_ARRAY_INFO:
6159 	case GET_BITMAP_FILE:
6160 	case GET_DISK_INFO:
6161 	case HOT_ADD_DISK:
6162 	case HOT_REMOVE_DISK:
6163 	case RAID_AUTORUN:
6164 	case RAID_VERSION:
6165 	case RESTART_ARRAY_RW:
6166 	case RUN_ARRAY:
6167 	case SET_ARRAY_INFO:
6168 	case SET_BITMAP_FILE:
6169 	case SET_DISK_FAULTY:
6170 	case STOP_ARRAY:
6171 	case STOP_ARRAY_RO:
6172 		return true;
6173 	default:
6174 		return false;
6175 	}
6176 }
6177 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6178 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6179 			unsigned int cmd, unsigned long arg)
6180 {
6181 	int err = 0;
6182 	void __user *argp = (void __user *)arg;
6183 	struct mddev *mddev = NULL;
6184 	int ro;
6185 
6186 	if (!md_ioctl_valid(cmd))
6187 		return -ENOTTY;
6188 
6189 	switch (cmd) {
6190 	case RAID_VERSION:
6191 	case GET_ARRAY_INFO:
6192 	case GET_DISK_INFO:
6193 		break;
6194 	default:
6195 		if (!capable(CAP_SYS_ADMIN))
6196 			return -EACCES;
6197 	}
6198 
6199 	/*
6200 	 * Commands dealing with the RAID driver but not any
6201 	 * particular array:
6202 	 */
6203 	switch (cmd) {
6204 	case RAID_VERSION:
6205 		err = get_version(argp);
6206 		goto out;
6207 
6208 #ifndef MODULE
6209 	case RAID_AUTORUN:
6210 		err = 0;
6211 		autostart_arrays(arg);
6212 		goto out;
6213 #endif
6214 	default:;
6215 	}
6216 
6217 	/*
6218 	 * Commands creating/starting a new array:
6219 	 */
6220 
6221 	mddev = bdev->bd_disk->private_data;
6222 
6223 	if (!mddev) {
6224 		BUG();
6225 		goto out;
6226 	}
6227 
6228 	/* Some actions do not requires the mutex */
6229 	switch (cmd) {
6230 	case GET_ARRAY_INFO:
6231 		if (!mddev->raid_disks && !mddev->external)
6232 			err = -ENODEV;
6233 		else
6234 			err = get_array_info(mddev, argp);
6235 		goto out;
6236 
6237 	case GET_DISK_INFO:
6238 		if (!mddev->raid_disks && !mddev->external)
6239 			err = -ENODEV;
6240 		else
6241 			err = get_disk_info(mddev, argp);
6242 		goto out;
6243 
6244 	case SET_DISK_FAULTY:
6245 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6246 		goto out;
6247 	}
6248 
6249 	if (cmd == ADD_NEW_DISK)
6250 		/* need to ensure md_delayed_delete() has completed */
6251 		flush_workqueue(md_misc_wq);
6252 
6253 	if (cmd == HOT_REMOVE_DISK)
6254 		/* need to ensure recovery thread has run */
6255 		wait_event_interruptible_timeout(mddev->sb_wait,
6256 						 !test_bit(MD_RECOVERY_NEEDED,
6257 							   &mddev->flags),
6258 						 msecs_to_jiffies(5000));
6259 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6260 		/* Need to flush page cache, and ensure no-one else opens
6261 		 * and writes
6262 		 */
6263 		mutex_lock(&mddev->open_mutex);
6264 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6265 			mutex_unlock(&mddev->open_mutex);
6266 			err = -EBUSY;
6267 			goto out;
6268 		}
6269 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6270 		mutex_unlock(&mddev->open_mutex);
6271 		sync_blockdev(bdev);
6272 	}
6273 	err = mddev_lock(mddev);
6274 	if (err) {
6275 		printk(KERN_INFO
6276 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6277 			err, cmd);
6278 		goto out;
6279 	}
6280 
6281 	if (cmd == SET_ARRAY_INFO) {
6282 		mdu_array_info_t info;
6283 		if (!arg)
6284 			memset(&info, 0, sizeof(info));
6285 		else if (copy_from_user(&info, argp, sizeof(info))) {
6286 			err = -EFAULT;
6287 			goto unlock;
6288 		}
6289 		if (mddev->pers) {
6290 			err = update_array_info(mddev, &info);
6291 			if (err) {
6292 				printk(KERN_WARNING "md: couldn't update"
6293 				       " array info. %d\n", err);
6294 				goto unlock;
6295 			}
6296 			goto unlock;
6297 		}
6298 		if (!list_empty(&mddev->disks)) {
6299 			printk(KERN_WARNING
6300 			       "md: array %s already has disks!\n",
6301 			       mdname(mddev));
6302 			err = -EBUSY;
6303 			goto unlock;
6304 		}
6305 		if (mddev->raid_disks) {
6306 			printk(KERN_WARNING
6307 			       "md: array %s already initialised!\n",
6308 			       mdname(mddev));
6309 			err = -EBUSY;
6310 			goto unlock;
6311 		}
6312 		err = set_array_info(mddev, &info);
6313 		if (err) {
6314 			printk(KERN_WARNING "md: couldn't set"
6315 			       " array info. %d\n", err);
6316 			goto unlock;
6317 		}
6318 		goto unlock;
6319 	}
6320 
6321 	/*
6322 	 * Commands querying/configuring an existing array:
6323 	 */
6324 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6325 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6326 	if ((!mddev->raid_disks && !mddev->external)
6327 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6328 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6329 	    && cmd != GET_BITMAP_FILE) {
6330 		err = -ENODEV;
6331 		goto unlock;
6332 	}
6333 
6334 	/*
6335 	 * Commands even a read-only array can execute:
6336 	 */
6337 	switch (cmd) {
6338 	case GET_BITMAP_FILE:
6339 		err = get_bitmap_file(mddev, argp);
6340 		goto unlock;
6341 
6342 	case RESTART_ARRAY_RW:
6343 		err = restart_array(mddev);
6344 		goto unlock;
6345 
6346 	case STOP_ARRAY:
6347 		err = do_md_stop(mddev, 0, bdev);
6348 		goto unlock;
6349 
6350 	case STOP_ARRAY_RO:
6351 		err = md_set_readonly(mddev, bdev);
6352 		goto unlock;
6353 
6354 	case HOT_REMOVE_DISK:
6355 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6356 		goto unlock;
6357 
6358 	case ADD_NEW_DISK:
6359 		/* We can support ADD_NEW_DISK on read-only arrays
6360 		 * on if we are re-adding a preexisting device.
6361 		 * So require mddev->pers and MD_DISK_SYNC.
6362 		 */
6363 		if (mddev->pers) {
6364 			mdu_disk_info_t info;
6365 			if (copy_from_user(&info, argp, sizeof(info)))
6366 				err = -EFAULT;
6367 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6368 				/* Need to clear read-only for this */
6369 				break;
6370 			else
6371 				err = add_new_disk(mddev, &info);
6372 			goto unlock;
6373 		}
6374 		break;
6375 
6376 	case BLKROSET:
6377 		if (get_user(ro, (int __user *)(arg))) {
6378 			err = -EFAULT;
6379 			goto unlock;
6380 		}
6381 		err = -EINVAL;
6382 
6383 		/* if the bdev is going readonly the value of mddev->ro
6384 		 * does not matter, no writes are coming
6385 		 */
6386 		if (ro)
6387 			goto unlock;
6388 
6389 		/* are we are already prepared for writes? */
6390 		if (mddev->ro != 1)
6391 			goto unlock;
6392 
6393 		/* transitioning to readauto need only happen for
6394 		 * arrays that call md_write_start
6395 		 */
6396 		if (mddev->pers) {
6397 			err = restart_array(mddev);
6398 			if (err == 0) {
6399 				mddev->ro = 2;
6400 				set_disk_ro(mddev->gendisk, 0);
6401 			}
6402 		}
6403 		goto unlock;
6404 	}
6405 
6406 	/*
6407 	 * The remaining ioctls are changing the state of the
6408 	 * superblock, so we do not allow them on read-only arrays.
6409 	 */
6410 	if (mddev->ro && mddev->pers) {
6411 		if (mddev->ro == 2) {
6412 			mddev->ro = 0;
6413 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6414 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6415 			/* mddev_unlock will wake thread */
6416 			/* If a device failed while we were read-only, we
6417 			 * need to make sure the metadata is updated now.
6418 			 */
6419 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6420 				mddev_unlock(mddev);
6421 				wait_event(mddev->sb_wait,
6422 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6423 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6424 				mddev_lock_nointr(mddev);
6425 			}
6426 		} else {
6427 			err = -EROFS;
6428 			goto unlock;
6429 		}
6430 	}
6431 
6432 	switch (cmd) {
6433 	case ADD_NEW_DISK:
6434 	{
6435 		mdu_disk_info_t info;
6436 		if (copy_from_user(&info, argp, sizeof(info)))
6437 			err = -EFAULT;
6438 		else
6439 			err = add_new_disk(mddev, &info);
6440 		goto unlock;
6441 	}
6442 
6443 	case HOT_ADD_DISK:
6444 		err = hot_add_disk(mddev, new_decode_dev(arg));
6445 		goto unlock;
6446 
6447 	case RUN_ARRAY:
6448 		err = do_md_run(mddev);
6449 		goto unlock;
6450 
6451 	case SET_BITMAP_FILE:
6452 		err = set_bitmap_file(mddev, (int)arg);
6453 		goto unlock;
6454 
6455 	default:
6456 		err = -EINVAL;
6457 		goto unlock;
6458 	}
6459 
6460 unlock:
6461 	if (mddev->hold_active == UNTIL_IOCTL &&
6462 	    err != -EINVAL)
6463 		mddev->hold_active = 0;
6464 	mddev_unlock(mddev);
6465 out:
6466 	return err;
6467 }
6468 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6469 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6470 		    unsigned int cmd, unsigned long arg)
6471 {
6472 	switch (cmd) {
6473 	case HOT_REMOVE_DISK:
6474 	case HOT_ADD_DISK:
6475 	case SET_DISK_FAULTY:
6476 	case SET_BITMAP_FILE:
6477 		/* These take in integer arg, do not convert */
6478 		break;
6479 	default:
6480 		arg = (unsigned long)compat_ptr(arg);
6481 		break;
6482 	}
6483 
6484 	return md_ioctl(bdev, mode, cmd, arg);
6485 }
6486 #endif /* CONFIG_COMPAT */
6487 
md_open(struct block_device * bdev,fmode_t mode)6488 static int md_open(struct block_device *bdev, fmode_t mode)
6489 {
6490 	/*
6491 	 * Succeed if we can lock the mddev, which confirms that
6492 	 * it isn't being stopped right now.
6493 	 */
6494 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6495 	int err;
6496 
6497 	if (!mddev)
6498 		return -ENODEV;
6499 
6500 	if (mddev->gendisk != bdev->bd_disk) {
6501 		/* we are racing with mddev_put which is discarding this
6502 		 * bd_disk.
6503 		 */
6504 		mddev_put(mddev);
6505 		/* Wait until bdev->bd_disk is definitely gone */
6506 		flush_workqueue(md_misc_wq);
6507 		/* Then retry the open from the top */
6508 		return -ERESTARTSYS;
6509 	}
6510 	BUG_ON(mddev != bdev->bd_disk->private_data);
6511 
6512 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6513 		goto out;
6514 
6515 	err = 0;
6516 	atomic_inc(&mddev->openers);
6517 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6518 	mutex_unlock(&mddev->open_mutex);
6519 
6520 	check_disk_change(bdev);
6521  out:
6522 	return err;
6523 }
6524 
md_release(struct gendisk * disk,fmode_t mode)6525 static void md_release(struct gendisk *disk, fmode_t mode)
6526 {
6527 	struct mddev *mddev = disk->private_data;
6528 
6529 	BUG_ON(!mddev);
6530 	atomic_dec(&mddev->openers);
6531 	mddev_put(mddev);
6532 }
6533 
md_media_changed(struct gendisk * disk)6534 static int md_media_changed(struct gendisk *disk)
6535 {
6536 	struct mddev *mddev = disk->private_data;
6537 
6538 	return mddev->changed;
6539 }
6540 
md_revalidate(struct gendisk * disk)6541 static int md_revalidate(struct gendisk *disk)
6542 {
6543 	struct mddev *mddev = disk->private_data;
6544 
6545 	mddev->changed = 0;
6546 	return 0;
6547 }
6548 static const struct block_device_operations md_fops =
6549 {
6550 	.owner		= THIS_MODULE,
6551 	.open		= md_open,
6552 	.release	= md_release,
6553 	.ioctl		= md_ioctl,
6554 #ifdef CONFIG_COMPAT
6555 	.compat_ioctl	= md_compat_ioctl,
6556 #endif
6557 	.getgeo		= md_getgeo,
6558 	.media_changed  = md_media_changed,
6559 	.revalidate_disk= md_revalidate,
6560 };
6561 
md_thread(void * arg)6562 static int md_thread(void *arg)
6563 {
6564 	struct md_thread *thread = arg;
6565 
6566 	/*
6567 	 * md_thread is a 'system-thread', it's priority should be very
6568 	 * high. We avoid resource deadlocks individually in each
6569 	 * raid personality. (RAID5 does preallocation) We also use RR and
6570 	 * the very same RT priority as kswapd, thus we will never get
6571 	 * into a priority inversion deadlock.
6572 	 *
6573 	 * we definitely have to have equal or higher priority than
6574 	 * bdflush, otherwise bdflush will deadlock if there are too
6575 	 * many dirty RAID5 blocks.
6576 	 */
6577 
6578 	allow_signal(SIGKILL);
6579 	while (!kthread_should_stop()) {
6580 
6581 		/* We need to wait INTERRUPTIBLE so that
6582 		 * we don't add to the load-average.
6583 		 * That means we need to be sure no signals are
6584 		 * pending
6585 		 */
6586 		if (signal_pending(current))
6587 			flush_signals(current);
6588 
6589 		wait_event_interruptible_timeout
6590 			(thread->wqueue,
6591 			 test_bit(THREAD_WAKEUP, &thread->flags)
6592 			 || kthread_should_stop(),
6593 			 thread->timeout);
6594 
6595 		clear_bit(THREAD_WAKEUP, &thread->flags);
6596 		if (!kthread_should_stop())
6597 			thread->run(thread);
6598 	}
6599 
6600 	return 0;
6601 }
6602 
md_wakeup_thread(struct md_thread * thread)6603 void md_wakeup_thread(struct md_thread *thread)
6604 {
6605 	if (thread) {
6606 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6607 		set_bit(THREAD_WAKEUP, &thread->flags);
6608 		wake_up(&thread->wqueue);
6609 	}
6610 }
6611 EXPORT_SYMBOL(md_wakeup_thread);
6612 
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)6613 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6614 		struct mddev *mddev, const char *name)
6615 {
6616 	struct md_thread *thread;
6617 
6618 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6619 	if (!thread)
6620 		return NULL;
6621 
6622 	init_waitqueue_head(&thread->wqueue);
6623 
6624 	thread->run = run;
6625 	thread->mddev = mddev;
6626 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6627 	thread->tsk = kthread_run(md_thread, thread,
6628 				  "%s_%s",
6629 				  mdname(thread->mddev),
6630 				  name);
6631 	if (IS_ERR(thread->tsk)) {
6632 		kfree(thread);
6633 		return NULL;
6634 	}
6635 	return thread;
6636 }
6637 EXPORT_SYMBOL(md_register_thread);
6638 
md_unregister_thread(struct md_thread ** threadp)6639 void md_unregister_thread(struct md_thread **threadp)
6640 {
6641 	struct md_thread *thread = *threadp;
6642 	if (!thread)
6643 		return;
6644 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6645 	/* Locking ensures that mddev_unlock does not wake_up a
6646 	 * non-existent thread
6647 	 */
6648 	spin_lock(&pers_lock);
6649 	*threadp = NULL;
6650 	spin_unlock(&pers_lock);
6651 
6652 	kthread_stop(thread->tsk);
6653 	kfree(thread);
6654 }
6655 EXPORT_SYMBOL(md_unregister_thread);
6656 
md_error(struct mddev * mddev,struct md_rdev * rdev)6657 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6658 {
6659 	if (!rdev || test_bit(Faulty, &rdev->flags))
6660 		return;
6661 
6662 	if (!mddev->pers || !mddev->pers->error_handler)
6663 		return;
6664 	mddev->pers->error_handler(mddev,rdev);
6665 	if (mddev->degraded)
6666 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6667 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6668 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6669 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6670 	md_wakeup_thread(mddev->thread);
6671 	if (mddev->event_work.func)
6672 		queue_work(md_misc_wq, &mddev->event_work);
6673 	md_new_event_inintr(mddev);
6674 }
6675 EXPORT_SYMBOL(md_error);
6676 
6677 /* seq_file implementation /proc/mdstat */
6678 
status_unused(struct seq_file * seq)6679 static void status_unused(struct seq_file *seq)
6680 {
6681 	int i = 0;
6682 	struct md_rdev *rdev;
6683 
6684 	seq_printf(seq, "unused devices: ");
6685 
6686 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6687 		char b[BDEVNAME_SIZE];
6688 		i++;
6689 		seq_printf(seq, "%s ",
6690 			      bdevname(rdev->bdev,b));
6691 	}
6692 	if (!i)
6693 		seq_printf(seq, "<none>");
6694 
6695 	seq_printf(seq, "\n");
6696 }
6697 
status_resync(struct seq_file * seq,struct mddev * mddev)6698 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6699 {
6700 	sector_t max_sectors, resync, res;
6701 	unsigned long dt, db;
6702 	sector_t rt;
6703 	int scale;
6704 	unsigned int per_milli;
6705 
6706 	if (mddev->curr_resync <= 3)
6707 		resync = 0;
6708 	else
6709 		resync = mddev->curr_resync
6710 			- atomic_read(&mddev->recovery_active);
6711 
6712 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6713 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6714 		max_sectors = mddev->resync_max_sectors;
6715 	else
6716 		max_sectors = mddev->dev_sectors;
6717 
6718 	WARN_ON(max_sectors == 0);
6719 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6720 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6721 	 * u32, as those are the requirements for sector_div.
6722 	 * Thus 'scale' must be at least 10
6723 	 */
6724 	scale = 10;
6725 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6726 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6727 			scale++;
6728 	}
6729 	res = (resync>>scale)*1000;
6730 	sector_div(res, (u32)((max_sectors>>scale)+1));
6731 
6732 	per_milli = res;
6733 	{
6734 		int i, x = per_milli/50, y = 20-x;
6735 		seq_printf(seq, "[");
6736 		for (i = 0; i < x; i++)
6737 			seq_printf(seq, "=");
6738 		seq_printf(seq, ">");
6739 		for (i = 0; i < y; i++)
6740 			seq_printf(seq, ".");
6741 		seq_printf(seq, "] ");
6742 	}
6743 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6744 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6745 		    "reshape" :
6746 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6747 		     "check" :
6748 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6749 		      "resync" : "recovery"))),
6750 		   per_milli/10, per_milli % 10,
6751 		   (unsigned long long) resync/2,
6752 		   (unsigned long long) max_sectors/2);
6753 
6754 	/*
6755 	 * dt: time from mark until now
6756 	 * db: blocks written from mark until now
6757 	 * rt: remaining time
6758 	 *
6759 	 * rt is a sector_t, so could be 32bit or 64bit.
6760 	 * So we divide before multiply in case it is 32bit and close
6761 	 * to the limit.
6762 	 * We scale the divisor (db) by 32 to avoid losing precision
6763 	 * near the end of resync when the number of remaining sectors
6764 	 * is close to 'db'.
6765 	 * We then divide rt by 32 after multiplying by db to compensate.
6766 	 * The '+1' avoids division by zero if db is very small.
6767 	 */
6768 	dt = ((jiffies - mddev->resync_mark) / HZ);
6769 	if (!dt) dt++;
6770 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6771 		- mddev->resync_mark_cnt;
6772 
6773 	rt = max_sectors - resync;    /* number of remaining sectors */
6774 	sector_div(rt, db/32+1);
6775 	rt *= dt;
6776 	rt >>= 5;
6777 
6778 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6779 		   ((unsigned long)rt % 60)/6);
6780 
6781 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6782 }
6783 
md_seq_start(struct seq_file * seq,loff_t * pos)6784 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6785 {
6786 	struct list_head *tmp;
6787 	loff_t l = *pos;
6788 	struct mddev *mddev;
6789 
6790 	if (l >= 0x10000)
6791 		return NULL;
6792 	if (!l--)
6793 		/* header */
6794 		return (void*)1;
6795 
6796 	spin_lock(&all_mddevs_lock);
6797 	list_for_each(tmp,&all_mddevs)
6798 		if (!l--) {
6799 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6800 			mddev_get(mddev);
6801 			spin_unlock(&all_mddevs_lock);
6802 			return mddev;
6803 		}
6804 	spin_unlock(&all_mddevs_lock);
6805 	if (!l--)
6806 		return (void*)2;/* tail */
6807 	return NULL;
6808 }
6809 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)6810 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6811 {
6812 	struct list_head *tmp;
6813 	struct mddev *next_mddev, *mddev = v;
6814 
6815 	++*pos;
6816 	if (v == (void*)2)
6817 		return NULL;
6818 
6819 	spin_lock(&all_mddevs_lock);
6820 	if (v == (void*)1)
6821 		tmp = all_mddevs.next;
6822 	else
6823 		tmp = mddev->all_mddevs.next;
6824 	if (tmp != &all_mddevs)
6825 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6826 	else {
6827 		next_mddev = (void*)2;
6828 		*pos = 0x10000;
6829 	}
6830 	spin_unlock(&all_mddevs_lock);
6831 
6832 	if (v != (void*)1)
6833 		mddev_put(mddev);
6834 	return next_mddev;
6835 
6836 }
6837 
md_seq_stop(struct seq_file * seq,void * v)6838 static void md_seq_stop(struct seq_file *seq, void *v)
6839 {
6840 	struct mddev *mddev = v;
6841 
6842 	if (mddev && v != (void*)1 && v != (void*)2)
6843 		mddev_put(mddev);
6844 }
6845 
md_seq_show(struct seq_file * seq,void * v)6846 static int md_seq_show(struct seq_file *seq, void *v)
6847 {
6848 	struct mddev *mddev = v;
6849 	sector_t sectors;
6850 	struct md_rdev *rdev;
6851 
6852 	if (v == (void*)1) {
6853 		struct md_personality *pers;
6854 		seq_printf(seq, "Personalities : ");
6855 		spin_lock(&pers_lock);
6856 		list_for_each_entry(pers, &pers_list, list)
6857 			seq_printf(seq, "[%s] ", pers->name);
6858 
6859 		spin_unlock(&pers_lock);
6860 		seq_printf(seq, "\n");
6861 		seq->poll_event = atomic_read(&md_event_count);
6862 		return 0;
6863 	}
6864 	if (v == (void*)2) {
6865 		status_unused(seq);
6866 		return 0;
6867 	}
6868 
6869 	if (mddev_lock(mddev) < 0)
6870 		return -EINTR;
6871 
6872 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6873 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6874 						mddev->pers ? "" : "in");
6875 		if (mddev->pers) {
6876 			if (mddev->ro==1)
6877 				seq_printf(seq, " (read-only)");
6878 			if (mddev->ro==2)
6879 				seq_printf(seq, " (auto-read-only)");
6880 			seq_printf(seq, " %s", mddev->pers->name);
6881 		}
6882 
6883 		sectors = 0;
6884 		rdev_for_each(rdev, mddev) {
6885 			char b[BDEVNAME_SIZE];
6886 			seq_printf(seq, " %s[%d]",
6887 				bdevname(rdev->bdev,b), rdev->desc_nr);
6888 			if (test_bit(WriteMostly, &rdev->flags))
6889 				seq_printf(seq, "(W)");
6890 			if (test_bit(Faulty, &rdev->flags)) {
6891 				seq_printf(seq, "(F)");
6892 				continue;
6893 			}
6894 			if (rdev->raid_disk < 0)
6895 				seq_printf(seq, "(S)"); /* spare */
6896 			if (test_bit(Replacement, &rdev->flags))
6897 				seq_printf(seq, "(R)");
6898 			sectors += rdev->sectors;
6899 		}
6900 
6901 		if (!list_empty(&mddev->disks)) {
6902 			if (mddev->pers)
6903 				seq_printf(seq, "\n      %llu blocks",
6904 					   (unsigned long long)
6905 					   mddev->array_sectors / 2);
6906 			else
6907 				seq_printf(seq, "\n      %llu blocks",
6908 					   (unsigned long long)sectors / 2);
6909 		}
6910 		if (mddev->persistent) {
6911 			if (mddev->major_version != 0 ||
6912 			    mddev->minor_version != 90) {
6913 				seq_printf(seq," super %d.%d",
6914 					   mddev->major_version,
6915 					   mddev->minor_version);
6916 			}
6917 		} else if (mddev->external)
6918 			seq_printf(seq, " super external:%s",
6919 				   mddev->metadata_type);
6920 		else
6921 			seq_printf(seq, " super non-persistent");
6922 
6923 		if (mddev->pers) {
6924 			mddev->pers->status(seq, mddev);
6925 			seq_printf(seq, "\n      ");
6926 			if (mddev->pers->sync_request) {
6927 				if (mddev->curr_resync > 2) {
6928 					status_resync(seq, mddev);
6929 					seq_printf(seq, "\n      ");
6930 				} else if (mddev->curr_resync >= 1)
6931 					seq_printf(seq, "\tresync=DELAYED\n      ");
6932 				else if (mddev->recovery_cp < MaxSector)
6933 					seq_printf(seq, "\tresync=PENDING\n      ");
6934 			}
6935 		} else
6936 			seq_printf(seq, "\n       ");
6937 
6938 		bitmap_status(seq, mddev->bitmap);
6939 
6940 		seq_printf(seq, "\n");
6941 	}
6942 	mddev_unlock(mddev);
6943 
6944 	return 0;
6945 }
6946 
6947 static const struct seq_operations md_seq_ops = {
6948 	.start  = md_seq_start,
6949 	.next   = md_seq_next,
6950 	.stop   = md_seq_stop,
6951 	.show   = md_seq_show,
6952 };
6953 
md_seq_open(struct inode * inode,struct file * file)6954 static int md_seq_open(struct inode *inode, struct file *file)
6955 {
6956 	struct seq_file *seq;
6957 	int error;
6958 
6959 	error = seq_open(file, &md_seq_ops);
6960 	if (error)
6961 		return error;
6962 
6963 	seq = file->private_data;
6964 	seq->poll_event = atomic_read(&md_event_count);
6965 	return error;
6966 }
6967 
6968 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)6969 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6970 {
6971 	struct seq_file *seq = filp->private_data;
6972 	int mask;
6973 
6974 	if (md_unloading)
6975 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
6976 	poll_wait(filp, &md_event_waiters, wait);
6977 
6978 	/* always allow read */
6979 	mask = POLLIN | POLLRDNORM;
6980 
6981 	if (seq->poll_event != atomic_read(&md_event_count))
6982 		mask |= POLLERR | POLLPRI;
6983 	return mask;
6984 }
6985 
6986 static const struct file_operations md_seq_fops = {
6987 	.owner		= THIS_MODULE,
6988 	.open           = md_seq_open,
6989 	.read           = seq_read,
6990 	.llseek         = seq_lseek,
6991 	.release	= seq_release_private,
6992 	.poll		= mdstat_poll,
6993 };
6994 
register_md_personality(struct md_personality * p)6995 int register_md_personality(struct md_personality *p)
6996 {
6997 	printk(KERN_INFO "md: %s personality registered for level %d\n",
6998 						p->name, p->level);
6999 	spin_lock(&pers_lock);
7000 	list_add_tail(&p->list, &pers_list);
7001 	spin_unlock(&pers_lock);
7002 	return 0;
7003 }
7004 EXPORT_SYMBOL(register_md_personality);
7005 
unregister_md_personality(struct md_personality * p)7006 int unregister_md_personality(struct md_personality *p)
7007 {
7008 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7009 	spin_lock(&pers_lock);
7010 	list_del_init(&p->list);
7011 	spin_unlock(&pers_lock);
7012 	return 0;
7013 }
7014 EXPORT_SYMBOL(unregister_md_personality);
7015 
is_mddev_idle(struct mddev * mddev,int init)7016 static int is_mddev_idle(struct mddev *mddev, int init)
7017 {
7018 	struct md_rdev *rdev;
7019 	int idle;
7020 	int curr_events;
7021 
7022 	idle = 1;
7023 	rcu_read_lock();
7024 	rdev_for_each_rcu(rdev, mddev) {
7025 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7026 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7027 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7028 			      atomic_read(&disk->sync_io);
7029 		/* sync IO will cause sync_io to increase before the disk_stats
7030 		 * as sync_io is counted when a request starts, and
7031 		 * disk_stats is counted when it completes.
7032 		 * So resync activity will cause curr_events to be smaller than
7033 		 * when there was no such activity.
7034 		 * non-sync IO will cause disk_stat to increase without
7035 		 * increasing sync_io so curr_events will (eventually)
7036 		 * be larger than it was before.  Once it becomes
7037 		 * substantially larger, the test below will cause
7038 		 * the array to appear non-idle, and resync will slow
7039 		 * down.
7040 		 * If there is a lot of outstanding resync activity when
7041 		 * we set last_event to curr_events, then all that activity
7042 		 * completing might cause the array to appear non-idle
7043 		 * and resync will be slowed down even though there might
7044 		 * not have been non-resync activity.  This will only
7045 		 * happen once though.  'last_events' will soon reflect
7046 		 * the state where there is little or no outstanding
7047 		 * resync requests, and further resync activity will
7048 		 * always make curr_events less than last_events.
7049 		 *
7050 		 */
7051 		if (init || curr_events - rdev->last_events > 64) {
7052 			rdev->last_events = curr_events;
7053 			idle = 0;
7054 		}
7055 	}
7056 	rcu_read_unlock();
7057 	return idle;
7058 }
7059 
md_done_sync(struct mddev * mddev,int blocks,int ok)7060 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7061 {
7062 	/* another "blocks" (512byte) blocks have been synced */
7063 	atomic_sub(blocks, &mddev->recovery_active);
7064 	wake_up(&mddev->recovery_wait);
7065 	if (!ok) {
7066 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7067 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7068 		md_wakeup_thread(mddev->thread);
7069 		// stop recovery, signal do_sync ....
7070 	}
7071 }
7072 EXPORT_SYMBOL(md_done_sync);
7073 
7074 /* md_write_start(mddev, bi)
7075  * If we need to update some array metadata (e.g. 'active' flag
7076  * in superblock) before writing, schedule a superblock update
7077  * and wait for it to complete.
7078  */
md_write_start(struct mddev * mddev,struct bio * bi)7079 void md_write_start(struct mddev *mddev, struct bio *bi)
7080 {
7081 	int did_change = 0;
7082 	if (bio_data_dir(bi) != WRITE)
7083 		return;
7084 
7085 	BUG_ON(mddev->ro == 1);
7086 	if (mddev->ro == 2) {
7087 		/* need to switch to read/write */
7088 		mddev->ro = 0;
7089 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7090 		md_wakeup_thread(mddev->thread);
7091 		md_wakeup_thread(mddev->sync_thread);
7092 		did_change = 1;
7093 	}
7094 	atomic_inc(&mddev->writes_pending);
7095 	if (mddev->safemode == 1)
7096 		mddev->safemode = 0;
7097 	if (mddev->in_sync) {
7098 		spin_lock_irq(&mddev->write_lock);
7099 		if (mddev->in_sync) {
7100 			mddev->in_sync = 0;
7101 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7102 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7103 			md_wakeup_thread(mddev->thread);
7104 			did_change = 1;
7105 		}
7106 		spin_unlock_irq(&mddev->write_lock);
7107 	}
7108 	if (did_change)
7109 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7110 	wait_event(mddev->sb_wait,
7111 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7112 }
7113 EXPORT_SYMBOL(md_write_start);
7114 
md_write_end(struct mddev * mddev)7115 void md_write_end(struct mddev *mddev)
7116 {
7117 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7118 		if (mddev->safemode == 2)
7119 			md_wakeup_thread(mddev->thread);
7120 		else if (mddev->safemode_delay)
7121 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7122 	}
7123 }
7124 EXPORT_SYMBOL(md_write_end);
7125 
7126 /* md_allow_write(mddev)
7127  * Calling this ensures that the array is marked 'active' so that writes
7128  * may proceed without blocking.  It is important to call this before
7129  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7130  * Must be called with mddev_lock held.
7131  *
7132  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7133  * is dropped, so return -EAGAIN after notifying userspace.
7134  */
md_allow_write(struct mddev * mddev)7135 int md_allow_write(struct mddev *mddev)
7136 {
7137 	if (!mddev->pers)
7138 		return 0;
7139 	if (mddev->ro)
7140 		return 0;
7141 	if (!mddev->pers->sync_request)
7142 		return 0;
7143 
7144 	spin_lock_irq(&mddev->write_lock);
7145 	if (mddev->in_sync) {
7146 		mddev->in_sync = 0;
7147 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7148 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7149 		if (mddev->safemode_delay &&
7150 		    mddev->safemode == 0)
7151 			mddev->safemode = 1;
7152 		spin_unlock_irq(&mddev->write_lock);
7153 		md_update_sb(mddev, 0);
7154 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7155 	} else
7156 		spin_unlock_irq(&mddev->write_lock);
7157 
7158 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7159 		return -EAGAIN;
7160 	else
7161 		return 0;
7162 }
7163 EXPORT_SYMBOL_GPL(md_allow_write);
7164 
7165 #define SYNC_MARKS	10
7166 #define	SYNC_MARK_STEP	(3*HZ)
7167 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7168 void md_do_sync(struct md_thread *thread)
7169 {
7170 	struct mddev *mddev = thread->mddev;
7171 	struct mddev *mddev2;
7172 	unsigned int currspeed = 0,
7173 		 window;
7174 	sector_t max_sectors,j, io_sectors, recovery_done;
7175 	unsigned long mark[SYNC_MARKS];
7176 	unsigned long update_time;
7177 	sector_t mark_cnt[SYNC_MARKS];
7178 	int last_mark,m;
7179 	struct list_head *tmp;
7180 	sector_t last_check;
7181 	int skipped = 0;
7182 	struct md_rdev *rdev;
7183 	char *desc, *action = NULL;
7184 	struct blk_plug plug;
7185 
7186 	/* just incase thread restarts... */
7187 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7188 		return;
7189 	if (mddev->ro) {/* never try to sync a read-only array */
7190 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7191 		return;
7192 	}
7193 
7194 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7195 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7196 			desc = "data-check";
7197 			action = "check";
7198 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7199 			desc = "requested-resync";
7200 			action = "repair";
7201 		} else
7202 			desc = "resync";
7203 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7204 		desc = "reshape";
7205 	else
7206 		desc = "recovery";
7207 
7208 	mddev->last_sync_action = action ?: desc;
7209 
7210 	/* we overload curr_resync somewhat here.
7211 	 * 0 == not engaged in resync at all
7212 	 * 2 == checking that there is no conflict with another sync
7213 	 * 1 == like 2, but have yielded to allow conflicting resync to
7214 	 *		commense
7215 	 * other == active in resync - this many blocks
7216 	 *
7217 	 * Before starting a resync we must have set curr_resync to
7218 	 * 2, and then checked that every "conflicting" array has curr_resync
7219 	 * less than ours.  When we find one that is the same or higher
7220 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7221 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7222 	 * This will mean we have to start checking from the beginning again.
7223 	 *
7224 	 */
7225 
7226 	do {
7227 		mddev->curr_resync = 2;
7228 
7229 	try_again:
7230 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7231 			goto skip;
7232 		for_each_mddev(mddev2, tmp) {
7233 			if (mddev2 == mddev)
7234 				continue;
7235 			if (!mddev->parallel_resync
7236 			&&  mddev2->curr_resync
7237 			&&  match_mddev_units(mddev, mddev2)) {
7238 				DEFINE_WAIT(wq);
7239 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7240 					/* arbitrarily yield */
7241 					mddev->curr_resync = 1;
7242 					wake_up(&resync_wait);
7243 				}
7244 				if (mddev > mddev2 && mddev->curr_resync == 1)
7245 					/* no need to wait here, we can wait the next
7246 					 * time 'round when curr_resync == 2
7247 					 */
7248 					continue;
7249 				/* We need to wait 'interruptible' so as not to
7250 				 * contribute to the load average, and not to
7251 				 * be caught by 'softlockup'
7252 				 */
7253 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7254 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7255 				    mddev2->curr_resync >= mddev->curr_resync) {
7256 					printk(KERN_INFO "md: delaying %s of %s"
7257 					       " until %s has finished (they"
7258 					       " share one or more physical units)\n",
7259 					       desc, mdname(mddev), mdname(mddev2));
7260 					mddev_put(mddev2);
7261 					if (signal_pending(current))
7262 						flush_signals(current);
7263 					schedule();
7264 					finish_wait(&resync_wait, &wq);
7265 					goto try_again;
7266 				}
7267 				finish_wait(&resync_wait, &wq);
7268 			}
7269 		}
7270 	} while (mddev->curr_resync < 2);
7271 
7272 	j = 0;
7273 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7274 		/* resync follows the size requested by the personality,
7275 		 * which defaults to physical size, but can be virtual size
7276 		 */
7277 		max_sectors = mddev->resync_max_sectors;
7278 		atomic64_set(&mddev->resync_mismatches, 0);
7279 		/* we don't use the checkpoint if there's a bitmap */
7280 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7281 			j = mddev->resync_min;
7282 		else if (!mddev->bitmap)
7283 			j = mddev->recovery_cp;
7284 
7285 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7286 		max_sectors = mddev->resync_max_sectors;
7287 	else {
7288 		/* recovery follows the physical size of devices */
7289 		max_sectors = mddev->dev_sectors;
7290 		j = MaxSector;
7291 		rcu_read_lock();
7292 		rdev_for_each_rcu(rdev, mddev)
7293 			if (rdev->raid_disk >= 0 &&
7294 			    !test_bit(Faulty, &rdev->flags) &&
7295 			    !test_bit(In_sync, &rdev->flags) &&
7296 			    rdev->recovery_offset < j)
7297 				j = rdev->recovery_offset;
7298 		rcu_read_unlock();
7299 
7300 		/* If there is a bitmap, we need to make sure all
7301 		 * writes that started before we added a spare
7302 		 * complete before we start doing a recovery.
7303 		 * Otherwise the write might complete and (via
7304 		 * bitmap_endwrite) set a bit in the bitmap after the
7305 		 * recovery has checked that bit and skipped that
7306 		 * region.
7307 		 */
7308 		if (mddev->bitmap) {
7309 			mddev->pers->quiesce(mddev, 1);
7310 			mddev->pers->quiesce(mddev, 0);
7311 		}
7312 	}
7313 
7314 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7315 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7316 		" %d KB/sec/disk.\n", speed_min(mddev));
7317 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7318 	       "(but not more than %d KB/sec) for %s.\n",
7319 	       speed_max(mddev), desc);
7320 
7321 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7322 
7323 	io_sectors = 0;
7324 	for (m = 0; m < SYNC_MARKS; m++) {
7325 		mark[m] = jiffies;
7326 		mark_cnt[m] = io_sectors;
7327 	}
7328 	last_mark = 0;
7329 	mddev->resync_mark = mark[last_mark];
7330 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7331 
7332 	/*
7333 	 * Tune reconstruction:
7334 	 */
7335 	window = 32*(PAGE_SIZE/512);
7336 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7337 		window/2, (unsigned long long)max_sectors/2);
7338 
7339 	atomic_set(&mddev->recovery_active, 0);
7340 	last_check = 0;
7341 
7342 	if (j>2) {
7343 		printk(KERN_INFO
7344 		       "md: resuming %s of %s from checkpoint.\n",
7345 		       desc, mdname(mddev));
7346 		mddev->curr_resync = j;
7347 	} else
7348 		mddev->curr_resync = 3; /* no longer delayed */
7349 	mddev->curr_resync_completed = j;
7350 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7351 	md_new_event(mddev);
7352 	update_time = jiffies;
7353 
7354 	blk_start_plug(&plug);
7355 	while (j < max_sectors) {
7356 		sector_t sectors;
7357 
7358 		skipped = 0;
7359 
7360 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7361 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7362 		      (mddev->curr_resync - mddev->curr_resync_completed)
7363 		      > (max_sectors >> 4)) ||
7364 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7365 		     (j - mddev->curr_resync_completed)*2
7366 		     >= mddev->resync_max - mddev->curr_resync_completed
7367 			    )) {
7368 			/* time to update curr_resync_completed */
7369 			wait_event(mddev->recovery_wait,
7370 				   atomic_read(&mddev->recovery_active) == 0);
7371 			mddev->curr_resync_completed = j;
7372 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7373 			    j > mddev->recovery_cp)
7374 				mddev->recovery_cp = j;
7375 			update_time = jiffies;
7376 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7377 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7378 		}
7379 
7380 		while (j >= mddev->resync_max &&
7381 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7382 			/* As this condition is controlled by user-space,
7383 			 * we can block indefinitely, so use '_interruptible'
7384 			 * to avoid triggering warnings.
7385 			 */
7386 			flush_signals(current); /* just in case */
7387 			wait_event_interruptible(mddev->recovery_wait,
7388 						 mddev->resync_max > j
7389 						 || test_bit(MD_RECOVERY_INTR,
7390 							     &mddev->recovery));
7391 		}
7392 
7393 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7394 			break;
7395 
7396 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7397 						  currspeed < speed_min(mddev));
7398 		if (sectors == 0) {
7399 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7400 			break;
7401 		}
7402 
7403 		if (!skipped) { /* actual IO requested */
7404 			io_sectors += sectors;
7405 			atomic_add(sectors, &mddev->recovery_active);
7406 		}
7407 
7408 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7409 			break;
7410 
7411 		j += sectors;
7412 		if (j > max_sectors)
7413 			/* when skipping, extra large numbers can be returned. */
7414 			j = max_sectors;
7415 		if (j > 2)
7416 			mddev->curr_resync = j;
7417 		mddev->curr_mark_cnt = io_sectors;
7418 		if (last_check == 0)
7419 			/* this is the earliest that rebuild will be
7420 			 * visible in /proc/mdstat
7421 			 */
7422 			md_new_event(mddev);
7423 
7424 		if (last_check + window > io_sectors || j == max_sectors)
7425 			continue;
7426 
7427 		last_check = io_sectors;
7428 	repeat:
7429 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7430 			/* step marks */
7431 			int next = (last_mark+1) % SYNC_MARKS;
7432 
7433 			mddev->resync_mark = mark[next];
7434 			mddev->resync_mark_cnt = mark_cnt[next];
7435 			mark[next] = jiffies;
7436 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7437 			last_mark = next;
7438 		}
7439 
7440 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7441 			break;
7442 
7443 		/*
7444 		 * this loop exits only if either when we are slower than
7445 		 * the 'hard' speed limit, or the system was IO-idle for
7446 		 * a jiffy.
7447 		 * the system might be non-idle CPU-wise, but we only care
7448 		 * about not overloading the IO subsystem. (things like an
7449 		 * e2fsck being done on the RAID array should execute fast)
7450 		 */
7451 		cond_resched();
7452 
7453 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7454 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7455 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7456 
7457 		if (currspeed > speed_min(mddev)) {
7458 			if ((currspeed > speed_max(mddev)) ||
7459 					!is_mddev_idle(mddev, 0)) {
7460 				msleep(500);
7461 				goto repeat;
7462 			}
7463 		}
7464 	}
7465 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7466 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7467 	       ? "interrupted" : "done");
7468 	/*
7469 	 * this also signals 'finished resyncing' to md_stop
7470 	 */
7471 	blk_finish_plug(&plug);
7472 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7473 
7474 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7475 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7476 	    mddev->curr_resync > 3) {
7477 		mddev->curr_resync_completed = mddev->curr_resync;
7478 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7479 	}
7480 	/* tell personality that we are finished */
7481 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7482 
7483 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7484 	    mddev->curr_resync > 3) {
7485 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7486 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7487 				if (mddev->curr_resync >= mddev->recovery_cp) {
7488 					printk(KERN_INFO
7489 					       "md: checkpointing %s of %s.\n",
7490 					       desc, mdname(mddev));
7491 					if (test_bit(MD_RECOVERY_ERROR,
7492 						&mddev->recovery))
7493 						mddev->recovery_cp =
7494 							mddev->curr_resync_completed;
7495 					else
7496 						mddev->recovery_cp =
7497 							mddev->curr_resync;
7498 				}
7499 			} else
7500 				mddev->recovery_cp = MaxSector;
7501 		} else {
7502 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7503 				mddev->curr_resync = MaxSector;
7504 			rcu_read_lock();
7505 			rdev_for_each_rcu(rdev, mddev)
7506 				if (rdev->raid_disk >= 0 &&
7507 				    mddev->delta_disks >= 0 &&
7508 				    !test_bit(Faulty, &rdev->flags) &&
7509 				    !test_bit(In_sync, &rdev->flags) &&
7510 				    rdev->recovery_offset < mddev->curr_resync)
7511 					rdev->recovery_offset = mddev->curr_resync;
7512 			rcu_read_unlock();
7513 		}
7514 	}
7515  skip:
7516 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7517 
7518 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7519 		/* We completed so min/max setting can be forgotten if used. */
7520 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7521 			mddev->resync_min = 0;
7522 		mddev->resync_max = MaxSector;
7523 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7524 		mddev->resync_min = mddev->curr_resync_completed;
7525 	mddev->curr_resync = 0;
7526 	wake_up(&resync_wait);
7527 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7528 	md_wakeup_thread(mddev->thread);
7529 	return;
7530 }
7531 EXPORT_SYMBOL_GPL(md_do_sync);
7532 
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)7533 static int remove_and_add_spares(struct mddev *mddev,
7534 				 struct md_rdev *this)
7535 {
7536 	struct md_rdev *rdev;
7537 	int spares = 0;
7538 	int removed = 0;
7539 
7540 	rdev_for_each(rdev, mddev)
7541 		if ((this == NULL || rdev == this) &&
7542 		    rdev->raid_disk >= 0 &&
7543 		    !test_bit(Blocked, &rdev->flags) &&
7544 		    (test_bit(Faulty, &rdev->flags) ||
7545 		     ! test_bit(In_sync, &rdev->flags)) &&
7546 		    atomic_read(&rdev->nr_pending)==0) {
7547 			if (mddev->pers->hot_remove_disk(
7548 				    mddev, rdev) == 0) {
7549 				sysfs_unlink_rdev(mddev, rdev);
7550 				rdev->raid_disk = -1;
7551 				removed++;
7552 			}
7553 		}
7554 	if (removed && mddev->kobj.sd)
7555 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7556 
7557 	if (this)
7558 		goto no_add;
7559 
7560 	rdev_for_each(rdev, mddev) {
7561 		if (rdev->raid_disk >= 0 &&
7562 		    !test_bit(In_sync, &rdev->flags) &&
7563 		    !test_bit(Faulty, &rdev->flags))
7564 			spares++;
7565 		if (rdev->raid_disk >= 0)
7566 			continue;
7567 		if (test_bit(Faulty, &rdev->flags))
7568 			continue;
7569 		if (mddev->ro &&
7570 		    ! (rdev->saved_raid_disk >= 0 &&
7571 		       !test_bit(Bitmap_sync, &rdev->flags)))
7572 			continue;
7573 
7574 		rdev->recovery_offset = 0;
7575 		if (mddev->pers->
7576 		    hot_add_disk(mddev, rdev) == 0) {
7577 			if (sysfs_link_rdev(mddev, rdev))
7578 				/* failure here is OK */;
7579 			spares++;
7580 			md_new_event(mddev);
7581 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7582 		}
7583 	}
7584 no_add:
7585 	if (removed)
7586 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7587 	return spares;
7588 }
7589 
md_start_sync(struct work_struct * ws)7590 static void md_start_sync(struct work_struct *ws)
7591 {
7592 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7593 
7594 	mddev->sync_thread = md_register_thread(md_do_sync,
7595 						mddev,
7596 						"resync");
7597 	if (!mddev->sync_thread) {
7598 		printk(KERN_ERR "%s: could not start resync"
7599 		       " thread...\n",
7600 		       mdname(mddev));
7601 		/* leave the spares where they are, it shouldn't hurt */
7602 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7603 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7604 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7605 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7606 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7607 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7608 				       &mddev->recovery))
7609 			if (mddev->sysfs_action)
7610 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7611 	} else
7612 		md_wakeup_thread(mddev->sync_thread);
7613 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7614 	md_new_event(mddev);
7615 }
7616 
7617 /*
7618  * This routine is regularly called by all per-raid-array threads to
7619  * deal with generic issues like resync and super-block update.
7620  * Raid personalities that don't have a thread (linear/raid0) do not
7621  * need this as they never do any recovery or update the superblock.
7622  *
7623  * It does not do any resync itself, but rather "forks" off other threads
7624  * to do that as needed.
7625  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7626  * "->recovery" and create a thread at ->sync_thread.
7627  * When the thread finishes it sets MD_RECOVERY_DONE
7628  * and wakeups up this thread which will reap the thread and finish up.
7629  * This thread also removes any faulty devices (with nr_pending == 0).
7630  *
7631  * The overall approach is:
7632  *  1/ if the superblock needs updating, update it.
7633  *  2/ If a recovery thread is running, don't do anything else.
7634  *  3/ If recovery has finished, clean up, possibly marking spares active.
7635  *  4/ If there are any faulty devices, remove them.
7636  *  5/ If array is degraded, try to add spares devices
7637  *  6/ If array has spares or is not in-sync, start a resync thread.
7638  */
md_check_recovery(struct mddev * mddev)7639 void md_check_recovery(struct mddev *mddev)
7640 {
7641 	if (mddev->suspended)
7642 		return;
7643 
7644 	if (mddev->bitmap)
7645 		bitmap_daemon_work(mddev);
7646 
7647 	if (signal_pending(current)) {
7648 		if (mddev->pers->sync_request && !mddev->external) {
7649 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7650 			       mdname(mddev));
7651 			mddev->safemode = 2;
7652 		}
7653 		flush_signals(current);
7654 	}
7655 
7656 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7657 		return;
7658 	if ( ! (
7659 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7660 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7661 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7662 		(mddev->external == 0 && mddev->safemode == 1) ||
7663 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7664 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7665 		))
7666 		return;
7667 
7668 	if (mddev_trylock(mddev)) {
7669 		int spares = 0;
7670 
7671 		if (mddev->ro) {
7672 			/* On a read-only array we can:
7673 			 * - remove failed devices
7674 			 * - add already-in_sync devices if the array itself
7675 			 *   is in-sync.
7676 			 * As we only add devices that are already in-sync,
7677 			 * we can activate the spares immediately.
7678 			 */
7679 			remove_and_add_spares(mddev, NULL);
7680 			/* There is no thread, but we need to call
7681 			 * ->spare_active and clear saved_raid_disk
7682 			 */
7683 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7684 			md_reap_sync_thread(mddev);
7685 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7686 			goto unlock;
7687 		}
7688 
7689 		if (!mddev->external) {
7690 			int did_change = 0;
7691 			spin_lock_irq(&mddev->write_lock);
7692 			if (mddev->safemode &&
7693 			    !atomic_read(&mddev->writes_pending) &&
7694 			    !mddev->in_sync &&
7695 			    mddev->recovery_cp == MaxSector) {
7696 				mddev->in_sync = 1;
7697 				did_change = 1;
7698 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7699 			}
7700 			if (mddev->safemode == 1)
7701 				mddev->safemode = 0;
7702 			spin_unlock_irq(&mddev->write_lock);
7703 			if (did_change)
7704 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7705 		}
7706 
7707 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7708 			md_update_sb(mddev, 0);
7709 
7710 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7711 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7712 			/* resync/recovery still happening */
7713 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7714 			goto unlock;
7715 		}
7716 		if (mddev->sync_thread) {
7717 			md_reap_sync_thread(mddev);
7718 			goto unlock;
7719 		}
7720 		/* Set RUNNING before clearing NEEDED to avoid
7721 		 * any transients in the value of "sync_action".
7722 		 */
7723 		mddev->curr_resync_completed = 0;
7724 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7725 		/* Clear some bits that don't mean anything, but
7726 		 * might be left set
7727 		 */
7728 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7729 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7730 
7731 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7732 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7733 			goto not_running;
7734 		/* no recovery is running.
7735 		 * remove any failed drives, then
7736 		 * add spares if possible.
7737 		 * Spares are also removed and re-added, to allow
7738 		 * the personality to fail the re-add.
7739 		 */
7740 
7741 		if (mddev->reshape_position != MaxSector) {
7742 			if (mddev->pers->check_reshape == NULL ||
7743 			    mddev->pers->check_reshape(mddev) != 0)
7744 				/* Cannot proceed */
7745 				goto not_running;
7746 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7747 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7748 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7749 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7750 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7751 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7752 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7753 		} else if (mddev->recovery_cp < MaxSector) {
7754 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7755 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7756 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7757 			/* nothing to be done ... */
7758 			goto not_running;
7759 
7760 		if (mddev->pers->sync_request) {
7761 			if (spares) {
7762 				/* We are adding a device or devices to an array
7763 				 * which has the bitmap stored on all devices.
7764 				 * So make sure all bitmap pages get written
7765 				 */
7766 				bitmap_write_all(mddev->bitmap);
7767 			}
7768 			INIT_WORK(&mddev->del_work, md_start_sync);
7769 			queue_work(md_misc_wq, &mddev->del_work);
7770 			goto unlock;
7771 		}
7772 	not_running:
7773 		if (!mddev->sync_thread) {
7774 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7775 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7776 					       &mddev->recovery))
7777 				if (mddev->sysfs_action)
7778 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7779 		}
7780 	unlock:
7781 		wake_up(&mddev->sb_wait);
7782 		mddev_unlock(mddev);
7783 	}
7784 }
7785 EXPORT_SYMBOL(md_check_recovery);
7786 
md_reap_sync_thread(struct mddev * mddev)7787 void md_reap_sync_thread(struct mddev *mddev)
7788 {
7789 	struct md_rdev *rdev;
7790 
7791 	/* resync has finished, collect result */
7792 	md_unregister_thread(&mddev->sync_thread);
7793 	wake_up(&resync_wait);
7794 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7795 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7796 		/* success...*/
7797 		/* activate any spares */
7798 		if (mddev->pers->spare_active(mddev)) {
7799 			sysfs_notify(&mddev->kobj, NULL,
7800 				     "degraded");
7801 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 		}
7803 	}
7804 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7805 	    mddev->pers->finish_reshape)
7806 		mddev->pers->finish_reshape(mddev);
7807 
7808 	/* If array is no-longer degraded, then any saved_raid_disk
7809 	 * information must be scrapped.
7810 	 */
7811 	if (!mddev->degraded)
7812 		rdev_for_each(rdev, mddev)
7813 			rdev->saved_raid_disk = -1;
7814 
7815 	md_update_sb(mddev, 1);
7816 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7817 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 	/* flag recovery needed just to double check */
7822 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7823 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7824 	md_new_event(mddev);
7825 	if (mddev->event_work.func)
7826 		queue_work(md_misc_wq, &mddev->event_work);
7827 }
7828 EXPORT_SYMBOL(md_reap_sync_thread);
7829 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)7830 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7831 {
7832 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7833 	wait_event_timeout(rdev->blocked_wait,
7834 			   !test_bit(Blocked, &rdev->flags) &&
7835 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7836 			   msecs_to_jiffies(5000));
7837 	rdev_dec_pending(rdev, mddev);
7838 }
7839 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7840 
md_finish_reshape(struct mddev * mddev)7841 void md_finish_reshape(struct mddev *mddev)
7842 {
7843 	/* called be personality module when reshape completes. */
7844 	struct md_rdev *rdev;
7845 
7846 	rdev_for_each(rdev, mddev) {
7847 		if (rdev->data_offset > rdev->new_data_offset)
7848 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7849 		else
7850 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7851 		rdev->data_offset = rdev->new_data_offset;
7852 	}
7853 }
7854 EXPORT_SYMBOL(md_finish_reshape);
7855 
7856 /* Bad block management.
7857  * We can record which blocks on each device are 'bad' and so just
7858  * fail those blocks, or that stripe, rather than the whole device.
7859  * Entries in the bad-block table are 64bits wide.  This comprises:
7860  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7861  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7862  *  A 'shift' can be set so that larger blocks are tracked and
7863  *  consequently larger devices can be covered.
7864  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7865  *
7866  * Locking of the bad-block table uses a seqlock so md_is_badblock
7867  * might need to retry if it is very unlucky.
7868  * We will sometimes want to check for bad blocks in a bi_end_io function,
7869  * so we use the write_seqlock_irq variant.
7870  *
7871  * When looking for a bad block we specify a range and want to
7872  * know if any block in the range is bad.  So we binary-search
7873  * to the last range that starts at-or-before the given endpoint,
7874  * (or "before the sector after the target range")
7875  * then see if it ends after the given start.
7876  * We return
7877  *  0 if there are no known bad blocks in the range
7878  *  1 if there are known bad block which are all acknowledged
7879  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7880  * plus the start/length of the first bad section we overlap.
7881  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)7882 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7883 		   sector_t *first_bad, int *bad_sectors)
7884 {
7885 	int hi;
7886 	int lo;
7887 	u64 *p = bb->page;
7888 	int rv;
7889 	sector_t target = s + sectors;
7890 	unsigned seq;
7891 
7892 	if (bb->shift > 0) {
7893 		/* round the start down, and the end up */
7894 		s >>= bb->shift;
7895 		target += (1<<bb->shift) - 1;
7896 		target >>= bb->shift;
7897 		sectors = target - s;
7898 	}
7899 	/* 'target' is now the first block after the bad range */
7900 
7901 retry:
7902 	seq = read_seqbegin(&bb->lock);
7903 	lo = 0;
7904 	rv = 0;
7905 	hi = bb->count;
7906 
7907 	/* Binary search between lo and hi for 'target'
7908 	 * i.e. for the last range that starts before 'target'
7909 	 */
7910 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7911 	 * are known not to be the last range before target.
7912 	 * VARIANT: hi-lo is the number of possible
7913 	 * ranges, and decreases until it reaches 1
7914 	 */
7915 	while (hi - lo > 1) {
7916 		int mid = (lo + hi) / 2;
7917 		sector_t a = BB_OFFSET(p[mid]);
7918 		if (a < target)
7919 			/* This could still be the one, earlier ranges
7920 			 * could not. */
7921 			lo = mid;
7922 		else
7923 			/* This and later ranges are definitely out. */
7924 			hi = mid;
7925 	}
7926 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7927 	if (hi > lo) {
7928 		/* need to check all range that end after 's' to see if
7929 		 * any are unacknowledged.
7930 		 */
7931 		while (lo >= 0 &&
7932 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7933 			if (BB_OFFSET(p[lo]) < target) {
7934 				/* starts before the end, and finishes after
7935 				 * the start, so they must overlap
7936 				 */
7937 				if (rv != -1 && BB_ACK(p[lo]))
7938 					rv = 1;
7939 				else
7940 					rv = -1;
7941 				*first_bad = BB_OFFSET(p[lo]);
7942 				*bad_sectors = BB_LEN(p[lo]);
7943 			}
7944 			lo--;
7945 		}
7946 	}
7947 
7948 	if (read_seqretry(&bb->lock, seq))
7949 		goto retry;
7950 
7951 	return rv;
7952 }
7953 EXPORT_SYMBOL_GPL(md_is_badblock);
7954 
7955 /*
7956  * Add a range of bad blocks to the table.
7957  * This might extend the table, or might contract it
7958  * if two adjacent ranges can be merged.
7959  * We binary-search to find the 'insertion' point, then
7960  * decide how best to handle it.
7961  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)7962 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7963 			    int acknowledged)
7964 {
7965 	u64 *p;
7966 	int lo, hi;
7967 	int rv = 1;
7968 	unsigned long flags;
7969 
7970 	if (bb->shift < 0)
7971 		/* badblocks are disabled */
7972 		return 0;
7973 
7974 	if (bb->shift) {
7975 		/* round the start down, and the end up */
7976 		sector_t next = s + sectors;
7977 		s >>= bb->shift;
7978 		next += (1<<bb->shift) - 1;
7979 		next >>= bb->shift;
7980 		sectors = next - s;
7981 	}
7982 
7983 	write_seqlock_irqsave(&bb->lock, flags);
7984 
7985 	p = bb->page;
7986 	lo = 0;
7987 	hi = bb->count;
7988 	/* Find the last range that starts at-or-before 's' */
7989 	while (hi - lo > 1) {
7990 		int mid = (lo + hi) / 2;
7991 		sector_t a = BB_OFFSET(p[mid]);
7992 		if (a <= s)
7993 			lo = mid;
7994 		else
7995 			hi = mid;
7996 	}
7997 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7998 		hi = lo;
7999 
8000 	if (hi > lo) {
8001 		/* we found a range that might merge with the start
8002 		 * of our new range
8003 		 */
8004 		sector_t a = BB_OFFSET(p[lo]);
8005 		sector_t e = a + BB_LEN(p[lo]);
8006 		int ack = BB_ACK(p[lo]);
8007 		if (e >= s) {
8008 			/* Yes, we can merge with a previous range */
8009 			if (s == a && s + sectors >= e)
8010 				/* new range covers old */
8011 				ack = acknowledged;
8012 			else
8013 				ack = ack && acknowledged;
8014 
8015 			if (e < s + sectors)
8016 				e = s + sectors;
8017 			if (e - a <= BB_MAX_LEN) {
8018 				p[lo] = BB_MAKE(a, e-a, ack);
8019 				s = e;
8020 			} else {
8021 				/* does not all fit in one range,
8022 				 * make p[lo] maximal
8023 				 */
8024 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8025 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8026 				s = a + BB_MAX_LEN;
8027 			}
8028 			sectors = e - s;
8029 		}
8030 	}
8031 	if (sectors && hi < bb->count) {
8032 		/* 'hi' points to the first range that starts after 's'.
8033 		 * Maybe we can merge with the start of that range */
8034 		sector_t a = BB_OFFSET(p[hi]);
8035 		sector_t e = a + BB_LEN(p[hi]);
8036 		int ack = BB_ACK(p[hi]);
8037 		if (a <= s + sectors) {
8038 			/* merging is possible */
8039 			if (e <= s + sectors) {
8040 				/* full overlap */
8041 				e = s + sectors;
8042 				ack = acknowledged;
8043 			} else
8044 				ack = ack && acknowledged;
8045 
8046 			a = s;
8047 			if (e - a <= BB_MAX_LEN) {
8048 				p[hi] = BB_MAKE(a, e-a, ack);
8049 				s = e;
8050 			} else {
8051 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8052 				s = a + BB_MAX_LEN;
8053 			}
8054 			sectors = e - s;
8055 			lo = hi;
8056 			hi++;
8057 		}
8058 	}
8059 	if (sectors == 0 && hi < bb->count) {
8060 		/* we might be able to combine lo and hi */
8061 		/* Note: 's' is at the end of 'lo' */
8062 		sector_t a = BB_OFFSET(p[hi]);
8063 		int lolen = BB_LEN(p[lo]);
8064 		int hilen = BB_LEN(p[hi]);
8065 		int newlen = lolen + hilen - (s - a);
8066 		if (s >= a && newlen < BB_MAX_LEN) {
8067 			/* yes, we can combine them */
8068 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8069 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8070 			memmove(p + hi, p + hi + 1,
8071 				(bb->count - hi - 1) * 8);
8072 			bb->count--;
8073 		}
8074 	}
8075 	while (sectors) {
8076 		/* didn't merge (it all).
8077 		 * Need to add a range just before 'hi' */
8078 		if (bb->count >= MD_MAX_BADBLOCKS) {
8079 			/* No room for more */
8080 			rv = 0;
8081 			break;
8082 		} else {
8083 			int this_sectors = sectors;
8084 			memmove(p + hi + 1, p + hi,
8085 				(bb->count - hi) * 8);
8086 			bb->count++;
8087 
8088 			if (this_sectors > BB_MAX_LEN)
8089 				this_sectors = BB_MAX_LEN;
8090 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8091 			sectors -= this_sectors;
8092 			s += this_sectors;
8093 		}
8094 	}
8095 
8096 	bb->changed = 1;
8097 	if (!acknowledged)
8098 		bb->unacked_exist = 1;
8099 	write_sequnlock_irqrestore(&bb->lock, flags);
8100 
8101 	return rv;
8102 }
8103 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8104 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8105 		       int is_new)
8106 {
8107 	int rv;
8108 	if (is_new)
8109 		s += rdev->new_data_offset;
8110 	else
8111 		s += rdev->data_offset;
8112 	rv = md_set_badblocks(&rdev->badblocks,
8113 			      s, sectors, 0);
8114 	if (rv) {
8115 		/* Make sure they get written out promptly */
8116 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8117 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8118 		md_wakeup_thread(rdev->mddev->thread);
8119 	}
8120 	return rv;
8121 }
8122 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8123 
8124 /*
8125  * Remove a range of bad blocks from the table.
8126  * This may involve extending the table if we spilt a region,
8127  * but it must not fail.  So if the table becomes full, we just
8128  * drop the remove request.
8129  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8130 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8131 {
8132 	u64 *p;
8133 	int lo, hi;
8134 	sector_t target = s + sectors;
8135 	int rv = 0;
8136 
8137 	if (bb->shift > 0) {
8138 		/* When clearing we round the start up and the end down.
8139 		 * This should not matter as the shift should align with
8140 		 * the block size and no rounding should ever be needed.
8141 		 * However it is better the think a block is bad when it
8142 		 * isn't than to think a block is not bad when it is.
8143 		 */
8144 		s += (1<<bb->shift) - 1;
8145 		s >>= bb->shift;
8146 		target >>= bb->shift;
8147 		sectors = target - s;
8148 	}
8149 
8150 	write_seqlock_irq(&bb->lock);
8151 
8152 	p = bb->page;
8153 	lo = 0;
8154 	hi = bb->count;
8155 	/* Find the last range that starts before 'target' */
8156 	while (hi - lo > 1) {
8157 		int mid = (lo + hi) / 2;
8158 		sector_t a = BB_OFFSET(p[mid]);
8159 		if (a < target)
8160 			lo = mid;
8161 		else
8162 			hi = mid;
8163 	}
8164 	if (hi > lo) {
8165 		/* p[lo] is the last range that could overlap the
8166 		 * current range.  Earlier ranges could also overlap,
8167 		 * but only this one can overlap the end of the range.
8168 		 */
8169 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8170 			/* Partial overlap, leave the tail of this range */
8171 			int ack = BB_ACK(p[lo]);
8172 			sector_t a = BB_OFFSET(p[lo]);
8173 			sector_t end = a + BB_LEN(p[lo]);
8174 
8175 			if (a < s) {
8176 				/* we need to split this range */
8177 				if (bb->count >= MD_MAX_BADBLOCKS) {
8178 					rv = -ENOSPC;
8179 					goto out;
8180 				}
8181 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8182 				bb->count++;
8183 				p[lo] = BB_MAKE(a, s-a, ack);
8184 				lo++;
8185 			}
8186 			p[lo] = BB_MAKE(target, end - target, ack);
8187 			/* there is no longer an overlap */
8188 			hi = lo;
8189 			lo--;
8190 		}
8191 		while (lo >= 0 &&
8192 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8193 			/* This range does overlap */
8194 			if (BB_OFFSET(p[lo]) < s) {
8195 				/* Keep the early parts of this range. */
8196 				int ack = BB_ACK(p[lo]);
8197 				sector_t start = BB_OFFSET(p[lo]);
8198 				p[lo] = BB_MAKE(start, s - start, ack);
8199 				/* now low doesn't overlap, so.. */
8200 				break;
8201 			}
8202 			lo--;
8203 		}
8204 		/* 'lo' is strictly before, 'hi' is strictly after,
8205 		 * anything between needs to be discarded
8206 		 */
8207 		if (hi - lo > 1) {
8208 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8209 			bb->count -= (hi - lo - 1);
8210 		}
8211 	}
8212 
8213 	bb->changed = 1;
8214 out:
8215 	write_sequnlock_irq(&bb->lock);
8216 	return rv;
8217 }
8218 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8219 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8220 			 int is_new)
8221 {
8222 	if (is_new)
8223 		s += rdev->new_data_offset;
8224 	else
8225 		s += rdev->data_offset;
8226 	return md_clear_badblocks(&rdev->badblocks,
8227 				  s, sectors);
8228 }
8229 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8230 
8231 /*
8232  * Acknowledge all bad blocks in a list.
8233  * This only succeeds if ->changed is clear.  It is used by
8234  * in-kernel metadata updates
8235  */
md_ack_all_badblocks(struct badblocks * bb)8236 void md_ack_all_badblocks(struct badblocks *bb)
8237 {
8238 	if (bb->page == NULL || bb->changed)
8239 		/* no point even trying */
8240 		return;
8241 	write_seqlock_irq(&bb->lock);
8242 
8243 	if (bb->changed == 0 && bb->unacked_exist) {
8244 		u64 *p = bb->page;
8245 		int i;
8246 		for (i = 0; i < bb->count ; i++) {
8247 			if (!BB_ACK(p[i])) {
8248 				sector_t start = BB_OFFSET(p[i]);
8249 				int len = BB_LEN(p[i]);
8250 				p[i] = BB_MAKE(start, len, 1);
8251 			}
8252 		}
8253 		bb->unacked_exist = 0;
8254 	}
8255 	write_sequnlock_irq(&bb->lock);
8256 }
8257 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8258 
8259 /* sysfs access to bad-blocks list.
8260  * We present two files.
8261  * 'bad-blocks' lists sector numbers and lengths of ranges that
8262  *    are recorded as bad.  The list is truncated to fit within
8263  *    the one-page limit of sysfs.
8264  *    Writing "sector length" to this file adds an acknowledged
8265  *    bad block list.
8266  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8267  *    been acknowledged.  Writing to this file adds bad blocks
8268  *    without acknowledging them.  This is largely for testing.
8269  */
8270 
8271 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8272 badblocks_show(struct badblocks *bb, char *page, int unack)
8273 {
8274 	size_t len;
8275 	int i;
8276 	u64 *p = bb->page;
8277 	unsigned seq;
8278 
8279 	if (bb->shift < 0)
8280 		return 0;
8281 
8282 retry:
8283 	seq = read_seqbegin(&bb->lock);
8284 
8285 	len = 0;
8286 	i = 0;
8287 
8288 	while (len < PAGE_SIZE && i < bb->count) {
8289 		sector_t s = BB_OFFSET(p[i]);
8290 		unsigned int length = BB_LEN(p[i]);
8291 		int ack = BB_ACK(p[i]);
8292 		i++;
8293 
8294 		if (unack && ack)
8295 			continue;
8296 
8297 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8298 				(unsigned long long)s << bb->shift,
8299 				length << bb->shift);
8300 	}
8301 	if (unack && len == 0)
8302 		bb->unacked_exist = 0;
8303 
8304 	if (read_seqretry(&bb->lock, seq))
8305 		goto retry;
8306 
8307 	return len;
8308 }
8309 
8310 #define DO_DEBUG 1
8311 
8312 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8313 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8314 {
8315 	unsigned long long sector;
8316 	int length;
8317 	char newline;
8318 #ifdef DO_DEBUG
8319 	/* Allow clearing via sysfs *only* for testing/debugging.
8320 	 * Normally only a successful write may clear a badblock
8321 	 */
8322 	int clear = 0;
8323 	if (page[0] == '-') {
8324 		clear = 1;
8325 		page++;
8326 	}
8327 #endif /* DO_DEBUG */
8328 
8329 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8330 	case 3:
8331 		if (newline != '\n')
8332 			return -EINVAL;
8333 	case 2:
8334 		if (length <= 0)
8335 			return -EINVAL;
8336 		break;
8337 	default:
8338 		return -EINVAL;
8339 	}
8340 
8341 #ifdef DO_DEBUG
8342 	if (clear) {
8343 		md_clear_badblocks(bb, sector, length);
8344 		return len;
8345 	}
8346 #endif /* DO_DEBUG */
8347 	if (md_set_badblocks(bb, sector, length, !unack))
8348 		return len;
8349 	else
8350 		return -ENOSPC;
8351 }
8352 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8353 static int md_notify_reboot(struct notifier_block *this,
8354 			    unsigned long code, void *x)
8355 {
8356 	struct list_head *tmp;
8357 	struct mddev *mddev;
8358 	int need_delay = 0;
8359 
8360 	for_each_mddev(mddev, tmp) {
8361 		if (mddev_trylock(mddev)) {
8362 			if (mddev->pers)
8363 				__md_stop_writes(mddev);
8364 			if (mddev->persistent)
8365 				mddev->safemode = 2;
8366 			mddev_unlock(mddev);
8367 		}
8368 		need_delay = 1;
8369 	}
8370 	/*
8371 	 * certain more exotic SCSI devices are known to be
8372 	 * volatile wrt too early system reboots. While the
8373 	 * right place to handle this issue is the given
8374 	 * driver, we do want to have a safe RAID driver ...
8375 	 */
8376 	if (need_delay)
8377 		mdelay(1000*1);
8378 
8379 	return NOTIFY_DONE;
8380 }
8381 
8382 static struct notifier_block md_notifier = {
8383 	.notifier_call	= md_notify_reboot,
8384 	.next		= NULL,
8385 	.priority	= INT_MAX, /* before any real devices */
8386 };
8387 
md_geninit(void)8388 static void md_geninit(void)
8389 {
8390 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8391 
8392 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8393 }
8394 
md_init(void)8395 static int __init md_init(void)
8396 {
8397 	int ret = -ENOMEM;
8398 
8399 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8400 	if (!md_wq)
8401 		goto err_wq;
8402 
8403 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8404 	if (!md_misc_wq)
8405 		goto err_misc_wq;
8406 
8407 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8408 		goto err_md;
8409 
8410 	if ((ret = register_blkdev(0, "mdp")) < 0)
8411 		goto err_mdp;
8412 	mdp_major = ret;
8413 
8414 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8415 			    md_probe, NULL, NULL);
8416 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8417 			    md_probe, NULL, NULL);
8418 
8419 	register_reboot_notifier(&md_notifier);
8420 	raid_table_header = register_sysctl_table(raid_root_table);
8421 
8422 	md_geninit();
8423 	return 0;
8424 
8425 err_mdp:
8426 	unregister_blkdev(MD_MAJOR, "md");
8427 err_md:
8428 	destroy_workqueue(md_misc_wq);
8429 err_misc_wq:
8430 	destroy_workqueue(md_wq);
8431 err_wq:
8432 	return ret;
8433 }
8434 
8435 #ifndef MODULE
8436 
8437 /*
8438  * Searches all registered partitions for autorun RAID arrays
8439  * at boot time.
8440  */
8441 
8442 static LIST_HEAD(all_detected_devices);
8443 struct detected_devices_node {
8444 	struct list_head list;
8445 	dev_t dev;
8446 };
8447 
md_autodetect_dev(dev_t dev)8448 void md_autodetect_dev(dev_t dev)
8449 {
8450 	struct detected_devices_node *node_detected_dev;
8451 
8452 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8453 	if (node_detected_dev) {
8454 		node_detected_dev->dev = dev;
8455 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8456 	} else {
8457 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8458 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8459 	}
8460 }
8461 
autostart_arrays(int part)8462 static void autostart_arrays(int part)
8463 {
8464 	struct md_rdev *rdev;
8465 	struct detected_devices_node *node_detected_dev;
8466 	dev_t dev;
8467 	int i_scanned, i_passed;
8468 
8469 	i_scanned = 0;
8470 	i_passed = 0;
8471 
8472 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8473 
8474 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8475 		i_scanned++;
8476 		node_detected_dev = list_entry(all_detected_devices.next,
8477 					struct detected_devices_node, list);
8478 		list_del(&node_detected_dev->list);
8479 		dev = node_detected_dev->dev;
8480 		kfree(node_detected_dev);
8481 		rdev = md_import_device(dev,0, 90);
8482 		if (IS_ERR(rdev))
8483 			continue;
8484 
8485 		if (test_bit(Faulty, &rdev->flags))
8486 			continue;
8487 
8488 		set_bit(AutoDetected, &rdev->flags);
8489 		list_add(&rdev->same_set, &pending_raid_disks);
8490 		i_passed++;
8491 	}
8492 
8493 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8494 						i_scanned, i_passed);
8495 
8496 	autorun_devices(part);
8497 }
8498 
8499 #endif /* !MODULE */
8500 
md_exit(void)8501 static __exit void md_exit(void)
8502 {
8503 	struct mddev *mddev;
8504 	struct list_head *tmp;
8505 	int delay = 1;
8506 
8507 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8508 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8509 
8510 	unregister_blkdev(MD_MAJOR,"md");
8511 	unregister_blkdev(mdp_major, "mdp");
8512 	unregister_reboot_notifier(&md_notifier);
8513 	unregister_sysctl_table(raid_table_header);
8514 
8515 	/* We cannot unload the modules while some process is
8516 	 * waiting for us in select() or poll() - wake them up
8517 	 */
8518 	md_unloading = 1;
8519 	while (waitqueue_active(&md_event_waiters)) {
8520 		/* not safe to leave yet */
8521 		wake_up(&md_event_waiters);
8522 		msleep(delay);
8523 		delay += delay;
8524 	}
8525 	remove_proc_entry("mdstat", NULL);
8526 
8527 	for_each_mddev(mddev, tmp) {
8528 		export_array(mddev);
8529 		mddev->hold_active = 0;
8530 	}
8531 	destroy_workqueue(md_misc_wq);
8532 	destroy_workqueue(md_wq);
8533 }
8534 
8535 subsys_initcall(md_init);
module_exit(md_exit)8536 module_exit(md_exit)
8537 
8538 static int get_ro(char *buffer, struct kernel_param *kp)
8539 {
8540 	return sprintf(buffer, "%d", start_readonly);
8541 }
set_ro(const char * val,struct kernel_param * kp)8542 static int set_ro(const char *val, struct kernel_param *kp)
8543 {
8544 	char *e;
8545 	int num = simple_strtoul(val, &e, 10);
8546 	if (*val && (*e == '\0' || *e == '\n')) {
8547 		start_readonly = num;
8548 		return 0;
8549 	}
8550 	return -EINVAL;
8551 }
8552 
8553 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8554 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8555 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8556 
8557 MODULE_LICENSE("GPL");
8558 MODULE_DESCRIPTION("MD RAID framework");
8559 MODULE_ALIAS("md");
8560 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8561