1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75
76 /*
77 * Default number of read corrections we'll attempt on an rdev
78 * before ejecting it from the array. We divide the read error
79 * count by 2 for every hour elapsed between read errors.
80 */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84 * is 1000 KB/sec, so the extra system load does not show up that much.
85 * Increase it if you want to have more _guaranteed_ speed. Note that
86 * the RAID driver will use the maximum available bandwidth if the IO
87 * subsystem is idle. There is also an 'absolute maximum' reconstruction
88 * speed limit - in case reconstruction slows down your system despite
89 * idle IO detection.
90 *
91 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92 * or /sys/block/mdX/md/sync_speed_{min,max}
93 */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)97 static inline int speed_min(struct mddev *mddev)
98 {
99 return mddev->sync_speed_min ?
100 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
speed_max(struct mddev * mddev)103 static inline int speed_max(struct mddev *mddev)
104 {
105 return mddev->sync_speed_max ?
106 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static struct ctl_table raid_table[] = {
112 {
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = proc_dointvec,
118 },
119 {
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 { }
127 };
128
129 static struct ctl_table raid_dir_table[] = {
130 {
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
135 },
136 { }
137 };
138
139 static struct ctl_table raid_root_table[] = {
140 {
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154 * like bio_clone, but with a local bio set
155 */
156
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 struct mddev *mddev)
159 {
160 struct bio *b;
161
162 if (!mddev || !mddev->bio_set)
163 return bio_alloc(gfp_mask, nr_iovecs);
164
165 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 if (!b)
167 return NULL;
168 return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 struct mddev *mddev)
174 {
175 if (!mddev || !mddev->bio_set)
176 return bio_clone(bio, gfp_mask);
177
178 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181
182 /*
183 * We have a system wide 'event count' that is incremented
184 * on any 'interesting' event, and readers of /proc/mdstat
185 * can use 'poll' or 'select' to find out when the event
186 * count increases.
187 *
188 * Events are:
189 * start array, stop array, error, add device, remove device,
190 * start build, activate spare
191 */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)194 void md_new_event(struct mddev *mddev)
195 {
196 atomic_inc(&md_event_count);
197 wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200
201 /* Alternate version that can be called from interrupts
202 * when calling sysfs_notify isn't needed.
203 */
md_new_event_inintr(struct mddev * mddev)204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 atomic_inc(&md_event_count);
207 wake_up(&md_event_waiters);
208 }
209
210 /*
211 * Enables to iterate over all existing md arrays
212 * all_mddevs_lock protects this list.
213 */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216
217 /*
218 * iterates through all used mddevs in the system.
219 * We take care to grab the all_mddevs_lock whenever navigating
220 * the list, and to always hold a refcount when unlocked.
221 * Any code which breaks out of this loop while own
222 * a reference to the current mddev and must mddev_put it.
223 */
224 #define for_each_mddev(_mddev,_tmp) \
225 \
226 for (({ spin_lock(&all_mddevs_lock); \
227 _tmp = all_mddevs.next; \
228 _mddev = NULL;}); \
229 ({ if (_tmp != &all_mddevs) \
230 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 spin_unlock(&all_mddevs_lock); \
232 if (_mddev) mddev_put(_mddev); \
233 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
234 _tmp != &all_mddevs;}); \
235 ({ spin_lock(&all_mddevs_lock); \
236 _tmp = _tmp->next;}) \
237 )
238
239 /* Rather than calling directly into the personality make_request function,
240 * IO requests come here first so that we can check if the device is
241 * being suspended pending a reconfiguration.
242 * We hold a refcount over the call to ->make_request. By the time that
243 * call has finished, the bio has been linked into some internal structure
244 * and so is visible to ->quiesce(), so we don't need the refcount any more.
245 */
md_make_request(struct request_queue * q,struct bio * bio)246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 const int rw = bio_data_dir(bio);
249 struct mddev *mddev = q->queuedata;
250 int cpu;
251 unsigned int sectors;
252
253 if (mddev == NULL || mddev->pers == NULL
254 || !mddev->ready) {
255 bio_io_error(bio);
256 return;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 return;
261 }
262 smp_rmb(); /* Ensure implications of 'active' are visible */
263 rcu_read_lock();
264 if (mddev->suspended) {
265 DEFINE_WAIT(__wait);
266 for (;;) {
267 prepare_to_wait(&mddev->sb_wait, &__wait,
268 TASK_UNINTERRUPTIBLE);
269 if (!mddev->suspended)
270 break;
271 rcu_read_unlock();
272 schedule();
273 rcu_read_lock();
274 }
275 finish_wait(&mddev->sb_wait, &__wait);
276 }
277 atomic_inc(&mddev->active_io);
278 rcu_read_unlock();
279
280 /*
281 * save the sectors now since our bio can
282 * go away inside make_request
283 */
284 sectors = bio_sectors(bio);
285 /* bio could be mergeable after passing to underlayer */
286 bio->bi_rw &= ~REQ_NOMERGE;
287 mddev->pers->make_request(mddev, bio);
288
289 cpu = part_stat_lock();
290 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 part_stat_unlock();
293
294 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 wake_up(&mddev->sb_wait);
296 }
297
298 /* mddev_suspend makes sure no new requests are submitted
299 * to the device, and that any requests that have been submitted
300 * are completely handled.
301 * Once ->stop is called and completes, the module will be completely
302 * unused.
303 */
mddev_suspend(struct mddev * mddev)304 void mddev_suspend(struct mddev *mddev)
305 {
306 BUG_ON(mddev->suspended);
307 mddev->suspended = 1;
308 synchronize_rcu();
309 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
310 mddev->pers->quiesce(mddev, 1);
311
312 del_timer_sync(&mddev->safemode_timer);
313 }
314 EXPORT_SYMBOL_GPL(mddev_suspend);
315
mddev_resume(struct mddev * mddev)316 void mddev_resume(struct mddev *mddev)
317 {
318 mddev->suspended = 0;
319 wake_up(&mddev->sb_wait);
320 mddev->pers->quiesce(mddev, 0);
321
322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
323 md_wakeup_thread(mddev->thread);
324 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
325 }
326 EXPORT_SYMBOL_GPL(mddev_resume);
327
mddev_congested(struct mddev * mddev,int bits)328 int mddev_congested(struct mddev *mddev, int bits)
329 {
330 return mddev->suspended;
331 }
332 EXPORT_SYMBOL(mddev_congested);
333
334 /*
335 * Generic flush handling for md
336 */
337
md_end_flush(struct bio * bio,int err)338 static void md_end_flush(struct bio *bio, int err)
339 {
340 struct md_rdev *rdev = bio->bi_private;
341 struct mddev *mddev = rdev->mddev;
342
343 rdev_dec_pending(rdev, mddev);
344
345 if (atomic_dec_and_test(&mddev->flush_pending)) {
346 /* The pre-request flush has finished */
347 queue_work(md_wq, &mddev->flush_work);
348 }
349 bio_put(bio);
350 }
351
352 static void md_submit_flush_data(struct work_struct *ws);
353
submit_flushes(struct work_struct * ws)354 static void submit_flushes(struct work_struct *ws)
355 {
356 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
357 struct md_rdev *rdev;
358
359 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
360 atomic_set(&mddev->flush_pending, 1);
361 rcu_read_lock();
362 rdev_for_each_rcu(rdev, mddev)
363 if (rdev->raid_disk >= 0 &&
364 !test_bit(Faulty, &rdev->flags)) {
365 /* Take two references, one is dropped
366 * when request finishes, one after
367 * we reclaim rcu_read_lock
368 */
369 struct bio *bi;
370 atomic_inc(&rdev->nr_pending);
371 atomic_inc(&rdev->nr_pending);
372 rcu_read_unlock();
373 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
374 bi->bi_end_io = md_end_flush;
375 bi->bi_private = rdev;
376 bi->bi_bdev = rdev->bdev;
377 atomic_inc(&mddev->flush_pending);
378 submit_bio(WRITE_FLUSH, bi);
379 rcu_read_lock();
380 rdev_dec_pending(rdev, mddev);
381 }
382 rcu_read_unlock();
383 if (atomic_dec_and_test(&mddev->flush_pending))
384 queue_work(md_wq, &mddev->flush_work);
385 }
386
md_submit_flush_data(struct work_struct * ws)387 static void md_submit_flush_data(struct work_struct *ws)
388 {
389 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
390 struct bio *bio = mddev->flush_bio;
391
392 if (bio->bi_iter.bi_size == 0)
393 /* an empty barrier - all done */
394 bio_endio(bio, 0);
395 else {
396 bio->bi_rw &= ~REQ_FLUSH;
397 mddev->pers->make_request(mddev, bio);
398 }
399
400 mddev->flush_bio = NULL;
401 wake_up(&mddev->sb_wait);
402 }
403
md_flush_request(struct mddev * mddev,struct bio * bio)404 void md_flush_request(struct mddev *mddev, struct bio *bio)
405 {
406 spin_lock_irq(&mddev->write_lock);
407 wait_event_lock_irq(mddev->sb_wait,
408 !mddev->flush_bio,
409 mddev->write_lock);
410 mddev->flush_bio = bio;
411 spin_unlock_irq(&mddev->write_lock);
412
413 INIT_WORK(&mddev->flush_work, submit_flushes);
414 queue_work(md_wq, &mddev->flush_work);
415 }
416 EXPORT_SYMBOL(md_flush_request);
417
md_unplug(struct blk_plug_cb * cb,bool from_schedule)418 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
419 {
420 struct mddev *mddev = cb->data;
421 md_wakeup_thread(mddev->thread);
422 kfree(cb);
423 }
424 EXPORT_SYMBOL(md_unplug);
425
mddev_get(struct mddev * mddev)426 static inline struct mddev *mddev_get(struct mddev *mddev)
427 {
428 atomic_inc(&mddev->active);
429 return mddev;
430 }
431
432 static void mddev_delayed_delete(struct work_struct *ws);
433
mddev_put(struct mddev * mddev)434 static void mddev_put(struct mddev *mddev)
435 {
436 struct bio_set *bs = NULL;
437
438 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
439 return;
440 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
441 mddev->ctime == 0 && !mddev->hold_active) {
442 /* Array is not configured at all, and not held active,
443 * so destroy it */
444 list_del_init(&mddev->all_mddevs);
445 bs = mddev->bio_set;
446 mddev->bio_set = NULL;
447 if (mddev->gendisk) {
448 /* We did a probe so need to clean up. Call
449 * queue_work inside the spinlock so that
450 * flush_workqueue() after mddev_find will
451 * succeed in waiting for the work to be done.
452 */
453 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
454 queue_work(md_misc_wq, &mddev->del_work);
455 } else
456 kfree(mddev);
457 }
458 spin_unlock(&all_mddevs_lock);
459 if (bs)
460 bioset_free(bs);
461 }
462
mddev_init(struct mddev * mddev)463 void mddev_init(struct mddev *mddev)
464 {
465 mutex_init(&mddev->open_mutex);
466 mutex_init(&mddev->reconfig_mutex);
467 mutex_init(&mddev->bitmap_info.mutex);
468 INIT_LIST_HEAD(&mddev->disks);
469 INIT_LIST_HEAD(&mddev->all_mddevs);
470 init_timer(&mddev->safemode_timer);
471 atomic_set(&mddev->active, 1);
472 atomic_set(&mddev->openers, 0);
473 atomic_set(&mddev->active_io, 0);
474 spin_lock_init(&mddev->write_lock);
475 atomic_set(&mddev->flush_pending, 0);
476 init_waitqueue_head(&mddev->sb_wait);
477 init_waitqueue_head(&mddev->recovery_wait);
478 mddev->reshape_position = MaxSector;
479 mddev->reshape_backwards = 0;
480 mddev->last_sync_action = "none";
481 mddev->resync_min = 0;
482 mddev->resync_max = MaxSector;
483 mddev->level = LEVEL_NONE;
484 }
485 EXPORT_SYMBOL_GPL(mddev_init);
486
mddev_find(dev_t unit)487 static struct mddev *mddev_find(dev_t unit)
488 {
489 struct mddev *mddev, *new = NULL;
490
491 if (unit && MAJOR(unit) != MD_MAJOR)
492 unit &= ~((1<<MdpMinorShift)-1);
493
494 retry:
495 spin_lock(&all_mddevs_lock);
496
497 if (unit) {
498 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
499 if (mddev->unit == unit) {
500 mddev_get(mddev);
501 spin_unlock(&all_mddevs_lock);
502 kfree(new);
503 return mddev;
504 }
505
506 if (new) {
507 list_add(&new->all_mddevs, &all_mddevs);
508 spin_unlock(&all_mddevs_lock);
509 new->hold_active = UNTIL_IOCTL;
510 return new;
511 }
512 } else if (new) {
513 /* find an unused unit number */
514 static int next_minor = 512;
515 int start = next_minor;
516 int is_free = 0;
517 int dev = 0;
518 while (!is_free) {
519 dev = MKDEV(MD_MAJOR, next_minor);
520 next_minor++;
521 if (next_minor > MINORMASK)
522 next_minor = 0;
523 if (next_minor == start) {
524 /* Oh dear, all in use. */
525 spin_unlock(&all_mddevs_lock);
526 kfree(new);
527 return NULL;
528 }
529
530 is_free = 1;
531 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
532 if (mddev->unit == dev) {
533 is_free = 0;
534 break;
535 }
536 }
537 new->unit = dev;
538 new->md_minor = MINOR(dev);
539 new->hold_active = UNTIL_STOP;
540 list_add(&new->all_mddevs, &all_mddevs);
541 spin_unlock(&all_mddevs_lock);
542 return new;
543 }
544 spin_unlock(&all_mddevs_lock);
545
546 new = kzalloc(sizeof(*new), GFP_KERNEL);
547 if (!new)
548 return NULL;
549
550 new->unit = unit;
551 if (MAJOR(unit) == MD_MAJOR)
552 new->md_minor = MINOR(unit);
553 else
554 new->md_minor = MINOR(unit) >> MdpMinorShift;
555
556 mddev_init(new);
557
558 goto retry;
559 }
560
mddev_lock(struct mddev * mddev)561 static inline int __must_check mddev_lock(struct mddev *mddev)
562 {
563 return mutex_lock_interruptible(&mddev->reconfig_mutex);
564 }
565
566 /* Sometimes we need to take the lock in a situation where
567 * failure due to interrupts is not acceptable.
568 */
mddev_lock_nointr(struct mddev * mddev)569 static inline void mddev_lock_nointr(struct mddev *mddev)
570 {
571 mutex_lock(&mddev->reconfig_mutex);
572 }
573
mddev_is_locked(struct mddev * mddev)574 static inline int mddev_is_locked(struct mddev *mddev)
575 {
576 return mutex_is_locked(&mddev->reconfig_mutex);
577 }
578
mddev_trylock(struct mddev * mddev)579 static inline int mddev_trylock(struct mddev *mddev)
580 {
581 return mutex_trylock(&mddev->reconfig_mutex);
582 }
583
584 static struct attribute_group md_redundancy_group;
585
mddev_unlock(struct mddev * mddev)586 static void mddev_unlock(struct mddev *mddev)
587 {
588 if (mddev->to_remove) {
589 /* These cannot be removed under reconfig_mutex as
590 * an access to the files will try to take reconfig_mutex
591 * while holding the file unremovable, which leads to
592 * a deadlock.
593 * So hold set sysfs_active while the remove in happeing,
594 * and anything else which might set ->to_remove or my
595 * otherwise change the sysfs namespace will fail with
596 * -EBUSY if sysfs_active is still set.
597 * We set sysfs_active under reconfig_mutex and elsewhere
598 * test it under the same mutex to ensure its correct value
599 * is seen.
600 */
601 struct attribute_group *to_remove = mddev->to_remove;
602 mddev->to_remove = NULL;
603 mddev->sysfs_active = 1;
604 mutex_unlock(&mddev->reconfig_mutex);
605
606 if (mddev->kobj.sd) {
607 if (to_remove != &md_redundancy_group)
608 sysfs_remove_group(&mddev->kobj, to_remove);
609 if (mddev->pers == NULL ||
610 mddev->pers->sync_request == NULL) {
611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 if (mddev->sysfs_action)
613 sysfs_put(mddev->sysfs_action);
614 mddev->sysfs_action = NULL;
615 }
616 }
617 mddev->sysfs_active = 0;
618 } else
619 mutex_unlock(&mddev->reconfig_mutex);
620
621 /* As we've dropped the mutex we need a spinlock to
622 * make sure the thread doesn't disappear
623 */
624 spin_lock(&pers_lock);
625 md_wakeup_thread(mddev->thread);
626 spin_unlock(&pers_lock);
627 }
628
find_rdev_nr_rcu(struct mddev * mddev,int nr)629 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
630 {
631 struct md_rdev *rdev;
632
633 rdev_for_each_rcu(rdev, mddev)
634 if (rdev->desc_nr == nr)
635 return rdev;
636
637 return NULL;
638 }
639
find_rdev(struct mddev * mddev,dev_t dev)640 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
641 {
642 struct md_rdev *rdev;
643
644 rdev_for_each(rdev, mddev)
645 if (rdev->bdev->bd_dev == dev)
646 return rdev;
647
648 return NULL;
649 }
650
find_rdev_rcu(struct mddev * mddev,dev_t dev)651 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
652 {
653 struct md_rdev *rdev;
654
655 rdev_for_each_rcu(rdev, mddev)
656 if (rdev->bdev->bd_dev == dev)
657 return rdev;
658
659 return NULL;
660 }
661
find_pers(int level,char * clevel)662 static struct md_personality *find_pers(int level, char *clevel)
663 {
664 struct md_personality *pers;
665 list_for_each_entry(pers, &pers_list, list) {
666 if (level != LEVEL_NONE && pers->level == level)
667 return pers;
668 if (strcmp(pers->name, clevel)==0)
669 return pers;
670 }
671 return NULL;
672 }
673
674 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)675 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
676 {
677 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
678 return MD_NEW_SIZE_SECTORS(num_sectors);
679 }
680
alloc_disk_sb(struct md_rdev * rdev)681 static int alloc_disk_sb(struct md_rdev *rdev)
682 {
683 rdev->sb_page = alloc_page(GFP_KERNEL);
684 if (!rdev->sb_page) {
685 printk(KERN_ALERT "md: out of memory.\n");
686 return -ENOMEM;
687 }
688
689 return 0;
690 }
691
md_rdev_clear(struct md_rdev * rdev)692 void md_rdev_clear(struct md_rdev *rdev)
693 {
694 if (rdev->sb_page) {
695 put_page(rdev->sb_page);
696 rdev->sb_loaded = 0;
697 rdev->sb_page = NULL;
698 rdev->sb_start = 0;
699 rdev->sectors = 0;
700 }
701 if (rdev->bb_page) {
702 put_page(rdev->bb_page);
703 rdev->bb_page = NULL;
704 }
705 kfree(rdev->badblocks.page);
706 rdev->badblocks.page = NULL;
707 }
708 EXPORT_SYMBOL_GPL(md_rdev_clear);
709
super_written(struct bio * bio,int error)710 static void super_written(struct bio *bio, int error)
711 {
712 struct md_rdev *rdev = bio->bi_private;
713 struct mddev *mddev = rdev->mddev;
714
715 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
716 printk("md: super_written gets error=%d, uptodate=%d\n",
717 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
718 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
719 md_error(mddev, rdev);
720 }
721
722 if (atomic_dec_and_test(&mddev->pending_writes))
723 wake_up(&mddev->sb_wait);
724 bio_put(bio);
725 }
726
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 sector_t sector, int size, struct page *page)
729 {
730 /* write first size bytes of page to sector of rdev
731 * Increment mddev->pending_writes before returning
732 * and decrement it on completion, waking up sb_wait
733 * if zero is reached.
734 * If an error occurred, call md_error
735 */
736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737
738 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
739 bio->bi_iter.bi_sector = sector;
740 bio_add_page(bio, page, size, 0);
741 bio->bi_private = rdev;
742 bio->bi_end_io = super_written;
743
744 atomic_inc(&mddev->pending_writes);
745 submit_bio(WRITE_FLUSH_FUA, bio);
746 }
747
md_super_wait(struct mddev * mddev)748 void md_super_wait(struct mddev *mddev)
749 {
750 /* wait for all superblock writes that were scheduled to complete */
751 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
752 }
753
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)754 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
755 struct page *page, int rw, bool metadata_op)
756 {
757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
758 int ret;
759
760 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
761 rdev->meta_bdev : rdev->bdev;
762 if (metadata_op)
763 bio->bi_iter.bi_sector = sector + rdev->sb_start;
764 else if (rdev->mddev->reshape_position != MaxSector &&
765 (rdev->mddev->reshape_backwards ==
766 (sector >= rdev->mddev->reshape_position)))
767 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
768 else
769 bio->bi_iter.bi_sector = sector + rdev->data_offset;
770 bio_add_page(bio, page, size, 0);
771 submit_bio_wait(rw, bio);
772
773 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
774 bio_put(bio);
775 return ret;
776 }
777 EXPORT_SYMBOL_GPL(sync_page_io);
778
read_disk_sb(struct md_rdev * rdev,int size)779 static int read_disk_sb(struct md_rdev *rdev, int size)
780 {
781 char b[BDEVNAME_SIZE];
782
783 if (rdev->sb_loaded)
784 return 0;
785
786 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
787 goto fail;
788 rdev->sb_loaded = 1;
789 return 0;
790
791 fail:
792 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
793 bdevname(rdev->bdev,b));
794 return -EINVAL;
795 }
796
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)797 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
798 {
799 return sb1->set_uuid0 == sb2->set_uuid0 &&
800 sb1->set_uuid1 == sb2->set_uuid1 &&
801 sb1->set_uuid2 == sb2->set_uuid2 &&
802 sb1->set_uuid3 == sb2->set_uuid3;
803 }
804
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)805 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 int ret;
808 mdp_super_t *tmp1, *tmp2;
809
810 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
811 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
812
813 if (!tmp1 || !tmp2) {
814 ret = 0;
815 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
816 goto abort;
817 }
818
819 *tmp1 = *sb1;
820 *tmp2 = *sb2;
821
822 /*
823 * nr_disks is not constant
824 */
825 tmp1->nr_disks = 0;
826 tmp2->nr_disks = 0;
827
828 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
829 abort:
830 kfree(tmp1);
831 kfree(tmp2);
832 return ret;
833 }
834
md_csum_fold(u32 csum)835 static u32 md_csum_fold(u32 csum)
836 {
837 csum = (csum & 0xffff) + (csum >> 16);
838 return (csum & 0xffff) + (csum >> 16);
839 }
840
calc_sb_csum(mdp_super_t * sb)841 static unsigned int calc_sb_csum(mdp_super_t *sb)
842 {
843 u64 newcsum = 0;
844 u32 *sb32 = (u32*)sb;
845 int i;
846 unsigned int disk_csum, csum;
847
848 disk_csum = sb->sb_csum;
849 sb->sb_csum = 0;
850
851 for (i = 0; i < MD_SB_BYTES/4 ; i++)
852 newcsum += sb32[i];
853 csum = (newcsum & 0xffffffff) + (newcsum>>32);
854
855 #ifdef CONFIG_ALPHA
856 /* This used to use csum_partial, which was wrong for several
857 * reasons including that different results are returned on
858 * different architectures. It isn't critical that we get exactly
859 * the same return value as before (we always csum_fold before
860 * testing, and that removes any differences). However as we
861 * know that csum_partial always returned a 16bit value on
862 * alphas, do a fold to maximise conformity to previous behaviour.
863 */
864 sb->sb_csum = md_csum_fold(disk_csum);
865 #else
866 sb->sb_csum = disk_csum;
867 #endif
868 return csum;
869 }
870
871 /*
872 * Handle superblock details.
873 * We want to be able to handle multiple superblock formats
874 * so we have a common interface to them all, and an array of
875 * different handlers.
876 * We rely on user-space to write the initial superblock, and support
877 * reading and updating of superblocks.
878 * Interface methods are:
879 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
880 * loads and validates a superblock on dev.
881 * if refdev != NULL, compare superblocks on both devices
882 * Return:
883 * 0 - dev has a superblock that is compatible with refdev
884 * 1 - dev has a superblock that is compatible and newer than refdev
885 * so dev should be used as the refdev in future
886 * -EINVAL superblock incompatible or invalid
887 * -othererror e.g. -EIO
888 *
889 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
890 * Verify that dev is acceptable into mddev.
891 * The first time, mddev->raid_disks will be 0, and data from
892 * dev should be merged in. Subsequent calls check that dev
893 * is new enough. Return 0 or -EINVAL
894 *
895 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
896 * Update the superblock for rdev with data in mddev
897 * This does not write to disc.
898 *
899 */
900
901 struct super_type {
902 char *name;
903 struct module *owner;
904 int (*load_super)(struct md_rdev *rdev,
905 struct md_rdev *refdev,
906 int minor_version);
907 int (*validate_super)(struct mddev *mddev,
908 struct md_rdev *rdev);
909 void (*sync_super)(struct mddev *mddev,
910 struct md_rdev *rdev);
911 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
912 sector_t num_sectors);
913 int (*allow_new_offset)(struct md_rdev *rdev,
914 unsigned long long new_offset);
915 };
916
917 /*
918 * Check that the given mddev has no bitmap.
919 *
920 * This function is called from the run method of all personalities that do not
921 * support bitmaps. It prints an error message and returns non-zero if mddev
922 * has a bitmap. Otherwise, it returns 0.
923 *
924 */
md_check_no_bitmap(struct mddev * mddev)925 int md_check_no_bitmap(struct mddev *mddev)
926 {
927 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
928 return 0;
929 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
930 mdname(mddev), mddev->pers->name);
931 return 1;
932 }
933 EXPORT_SYMBOL(md_check_no_bitmap);
934
935 /*
936 * load_super for 0.90.0
937 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)938 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
939 {
940 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
941 mdp_super_t *sb;
942 int ret;
943
944 /*
945 * Calculate the position of the superblock (512byte sectors),
946 * it's at the end of the disk.
947 *
948 * It also happens to be a multiple of 4Kb.
949 */
950 rdev->sb_start = calc_dev_sboffset(rdev);
951
952 ret = read_disk_sb(rdev, MD_SB_BYTES);
953 if (ret) return ret;
954
955 ret = -EINVAL;
956
957 bdevname(rdev->bdev, b);
958 sb = page_address(rdev->sb_page);
959
960 if (sb->md_magic != MD_SB_MAGIC) {
961 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
962 b);
963 goto abort;
964 }
965
966 if (sb->major_version != 0 ||
967 sb->minor_version < 90 ||
968 sb->minor_version > 91) {
969 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
970 sb->major_version, sb->minor_version,
971 b);
972 goto abort;
973 }
974
975 if (sb->raid_disks <= 0)
976 goto abort;
977
978 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
979 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
980 b);
981 goto abort;
982 }
983
984 rdev->preferred_minor = sb->md_minor;
985 rdev->data_offset = 0;
986 rdev->new_data_offset = 0;
987 rdev->sb_size = MD_SB_BYTES;
988 rdev->badblocks.shift = -1;
989
990 if (sb->level == LEVEL_MULTIPATH)
991 rdev->desc_nr = -1;
992 else
993 rdev->desc_nr = sb->this_disk.number;
994
995 if (!refdev) {
996 ret = 1;
997 } else {
998 __u64 ev1, ev2;
999 mdp_super_t *refsb = page_address(refdev->sb_page);
1000 if (!uuid_equal(refsb, sb)) {
1001 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1002 b, bdevname(refdev->bdev,b2));
1003 goto abort;
1004 }
1005 if (!sb_equal(refsb, sb)) {
1006 printk(KERN_WARNING "md: %s has same UUID"
1007 " but different superblock to %s\n",
1008 b, bdevname(refdev->bdev, b2));
1009 goto abort;
1010 }
1011 ev1 = md_event(sb);
1012 ev2 = md_event(refsb);
1013 if (ev1 > ev2)
1014 ret = 1;
1015 else
1016 ret = 0;
1017 }
1018 rdev->sectors = rdev->sb_start;
1019 /* Limit to 4TB as metadata cannot record more than that.
1020 * (not needed for Linear and RAID0 as metadata doesn't
1021 * record this size)
1022 */
1023 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1024 rdev->sectors = (2ULL << 32) - 2;
1025
1026 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1027 /* "this cannot possibly happen" ... */
1028 ret = -EINVAL;
1029
1030 abort:
1031 return ret;
1032 }
1033
1034 /*
1035 * validate_super for 0.90.0
1036 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1037 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1038 {
1039 mdp_disk_t *desc;
1040 mdp_super_t *sb = page_address(rdev->sb_page);
1041 __u64 ev1 = md_event(sb);
1042
1043 rdev->raid_disk = -1;
1044 clear_bit(Faulty, &rdev->flags);
1045 clear_bit(In_sync, &rdev->flags);
1046 clear_bit(Bitmap_sync, &rdev->flags);
1047 clear_bit(WriteMostly, &rdev->flags);
1048
1049 if (mddev->raid_disks == 0) {
1050 mddev->major_version = 0;
1051 mddev->minor_version = sb->minor_version;
1052 mddev->patch_version = sb->patch_version;
1053 mddev->external = 0;
1054 mddev->chunk_sectors = sb->chunk_size >> 9;
1055 mddev->ctime = sb->ctime;
1056 mddev->utime = sb->utime;
1057 mddev->level = sb->level;
1058 mddev->clevel[0] = 0;
1059 mddev->layout = sb->layout;
1060 mddev->raid_disks = sb->raid_disks;
1061 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1062 mddev->events = ev1;
1063 mddev->bitmap_info.offset = 0;
1064 mddev->bitmap_info.space = 0;
1065 /* bitmap can use 60 K after the 4K superblocks */
1066 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1067 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1068 mddev->reshape_backwards = 0;
1069
1070 if (mddev->minor_version >= 91) {
1071 mddev->reshape_position = sb->reshape_position;
1072 mddev->delta_disks = sb->delta_disks;
1073 mddev->new_level = sb->new_level;
1074 mddev->new_layout = sb->new_layout;
1075 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1076 if (mddev->delta_disks < 0)
1077 mddev->reshape_backwards = 1;
1078 } else {
1079 mddev->reshape_position = MaxSector;
1080 mddev->delta_disks = 0;
1081 mddev->new_level = mddev->level;
1082 mddev->new_layout = mddev->layout;
1083 mddev->new_chunk_sectors = mddev->chunk_sectors;
1084 }
1085
1086 if (sb->state & (1<<MD_SB_CLEAN))
1087 mddev->recovery_cp = MaxSector;
1088 else {
1089 if (sb->events_hi == sb->cp_events_hi &&
1090 sb->events_lo == sb->cp_events_lo) {
1091 mddev->recovery_cp = sb->recovery_cp;
1092 } else
1093 mddev->recovery_cp = 0;
1094 }
1095
1096 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1097 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1098 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1099 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1100
1101 mddev->max_disks = MD_SB_DISKS;
1102
1103 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1104 mddev->bitmap_info.file == NULL) {
1105 mddev->bitmap_info.offset =
1106 mddev->bitmap_info.default_offset;
1107 mddev->bitmap_info.space =
1108 mddev->bitmap_info.default_space;
1109 }
1110
1111 } else if (mddev->pers == NULL) {
1112 /* Insist on good event counter while assembling, except
1113 * for spares (which don't need an event count) */
1114 ++ev1;
1115 if (sb->disks[rdev->desc_nr].state & (
1116 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1117 if (ev1 < mddev->events)
1118 return -EINVAL;
1119 } else if (mddev->bitmap) {
1120 /* if adding to array with a bitmap, then we can accept an
1121 * older device ... but not too old.
1122 */
1123 if (ev1 < mddev->bitmap->events_cleared)
1124 return 0;
1125 if (ev1 < mddev->events)
1126 set_bit(Bitmap_sync, &rdev->flags);
1127 } else {
1128 if (ev1 < mddev->events)
1129 /* just a hot-add of a new device, leave raid_disk at -1 */
1130 return 0;
1131 }
1132
1133 if (mddev->level != LEVEL_MULTIPATH) {
1134 desc = sb->disks + rdev->desc_nr;
1135
1136 if (desc->state & (1<<MD_DISK_FAULTY))
1137 set_bit(Faulty, &rdev->flags);
1138 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1139 desc->raid_disk < mddev->raid_disks */) {
1140 set_bit(In_sync, &rdev->flags);
1141 rdev->raid_disk = desc->raid_disk;
1142 rdev->saved_raid_disk = desc->raid_disk;
1143 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1144 /* active but not in sync implies recovery up to
1145 * reshape position. We don't know exactly where
1146 * that is, so set to zero for now */
1147 if (mddev->minor_version >= 91) {
1148 rdev->recovery_offset = 0;
1149 rdev->raid_disk = desc->raid_disk;
1150 }
1151 }
1152 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1153 set_bit(WriteMostly, &rdev->flags);
1154 } else /* MULTIPATH are always insync */
1155 set_bit(In_sync, &rdev->flags);
1156 return 0;
1157 }
1158
1159 /*
1160 * sync_super for 0.90.0
1161 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1162 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1163 {
1164 mdp_super_t *sb;
1165 struct md_rdev *rdev2;
1166 int next_spare = mddev->raid_disks;
1167
1168 /* make rdev->sb match mddev data..
1169 *
1170 * 1/ zero out disks
1171 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1172 * 3/ any empty disks < next_spare become removed
1173 *
1174 * disks[0] gets initialised to REMOVED because
1175 * we cannot be sure from other fields if it has
1176 * been initialised or not.
1177 */
1178 int i;
1179 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1180
1181 rdev->sb_size = MD_SB_BYTES;
1182
1183 sb = page_address(rdev->sb_page);
1184
1185 memset(sb, 0, sizeof(*sb));
1186
1187 sb->md_magic = MD_SB_MAGIC;
1188 sb->major_version = mddev->major_version;
1189 sb->patch_version = mddev->patch_version;
1190 sb->gvalid_words = 0; /* ignored */
1191 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1192 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1193 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1194 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1195
1196 sb->ctime = mddev->ctime;
1197 sb->level = mddev->level;
1198 sb->size = mddev->dev_sectors / 2;
1199 sb->raid_disks = mddev->raid_disks;
1200 sb->md_minor = mddev->md_minor;
1201 sb->not_persistent = 0;
1202 sb->utime = mddev->utime;
1203 sb->state = 0;
1204 sb->events_hi = (mddev->events>>32);
1205 sb->events_lo = (u32)mddev->events;
1206
1207 if (mddev->reshape_position == MaxSector)
1208 sb->minor_version = 90;
1209 else {
1210 sb->minor_version = 91;
1211 sb->reshape_position = mddev->reshape_position;
1212 sb->new_level = mddev->new_level;
1213 sb->delta_disks = mddev->delta_disks;
1214 sb->new_layout = mddev->new_layout;
1215 sb->new_chunk = mddev->new_chunk_sectors << 9;
1216 }
1217 mddev->minor_version = sb->minor_version;
1218 if (mddev->in_sync)
1219 {
1220 sb->recovery_cp = mddev->recovery_cp;
1221 sb->cp_events_hi = (mddev->events>>32);
1222 sb->cp_events_lo = (u32)mddev->events;
1223 if (mddev->recovery_cp == MaxSector)
1224 sb->state = (1<< MD_SB_CLEAN);
1225 } else
1226 sb->recovery_cp = 0;
1227
1228 sb->layout = mddev->layout;
1229 sb->chunk_size = mddev->chunk_sectors << 9;
1230
1231 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1232 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1233
1234 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1235 rdev_for_each(rdev2, mddev) {
1236 mdp_disk_t *d;
1237 int desc_nr;
1238 int is_active = test_bit(In_sync, &rdev2->flags);
1239
1240 if (rdev2->raid_disk >= 0 &&
1241 sb->minor_version >= 91)
1242 /* we have nowhere to store the recovery_offset,
1243 * but if it is not below the reshape_position,
1244 * we can piggy-back on that.
1245 */
1246 is_active = 1;
1247 if (rdev2->raid_disk < 0 ||
1248 test_bit(Faulty, &rdev2->flags))
1249 is_active = 0;
1250 if (is_active)
1251 desc_nr = rdev2->raid_disk;
1252 else
1253 desc_nr = next_spare++;
1254 rdev2->desc_nr = desc_nr;
1255 d = &sb->disks[rdev2->desc_nr];
1256 nr_disks++;
1257 d->number = rdev2->desc_nr;
1258 d->major = MAJOR(rdev2->bdev->bd_dev);
1259 d->minor = MINOR(rdev2->bdev->bd_dev);
1260 if (is_active)
1261 d->raid_disk = rdev2->raid_disk;
1262 else
1263 d->raid_disk = rdev2->desc_nr; /* compatibility */
1264 if (test_bit(Faulty, &rdev2->flags))
1265 d->state = (1<<MD_DISK_FAULTY);
1266 else if (is_active) {
1267 d->state = (1<<MD_DISK_ACTIVE);
1268 if (test_bit(In_sync, &rdev2->flags))
1269 d->state |= (1<<MD_DISK_SYNC);
1270 active++;
1271 working++;
1272 } else {
1273 d->state = 0;
1274 spare++;
1275 working++;
1276 }
1277 if (test_bit(WriteMostly, &rdev2->flags))
1278 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1279 }
1280 /* now set the "removed" and "faulty" bits on any missing devices */
1281 for (i=0 ; i < mddev->raid_disks ; i++) {
1282 mdp_disk_t *d = &sb->disks[i];
1283 if (d->state == 0 && d->number == 0) {
1284 d->number = i;
1285 d->raid_disk = i;
1286 d->state = (1<<MD_DISK_REMOVED);
1287 d->state |= (1<<MD_DISK_FAULTY);
1288 failed++;
1289 }
1290 }
1291 sb->nr_disks = nr_disks;
1292 sb->active_disks = active;
1293 sb->working_disks = working;
1294 sb->failed_disks = failed;
1295 sb->spare_disks = spare;
1296
1297 sb->this_disk = sb->disks[rdev->desc_nr];
1298 sb->sb_csum = calc_sb_csum(sb);
1299 }
1300
1301 /*
1302 * rdev_size_change for 0.90.0
1303 */
1304 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1305 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1306 {
1307 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1308 return 0; /* component must fit device */
1309 if (rdev->mddev->bitmap_info.offset)
1310 return 0; /* can't move bitmap */
1311 rdev->sb_start = calc_dev_sboffset(rdev);
1312 if (!num_sectors || num_sectors > rdev->sb_start)
1313 num_sectors = rdev->sb_start;
1314 /* Limit to 4TB as metadata cannot record more than that.
1315 * 4TB == 2^32 KB, or 2*2^32 sectors.
1316 */
1317 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1318 num_sectors = (2ULL << 32) - 2;
1319 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1320 rdev->sb_page);
1321 md_super_wait(rdev->mddev);
1322 return num_sectors;
1323 }
1324
1325 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1326 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1327 {
1328 /* non-zero offset changes not possible with v0.90 */
1329 return new_offset == 0;
1330 }
1331
1332 /*
1333 * version 1 superblock
1334 */
1335
calc_sb_1_csum(struct mdp_superblock_1 * sb)1336 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1337 {
1338 __le32 disk_csum;
1339 u32 csum;
1340 unsigned long long newcsum;
1341 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1342 __le32 *isuper = (__le32*)sb;
1343
1344 disk_csum = sb->sb_csum;
1345 sb->sb_csum = 0;
1346 newcsum = 0;
1347 for (; size >= 4; size -= 4)
1348 newcsum += le32_to_cpu(*isuper++);
1349
1350 if (size == 2)
1351 newcsum += le16_to_cpu(*(__le16*) isuper);
1352
1353 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1354 sb->sb_csum = disk_csum;
1355 return cpu_to_le32(csum);
1356 }
1357
1358 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1359 int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1360 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1361 {
1362 struct mdp_superblock_1 *sb;
1363 int ret;
1364 sector_t sb_start;
1365 sector_t sectors;
1366 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1367 int bmask;
1368
1369 /*
1370 * Calculate the position of the superblock in 512byte sectors.
1371 * It is always aligned to a 4K boundary and
1372 * depeding on minor_version, it can be:
1373 * 0: At least 8K, but less than 12K, from end of device
1374 * 1: At start of device
1375 * 2: 4K from start of device.
1376 */
1377 switch(minor_version) {
1378 case 0:
1379 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1380 sb_start -= 8*2;
1381 sb_start &= ~(sector_t)(4*2-1);
1382 break;
1383 case 1:
1384 sb_start = 0;
1385 break;
1386 case 2:
1387 sb_start = 8;
1388 break;
1389 default:
1390 return -EINVAL;
1391 }
1392 rdev->sb_start = sb_start;
1393
1394 /* superblock is rarely larger than 1K, but it can be larger,
1395 * and it is safe to read 4k, so we do that
1396 */
1397 ret = read_disk_sb(rdev, 4096);
1398 if (ret) return ret;
1399
1400 sb = page_address(rdev->sb_page);
1401
1402 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1403 sb->major_version != cpu_to_le32(1) ||
1404 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1405 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1406 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1407 return -EINVAL;
1408
1409 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1410 printk("md: invalid superblock checksum on %s\n",
1411 bdevname(rdev->bdev,b));
1412 return -EINVAL;
1413 }
1414 if (le64_to_cpu(sb->data_size) < 10) {
1415 printk("md: data_size too small on %s\n",
1416 bdevname(rdev->bdev,b));
1417 return -EINVAL;
1418 }
1419 if (sb->pad0 ||
1420 sb->pad3[0] ||
1421 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1422 /* Some padding is non-zero, might be a new feature */
1423 return -EINVAL;
1424
1425 rdev->preferred_minor = 0xffff;
1426 rdev->data_offset = le64_to_cpu(sb->data_offset);
1427 rdev->new_data_offset = rdev->data_offset;
1428 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1429 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1430 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1431 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1432
1433 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1434 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1435 if (rdev->sb_size & bmask)
1436 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1437
1438 if (minor_version
1439 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1440 return -EINVAL;
1441 if (minor_version
1442 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1443 return -EINVAL;
1444
1445 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1446 rdev->desc_nr = -1;
1447 else
1448 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1449
1450 if (!rdev->bb_page) {
1451 rdev->bb_page = alloc_page(GFP_KERNEL);
1452 if (!rdev->bb_page)
1453 return -ENOMEM;
1454 }
1455 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1456 rdev->badblocks.count == 0) {
1457 /* need to load the bad block list.
1458 * Currently we limit it to one page.
1459 */
1460 s32 offset;
1461 sector_t bb_sector;
1462 u64 *bbp;
1463 int i;
1464 int sectors = le16_to_cpu(sb->bblog_size);
1465 if (sectors > (PAGE_SIZE / 512))
1466 return -EINVAL;
1467 offset = le32_to_cpu(sb->bblog_offset);
1468 if (offset == 0)
1469 return -EINVAL;
1470 bb_sector = (long long)offset;
1471 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1472 rdev->bb_page, READ, true))
1473 return -EIO;
1474 bbp = (u64 *)page_address(rdev->bb_page);
1475 rdev->badblocks.shift = sb->bblog_shift;
1476 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1477 u64 bb = le64_to_cpu(*bbp);
1478 int count = bb & (0x3ff);
1479 u64 sector = bb >> 10;
1480 sector <<= sb->bblog_shift;
1481 count <<= sb->bblog_shift;
1482 if (bb + 1 == 0)
1483 break;
1484 if (md_set_badblocks(&rdev->badblocks,
1485 sector, count, 1) == 0)
1486 return -EINVAL;
1487 }
1488 } else if (sb->bblog_offset != 0)
1489 rdev->badblocks.shift = 0;
1490
1491 if (!refdev) {
1492 ret = 1;
1493 } else {
1494 __u64 ev1, ev2;
1495 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1496
1497 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1498 sb->level != refsb->level ||
1499 sb->layout != refsb->layout ||
1500 sb->chunksize != refsb->chunksize) {
1501 printk(KERN_WARNING "md: %s has strangely different"
1502 " superblock to %s\n",
1503 bdevname(rdev->bdev,b),
1504 bdevname(refdev->bdev,b2));
1505 return -EINVAL;
1506 }
1507 ev1 = le64_to_cpu(sb->events);
1508 ev2 = le64_to_cpu(refsb->events);
1509
1510 if (ev1 > ev2)
1511 ret = 1;
1512 else
1513 ret = 0;
1514 }
1515 if (minor_version) {
1516 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1517 sectors -= rdev->data_offset;
1518 } else
1519 sectors = rdev->sb_start;
1520 if (sectors < le64_to_cpu(sb->data_size))
1521 return -EINVAL;
1522 rdev->sectors = le64_to_cpu(sb->data_size);
1523 return ret;
1524 }
1525
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1526 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1527 {
1528 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1529 __u64 ev1 = le64_to_cpu(sb->events);
1530
1531 rdev->raid_disk = -1;
1532 clear_bit(Faulty, &rdev->flags);
1533 clear_bit(In_sync, &rdev->flags);
1534 clear_bit(Bitmap_sync, &rdev->flags);
1535 clear_bit(WriteMostly, &rdev->flags);
1536
1537 if (mddev->raid_disks == 0) {
1538 mddev->major_version = 1;
1539 mddev->patch_version = 0;
1540 mddev->external = 0;
1541 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1542 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1543 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1544 mddev->level = le32_to_cpu(sb->level);
1545 mddev->clevel[0] = 0;
1546 mddev->layout = le32_to_cpu(sb->layout);
1547 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1548 mddev->dev_sectors = le64_to_cpu(sb->size);
1549 mddev->events = ev1;
1550 mddev->bitmap_info.offset = 0;
1551 mddev->bitmap_info.space = 0;
1552 /* Default location for bitmap is 1K after superblock
1553 * using 3K - total of 4K
1554 */
1555 mddev->bitmap_info.default_offset = 1024 >> 9;
1556 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1557 mddev->reshape_backwards = 0;
1558
1559 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1560 memcpy(mddev->uuid, sb->set_uuid, 16);
1561
1562 mddev->max_disks = (4096-256)/2;
1563
1564 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1565 mddev->bitmap_info.file == NULL) {
1566 mddev->bitmap_info.offset =
1567 (__s32)le32_to_cpu(sb->bitmap_offset);
1568 /* Metadata doesn't record how much space is available.
1569 * For 1.0, we assume we can use up to the superblock
1570 * if before, else to 4K beyond superblock.
1571 * For others, assume no change is possible.
1572 */
1573 if (mddev->minor_version > 0)
1574 mddev->bitmap_info.space = 0;
1575 else if (mddev->bitmap_info.offset > 0)
1576 mddev->bitmap_info.space =
1577 8 - mddev->bitmap_info.offset;
1578 else
1579 mddev->bitmap_info.space =
1580 -mddev->bitmap_info.offset;
1581 }
1582
1583 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1584 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1585 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1586 mddev->new_level = le32_to_cpu(sb->new_level);
1587 mddev->new_layout = le32_to_cpu(sb->new_layout);
1588 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1589 if (mddev->delta_disks < 0 ||
1590 (mddev->delta_disks == 0 &&
1591 (le32_to_cpu(sb->feature_map)
1592 & MD_FEATURE_RESHAPE_BACKWARDS)))
1593 mddev->reshape_backwards = 1;
1594 } else {
1595 mddev->reshape_position = MaxSector;
1596 mddev->delta_disks = 0;
1597 mddev->new_level = mddev->level;
1598 mddev->new_layout = mddev->layout;
1599 mddev->new_chunk_sectors = mddev->chunk_sectors;
1600 }
1601
1602 } else if (mddev->pers == NULL) {
1603 /* Insist of good event counter while assembling, except for
1604 * spares (which don't need an event count) */
1605 ++ev1;
1606 if (rdev->desc_nr >= 0 &&
1607 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1608 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1609 if (ev1 < mddev->events)
1610 return -EINVAL;
1611 } else if (mddev->bitmap) {
1612 /* If adding to array with a bitmap, then we can accept an
1613 * older device, but not too old.
1614 */
1615 if (ev1 < mddev->bitmap->events_cleared)
1616 return 0;
1617 if (ev1 < mddev->events)
1618 set_bit(Bitmap_sync, &rdev->flags);
1619 } else {
1620 if (ev1 < mddev->events)
1621 /* just a hot-add of a new device, leave raid_disk at -1 */
1622 return 0;
1623 }
1624 if (mddev->level != LEVEL_MULTIPATH) {
1625 int role;
1626 if (rdev->desc_nr < 0 ||
1627 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1628 role = 0xffff;
1629 rdev->desc_nr = -1;
1630 } else
1631 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1632 switch(role) {
1633 case 0xffff: /* spare */
1634 break;
1635 case 0xfffe: /* faulty */
1636 set_bit(Faulty, &rdev->flags);
1637 break;
1638 default:
1639 rdev->saved_raid_disk = role;
1640 if ((le32_to_cpu(sb->feature_map) &
1641 MD_FEATURE_RECOVERY_OFFSET)) {
1642 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1643 if (!(le32_to_cpu(sb->feature_map) &
1644 MD_FEATURE_RECOVERY_BITMAP))
1645 rdev->saved_raid_disk = -1;
1646 } else
1647 set_bit(In_sync, &rdev->flags);
1648 rdev->raid_disk = role;
1649 break;
1650 }
1651 if (sb->devflags & WriteMostly1)
1652 set_bit(WriteMostly, &rdev->flags);
1653 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1654 set_bit(Replacement, &rdev->flags);
1655 } else /* MULTIPATH are always insync */
1656 set_bit(In_sync, &rdev->flags);
1657
1658 return 0;
1659 }
1660
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1661 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1662 {
1663 struct mdp_superblock_1 *sb;
1664 struct md_rdev *rdev2;
1665 int max_dev, i;
1666 /* make rdev->sb match mddev and rdev data. */
1667
1668 sb = page_address(rdev->sb_page);
1669
1670 sb->feature_map = 0;
1671 sb->pad0 = 0;
1672 sb->recovery_offset = cpu_to_le64(0);
1673 memset(sb->pad3, 0, sizeof(sb->pad3));
1674
1675 sb->utime = cpu_to_le64((__u64)mddev->utime);
1676 sb->events = cpu_to_le64(mddev->events);
1677 if (mddev->in_sync)
1678 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1679 else
1680 sb->resync_offset = cpu_to_le64(0);
1681
1682 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1683
1684 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1685 sb->size = cpu_to_le64(mddev->dev_sectors);
1686 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1687 sb->level = cpu_to_le32(mddev->level);
1688 sb->layout = cpu_to_le32(mddev->layout);
1689
1690 if (test_bit(WriteMostly, &rdev->flags))
1691 sb->devflags |= WriteMostly1;
1692 else
1693 sb->devflags &= ~WriteMostly1;
1694 sb->data_offset = cpu_to_le64(rdev->data_offset);
1695 sb->data_size = cpu_to_le64(rdev->sectors);
1696
1697 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1698 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1699 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1700 }
1701
1702 if (rdev->raid_disk >= 0 &&
1703 !test_bit(In_sync, &rdev->flags)) {
1704 sb->feature_map |=
1705 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1706 sb->recovery_offset =
1707 cpu_to_le64(rdev->recovery_offset);
1708 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1709 sb->feature_map |=
1710 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1711 }
1712 if (test_bit(Replacement, &rdev->flags))
1713 sb->feature_map |=
1714 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1715
1716 if (mddev->reshape_position != MaxSector) {
1717 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1718 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1719 sb->new_layout = cpu_to_le32(mddev->new_layout);
1720 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1721 sb->new_level = cpu_to_le32(mddev->new_level);
1722 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1723 if (mddev->delta_disks == 0 &&
1724 mddev->reshape_backwards)
1725 sb->feature_map
1726 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1727 if (rdev->new_data_offset != rdev->data_offset) {
1728 sb->feature_map
1729 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1730 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1731 - rdev->data_offset));
1732 }
1733 }
1734
1735 if (rdev->badblocks.count == 0)
1736 /* Nothing to do for bad blocks*/ ;
1737 else if (sb->bblog_offset == 0)
1738 /* Cannot record bad blocks on this device */
1739 md_error(mddev, rdev);
1740 else {
1741 struct badblocks *bb = &rdev->badblocks;
1742 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1743 u64 *p = bb->page;
1744 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1745 if (bb->changed) {
1746 unsigned seq;
1747
1748 retry:
1749 seq = read_seqbegin(&bb->lock);
1750
1751 memset(bbp, 0xff, PAGE_SIZE);
1752
1753 for (i = 0 ; i < bb->count ; i++) {
1754 u64 internal_bb = p[i];
1755 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1756 | BB_LEN(internal_bb));
1757 bbp[i] = cpu_to_le64(store_bb);
1758 }
1759 bb->changed = 0;
1760 if (read_seqretry(&bb->lock, seq))
1761 goto retry;
1762
1763 bb->sector = (rdev->sb_start +
1764 (int)le32_to_cpu(sb->bblog_offset));
1765 bb->size = le16_to_cpu(sb->bblog_size);
1766 }
1767 }
1768
1769 max_dev = 0;
1770 rdev_for_each(rdev2, mddev)
1771 if (rdev2->desc_nr+1 > max_dev)
1772 max_dev = rdev2->desc_nr+1;
1773
1774 if (max_dev > le32_to_cpu(sb->max_dev)) {
1775 int bmask;
1776 sb->max_dev = cpu_to_le32(max_dev);
1777 rdev->sb_size = max_dev * 2 + 256;
1778 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1779 if (rdev->sb_size & bmask)
1780 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1781 } else
1782 max_dev = le32_to_cpu(sb->max_dev);
1783
1784 for (i=0; i<max_dev;i++)
1785 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1786
1787 rdev_for_each(rdev2, mddev) {
1788 i = rdev2->desc_nr;
1789 if (test_bit(Faulty, &rdev2->flags))
1790 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1791 else if (test_bit(In_sync, &rdev2->flags))
1792 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1793 else if (rdev2->raid_disk >= 0)
1794 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1795 else
1796 sb->dev_roles[i] = cpu_to_le16(0xffff);
1797 }
1798
1799 sb->sb_csum = calc_sb_1_csum(sb);
1800 }
1801
1802 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1803 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1804 {
1805 struct mdp_superblock_1 *sb;
1806 sector_t max_sectors;
1807 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1808 return 0; /* component must fit device */
1809 if (rdev->data_offset != rdev->new_data_offset)
1810 return 0; /* too confusing */
1811 if (rdev->sb_start < rdev->data_offset) {
1812 /* minor versions 1 and 2; superblock before data */
1813 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1814 max_sectors -= rdev->data_offset;
1815 if (!num_sectors || num_sectors > max_sectors)
1816 num_sectors = max_sectors;
1817 } else if (rdev->mddev->bitmap_info.offset) {
1818 /* minor version 0 with bitmap we can't move */
1819 return 0;
1820 } else {
1821 /* minor version 0; superblock after data */
1822 sector_t sb_start;
1823 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1824 sb_start &= ~(sector_t)(4*2 - 1);
1825 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1826 if (!num_sectors || num_sectors > max_sectors)
1827 num_sectors = max_sectors;
1828 rdev->sb_start = sb_start;
1829 }
1830 sb = page_address(rdev->sb_page);
1831 sb->data_size = cpu_to_le64(num_sectors);
1832 sb->super_offset = cpu_to_le64(rdev->sb_start);
1833 sb->sb_csum = calc_sb_1_csum(sb);
1834 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1835 rdev->sb_page);
1836 md_super_wait(rdev->mddev);
1837 return num_sectors;
1838
1839 }
1840
1841 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1842 super_1_allow_new_offset(struct md_rdev *rdev,
1843 unsigned long long new_offset)
1844 {
1845 /* All necessary checks on new >= old have been done */
1846 struct bitmap *bitmap;
1847 if (new_offset >= rdev->data_offset)
1848 return 1;
1849
1850 /* with 1.0 metadata, there is no metadata to tread on
1851 * so we can always move back */
1852 if (rdev->mddev->minor_version == 0)
1853 return 1;
1854
1855 /* otherwise we must be sure not to step on
1856 * any metadata, so stay:
1857 * 36K beyond start of superblock
1858 * beyond end of badblocks
1859 * beyond write-intent bitmap
1860 */
1861 if (rdev->sb_start + (32+4)*2 > new_offset)
1862 return 0;
1863 bitmap = rdev->mddev->bitmap;
1864 if (bitmap && !rdev->mddev->bitmap_info.file &&
1865 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1866 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1867 return 0;
1868 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1869 return 0;
1870
1871 return 1;
1872 }
1873
1874 static struct super_type super_types[] = {
1875 [0] = {
1876 .name = "0.90.0",
1877 .owner = THIS_MODULE,
1878 .load_super = super_90_load,
1879 .validate_super = super_90_validate,
1880 .sync_super = super_90_sync,
1881 .rdev_size_change = super_90_rdev_size_change,
1882 .allow_new_offset = super_90_allow_new_offset,
1883 },
1884 [1] = {
1885 .name = "md-1",
1886 .owner = THIS_MODULE,
1887 .load_super = super_1_load,
1888 .validate_super = super_1_validate,
1889 .sync_super = super_1_sync,
1890 .rdev_size_change = super_1_rdev_size_change,
1891 .allow_new_offset = super_1_allow_new_offset,
1892 },
1893 };
1894
sync_super(struct mddev * mddev,struct md_rdev * rdev)1895 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1896 {
1897 if (mddev->sync_super) {
1898 mddev->sync_super(mddev, rdev);
1899 return;
1900 }
1901
1902 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1903
1904 super_types[mddev->major_version].sync_super(mddev, rdev);
1905 }
1906
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1907 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1908 {
1909 struct md_rdev *rdev, *rdev2;
1910
1911 rcu_read_lock();
1912 rdev_for_each_rcu(rdev, mddev1)
1913 rdev_for_each_rcu(rdev2, mddev2)
1914 if (rdev->bdev->bd_contains ==
1915 rdev2->bdev->bd_contains) {
1916 rcu_read_unlock();
1917 return 1;
1918 }
1919 rcu_read_unlock();
1920 return 0;
1921 }
1922
1923 static LIST_HEAD(pending_raid_disks);
1924
1925 /*
1926 * Try to register data integrity profile for an mddev
1927 *
1928 * This is called when an array is started and after a disk has been kicked
1929 * from the array. It only succeeds if all working and active component devices
1930 * are integrity capable with matching profiles.
1931 */
md_integrity_register(struct mddev * mddev)1932 int md_integrity_register(struct mddev *mddev)
1933 {
1934 struct md_rdev *rdev, *reference = NULL;
1935
1936 if (list_empty(&mddev->disks))
1937 return 0; /* nothing to do */
1938 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1939 return 0; /* shouldn't register, or already is */
1940 rdev_for_each(rdev, mddev) {
1941 /* skip spares and non-functional disks */
1942 if (test_bit(Faulty, &rdev->flags))
1943 continue;
1944 if (rdev->raid_disk < 0)
1945 continue;
1946 if (!reference) {
1947 /* Use the first rdev as the reference */
1948 reference = rdev;
1949 continue;
1950 }
1951 /* does this rdev's profile match the reference profile? */
1952 if (blk_integrity_compare(reference->bdev->bd_disk,
1953 rdev->bdev->bd_disk) < 0)
1954 return -EINVAL;
1955 }
1956 if (!reference || !bdev_get_integrity(reference->bdev))
1957 return 0;
1958 /*
1959 * All component devices are integrity capable and have matching
1960 * profiles, register the common profile for the md device.
1961 */
1962 if (blk_integrity_register(mddev->gendisk,
1963 bdev_get_integrity(reference->bdev)) != 0) {
1964 printk(KERN_ERR "md: failed to register integrity for %s\n",
1965 mdname(mddev));
1966 return -EINVAL;
1967 }
1968 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1969 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1970 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1971 mdname(mddev));
1972 return -EINVAL;
1973 }
1974 return 0;
1975 }
1976 EXPORT_SYMBOL(md_integrity_register);
1977
1978 /* Disable data integrity if non-capable/non-matching disk is being added */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)1979 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1980 {
1981 struct blk_integrity *bi_rdev;
1982 struct blk_integrity *bi_mddev;
1983
1984 if (!mddev->gendisk)
1985 return;
1986
1987 bi_rdev = bdev_get_integrity(rdev->bdev);
1988 bi_mddev = blk_get_integrity(mddev->gendisk);
1989
1990 if (!bi_mddev) /* nothing to do */
1991 return;
1992 if (rdev->raid_disk < 0) /* skip spares */
1993 return;
1994 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1995 rdev->bdev->bd_disk) >= 0)
1996 return;
1997 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1998 blk_integrity_unregister(mddev->gendisk);
1999 }
2000 EXPORT_SYMBOL(md_integrity_add_rdev);
2001
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2002 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2003 {
2004 char b[BDEVNAME_SIZE];
2005 struct kobject *ko;
2006 char *s;
2007 int err;
2008
2009 /* prevent duplicates */
2010 if (find_rdev(mddev, rdev->bdev->bd_dev))
2011 return -EEXIST;
2012
2013 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2014 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2015 rdev->sectors < mddev->dev_sectors)) {
2016 if (mddev->pers) {
2017 /* Cannot change size, so fail
2018 * If mddev->level <= 0, then we don't care
2019 * about aligning sizes (e.g. linear)
2020 */
2021 if (mddev->level > 0)
2022 return -ENOSPC;
2023 } else
2024 mddev->dev_sectors = rdev->sectors;
2025 }
2026
2027 /* Verify rdev->desc_nr is unique.
2028 * If it is -1, assign a free number, else
2029 * check number is not in use
2030 */
2031 rcu_read_lock();
2032 if (rdev->desc_nr < 0) {
2033 int choice = 0;
2034 if (mddev->pers)
2035 choice = mddev->raid_disks;
2036 while (find_rdev_nr_rcu(mddev, choice))
2037 choice++;
2038 rdev->desc_nr = choice;
2039 } else {
2040 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2041 rcu_read_unlock();
2042 return -EBUSY;
2043 }
2044 }
2045 rcu_read_unlock();
2046 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2047 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2048 mdname(mddev), mddev->max_disks);
2049 return -EBUSY;
2050 }
2051 bdevname(rdev->bdev,b);
2052 while ( (s=strchr(b, '/')) != NULL)
2053 *s = '!';
2054
2055 rdev->mddev = mddev;
2056 printk(KERN_INFO "md: bind<%s>\n", b);
2057
2058 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2059 goto fail;
2060
2061 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2062 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2063 /* failure here is OK */;
2064 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2065
2066 list_add_rcu(&rdev->same_set, &mddev->disks);
2067 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2068
2069 /* May as well allow recovery to be retried once */
2070 mddev->recovery_disabled++;
2071
2072 return 0;
2073
2074 fail:
2075 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2076 b, mdname(mddev));
2077 return err;
2078 }
2079
md_delayed_delete(struct work_struct * ws)2080 static void md_delayed_delete(struct work_struct *ws)
2081 {
2082 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2083 kobject_del(&rdev->kobj);
2084 kobject_put(&rdev->kobj);
2085 }
2086
unbind_rdev_from_array(struct md_rdev * rdev)2087 static void unbind_rdev_from_array(struct md_rdev *rdev)
2088 {
2089 char b[BDEVNAME_SIZE];
2090
2091 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2092 list_del_rcu(&rdev->same_set);
2093 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2094 rdev->mddev = NULL;
2095 sysfs_remove_link(&rdev->kobj, "block");
2096 sysfs_put(rdev->sysfs_state);
2097 rdev->sysfs_state = NULL;
2098 rdev->badblocks.count = 0;
2099 /* We need to delay this, otherwise we can deadlock when
2100 * writing to 'remove' to "dev/state". We also need
2101 * to delay it due to rcu usage.
2102 */
2103 synchronize_rcu();
2104 INIT_WORK(&rdev->del_work, md_delayed_delete);
2105 kobject_get(&rdev->kobj);
2106 queue_work(md_misc_wq, &rdev->del_work);
2107 }
2108
2109 /*
2110 * prevent the device from being mounted, repartitioned or
2111 * otherwise reused by a RAID array (or any other kernel
2112 * subsystem), by bd_claiming the device.
2113 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2114 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2115 {
2116 int err = 0;
2117 struct block_device *bdev;
2118 char b[BDEVNAME_SIZE];
2119
2120 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2121 shared ? (struct md_rdev *)lock_rdev : rdev);
2122 if (IS_ERR(bdev)) {
2123 printk(KERN_ERR "md: could not open %s.\n",
2124 __bdevname(dev, b));
2125 return PTR_ERR(bdev);
2126 }
2127 rdev->bdev = bdev;
2128 return err;
2129 }
2130
unlock_rdev(struct md_rdev * rdev)2131 static void unlock_rdev(struct md_rdev *rdev)
2132 {
2133 struct block_device *bdev = rdev->bdev;
2134 rdev->bdev = NULL;
2135 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2136 }
2137
2138 void md_autodetect_dev(dev_t dev);
2139
export_rdev(struct md_rdev * rdev)2140 static void export_rdev(struct md_rdev *rdev)
2141 {
2142 char b[BDEVNAME_SIZE];
2143
2144 printk(KERN_INFO "md: export_rdev(%s)\n",
2145 bdevname(rdev->bdev,b));
2146 md_rdev_clear(rdev);
2147 #ifndef MODULE
2148 if (test_bit(AutoDetected, &rdev->flags))
2149 md_autodetect_dev(rdev->bdev->bd_dev);
2150 #endif
2151 unlock_rdev(rdev);
2152 kobject_put(&rdev->kobj);
2153 }
2154
kick_rdev_from_array(struct md_rdev * rdev)2155 static void kick_rdev_from_array(struct md_rdev *rdev)
2156 {
2157 unbind_rdev_from_array(rdev);
2158 export_rdev(rdev);
2159 }
2160
export_array(struct mddev * mddev)2161 static void export_array(struct mddev *mddev)
2162 {
2163 struct md_rdev *rdev;
2164
2165 while (!list_empty(&mddev->disks)) {
2166 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2167 same_set);
2168 kick_rdev_from_array(rdev);
2169 }
2170 mddev->raid_disks = 0;
2171 mddev->major_version = 0;
2172 }
2173
sync_sbs(struct mddev * mddev,int nospares)2174 static void sync_sbs(struct mddev *mddev, int nospares)
2175 {
2176 /* Update each superblock (in-memory image), but
2177 * if we are allowed to, skip spares which already
2178 * have the right event counter, or have one earlier
2179 * (which would mean they aren't being marked as dirty
2180 * with the rest of the array)
2181 */
2182 struct md_rdev *rdev;
2183 rdev_for_each(rdev, mddev) {
2184 if (rdev->sb_events == mddev->events ||
2185 (nospares &&
2186 rdev->raid_disk < 0 &&
2187 rdev->sb_events+1 == mddev->events)) {
2188 /* Don't update this superblock */
2189 rdev->sb_loaded = 2;
2190 } else {
2191 sync_super(mddev, rdev);
2192 rdev->sb_loaded = 1;
2193 }
2194 }
2195 }
2196
md_update_sb(struct mddev * mddev,int force_change)2197 static void md_update_sb(struct mddev *mddev, int force_change)
2198 {
2199 struct md_rdev *rdev;
2200 int sync_req;
2201 int nospares = 0;
2202 int any_badblocks_changed = 0;
2203
2204 if (mddev->ro) {
2205 if (force_change)
2206 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2207 return;
2208 }
2209 repeat:
2210 /* First make sure individual recovery_offsets are correct */
2211 rdev_for_each(rdev, mddev) {
2212 if (rdev->raid_disk >= 0 &&
2213 mddev->delta_disks >= 0 &&
2214 !test_bit(In_sync, &rdev->flags) &&
2215 mddev->curr_resync_completed > rdev->recovery_offset)
2216 rdev->recovery_offset = mddev->curr_resync_completed;
2217
2218 }
2219 if (!mddev->persistent) {
2220 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2221 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2222 if (!mddev->external) {
2223 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2224 rdev_for_each(rdev, mddev) {
2225 if (rdev->badblocks.changed) {
2226 rdev->badblocks.changed = 0;
2227 md_ack_all_badblocks(&rdev->badblocks);
2228 md_error(mddev, rdev);
2229 }
2230 clear_bit(Blocked, &rdev->flags);
2231 clear_bit(BlockedBadBlocks, &rdev->flags);
2232 wake_up(&rdev->blocked_wait);
2233 }
2234 }
2235 wake_up(&mddev->sb_wait);
2236 return;
2237 }
2238
2239 spin_lock_irq(&mddev->write_lock);
2240
2241 mddev->utime = get_seconds();
2242
2243 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2244 force_change = 1;
2245 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2246 /* just a clean<-> dirty transition, possibly leave spares alone,
2247 * though if events isn't the right even/odd, we will have to do
2248 * spares after all
2249 */
2250 nospares = 1;
2251 if (force_change)
2252 nospares = 0;
2253 if (mddev->degraded)
2254 /* If the array is degraded, then skipping spares is both
2255 * dangerous and fairly pointless.
2256 * Dangerous because a device that was removed from the array
2257 * might have a event_count that still looks up-to-date,
2258 * so it can be re-added without a resync.
2259 * Pointless because if there are any spares to skip,
2260 * then a recovery will happen and soon that array won't
2261 * be degraded any more and the spare can go back to sleep then.
2262 */
2263 nospares = 0;
2264
2265 sync_req = mddev->in_sync;
2266
2267 /* If this is just a dirty<->clean transition, and the array is clean
2268 * and 'events' is odd, we can roll back to the previous clean state */
2269 if (nospares
2270 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2271 && mddev->can_decrease_events
2272 && mddev->events != 1) {
2273 mddev->events--;
2274 mddev->can_decrease_events = 0;
2275 } else {
2276 /* otherwise we have to go forward and ... */
2277 mddev->events ++;
2278 mddev->can_decrease_events = nospares;
2279 }
2280
2281 /*
2282 * This 64-bit counter should never wrap.
2283 * Either we are in around ~1 trillion A.C., assuming
2284 * 1 reboot per second, or we have a bug...
2285 */
2286 WARN_ON(mddev->events == 0);
2287
2288 rdev_for_each(rdev, mddev) {
2289 if (rdev->badblocks.changed)
2290 any_badblocks_changed++;
2291 if (test_bit(Faulty, &rdev->flags))
2292 set_bit(FaultRecorded, &rdev->flags);
2293 }
2294
2295 sync_sbs(mddev, nospares);
2296 spin_unlock_irq(&mddev->write_lock);
2297
2298 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2299 mdname(mddev), mddev->in_sync);
2300
2301 bitmap_update_sb(mddev->bitmap);
2302 rdev_for_each(rdev, mddev) {
2303 char b[BDEVNAME_SIZE];
2304
2305 if (rdev->sb_loaded != 1)
2306 continue; /* no noise on spare devices */
2307
2308 if (!test_bit(Faulty, &rdev->flags)) {
2309 md_super_write(mddev,rdev,
2310 rdev->sb_start, rdev->sb_size,
2311 rdev->sb_page);
2312 pr_debug("md: (write) %s's sb offset: %llu\n",
2313 bdevname(rdev->bdev, b),
2314 (unsigned long long)rdev->sb_start);
2315 rdev->sb_events = mddev->events;
2316 if (rdev->badblocks.size) {
2317 md_super_write(mddev, rdev,
2318 rdev->badblocks.sector,
2319 rdev->badblocks.size << 9,
2320 rdev->bb_page);
2321 rdev->badblocks.size = 0;
2322 }
2323
2324 } else
2325 pr_debug("md: %s (skipping faulty)\n",
2326 bdevname(rdev->bdev, b));
2327
2328 if (mddev->level == LEVEL_MULTIPATH)
2329 /* only need to write one superblock... */
2330 break;
2331 }
2332 md_super_wait(mddev);
2333 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2334
2335 spin_lock_irq(&mddev->write_lock);
2336 if (mddev->in_sync != sync_req ||
2337 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2338 /* have to write it out again */
2339 spin_unlock_irq(&mddev->write_lock);
2340 goto repeat;
2341 }
2342 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2343 spin_unlock_irq(&mddev->write_lock);
2344 wake_up(&mddev->sb_wait);
2345 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2346 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2347
2348 rdev_for_each(rdev, mddev) {
2349 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2350 clear_bit(Blocked, &rdev->flags);
2351
2352 if (any_badblocks_changed)
2353 md_ack_all_badblocks(&rdev->badblocks);
2354 clear_bit(BlockedBadBlocks, &rdev->flags);
2355 wake_up(&rdev->blocked_wait);
2356 }
2357 }
2358
2359 /* words written to sysfs files may, or may not, be \n terminated.
2360 * We want to accept with case. For this we use cmd_match.
2361 */
cmd_match(const char * cmd,const char * str)2362 static int cmd_match(const char *cmd, const char *str)
2363 {
2364 /* See if cmd, written into a sysfs file, matches
2365 * str. They must either be the same, or cmd can
2366 * have a trailing newline
2367 */
2368 while (*cmd && *str && *cmd == *str) {
2369 cmd++;
2370 str++;
2371 }
2372 if (*cmd == '\n')
2373 cmd++;
2374 if (*str || *cmd)
2375 return 0;
2376 return 1;
2377 }
2378
2379 struct rdev_sysfs_entry {
2380 struct attribute attr;
2381 ssize_t (*show)(struct md_rdev *, char *);
2382 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2383 };
2384
2385 static ssize_t
state_show(struct md_rdev * rdev,char * page)2386 state_show(struct md_rdev *rdev, char *page)
2387 {
2388 char *sep = "";
2389 size_t len = 0;
2390
2391 if (test_bit(Faulty, &rdev->flags) ||
2392 rdev->badblocks.unacked_exist) {
2393 len+= sprintf(page+len, "%sfaulty",sep);
2394 sep = ",";
2395 }
2396 if (test_bit(In_sync, &rdev->flags)) {
2397 len += sprintf(page+len, "%sin_sync",sep);
2398 sep = ",";
2399 }
2400 if (test_bit(WriteMostly, &rdev->flags)) {
2401 len += sprintf(page+len, "%swrite_mostly",sep);
2402 sep = ",";
2403 }
2404 if (test_bit(Blocked, &rdev->flags) ||
2405 (rdev->badblocks.unacked_exist
2406 && !test_bit(Faulty, &rdev->flags))) {
2407 len += sprintf(page+len, "%sblocked", sep);
2408 sep = ",";
2409 }
2410 if (!test_bit(Faulty, &rdev->flags) &&
2411 !test_bit(In_sync, &rdev->flags)) {
2412 len += sprintf(page+len, "%sspare", sep);
2413 sep = ",";
2414 }
2415 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2416 len += sprintf(page+len, "%swrite_error", sep);
2417 sep = ",";
2418 }
2419 if (test_bit(WantReplacement, &rdev->flags)) {
2420 len += sprintf(page+len, "%swant_replacement", sep);
2421 sep = ",";
2422 }
2423 if (test_bit(Replacement, &rdev->flags)) {
2424 len += sprintf(page+len, "%sreplacement", sep);
2425 sep = ",";
2426 }
2427
2428 return len+sprintf(page+len, "\n");
2429 }
2430
2431 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2432 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2433 {
2434 /* can write
2435 * faulty - simulates an error
2436 * remove - disconnects the device
2437 * writemostly - sets write_mostly
2438 * -writemostly - clears write_mostly
2439 * blocked - sets the Blocked flags
2440 * -blocked - clears the Blocked and possibly simulates an error
2441 * insync - sets Insync providing device isn't active
2442 * -insync - clear Insync for a device with a slot assigned,
2443 * so that it gets rebuilt based on bitmap
2444 * write_error - sets WriteErrorSeen
2445 * -write_error - clears WriteErrorSeen
2446 */
2447 int err = -EINVAL;
2448 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2449 md_error(rdev->mddev, rdev);
2450 if (test_bit(Faulty, &rdev->flags))
2451 err = 0;
2452 else
2453 err = -EBUSY;
2454 } else if (cmd_match(buf, "remove")) {
2455 if (rdev->raid_disk >= 0)
2456 err = -EBUSY;
2457 else {
2458 struct mddev *mddev = rdev->mddev;
2459 kick_rdev_from_array(rdev);
2460 if (mddev->pers)
2461 md_update_sb(mddev, 1);
2462 md_new_event(mddev);
2463 err = 0;
2464 }
2465 } else if (cmd_match(buf, "writemostly")) {
2466 set_bit(WriteMostly, &rdev->flags);
2467 err = 0;
2468 } else if (cmd_match(buf, "-writemostly")) {
2469 clear_bit(WriteMostly, &rdev->flags);
2470 err = 0;
2471 } else if (cmd_match(buf, "blocked")) {
2472 set_bit(Blocked, &rdev->flags);
2473 err = 0;
2474 } else if (cmd_match(buf, "-blocked")) {
2475 if (!test_bit(Faulty, &rdev->flags) &&
2476 rdev->badblocks.unacked_exist) {
2477 /* metadata handler doesn't understand badblocks,
2478 * so we need to fail the device
2479 */
2480 md_error(rdev->mddev, rdev);
2481 }
2482 clear_bit(Blocked, &rdev->flags);
2483 clear_bit(BlockedBadBlocks, &rdev->flags);
2484 wake_up(&rdev->blocked_wait);
2485 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2486 md_wakeup_thread(rdev->mddev->thread);
2487
2488 err = 0;
2489 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2490 set_bit(In_sync, &rdev->flags);
2491 err = 0;
2492 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2493 if (rdev->mddev->pers == NULL) {
2494 clear_bit(In_sync, &rdev->flags);
2495 rdev->saved_raid_disk = rdev->raid_disk;
2496 rdev->raid_disk = -1;
2497 err = 0;
2498 }
2499 } else if (cmd_match(buf, "write_error")) {
2500 set_bit(WriteErrorSeen, &rdev->flags);
2501 err = 0;
2502 } else if (cmd_match(buf, "-write_error")) {
2503 clear_bit(WriteErrorSeen, &rdev->flags);
2504 err = 0;
2505 } else if (cmd_match(buf, "want_replacement")) {
2506 /* Any non-spare device that is not a replacement can
2507 * become want_replacement at any time, but we then need to
2508 * check if recovery is needed.
2509 */
2510 if (rdev->raid_disk >= 0 &&
2511 !test_bit(Replacement, &rdev->flags))
2512 set_bit(WantReplacement, &rdev->flags);
2513 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2514 md_wakeup_thread(rdev->mddev->thread);
2515 err = 0;
2516 } else if (cmd_match(buf, "-want_replacement")) {
2517 /* Clearing 'want_replacement' is always allowed.
2518 * Once replacements starts it is too late though.
2519 */
2520 err = 0;
2521 clear_bit(WantReplacement, &rdev->flags);
2522 } else if (cmd_match(buf, "replacement")) {
2523 /* Can only set a device as a replacement when array has not
2524 * yet been started. Once running, replacement is automatic
2525 * from spares, or by assigning 'slot'.
2526 */
2527 if (rdev->mddev->pers)
2528 err = -EBUSY;
2529 else {
2530 set_bit(Replacement, &rdev->flags);
2531 err = 0;
2532 }
2533 } else if (cmd_match(buf, "-replacement")) {
2534 /* Similarly, can only clear Replacement before start */
2535 if (rdev->mddev->pers)
2536 err = -EBUSY;
2537 else {
2538 clear_bit(Replacement, &rdev->flags);
2539 err = 0;
2540 }
2541 }
2542 if (!err)
2543 sysfs_notify_dirent_safe(rdev->sysfs_state);
2544 return err ? err : len;
2545 }
2546 static struct rdev_sysfs_entry rdev_state =
2547 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2548
2549 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2550 errors_show(struct md_rdev *rdev, char *page)
2551 {
2552 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2553 }
2554
2555 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2556 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2557 {
2558 char *e;
2559 unsigned long n = simple_strtoul(buf, &e, 10);
2560 if (*buf && (*e == 0 || *e == '\n')) {
2561 atomic_set(&rdev->corrected_errors, n);
2562 return len;
2563 }
2564 return -EINVAL;
2565 }
2566 static struct rdev_sysfs_entry rdev_errors =
2567 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2568
2569 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2570 slot_show(struct md_rdev *rdev, char *page)
2571 {
2572 if (rdev->raid_disk < 0)
2573 return sprintf(page, "none\n");
2574 else
2575 return sprintf(page, "%d\n", rdev->raid_disk);
2576 }
2577
2578 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2579 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2580 {
2581 char *e;
2582 int err;
2583 int slot = simple_strtoul(buf, &e, 10);
2584 if (strncmp(buf, "none", 4)==0)
2585 slot = -1;
2586 else if (e==buf || (*e && *e!= '\n'))
2587 return -EINVAL;
2588 if (rdev->mddev->pers && slot == -1) {
2589 /* Setting 'slot' on an active array requires also
2590 * updating the 'rd%d' link, and communicating
2591 * with the personality with ->hot_*_disk.
2592 * For now we only support removing
2593 * failed/spare devices. This normally happens automatically,
2594 * but not when the metadata is externally managed.
2595 */
2596 if (rdev->raid_disk == -1)
2597 return -EEXIST;
2598 /* personality does all needed checks */
2599 if (rdev->mddev->pers->hot_remove_disk == NULL)
2600 return -EINVAL;
2601 clear_bit(Blocked, &rdev->flags);
2602 remove_and_add_spares(rdev->mddev, rdev);
2603 if (rdev->raid_disk >= 0)
2604 return -EBUSY;
2605 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2606 md_wakeup_thread(rdev->mddev->thread);
2607 } else if (rdev->mddev->pers) {
2608 /* Activating a spare .. or possibly reactivating
2609 * if we ever get bitmaps working here.
2610 */
2611
2612 if (rdev->raid_disk != -1)
2613 return -EBUSY;
2614
2615 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2616 return -EBUSY;
2617
2618 if (rdev->mddev->pers->hot_add_disk == NULL)
2619 return -EINVAL;
2620
2621 if (slot >= rdev->mddev->raid_disks &&
2622 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2623 return -ENOSPC;
2624
2625 rdev->raid_disk = slot;
2626 if (test_bit(In_sync, &rdev->flags))
2627 rdev->saved_raid_disk = slot;
2628 else
2629 rdev->saved_raid_disk = -1;
2630 clear_bit(In_sync, &rdev->flags);
2631 clear_bit(Bitmap_sync, &rdev->flags);
2632 err = rdev->mddev->pers->
2633 hot_add_disk(rdev->mddev, rdev);
2634 if (err) {
2635 rdev->raid_disk = -1;
2636 return err;
2637 } else
2638 sysfs_notify_dirent_safe(rdev->sysfs_state);
2639 if (sysfs_link_rdev(rdev->mddev, rdev))
2640 /* failure here is OK */;
2641 /* don't wakeup anyone, leave that to userspace. */
2642 } else {
2643 if (slot >= rdev->mddev->raid_disks &&
2644 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2645 return -ENOSPC;
2646 rdev->raid_disk = slot;
2647 /* assume it is working */
2648 clear_bit(Faulty, &rdev->flags);
2649 clear_bit(WriteMostly, &rdev->flags);
2650 set_bit(In_sync, &rdev->flags);
2651 sysfs_notify_dirent_safe(rdev->sysfs_state);
2652 }
2653 return len;
2654 }
2655
2656 static struct rdev_sysfs_entry rdev_slot =
2657 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2658
2659 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2660 offset_show(struct md_rdev *rdev, char *page)
2661 {
2662 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2663 }
2664
2665 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2666 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2667 {
2668 unsigned long long offset;
2669 if (kstrtoull(buf, 10, &offset) < 0)
2670 return -EINVAL;
2671 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2672 return -EBUSY;
2673 if (rdev->sectors && rdev->mddev->external)
2674 /* Must set offset before size, so overlap checks
2675 * can be sane */
2676 return -EBUSY;
2677 rdev->data_offset = offset;
2678 rdev->new_data_offset = offset;
2679 return len;
2680 }
2681
2682 static struct rdev_sysfs_entry rdev_offset =
2683 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2684
new_offset_show(struct md_rdev * rdev,char * page)2685 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2686 {
2687 return sprintf(page, "%llu\n",
2688 (unsigned long long)rdev->new_data_offset);
2689 }
2690
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2691 static ssize_t new_offset_store(struct md_rdev *rdev,
2692 const char *buf, size_t len)
2693 {
2694 unsigned long long new_offset;
2695 struct mddev *mddev = rdev->mddev;
2696
2697 if (kstrtoull(buf, 10, &new_offset) < 0)
2698 return -EINVAL;
2699
2700 if (mddev->sync_thread)
2701 return -EBUSY;
2702 if (new_offset == rdev->data_offset)
2703 /* reset is always permitted */
2704 ;
2705 else if (new_offset > rdev->data_offset) {
2706 /* must not push array size beyond rdev_sectors */
2707 if (new_offset - rdev->data_offset
2708 + mddev->dev_sectors > rdev->sectors)
2709 return -E2BIG;
2710 }
2711 /* Metadata worries about other space details. */
2712
2713 /* decreasing the offset is inconsistent with a backwards
2714 * reshape.
2715 */
2716 if (new_offset < rdev->data_offset &&
2717 mddev->reshape_backwards)
2718 return -EINVAL;
2719 /* Increasing offset is inconsistent with forwards
2720 * reshape. reshape_direction should be set to
2721 * 'backwards' first.
2722 */
2723 if (new_offset > rdev->data_offset &&
2724 !mddev->reshape_backwards)
2725 return -EINVAL;
2726
2727 if (mddev->pers && mddev->persistent &&
2728 !super_types[mddev->major_version]
2729 .allow_new_offset(rdev, new_offset))
2730 return -E2BIG;
2731 rdev->new_data_offset = new_offset;
2732 if (new_offset > rdev->data_offset)
2733 mddev->reshape_backwards = 1;
2734 else if (new_offset < rdev->data_offset)
2735 mddev->reshape_backwards = 0;
2736
2737 return len;
2738 }
2739 static struct rdev_sysfs_entry rdev_new_offset =
2740 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2741
2742 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2743 rdev_size_show(struct md_rdev *rdev, char *page)
2744 {
2745 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2746 }
2747
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2748 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2749 {
2750 /* check if two start/length pairs overlap */
2751 if (s1+l1 <= s2)
2752 return 0;
2753 if (s2+l2 <= s1)
2754 return 0;
2755 return 1;
2756 }
2757
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2758 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2759 {
2760 unsigned long long blocks;
2761 sector_t new;
2762
2763 if (kstrtoull(buf, 10, &blocks) < 0)
2764 return -EINVAL;
2765
2766 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2767 return -EINVAL; /* sector conversion overflow */
2768
2769 new = blocks * 2;
2770 if (new != blocks * 2)
2771 return -EINVAL; /* unsigned long long to sector_t overflow */
2772
2773 *sectors = new;
2774 return 0;
2775 }
2776
2777 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2778 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780 struct mddev *my_mddev = rdev->mddev;
2781 sector_t oldsectors = rdev->sectors;
2782 sector_t sectors;
2783
2784 if (strict_blocks_to_sectors(buf, §ors) < 0)
2785 return -EINVAL;
2786 if (rdev->data_offset != rdev->new_data_offset)
2787 return -EINVAL; /* too confusing */
2788 if (my_mddev->pers && rdev->raid_disk >= 0) {
2789 if (my_mddev->persistent) {
2790 sectors = super_types[my_mddev->major_version].
2791 rdev_size_change(rdev, sectors);
2792 if (!sectors)
2793 return -EBUSY;
2794 } else if (!sectors)
2795 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2796 rdev->data_offset;
2797 if (!my_mddev->pers->resize)
2798 /* Cannot change size for RAID0 or Linear etc */
2799 return -EINVAL;
2800 }
2801 if (sectors < my_mddev->dev_sectors)
2802 return -EINVAL; /* component must fit device */
2803
2804 rdev->sectors = sectors;
2805 if (sectors > oldsectors && my_mddev->external) {
2806 /* Need to check that all other rdevs with the same
2807 * ->bdev do not overlap. 'rcu' is sufficient to walk
2808 * the rdev lists safely.
2809 * This check does not provide a hard guarantee, it
2810 * just helps avoid dangerous mistakes.
2811 */
2812 struct mddev *mddev;
2813 int overlap = 0;
2814 struct list_head *tmp;
2815
2816 rcu_read_lock();
2817 for_each_mddev(mddev, tmp) {
2818 struct md_rdev *rdev2;
2819
2820 rdev_for_each(rdev2, mddev)
2821 if (rdev->bdev == rdev2->bdev &&
2822 rdev != rdev2 &&
2823 overlaps(rdev->data_offset, rdev->sectors,
2824 rdev2->data_offset,
2825 rdev2->sectors)) {
2826 overlap = 1;
2827 break;
2828 }
2829 if (overlap) {
2830 mddev_put(mddev);
2831 break;
2832 }
2833 }
2834 rcu_read_unlock();
2835 if (overlap) {
2836 /* Someone else could have slipped in a size
2837 * change here, but doing so is just silly.
2838 * We put oldsectors back because we *know* it is
2839 * safe, and trust userspace not to race with
2840 * itself
2841 */
2842 rdev->sectors = oldsectors;
2843 return -EBUSY;
2844 }
2845 }
2846 return len;
2847 }
2848
2849 static struct rdev_sysfs_entry rdev_size =
2850 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2851
recovery_start_show(struct md_rdev * rdev,char * page)2852 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2853 {
2854 unsigned long long recovery_start = rdev->recovery_offset;
2855
2856 if (test_bit(In_sync, &rdev->flags) ||
2857 recovery_start == MaxSector)
2858 return sprintf(page, "none\n");
2859
2860 return sprintf(page, "%llu\n", recovery_start);
2861 }
2862
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)2863 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865 unsigned long long recovery_start;
2866
2867 if (cmd_match(buf, "none"))
2868 recovery_start = MaxSector;
2869 else if (kstrtoull(buf, 10, &recovery_start))
2870 return -EINVAL;
2871
2872 if (rdev->mddev->pers &&
2873 rdev->raid_disk >= 0)
2874 return -EBUSY;
2875
2876 rdev->recovery_offset = recovery_start;
2877 if (recovery_start == MaxSector)
2878 set_bit(In_sync, &rdev->flags);
2879 else
2880 clear_bit(In_sync, &rdev->flags);
2881 return len;
2882 }
2883
2884 static struct rdev_sysfs_entry rdev_recovery_start =
2885 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2886
2887 static ssize_t
2888 badblocks_show(struct badblocks *bb, char *page, int unack);
2889 static ssize_t
2890 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2891
bb_show(struct md_rdev * rdev,char * page)2892 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2893 {
2894 return badblocks_show(&rdev->badblocks, page, 0);
2895 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)2896 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2897 {
2898 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2899 /* Maybe that ack was all we needed */
2900 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2901 wake_up(&rdev->blocked_wait);
2902 return rv;
2903 }
2904 static struct rdev_sysfs_entry rdev_bad_blocks =
2905 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2906
ubb_show(struct md_rdev * rdev,char * page)2907 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2908 {
2909 return badblocks_show(&rdev->badblocks, page, 1);
2910 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)2911 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2912 {
2913 return badblocks_store(&rdev->badblocks, page, len, 1);
2914 }
2915 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2916 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2917
2918 static struct attribute *rdev_default_attrs[] = {
2919 &rdev_state.attr,
2920 &rdev_errors.attr,
2921 &rdev_slot.attr,
2922 &rdev_offset.attr,
2923 &rdev_new_offset.attr,
2924 &rdev_size.attr,
2925 &rdev_recovery_start.attr,
2926 &rdev_bad_blocks.attr,
2927 &rdev_unack_bad_blocks.attr,
2928 NULL,
2929 };
2930 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)2931 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2932 {
2933 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2934 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2935 struct mddev *mddev = rdev->mddev;
2936 ssize_t rv;
2937
2938 if (!entry->show)
2939 return -EIO;
2940
2941 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2942 if (!rv) {
2943 if (rdev->mddev == NULL)
2944 rv = -EBUSY;
2945 else
2946 rv = entry->show(rdev, page);
2947 mddev_unlock(mddev);
2948 }
2949 return rv;
2950 }
2951
2952 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)2953 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2954 const char *page, size_t length)
2955 {
2956 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2957 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2958 ssize_t rv;
2959 struct mddev *mddev = rdev->mddev;
2960
2961 if (!entry->store)
2962 return -EIO;
2963 if (!capable(CAP_SYS_ADMIN))
2964 return -EACCES;
2965 rv = mddev ? mddev_lock(mddev): -EBUSY;
2966 if (!rv) {
2967 if (rdev->mddev == NULL)
2968 rv = -EBUSY;
2969 else
2970 rv = entry->store(rdev, page, length);
2971 mddev_unlock(mddev);
2972 }
2973 return rv;
2974 }
2975
rdev_free(struct kobject * ko)2976 static void rdev_free(struct kobject *ko)
2977 {
2978 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2979 kfree(rdev);
2980 }
2981 static const struct sysfs_ops rdev_sysfs_ops = {
2982 .show = rdev_attr_show,
2983 .store = rdev_attr_store,
2984 };
2985 static struct kobj_type rdev_ktype = {
2986 .release = rdev_free,
2987 .sysfs_ops = &rdev_sysfs_ops,
2988 .default_attrs = rdev_default_attrs,
2989 };
2990
md_rdev_init(struct md_rdev * rdev)2991 int md_rdev_init(struct md_rdev *rdev)
2992 {
2993 rdev->desc_nr = -1;
2994 rdev->saved_raid_disk = -1;
2995 rdev->raid_disk = -1;
2996 rdev->flags = 0;
2997 rdev->data_offset = 0;
2998 rdev->new_data_offset = 0;
2999 rdev->sb_events = 0;
3000 rdev->last_read_error.tv_sec = 0;
3001 rdev->last_read_error.tv_nsec = 0;
3002 rdev->sb_loaded = 0;
3003 rdev->bb_page = NULL;
3004 atomic_set(&rdev->nr_pending, 0);
3005 atomic_set(&rdev->read_errors, 0);
3006 atomic_set(&rdev->corrected_errors, 0);
3007
3008 INIT_LIST_HEAD(&rdev->same_set);
3009 init_waitqueue_head(&rdev->blocked_wait);
3010
3011 /* Add space to store bad block list.
3012 * This reserves the space even on arrays where it cannot
3013 * be used - I wonder if that matters
3014 */
3015 rdev->badblocks.count = 0;
3016 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3017 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3018 seqlock_init(&rdev->badblocks.lock);
3019 if (rdev->badblocks.page == NULL)
3020 return -ENOMEM;
3021
3022 return 0;
3023 }
3024 EXPORT_SYMBOL_GPL(md_rdev_init);
3025 /*
3026 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3027 *
3028 * mark the device faulty if:
3029 *
3030 * - the device is nonexistent (zero size)
3031 * - the device has no valid superblock
3032 *
3033 * a faulty rdev _never_ has rdev->sb set.
3034 */
md_import_device(dev_t newdev,int super_format,int super_minor)3035 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3036 {
3037 char b[BDEVNAME_SIZE];
3038 int err;
3039 struct md_rdev *rdev;
3040 sector_t size;
3041
3042 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3043 if (!rdev) {
3044 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3045 return ERR_PTR(-ENOMEM);
3046 }
3047
3048 err = md_rdev_init(rdev);
3049 if (err)
3050 goto abort_free;
3051 err = alloc_disk_sb(rdev);
3052 if (err)
3053 goto abort_free;
3054
3055 err = lock_rdev(rdev, newdev, super_format == -2);
3056 if (err)
3057 goto abort_free;
3058
3059 kobject_init(&rdev->kobj, &rdev_ktype);
3060
3061 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3062 if (!size) {
3063 printk(KERN_WARNING
3064 "md: %s has zero or unknown size, marking faulty!\n",
3065 bdevname(rdev->bdev,b));
3066 err = -EINVAL;
3067 goto abort_free;
3068 }
3069
3070 if (super_format >= 0) {
3071 err = super_types[super_format].
3072 load_super(rdev, NULL, super_minor);
3073 if (err == -EINVAL) {
3074 printk(KERN_WARNING
3075 "md: %s does not have a valid v%d.%d "
3076 "superblock, not importing!\n",
3077 bdevname(rdev->bdev,b),
3078 super_format, super_minor);
3079 goto abort_free;
3080 }
3081 if (err < 0) {
3082 printk(KERN_WARNING
3083 "md: could not read %s's sb, not importing!\n",
3084 bdevname(rdev->bdev,b));
3085 goto abort_free;
3086 }
3087 }
3088
3089 return rdev;
3090
3091 abort_free:
3092 if (rdev->bdev)
3093 unlock_rdev(rdev);
3094 md_rdev_clear(rdev);
3095 kfree(rdev);
3096 return ERR_PTR(err);
3097 }
3098
3099 /*
3100 * Check a full RAID array for plausibility
3101 */
3102
analyze_sbs(struct mddev * mddev)3103 static void analyze_sbs(struct mddev *mddev)
3104 {
3105 int i;
3106 struct md_rdev *rdev, *freshest, *tmp;
3107 char b[BDEVNAME_SIZE];
3108
3109 freshest = NULL;
3110 rdev_for_each_safe(rdev, tmp, mddev)
3111 switch (super_types[mddev->major_version].
3112 load_super(rdev, freshest, mddev->minor_version)) {
3113 case 1:
3114 freshest = rdev;
3115 break;
3116 case 0:
3117 break;
3118 default:
3119 printk( KERN_ERR \
3120 "md: fatal superblock inconsistency in %s"
3121 " -- removing from array\n",
3122 bdevname(rdev->bdev,b));
3123 kick_rdev_from_array(rdev);
3124 }
3125
3126 super_types[mddev->major_version].
3127 validate_super(mddev, freshest);
3128
3129 i = 0;
3130 rdev_for_each_safe(rdev, tmp, mddev) {
3131 if (mddev->max_disks &&
3132 (rdev->desc_nr >= mddev->max_disks ||
3133 i > mddev->max_disks)) {
3134 printk(KERN_WARNING
3135 "md: %s: %s: only %d devices permitted\n",
3136 mdname(mddev), bdevname(rdev->bdev, b),
3137 mddev->max_disks);
3138 kick_rdev_from_array(rdev);
3139 continue;
3140 }
3141 if (rdev != freshest)
3142 if (super_types[mddev->major_version].
3143 validate_super(mddev, rdev)) {
3144 printk(KERN_WARNING "md: kicking non-fresh %s"
3145 " from array!\n",
3146 bdevname(rdev->bdev,b));
3147 kick_rdev_from_array(rdev);
3148 continue;
3149 }
3150 if (mddev->level == LEVEL_MULTIPATH) {
3151 rdev->desc_nr = i++;
3152 rdev->raid_disk = rdev->desc_nr;
3153 set_bit(In_sync, &rdev->flags);
3154 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3155 rdev->raid_disk = -1;
3156 clear_bit(In_sync, &rdev->flags);
3157 }
3158 }
3159 }
3160
3161 /* Read a fixed-point number.
3162 * Numbers in sysfs attributes should be in "standard" units where
3163 * possible, so time should be in seconds.
3164 * However we internally use a a much smaller unit such as
3165 * milliseconds or jiffies.
3166 * This function takes a decimal number with a possible fractional
3167 * component, and produces an integer which is the result of
3168 * multiplying that number by 10^'scale'.
3169 * all without any floating-point arithmetic.
3170 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3171 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3172 {
3173 unsigned long result = 0;
3174 long decimals = -1;
3175 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3176 if (*cp == '.')
3177 decimals = 0;
3178 else if (decimals < scale) {
3179 unsigned int value;
3180 value = *cp - '0';
3181 result = result * 10 + value;
3182 if (decimals >= 0)
3183 decimals++;
3184 }
3185 cp++;
3186 }
3187 if (*cp == '\n')
3188 cp++;
3189 if (*cp)
3190 return -EINVAL;
3191 if (decimals < 0)
3192 decimals = 0;
3193 while (decimals < scale) {
3194 result *= 10;
3195 decimals ++;
3196 }
3197 *res = result;
3198 return 0;
3199 }
3200
3201 static void md_safemode_timeout(unsigned long data);
3202
3203 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3204 safe_delay_show(struct mddev *mddev, char *page)
3205 {
3206 int msec = (mddev->safemode_delay*1000)/HZ;
3207 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3208 }
3209 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3210 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3211 {
3212 unsigned long msec;
3213
3214 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3215 return -EINVAL;
3216 if (msec == 0)
3217 mddev->safemode_delay = 0;
3218 else {
3219 unsigned long old_delay = mddev->safemode_delay;
3220 mddev->safemode_delay = (msec*HZ)/1000;
3221 if (mddev->safemode_delay == 0)
3222 mddev->safemode_delay = 1;
3223 if (mddev->safemode_delay < old_delay || old_delay == 0)
3224 md_safemode_timeout((unsigned long)mddev);
3225 }
3226 return len;
3227 }
3228 static struct md_sysfs_entry md_safe_delay =
3229 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3230
3231 static ssize_t
level_show(struct mddev * mddev,char * page)3232 level_show(struct mddev *mddev, char *page)
3233 {
3234 struct md_personality *p = mddev->pers;
3235 if (p)
3236 return sprintf(page, "%s\n", p->name);
3237 else if (mddev->clevel[0])
3238 return sprintf(page, "%s\n", mddev->clevel);
3239 else if (mddev->level != LEVEL_NONE)
3240 return sprintf(page, "%d\n", mddev->level);
3241 else
3242 return 0;
3243 }
3244
3245 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3246 level_store(struct mddev *mddev, const char *buf, size_t len)
3247 {
3248 char clevel[16];
3249 ssize_t rv = len;
3250 struct md_personality *pers;
3251 long level;
3252 void *priv;
3253 struct md_rdev *rdev;
3254
3255 if (mddev->pers == NULL) {
3256 if (len == 0)
3257 return 0;
3258 if (len >= sizeof(mddev->clevel))
3259 return -ENOSPC;
3260 strncpy(mddev->clevel, buf, len);
3261 if (mddev->clevel[len-1] == '\n')
3262 len--;
3263 mddev->clevel[len] = 0;
3264 mddev->level = LEVEL_NONE;
3265 return rv;
3266 }
3267 if (mddev->ro)
3268 return -EROFS;
3269
3270 /* request to change the personality. Need to ensure:
3271 * - array is not engaged in resync/recovery/reshape
3272 * - old personality can be suspended
3273 * - new personality will access other array.
3274 */
3275
3276 if (mddev->sync_thread ||
3277 mddev->reshape_position != MaxSector ||
3278 mddev->sysfs_active)
3279 return -EBUSY;
3280
3281 if (!mddev->pers->quiesce) {
3282 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3283 mdname(mddev), mddev->pers->name);
3284 return -EINVAL;
3285 }
3286
3287 /* Now find the new personality */
3288 if (len == 0 || len >= sizeof(clevel))
3289 return -EINVAL;
3290 strncpy(clevel, buf, len);
3291 if (clevel[len-1] == '\n')
3292 len--;
3293 clevel[len] = 0;
3294 if (kstrtol(clevel, 10, &level))
3295 level = LEVEL_NONE;
3296
3297 if (request_module("md-%s", clevel) != 0)
3298 request_module("md-level-%s", clevel);
3299 spin_lock(&pers_lock);
3300 pers = find_pers(level, clevel);
3301 if (!pers || !try_module_get(pers->owner)) {
3302 spin_unlock(&pers_lock);
3303 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3304 return -EINVAL;
3305 }
3306 spin_unlock(&pers_lock);
3307
3308 if (pers == mddev->pers) {
3309 /* Nothing to do! */
3310 module_put(pers->owner);
3311 return rv;
3312 }
3313 if (!pers->takeover) {
3314 module_put(pers->owner);
3315 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3316 mdname(mddev), clevel);
3317 return -EINVAL;
3318 }
3319
3320 rdev_for_each(rdev, mddev)
3321 rdev->new_raid_disk = rdev->raid_disk;
3322
3323 /* ->takeover must set new_* and/or delta_disks
3324 * if it succeeds, and may set them when it fails.
3325 */
3326 priv = pers->takeover(mddev);
3327 if (IS_ERR(priv)) {
3328 mddev->new_level = mddev->level;
3329 mddev->new_layout = mddev->layout;
3330 mddev->new_chunk_sectors = mddev->chunk_sectors;
3331 mddev->raid_disks -= mddev->delta_disks;
3332 mddev->delta_disks = 0;
3333 mddev->reshape_backwards = 0;
3334 module_put(pers->owner);
3335 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3336 mdname(mddev), clevel);
3337 return PTR_ERR(priv);
3338 }
3339
3340 /* Looks like we have a winner */
3341 mddev_suspend(mddev);
3342 mddev->pers->stop(mddev);
3343
3344 if (mddev->pers->sync_request == NULL &&
3345 pers->sync_request != NULL) {
3346 /* need to add the md_redundancy_group */
3347 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3348 printk(KERN_WARNING
3349 "md: cannot register extra attributes for %s\n",
3350 mdname(mddev));
3351 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3352 }
3353 if (mddev->pers->sync_request != NULL &&
3354 pers->sync_request == NULL) {
3355 /* need to remove the md_redundancy_group */
3356 if (mddev->to_remove == NULL)
3357 mddev->to_remove = &md_redundancy_group;
3358 }
3359
3360 if (mddev->pers->sync_request == NULL &&
3361 mddev->external) {
3362 /* We are converting from a no-redundancy array
3363 * to a redundancy array and metadata is managed
3364 * externally so we need to be sure that writes
3365 * won't block due to a need to transition
3366 * clean->dirty
3367 * until external management is started.
3368 */
3369 mddev->in_sync = 0;
3370 mddev->safemode_delay = 0;
3371 mddev->safemode = 0;
3372 }
3373
3374 rdev_for_each(rdev, mddev) {
3375 if (rdev->raid_disk < 0)
3376 continue;
3377 if (rdev->new_raid_disk >= mddev->raid_disks)
3378 rdev->new_raid_disk = -1;
3379 if (rdev->new_raid_disk == rdev->raid_disk)
3380 continue;
3381 sysfs_unlink_rdev(mddev, rdev);
3382 }
3383 rdev_for_each(rdev, mddev) {
3384 if (rdev->raid_disk < 0)
3385 continue;
3386 if (rdev->new_raid_disk == rdev->raid_disk)
3387 continue;
3388 rdev->raid_disk = rdev->new_raid_disk;
3389 if (rdev->raid_disk < 0)
3390 clear_bit(In_sync, &rdev->flags);
3391 else {
3392 if (sysfs_link_rdev(mddev, rdev))
3393 printk(KERN_WARNING "md: cannot register rd%d"
3394 " for %s after level change\n",
3395 rdev->raid_disk, mdname(mddev));
3396 }
3397 }
3398
3399 module_put(mddev->pers->owner);
3400 mddev->pers = pers;
3401 mddev->private = priv;
3402 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3403 mddev->level = mddev->new_level;
3404 mddev->layout = mddev->new_layout;
3405 mddev->chunk_sectors = mddev->new_chunk_sectors;
3406 mddev->delta_disks = 0;
3407 mddev->reshape_backwards = 0;
3408 mddev->degraded = 0;
3409 if (mddev->pers->sync_request == NULL) {
3410 /* this is now an array without redundancy, so
3411 * it must always be in_sync
3412 */
3413 mddev->in_sync = 1;
3414 del_timer_sync(&mddev->safemode_timer);
3415 }
3416 blk_set_stacking_limits(&mddev->queue->limits);
3417 pers->run(mddev);
3418 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3419 mddev_resume(mddev);
3420 if (!mddev->thread)
3421 md_update_sb(mddev, 1);
3422 sysfs_notify(&mddev->kobj, NULL, "level");
3423 md_new_event(mddev);
3424 return rv;
3425 }
3426
3427 static struct md_sysfs_entry md_level =
3428 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3429
3430 static ssize_t
layout_show(struct mddev * mddev,char * page)3431 layout_show(struct mddev *mddev, char *page)
3432 {
3433 /* just a number, not meaningful for all levels */
3434 if (mddev->reshape_position != MaxSector &&
3435 mddev->layout != mddev->new_layout)
3436 return sprintf(page, "%d (%d)\n",
3437 mddev->new_layout, mddev->layout);
3438 return sprintf(page, "%d\n", mddev->layout);
3439 }
3440
3441 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3442 layout_store(struct mddev *mddev, const char *buf, size_t len)
3443 {
3444 char *e;
3445 unsigned long n = simple_strtoul(buf, &e, 10);
3446
3447 if (!*buf || (*e && *e != '\n'))
3448 return -EINVAL;
3449
3450 if (mddev->pers) {
3451 int err;
3452 if (mddev->pers->check_reshape == NULL)
3453 return -EBUSY;
3454 if (mddev->ro)
3455 return -EROFS;
3456 mddev->new_layout = n;
3457 err = mddev->pers->check_reshape(mddev);
3458 if (err) {
3459 mddev->new_layout = mddev->layout;
3460 return err;
3461 }
3462 } else {
3463 mddev->new_layout = n;
3464 if (mddev->reshape_position == MaxSector)
3465 mddev->layout = n;
3466 }
3467 return len;
3468 }
3469 static struct md_sysfs_entry md_layout =
3470 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3471
3472 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3473 raid_disks_show(struct mddev *mddev, char *page)
3474 {
3475 if (mddev->raid_disks == 0)
3476 return 0;
3477 if (mddev->reshape_position != MaxSector &&
3478 mddev->delta_disks != 0)
3479 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3480 mddev->raid_disks - mddev->delta_disks);
3481 return sprintf(page, "%d\n", mddev->raid_disks);
3482 }
3483
3484 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3485
3486 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3487 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3488 {
3489 char *e;
3490 int rv = 0;
3491 unsigned long n = simple_strtoul(buf, &e, 10);
3492
3493 if (!*buf || (*e && *e != '\n'))
3494 return -EINVAL;
3495
3496 if (mddev->pers)
3497 rv = update_raid_disks(mddev, n);
3498 else if (mddev->reshape_position != MaxSector) {
3499 struct md_rdev *rdev;
3500 int olddisks = mddev->raid_disks - mddev->delta_disks;
3501
3502 rdev_for_each(rdev, mddev) {
3503 if (olddisks < n &&
3504 rdev->data_offset < rdev->new_data_offset)
3505 return -EINVAL;
3506 if (olddisks > n &&
3507 rdev->data_offset > rdev->new_data_offset)
3508 return -EINVAL;
3509 }
3510 mddev->delta_disks = n - olddisks;
3511 mddev->raid_disks = n;
3512 mddev->reshape_backwards = (mddev->delta_disks < 0);
3513 } else
3514 mddev->raid_disks = n;
3515 return rv ? rv : len;
3516 }
3517 static struct md_sysfs_entry md_raid_disks =
3518 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3519
3520 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3521 chunk_size_show(struct mddev *mddev, char *page)
3522 {
3523 if (mddev->reshape_position != MaxSector &&
3524 mddev->chunk_sectors != mddev->new_chunk_sectors)
3525 return sprintf(page, "%d (%d)\n",
3526 mddev->new_chunk_sectors << 9,
3527 mddev->chunk_sectors << 9);
3528 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3529 }
3530
3531 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3532 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3533 {
3534 char *e;
3535 unsigned long n = simple_strtoul(buf, &e, 10);
3536
3537 if (!*buf || (*e && *e != '\n'))
3538 return -EINVAL;
3539
3540 if (mddev->pers) {
3541 int err;
3542 if (mddev->pers->check_reshape == NULL)
3543 return -EBUSY;
3544 if (mddev->ro)
3545 return -EROFS;
3546 mddev->new_chunk_sectors = n >> 9;
3547 err = mddev->pers->check_reshape(mddev);
3548 if (err) {
3549 mddev->new_chunk_sectors = mddev->chunk_sectors;
3550 return err;
3551 }
3552 } else {
3553 mddev->new_chunk_sectors = n >> 9;
3554 if (mddev->reshape_position == MaxSector)
3555 mddev->chunk_sectors = n >> 9;
3556 }
3557 return len;
3558 }
3559 static struct md_sysfs_entry md_chunk_size =
3560 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3561
3562 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3563 resync_start_show(struct mddev *mddev, char *page)
3564 {
3565 if (mddev->recovery_cp == MaxSector)
3566 return sprintf(page, "none\n");
3567 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3568 }
3569
3570 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3571 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573 char *e;
3574 unsigned long long n = simple_strtoull(buf, &e, 10);
3575
3576 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3577 return -EBUSY;
3578 if (cmd_match(buf, "none"))
3579 n = MaxSector;
3580 else if (!*buf || (*e && *e != '\n'))
3581 return -EINVAL;
3582
3583 mddev->recovery_cp = n;
3584 if (mddev->pers)
3585 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3586 return len;
3587 }
3588 static struct md_sysfs_entry md_resync_start =
3589 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3590
3591 /*
3592 * The array state can be:
3593 *
3594 * clear
3595 * No devices, no size, no level
3596 * Equivalent to STOP_ARRAY ioctl
3597 * inactive
3598 * May have some settings, but array is not active
3599 * all IO results in error
3600 * When written, doesn't tear down array, but just stops it
3601 * suspended (not supported yet)
3602 * All IO requests will block. The array can be reconfigured.
3603 * Writing this, if accepted, will block until array is quiescent
3604 * readonly
3605 * no resync can happen. no superblocks get written.
3606 * write requests fail
3607 * read-auto
3608 * like readonly, but behaves like 'clean' on a write request.
3609 *
3610 * clean - no pending writes, but otherwise active.
3611 * When written to inactive array, starts without resync
3612 * If a write request arrives then
3613 * if metadata is known, mark 'dirty' and switch to 'active'.
3614 * if not known, block and switch to write-pending
3615 * If written to an active array that has pending writes, then fails.
3616 * active
3617 * fully active: IO and resync can be happening.
3618 * When written to inactive array, starts with resync
3619 *
3620 * write-pending
3621 * clean, but writes are blocked waiting for 'active' to be written.
3622 *
3623 * active-idle
3624 * like active, but no writes have been seen for a while (100msec).
3625 *
3626 */
3627 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3628 write_pending, active_idle, bad_word};
3629 static char *array_states[] = {
3630 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3631 "write-pending", "active-idle", NULL };
3632
match_word(const char * word,char ** list)3633 static int match_word(const char *word, char **list)
3634 {
3635 int n;
3636 for (n=0; list[n]; n++)
3637 if (cmd_match(word, list[n]))
3638 break;
3639 return n;
3640 }
3641
3642 static ssize_t
array_state_show(struct mddev * mddev,char * page)3643 array_state_show(struct mddev *mddev, char *page)
3644 {
3645 enum array_state st = inactive;
3646
3647 if (mddev->pers)
3648 switch(mddev->ro) {
3649 case 1:
3650 st = readonly;
3651 break;
3652 case 2:
3653 st = read_auto;
3654 break;
3655 case 0:
3656 if (mddev->in_sync)
3657 st = clean;
3658 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3659 st = write_pending;
3660 else if (mddev->safemode)
3661 st = active_idle;
3662 else
3663 st = active;
3664 }
3665 else {
3666 if (list_empty(&mddev->disks) &&
3667 mddev->raid_disks == 0 &&
3668 mddev->dev_sectors == 0)
3669 st = clear;
3670 else
3671 st = inactive;
3672 }
3673 return sprintf(page, "%s\n", array_states[st]);
3674 }
3675
3676 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3677 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3678 static int do_md_run(struct mddev *mddev);
3679 static int restart_array(struct mddev *mddev);
3680
3681 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3682 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3683 {
3684 int err = -EINVAL;
3685 enum array_state st = match_word(buf, array_states);
3686 switch(st) {
3687 case bad_word:
3688 break;
3689 case clear:
3690 /* stopping an active array */
3691 err = do_md_stop(mddev, 0, NULL);
3692 break;
3693 case inactive:
3694 /* stopping an active array */
3695 if (mddev->pers)
3696 err = do_md_stop(mddev, 2, NULL);
3697 else
3698 err = 0; /* already inactive */
3699 break;
3700 case suspended:
3701 break; /* not supported yet */
3702 case readonly:
3703 if (mddev->pers)
3704 err = md_set_readonly(mddev, NULL);
3705 else {
3706 mddev->ro = 1;
3707 set_disk_ro(mddev->gendisk, 1);
3708 err = do_md_run(mddev);
3709 }
3710 break;
3711 case read_auto:
3712 if (mddev->pers) {
3713 if (mddev->ro == 0)
3714 err = md_set_readonly(mddev, NULL);
3715 else if (mddev->ro == 1)
3716 err = restart_array(mddev);
3717 if (err == 0) {
3718 mddev->ro = 2;
3719 set_disk_ro(mddev->gendisk, 0);
3720 }
3721 } else {
3722 mddev->ro = 2;
3723 err = do_md_run(mddev);
3724 }
3725 break;
3726 case clean:
3727 if (mddev->pers) {
3728 restart_array(mddev);
3729 spin_lock_irq(&mddev->write_lock);
3730 if (atomic_read(&mddev->writes_pending) == 0) {
3731 if (mddev->in_sync == 0) {
3732 mddev->in_sync = 1;
3733 if (mddev->safemode == 1)
3734 mddev->safemode = 0;
3735 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3736 }
3737 err = 0;
3738 } else
3739 err = -EBUSY;
3740 spin_unlock_irq(&mddev->write_lock);
3741 } else
3742 err = -EINVAL;
3743 break;
3744 case active:
3745 if (mddev->pers) {
3746 restart_array(mddev);
3747 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3748 wake_up(&mddev->sb_wait);
3749 err = 0;
3750 } else {
3751 mddev->ro = 0;
3752 set_disk_ro(mddev->gendisk, 0);
3753 err = do_md_run(mddev);
3754 }
3755 break;
3756 case write_pending:
3757 case active_idle:
3758 /* these cannot be set */
3759 break;
3760 }
3761 if (err)
3762 return err;
3763 else {
3764 if (mddev->hold_active == UNTIL_IOCTL)
3765 mddev->hold_active = 0;
3766 sysfs_notify_dirent_safe(mddev->sysfs_state);
3767 return len;
3768 }
3769 }
3770 static struct md_sysfs_entry md_array_state =
3771 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3772
3773 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)3774 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3775 return sprintf(page, "%d\n",
3776 atomic_read(&mddev->max_corr_read_errors));
3777 }
3778
3779 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)3780 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 char *e;
3783 unsigned long n = simple_strtoul(buf, &e, 10);
3784
3785 if (*buf && (*e == 0 || *e == '\n')) {
3786 atomic_set(&mddev->max_corr_read_errors, n);
3787 return len;
3788 }
3789 return -EINVAL;
3790 }
3791
3792 static struct md_sysfs_entry max_corr_read_errors =
3793 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3794 max_corrected_read_errors_store);
3795
3796 static ssize_t
null_show(struct mddev * mddev,char * page)3797 null_show(struct mddev *mddev, char *page)
3798 {
3799 return -EINVAL;
3800 }
3801
3802 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)3803 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805 /* buf must be %d:%d\n? giving major and minor numbers */
3806 /* The new device is added to the array.
3807 * If the array has a persistent superblock, we read the
3808 * superblock to initialise info and check validity.
3809 * Otherwise, only checking done is that in bind_rdev_to_array,
3810 * which mainly checks size.
3811 */
3812 char *e;
3813 int major = simple_strtoul(buf, &e, 10);
3814 int minor;
3815 dev_t dev;
3816 struct md_rdev *rdev;
3817 int err;
3818
3819 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3820 return -EINVAL;
3821 minor = simple_strtoul(e+1, &e, 10);
3822 if (*e && *e != '\n')
3823 return -EINVAL;
3824 dev = MKDEV(major, minor);
3825 if (major != MAJOR(dev) ||
3826 minor != MINOR(dev))
3827 return -EOVERFLOW;
3828
3829 if (mddev->persistent) {
3830 rdev = md_import_device(dev, mddev->major_version,
3831 mddev->minor_version);
3832 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3833 struct md_rdev *rdev0
3834 = list_entry(mddev->disks.next,
3835 struct md_rdev, same_set);
3836 err = super_types[mddev->major_version]
3837 .load_super(rdev, rdev0, mddev->minor_version);
3838 if (err < 0)
3839 goto out;
3840 }
3841 } else if (mddev->external)
3842 rdev = md_import_device(dev, -2, -1);
3843 else
3844 rdev = md_import_device(dev, -1, -1);
3845
3846 if (IS_ERR(rdev))
3847 return PTR_ERR(rdev);
3848 err = bind_rdev_to_array(rdev, mddev);
3849 out:
3850 if (err)
3851 export_rdev(rdev);
3852 return err ? err : len;
3853 }
3854
3855 static struct md_sysfs_entry md_new_device =
3856 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3857
3858 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)3859 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3860 {
3861 char *end;
3862 unsigned long chunk, end_chunk;
3863
3864 if (!mddev->bitmap)
3865 goto out;
3866 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3867 while (*buf) {
3868 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3869 if (buf == end) break;
3870 if (*end == '-') { /* range */
3871 buf = end + 1;
3872 end_chunk = simple_strtoul(buf, &end, 0);
3873 if (buf == end) break;
3874 }
3875 if (*end && !isspace(*end)) break;
3876 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3877 buf = skip_spaces(end);
3878 }
3879 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3880 out:
3881 return len;
3882 }
3883
3884 static struct md_sysfs_entry md_bitmap =
3885 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3886
3887 static ssize_t
size_show(struct mddev * mddev,char * page)3888 size_show(struct mddev *mddev, char *page)
3889 {
3890 return sprintf(page, "%llu\n",
3891 (unsigned long long)mddev->dev_sectors / 2);
3892 }
3893
3894 static int update_size(struct mddev *mddev, sector_t num_sectors);
3895
3896 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)3897 size_store(struct mddev *mddev, const char *buf, size_t len)
3898 {
3899 /* If array is inactive, we can reduce the component size, but
3900 * not increase it (except from 0).
3901 * If array is active, we can try an on-line resize
3902 */
3903 sector_t sectors;
3904 int err = strict_blocks_to_sectors(buf, §ors);
3905
3906 if (err < 0)
3907 return err;
3908 if (mddev->pers) {
3909 err = update_size(mddev, sectors);
3910 md_update_sb(mddev, 1);
3911 } else {
3912 if (mddev->dev_sectors == 0 ||
3913 mddev->dev_sectors > sectors)
3914 mddev->dev_sectors = sectors;
3915 else
3916 err = -ENOSPC;
3917 }
3918 return err ? err : len;
3919 }
3920
3921 static struct md_sysfs_entry md_size =
3922 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3923
3924 /* Metadata version.
3925 * This is one of
3926 * 'none' for arrays with no metadata (good luck...)
3927 * 'external' for arrays with externally managed metadata,
3928 * or N.M for internally known formats
3929 */
3930 static ssize_t
metadata_show(struct mddev * mddev,char * page)3931 metadata_show(struct mddev *mddev, char *page)
3932 {
3933 if (mddev->persistent)
3934 return sprintf(page, "%d.%d\n",
3935 mddev->major_version, mddev->minor_version);
3936 else if (mddev->external)
3937 return sprintf(page, "external:%s\n", mddev->metadata_type);
3938 else
3939 return sprintf(page, "none\n");
3940 }
3941
3942 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)3943 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3944 {
3945 int major, minor;
3946 char *e;
3947 /* Changing the details of 'external' metadata is
3948 * always permitted. Otherwise there must be
3949 * no devices attached to the array.
3950 */
3951 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3952 ;
3953 else if (!list_empty(&mddev->disks))
3954 return -EBUSY;
3955
3956 if (cmd_match(buf, "none")) {
3957 mddev->persistent = 0;
3958 mddev->external = 0;
3959 mddev->major_version = 0;
3960 mddev->minor_version = 90;
3961 return len;
3962 }
3963 if (strncmp(buf, "external:", 9) == 0) {
3964 size_t namelen = len-9;
3965 if (namelen >= sizeof(mddev->metadata_type))
3966 namelen = sizeof(mddev->metadata_type)-1;
3967 strncpy(mddev->metadata_type, buf+9, namelen);
3968 mddev->metadata_type[namelen] = 0;
3969 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3970 mddev->metadata_type[--namelen] = 0;
3971 mddev->persistent = 0;
3972 mddev->external = 1;
3973 mddev->major_version = 0;
3974 mddev->minor_version = 90;
3975 return len;
3976 }
3977 major = simple_strtoul(buf, &e, 10);
3978 if (e==buf || *e != '.')
3979 return -EINVAL;
3980 buf = e+1;
3981 minor = simple_strtoul(buf, &e, 10);
3982 if (e==buf || (*e && *e != '\n') )
3983 return -EINVAL;
3984 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3985 return -ENOENT;
3986 mddev->major_version = major;
3987 mddev->minor_version = minor;
3988 mddev->persistent = 1;
3989 mddev->external = 0;
3990 return len;
3991 }
3992
3993 static struct md_sysfs_entry md_metadata =
3994 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3995
3996 static ssize_t
action_show(struct mddev * mddev,char * page)3997 action_show(struct mddev *mddev, char *page)
3998 {
3999 char *type = "idle";
4000 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4001 type = "frozen";
4002 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4003 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4004 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4005 type = "reshape";
4006 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4007 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4008 type = "resync";
4009 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4010 type = "check";
4011 else
4012 type = "repair";
4013 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4014 type = "recover";
4015 }
4016 return sprintf(page, "%s\n", type);
4017 }
4018
4019 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4020 action_store(struct mddev *mddev, const char *page, size_t len)
4021 {
4022 if (!mddev->pers || !mddev->pers->sync_request)
4023 return -EINVAL;
4024
4025 if (cmd_match(page, "frozen"))
4026 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4027 else
4028 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4029
4030 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4031 if (mddev->sync_thread) {
4032 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4033 md_reap_sync_thread(mddev);
4034 }
4035 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4036 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4037 return -EBUSY;
4038 else if (cmd_match(page, "resync"))
4039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4040 else if (cmd_match(page, "recover")) {
4041 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4042 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4043 } else if (cmd_match(page, "reshape")) {
4044 int err;
4045 if (mddev->pers->start_reshape == NULL)
4046 return -EINVAL;
4047 err = mddev->pers->start_reshape(mddev);
4048 if (err)
4049 return err;
4050 sysfs_notify(&mddev->kobj, NULL, "degraded");
4051 } else {
4052 if (cmd_match(page, "check"))
4053 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4054 else if (!cmd_match(page, "repair"))
4055 return -EINVAL;
4056 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4057 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4058 }
4059 if (mddev->ro == 2) {
4060 /* A write to sync_action is enough to justify
4061 * canceling read-auto mode
4062 */
4063 mddev->ro = 0;
4064 md_wakeup_thread(mddev->sync_thread);
4065 }
4066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067 md_wakeup_thread(mddev->thread);
4068 sysfs_notify_dirent_safe(mddev->sysfs_action);
4069 return len;
4070 }
4071
4072 static struct md_sysfs_entry md_scan_mode =
4073 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4074
4075 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4076 last_sync_action_show(struct mddev *mddev, char *page)
4077 {
4078 return sprintf(page, "%s\n", mddev->last_sync_action);
4079 }
4080
4081 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4082
4083 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4084 mismatch_cnt_show(struct mddev *mddev, char *page)
4085 {
4086 return sprintf(page, "%llu\n",
4087 (unsigned long long)
4088 atomic64_read(&mddev->resync_mismatches));
4089 }
4090
4091 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4092
4093 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4094 sync_min_show(struct mddev *mddev, char *page)
4095 {
4096 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4097 mddev->sync_speed_min ? "local": "system");
4098 }
4099
4100 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4101 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4102 {
4103 int min;
4104 char *e;
4105 if (strncmp(buf, "system", 6)==0) {
4106 mddev->sync_speed_min = 0;
4107 return len;
4108 }
4109 min = simple_strtoul(buf, &e, 10);
4110 if (buf == e || (*e && *e != '\n') || min <= 0)
4111 return -EINVAL;
4112 mddev->sync_speed_min = min;
4113 return len;
4114 }
4115
4116 static struct md_sysfs_entry md_sync_min =
4117 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4118
4119 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4120 sync_max_show(struct mddev *mddev, char *page)
4121 {
4122 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4123 mddev->sync_speed_max ? "local": "system");
4124 }
4125
4126 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4127 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4128 {
4129 int max;
4130 char *e;
4131 if (strncmp(buf, "system", 6)==0) {
4132 mddev->sync_speed_max = 0;
4133 return len;
4134 }
4135 max = simple_strtoul(buf, &e, 10);
4136 if (buf == e || (*e && *e != '\n') || max <= 0)
4137 return -EINVAL;
4138 mddev->sync_speed_max = max;
4139 return len;
4140 }
4141
4142 static struct md_sysfs_entry md_sync_max =
4143 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4144
4145 static ssize_t
degraded_show(struct mddev * mddev,char * page)4146 degraded_show(struct mddev *mddev, char *page)
4147 {
4148 return sprintf(page, "%d\n", mddev->degraded);
4149 }
4150 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4151
4152 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4153 sync_force_parallel_show(struct mddev *mddev, char *page)
4154 {
4155 return sprintf(page, "%d\n", mddev->parallel_resync);
4156 }
4157
4158 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4159 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4160 {
4161 long n;
4162
4163 if (kstrtol(buf, 10, &n))
4164 return -EINVAL;
4165
4166 if (n != 0 && n != 1)
4167 return -EINVAL;
4168
4169 mddev->parallel_resync = n;
4170
4171 if (mddev->sync_thread)
4172 wake_up(&resync_wait);
4173
4174 return len;
4175 }
4176
4177 /* force parallel resync, even with shared block devices */
4178 static struct md_sysfs_entry md_sync_force_parallel =
4179 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4180 sync_force_parallel_show, sync_force_parallel_store);
4181
4182 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4183 sync_speed_show(struct mddev *mddev, char *page)
4184 {
4185 unsigned long resync, dt, db;
4186 if (mddev->curr_resync == 0)
4187 return sprintf(page, "none\n");
4188 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4189 dt = (jiffies - mddev->resync_mark) / HZ;
4190 if (!dt) dt++;
4191 db = resync - mddev->resync_mark_cnt;
4192 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4193 }
4194
4195 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4196
4197 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4198 sync_completed_show(struct mddev *mddev, char *page)
4199 {
4200 unsigned long long max_sectors, resync;
4201
4202 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4203 return sprintf(page, "none\n");
4204
4205 if (mddev->curr_resync == 1 ||
4206 mddev->curr_resync == 2)
4207 return sprintf(page, "delayed\n");
4208
4209 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4210 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4211 max_sectors = mddev->resync_max_sectors;
4212 else
4213 max_sectors = mddev->dev_sectors;
4214
4215 resync = mddev->curr_resync_completed;
4216 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4217 }
4218
4219 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4220
4221 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4222 min_sync_show(struct mddev *mddev, char *page)
4223 {
4224 return sprintf(page, "%llu\n",
4225 (unsigned long long)mddev->resync_min);
4226 }
4227 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4228 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4229 {
4230 unsigned long long min;
4231 if (kstrtoull(buf, 10, &min))
4232 return -EINVAL;
4233 if (min > mddev->resync_max)
4234 return -EINVAL;
4235 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4236 return -EBUSY;
4237
4238 /* Must be a multiple of chunk_size */
4239 if (mddev->chunk_sectors) {
4240 sector_t temp = min;
4241 if (sector_div(temp, mddev->chunk_sectors))
4242 return -EINVAL;
4243 }
4244 mddev->resync_min = min;
4245
4246 return len;
4247 }
4248
4249 static struct md_sysfs_entry md_min_sync =
4250 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4251
4252 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4253 max_sync_show(struct mddev *mddev, char *page)
4254 {
4255 if (mddev->resync_max == MaxSector)
4256 return sprintf(page, "max\n");
4257 else
4258 return sprintf(page, "%llu\n",
4259 (unsigned long long)mddev->resync_max);
4260 }
4261 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4262 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4263 {
4264 if (strncmp(buf, "max", 3) == 0)
4265 mddev->resync_max = MaxSector;
4266 else {
4267 unsigned long long max;
4268 if (kstrtoull(buf, 10, &max))
4269 return -EINVAL;
4270 if (max < mddev->resync_min)
4271 return -EINVAL;
4272 if (max < mddev->resync_max &&
4273 mddev->ro == 0 &&
4274 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4275 return -EBUSY;
4276
4277 /* Must be a multiple of chunk_size */
4278 if (mddev->chunk_sectors) {
4279 sector_t temp = max;
4280 if (sector_div(temp, mddev->chunk_sectors))
4281 return -EINVAL;
4282 }
4283 mddev->resync_max = max;
4284 }
4285 wake_up(&mddev->recovery_wait);
4286 return len;
4287 }
4288
4289 static struct md_sysfs_entry md_max_sync =
4290 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4291
4292 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4293 suspend_lo_show(struct mddev *mddev, char *page)
4294 {
4295 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4296 }
4297
4298 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4299 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 char *e;
4302 unsigned long long new = simple_strtoull(buf, &e, 10);
4303 unsigned long long old = mddev->suspend_lo;
4304
4305 if (mddev->pers == NULL ||
4306 mddev->pers->quiesce == NULL)
4307 return -EINVAL;
4308 if (buf == e || (*e && *e != '\n'))
4309 return -EINVAL;
4310
4311 mddev->suspend_lo = new;
4312 if (new >= old)
4313 /* Shrinking suspended region */
4314 mddev->pers->quiesce(mddev, 2);
4315 else {
4316 /* Expanding suspended region - need to wait */
4317 mddev->pers->quiesce(mddev, 1);
4318 mddev->pers->quiesce(mddev, 0);
4319 }
4320 return len;
4321 }
4322 static struct md_sysfs_entry md_suspend_lo =
4323 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4324
4325 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4326 suspend_hi_show(struct mddev *mddev, char *page)
4327 {
4328 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4329 }
4330
4331 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4332 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4333 {
4334 char *e;
4335 unsigned long long new = simple_strtoull(buf, &e, 10);
4336 unsigned long long old = mddev->suspend_hi;
4337
4338 if (mddev->pers == NULL ||
4339 mddev->pers->quiesce == NULL)
4340 return -EINVAL;
4341 if (buf == e || (*e && *e != '\n'))
4342 return -EINVAL;
4343
4344 mddev->suspend_hi = new;
4345 if (new <= old)
4346 /* Shrinking suspended region */
4347 mddev->pers->quiesce(mddev, 2);
4348 else {
4349 /* Expanding suspended region - need to wait */
4350 mddev->pers->quiesce(mddev, 1);
4351 mddev->pers->quiesce(mddev, 0);
4352 }
4353 return len;
4354 }
4355 static struct md_sysfs_entry md_suspend_hi =
4356 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4357
4358 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4359 reshape_position_show(struct mddev *mddev, char *page)
4360 {
4361 if (mddev->reshape_position != MaxSector)
4362 return sprintf(page, "%llu\n",
4363 (unsigned long long)mddev->reshape_position);
4364 strcpy(page, "none\n");
4365 return 5;
4366 }
4367
4368 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4369 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4370 {
4371 struct md_rdev *rdev;
4372 char *e;
4373 unsigned long long new = simple_strtoull(buf, &e, 10);
4374 if (mddev->pers)
4375 return -EBUSY;
4376 if (buf == e || (*e && *e != '\n'))
4377 return -EINVAL;
4378 mddev->reshape_position = new;
4379 mddev->delta_disks = 0;
4380 mddev->reshape_backwards = 0;
4381 mddev->new_level = mddev->level;
4382 mddev->new_layout = mddev->layout;
4383 mddev->new_chunk_sectors = mddev->chunk_sectors;
4384 rdev_for_each(rdev, mddev)
4385 rdev->new_data_offset = rdev->data_offset;
4386 return len;
4387 }
4388
4389 static struct md_sysfs_entry md_reshape_position =
4390 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4391 reshape_position_store);
4392
4393 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4394 reshape_direction_show(struct mddev *mddev, char *page)
4395 {
4396 return sprintf(page, "%s\n",
4397 mddev->reshape_backwards ? "backwards" : "forwards");
4398 }
4399
4400 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4401 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 int backwards = 0;
4404 if (cmd_match(buf, "forwards"))
4405 backwards = 0;
4406 else if (cmd_match(buf, "backwards"))
4407 backwards = 1;
4408 else
4409 return -EINVAL;
4410 if (mddev->reshape_backwards == backwards)
4411 return len;
4412
4413 /* check if we are allowed to change */
4414 if (mddev->delta_disks)
4415 return -EBUSY;
4416
4417 if (mddev->persistent &&
4418 mddev->major_version == 0)
4419 return -EINVAL;
4420
4421 mddev->reshape_backwards = backwards;
4422 return len;
4423 }
4424
4425 static struct md_sysfs_entry md_reshape_direction =
4426 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4427 reshape_direction_store);
4428
4429 static ssize_t
array_size_show(struct mddev * mddev,char * page)4430 array_size_show(struct mddev *mddev, char *page)
4431 {
4432 if (mddev->external_size)
4433 return sprintf(page, "%llu\n",
4434 (unsigned long long)mddev->array_sectors/2);
4435 else
4436 return sprintf(page, "default\n");
4437 }
4438
4439 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4440 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4441 {
4442 sector_t sectors;
4443
4444 if (strncmp(buf, "default", 7) == 0) {
4445 if (mddev->pers)
4446 sectors = mddev->pers->size(mddev, 0, 0);
4447 else
4448 sectors = mddev->array_sectors;
4449
4450 mddev->external_size = 0;
4451 } else {
4452 if (strict_blocks_to_sectors(buf, §ors) < 0)
4453 return -EINVAL;
4454 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4455 return -E2BIG;
4456
4457 mddev->external_size = 1;
4458 }
4459
4460 mddev->array_sectors = sectors;
4461 if (mddev->pers) {
4462 set_capacity(mddev->gendisk, mddev->array_sectors);
4463 revalidate_disk(mddev->gendisk);
4464 }
4465 return len;
4466 }
4467
4468 static struct md_sysfs_entry md_array_size =
4469 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4470 array_size_store);
4471
4472 static struct attribute *md_default_attrs[] = {
4473 &md_level.attr,
4474 &md_layout.attr,
4475 &md_raid_disks.attr,
4476 &md_chunk_size.attr,
4477 &md_size.attr,
4478 &md_resync_start.attr,
4479 &md_metadata.attr,
4480 &md_new_device.attr,
4481 &md_safe_delay.attr,
4482 &md_array_state.attr,
4483 &md_reshape_position.attr,
4484 &md_reshape_direction.attr,
4485 &md_array_size.attr,
4486 &max_corr_read_errors.attr,
4487 NULL,
4488 };
4489
4490 static struct attribute *md_redundancy_attrs[] = {
4491 &md_scan_mode.attr,
4492 &md_last_scan_mode.attr,
4493 &md_mismatches.attr,
4494 &md_sync_min.attr,
4495 &md_sync_max.attr,
4496 &md_sync_speed.attr,
4497 &md_sync_force_parallel.attr,
4498 &md_sync_completed.attr,
4499 &md_min_sync.attr,
4500 &md_max_sync.attr,
4501 &md_suspend_lo.attr,
4502 &md_suspend_hi.attr,
4503 &md_bitmap.attr,
4504 &md_degraded.attr,
4505 NULL,
4506 };
4507 static struct attribute_group md_redundancy_group = {
4508 .name = NULL,
4509 .attrs = md_redundancy_attrs,
4510 };
4511
4512 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4513 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4514 {
4515 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4516 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4517 ssize_t rv;
4518
4519 if (!entry->show)
4520 return -EIO;
4521 spin_lock(&all_mddevs_lock);
4522 if (list_empty(&mddev->all_mddevs)) {
4523 spin_unlock(&all_mddevs_lock);
4524 return -EBUSY;
4525 }
4526 mddev_get(mddev);
4527 spin_unlock(&all_mddevs_lock);
4528
4529 rv = mddev_lock(mddev);
4530 if (!rv) {
4531 rv = entry->show(mddev, page);
4532 mddev_unlock(mddev);
4533 }
4534 mddev_put(mddev);
4535 return rv;
4536 }
4537
4538 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4539 md_attr_store(struct kobject *kobj, struct attribute *attr,
4540 const char *page, size_t length)
4541 {
4542 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4543 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4544 ssize_t rv;
4545
4546 if (!entry->store)
4547 return -EIO;
4548 if (!capable(CAP_SYS_ADMIN))
4549 return -EACCES;
4550 spin_lock(&all_mddevs_lock);
4551 if (list_empty(&mddev->all_mddevs)) {
4552 spin_unlock(&all_mddevs_lock);
4553 return -EBUSY;
4554 }
4555 mddev_get(mddev);
4556 spin_unlock(&all_mddevs_lock);
4557 if (entry->store == new_dev_store)
4558 flush_workqueue(md_misc_wq);
4559 rv = mddev_lock(mddev);
4560 if (!rv) {
4561 rv = entry->store(mddev, page, length);
4562 mddev_unlock(mddev);
4563 }
4564 mddev_put(mddev);
4565 return rv;
4566 }
4567
md_free(struct kobject * ko)4568 static void md_free(struct kobject *ko)
4569 {
4570 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4571
4572 if (mddev->sysfs_state)
4573 sysfs_put(mddev->sysfs_state);
4574
4575 if (mddev->gendisk) {
4576 del_gendisk(mddev->gendisk);
4577 put_disk(mddev->gendisk);
4578 }
4579 if (mddev->queue)
4580 blk_cleanup_queue(mddev->queue);
4581
4582 kfree(mddev);
4583 }
4584
4585 static const struct sysfs_ops md_sysfs_ops = {
4586 .show = md_attr_show,
4587 .store = md_attr_store,
4588 };
4589 static struct kobj_type md_ktype = {
4590 .release = md_free,
4591 .sysfs_ops = &md_sysfs_ops,
4592 .default_attrs = md_default_attrs,
4593 };
4594
4595 int mdp_major = 0;
4596
mddev_delayed_delete(struct work_struct * ws)4597 static void mddev_delayed_delete(struct work_struct *ws)
4598 {
4599 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4600
4601 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4602 kobject_del(&mddev->kobj);
4603 kobject_put(&mddev->kobj);
4604 }
4605
md_alloc(dev_t dev,char * name)4606 static int md_alloc(dev_t dev, char *name)
4607 {
4608 static DEFINE_MUTEX(disks_mutex);
4609 struct mddev *mddev = mddev_find(dev);
4610 struct gendisk *disk;
4611 int partitioned;
4612 int shift;
4613 int unit;
4614 int error;
4615
4616 if (!mddev)
4617 return -ENODEV;
4618
4619 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4620 shift = partitioned ? MdpMinorShift : 0;
4621 unit = MINOR(mddev->unit) >> shift;
4622
4623 /* wait for any previous instance of this device to be
4624 * completely removed (mddev_delayed_delete).
4625 */
4626 flush_workqueue(md_misc_wq);
4627
4628 mutex_lock(&disks_mutex);
4629 error = -EEXIST;
4630 if (mddev->gendisk)
4631 goto abort;
4632
4633 if (name) {
4634 /* Need to ensure that 'name' is not a duplicate.
4635 */
4636 struct mddev *mddev2;
4637 spin_lock(&all_mddevs_lock);
4638
4639 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4640 if (mddev2->gendisk &&
4641 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4642 spin_unlock(&all_mddevs_lock);
4643 goto abort;
4644 }
4645 spin_unlock(&all_mddevs_lock);
4646 }
4647
4648 error = -ENOMEM;
4649 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4650 if (!mddev->queue)
4651 goto abort;
4652 mddev->queue->queuedata = mddev;
4653
4654 blk_queue_make_request(mddev->queue, md_make_request);
4655 blk_set_stacking_limits(&mddev->queue->limits);
4656
4657 disk = alloc_disk(1 << shift);
4658 if (!disk) {
4659 blk_cleanup_queue(mddev->queue);
4660 mddev->queue = NULL;
4661 goto abort;
4662 }
4663 disk->major = MAJOR(mddev->unit);
4664 disk->first_minor = unit << shift;
4665 if (name)
4666 strcpy(disk->disk_name, name);
4667 else if (partitioned)
4668 sprintf(disk->disk_name, "md_d%d", unit);
4669 else
4670 sprintf(disk->disk_name, "md%d", unit);
4671 disk->fops = &md_fops;
4672 disk->private_data = mddev;
4673 disk->queue = mddev->queue;
4674 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4675 /* Allow extended partitions. This makes the
4676 * 'mdp' device redundant, but we can't really
4677 * remove it now.
4678 */
4679 disk->flags |= GENHD_FL_EXT_DEVT;
4680 mddev->gendisk = disk;
4681 /* As soon as we call add_disk(), another thread could get
4682 * through to md_open, so make sure it doesn't get too far
4683 */
4684 mutex_lock(&mddev->open_mutex);
4685 add_disk(disk);
4686
4687 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4688 &disk_to_dev(disk)->kobj, "%s", "md");
4689 if (error) {
4690 /* This isn't possible, but as kobject_init_and_add is marked
4691 * __must_check, we must do something with the result
4692 */
4693 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4694 disk->disk_name);
4695 error = 0;
4696 }
4697 if (mddev->kobj.sd &&
4698 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4699 printk(KERN_DEBUG "pointless warning\n");
4700 mutex_unlock(&mddev->open_mutex);
4701 abort:
4702 mutex_unlock(&disks_mutex);
4703 if (!error && mddev->kobj.sd) {
4704 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4705 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4706 }
4707 mddev_put(mddev);
4708 return error;
4709 }
4710
md_probe(dev_t dev,int * part,void * data)4711 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4712 {
4713 md_alloc(dev, NULL);
4714 return NULL;
4715 }
4716
add_named_array(const char * val,struct kernel_param * kp)4717 static int add_named_array(const char *val, struct kernel_param *kp)
4718 {
4719 /* val must be "md_*" where * is not all digits.
4720 * We allocate an array with a large free minor number, and
4721 * set the name to val. val must not already be an active name.
4722 */
4723 int len = strlen(val);
4724 char buf[DISK_NAME_LEN];
4725
4726 while (len && val[len-1] == '\n')
4727 len--;
4728 if (len >= DISK_NAME_LEN)
4729 return -E2BIG;
4730 strlcpy(buf, val, len+1);
4731 if (strncmp(buf, "md_", 3) != 0)
4732 return -EINVAL;
4733 return md_alloc(0, buf);
4734 }
4735
md_safemode_timeout(unsigned long data)4736 static void md_safemode_timeout(unsigned long data)
4737 {
4738 struct mddev *mddev = (struct mddev *) data;
4739
4740 if (!atomic_read(&mddev->writes_pending)) {
4741 mddev->safemode = 1;
4742 if (mddev->external)
4743 sysfs_notify_dirent_safe(mddev->sysfs_state);
4744 }
4745 md_wakeup_thread(mddev->thread);
4746 }
4747
4748 static int start_dirty_degraded;
4749
md_run(struct mddev * mddev)4750 int md_run(struct mddev *mddev)
4751 {
4752 int err;
4753 struct md_rdev *rdev;
4754 struct md_personality *pers;
4755
4756 if (list_empty(&mddev->disks))
4757 /* cannot run an array with no devices.. */
4758 return -EINVAL;
4759
4760 if (mddev->pers)
4761 return -EBUSY;
4762 /* Cannot run until previous stop completes properly */
4763 if (mddev->sysfs_active)
4764 return -EBUSY;
4765
4766 /*
4767 * Analyze all RAID superblock(s)
4768 */
4769 if (!mddev->raid_disks) {
4770 if (!mddev->persistent)
4771 return -EINVAL;
4772 analyze_sbs(mddev);
4773 }
4774
4775 if (mddev->level != LEVEL_NONE)
4776 request_module("md-level-%d", mddev->level);
4777 else if (mddev->clevel[0])
4778 request_module("md-%s", mddev->clevel);
4779
4780 /*
4781 * Drop all container device buffers, from now on
4782 * the only valid external interface is through the md
4783 * device.
4784 */
4785 rdev_for_each(rdev, mddev) {
4786 if (test_bit(Faulty, &rdev->flags))
4787 continue;
4788 sync_blockdev(rdev->bdev);
4789 invalidate_bdev(rdev->bdev);
4790
4791 /* perform some consistency tests on the device.
4792 * We don't want the data to overlap the metadata,
4793 * Internal Bitmap issues have been handled elsewhere.
4794 */
4795 if (rdev->meta_bdev) {
4796 /* Nothing to check */;
4797 } else if (rdev->data_offset < rdev->sb_start) {
4798 if (mddev->dev_sectors &&
4799 rdev->data_offset + mddev->dev_sectors
4800 > rdev->sb_start) {
4801 printk("md: %s: data overlaps metadata\n",
4802 mdname(mddev));
4803 return -EINVAL;
4804 }
4805 } else {
4806 if (rdev->sb_start + rdev->sb_size/512
4807 > rdev->data_offset) {
4808 printk("md: %s: metadata overlaps data\n",
4809 mdname(mddev));
4810 return -EINVAL;
4811 }
4812 }
4813 sysfs_notify_dirent_safe(rdev->sysfs_state);
4814 }
4815
4816 if (mddev->bio_set == NULL)
4817 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4818
4819 spin_lock(&pers_lock);
4820 pers = find_pers(mddev->level, mddev->clevel);
4821 if (!pers || !try_module_get(pers->owner)) {
4822 spin_unlock(&pers_lock);
4823 if (mddev->level != LEVEL_NONE)
4824 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4825 mddev->level);
4826 else
4827 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4828 mddev->clevel);
4829 return -EINVAL;
4830 }
4831 mddev->pers = pers;
4832 spin_unlock(&pers_lock);
4833 if (mddev->level != pers->level) {
4834 mddev->level = pers->level;
4835 mddev->new_level = pers->level;
4836 }
4837 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4838
4839 if (mddev->reshape_position != MaxSector &&
4840 pers->start_reshape == NULL) {
4841 /* This personality cannot handle reshaping... */
4842 mddev->pers = NULL;
4843 module_put(pers->owner);
4844 return -EINVAL;
4845 }
4846
4847 if (pers->sync_request) {
4848 /* Warn if this is a potentially silly
4849 * configuration.
4850 */
4851 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4852 struct md_rdev *rdev2;
4853 int warned = 0;
4854
4855 rdev_for_each(rdev, mddev)
4856 rdev_for_each(rdev2, mddev) {
4857 if (rdev < rdev2 &&
4858 rdev->bdev->bd_contains ==
4859 rdev2->bdev->bd_contains) {
4860 printk(KERN_WARNING
4861 "%s: WARNING: %s appears to be"
4862 " on the same physical disk as"
4863 " %s.\n",
4864 mdname(mddev),
4865 bdevname(rdev->bdev,b),
4866 bdevname(rdev2->bdev,b2));
4867 warned = 1;
4868 }
4869 }
4870
4871 if (warned)
4872 printk(KERN_WARNING
4873 "True protection against single-disk"
4874 " failure might be compromised.\n");
4875 }
4876
4877 mddev->recovery = 0;
4878 /* may be over-ridden by personality */
4879 mddev->resync_max_sectors = mddev->dev_sectors;
4880
4881 mddev->ok_start_degraded = start_dirty_degraded;
4882
4883 if (start_readonly && mddev->ro == 0)
4884 mddev->ro = 2; /* read-only, but switch on first write */
4885
4886 err = mddev->pers->run(mddev);
4887 if (err)
4888 printk(KERN_ERR "md: pers->run() failed ...\n");
4889 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4890 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4891 " but 'external_size' not in effect?\n", __func__);
4892 printk(KERN_ERR
4893 "md: invalid array_size %llu > default size %llu\n",
4894 (unsigned long long)mddev->array_sectors / 2,
4895 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4896 err = -EINVAL;
4897 mddev->pers->stop(mddev);
4898 }
4899 if (err == 0 && mddev->pers->sync_request &&
4900 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4901 err = bitmap_create(mddev);
4902 if (err) {
4903 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4904 mdname(mddev), err);
4905 mddev->pers->stop(mddev);
4906 }
4907 }
4908 if (err) {
4909 module_put(mddev->pers->owner);
4910 mddev->pers = NULL;
4911 bitmap_destroy(mddev);
4912 return err;
4913 }
4914 if (mddev->pers->sync_request) {
4915 if (mddev->kobj.sd &&
4916 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4917 printk(KERN_WARNING
4918 "md: cannot register extra attributes for %s\n",
4919 mdname(mddev));
4920 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4921 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4922 mddev->ro = 0;
4923
4924 atomic_set(&mddev->writes_pending,0);
4925 atomic_set(&mddev->max_corr_read_errors,
4926 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4927 mddev->safemode = 0;
4928 mddev->safemode_timer.function = md_safemode_timeout;
4929 mddev->safemode_timer.data = (unsigned long) mddev;
4930 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4931 mddev->in_sync = 1;
4932 smp_wmb();
4933 mddev->ready = 1;
4934 rdev_for_each(rdev, mddev)
4935 if (rdev->raid_disk >= 0)
4936 if (sysfs_link_rdev(mddev, rdev))
4937 /* failure here is OK */;
4938
4939 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4940
4941 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4942 md_update_sb(mddev, 0);
4943
4944 md_new_event(mddev);
4945 sysfs_notify_dirent_safe(mddev->sysfs_state);
4946 sysfs_notify_dirent_safe(mddev->sysfs_action);
4947 sysfs_notify(&mddev->kobj, NULL, "degraded");
4948 return 0;
4949 }
4950 EXPORT_SYMBOL_GPL(md_run);
4951
do_md_run(struct mddev * mddev)4952 static int do_md_run(struct mddev *mddev)
4953 {
4954 int err;
4955
4956 err = md_run(mddev);
4957 if (err)
4958 goto out;
4959 err = bitmap_load(mddev);
4960 if (err) {
4961 bitmap_destroy(mddev);
4962 goto out;
4963 }
4964
4965 md_wakeup_thread(mddev->thread);
4966 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4967
4968 set_capacity(mddev->gendisk, mddev->array_sectors);
4969 revalidate_disk(mddev->gendisk);
4970 mddev->changed = 1;
4971 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4972 out:
4973 return err;
4974 }
4975
restart_array(struct mddev * mddev)4976 static int restart_array(struct mddev *mddev)
4977 {
4978 struct gendisk *disk = mddev->gendisk;
4979
4980 /* Complain if it has no devices */
4981 if (list_empty(&mddev->disks))
4982 return -ENXIO;
4983 if (!mddev->pers)
4984 return -EINVAL;
4985 if (!mddev->ro)
4986 return -EBUSY;
4987 mddev->safemode = 0;
4988 mddev->ro = 0;
4989 set_disk_ro(disk, 0);
4990 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4991 mdname(mddev));
4992 /* Kick recovery or resync if necessary */
4993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4994 md_wakeup_thread(mddev->thread);
4995 md_wakeup_thread(mddev->sync_thread);
4996 sysfs_notify_dirent_safe(mddev->sysfs_state);
4997 return 0;
4998 }
4999
md_clean(struct mddev * mddev)5000 static void md_clean(struct mddev *mddev)
5001 {
5002 mddev->array_sectors = 0;
5003 mddev->external_size = 0;
5004 mddev->dev_sectors = 0;
5005 mddev->raid_disks = 0;
5006 mddev->recovery_cp = 0;
5007 mddev->resync_min = 0;
5008 mddev->resync_max = MaxSector;
5009 mddev->reshape_position = MaxSector;
5010 mddev->external = 0;
5011 mddev->persistent = 0;
5012 mddev->level = LEVEL_NONE;
5013 mddev->clevel[0] = 0;
5014 mddev->flags = 0;
5015 mddev->ro = 0;
5016 mddev->metadata_type[0] = 0;
5017 mddev->chunk_sectors = 0;
5018 mddev->ctime = mddev->utime = 0;
5019 mddev->layout = 0;
5020 mddev->max_disks = 0;
5021 mddev->events = 0;
5022 mddev->can_decrease_events = 0;
5023 mddev->delta_disks = 0;
5024 mddev->reshape_backwards = 0;
5025 mddev->new_level = LEVEL_NONE;
5026 mddev->new_layout = 0;
5027 mddev->new_chunk_sectors = 0;
5028 mddev->curr_resync = 0;
5029 atomic64_set(&mddev->resync_mismatches, 0);
5030 mddev->suspend_lo = mddev->suspend_hi = 0;
5031 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5032 mddev->recovery = 0;
5033 mddev->in_sync = 0;
5034 mddev->changed = 0;
5035 mddev->degraded = 0;
5036 mddev->safemode = 0;
5037 mddev->merge_check_needed = 0;
5038 mddev->bitmap_info.offset = 0;
5039 mddev->bitmap_info.default_offset = 0;
5040 mddev->bitmap_info.default_space = 0;
5041 mddev->bitmap_info.chunksize = 0;
5042 mddev->bitmap_info.daemon_sleep = 0;
5043 mddev->bitmap_info.max_write_behind = 0;
5044 }
5045
__md_stop_writes(struct mddev * mddev)5046 static void __md_stop_writes(struct mddev *mddev)
5047 {
5048 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5049 if (mddev->sync_thread) {
5050 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5051 md_reap_sync_thread(mddev);
5052 }
5053
5054 del_timer_sync(&mddev->safemode_timer);
5055
5056 bitmap_flush(mddev);
5057 md_super_wait(mddev);
5058
5059 if (mddev->ro == 0 &&
5060 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5061 /* mark array as shutdown cleanly */
5062 mddev->in_sync = 1;
5063 md_update_sb(mddev, 1);
5064 }
5065 }
5066
md_stop_writes(struct mddev * mddev)5067 void md_stop_writes(struct mddev *mddev)
5068 {
5069 mddev_lock_nointr(mddev);
5070 __md_stop_writes(mddev);
5071 mddev_unlock(mddev);
5072 }
5073 EXPORT_SYMBOL_GPL(md_stop_writes);
5074
__md_stop(struct mddev * mddev)5075 static void __md_stop(struct mddev *mddev)
5076 {
5077 mddev->ready = 0;
5078 /* Ensure ->event_work is done */
5079 flush_workqueue(md_misc_wq);
5080 mddev->pers->stop(mddev);
5081 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5082 mddev->to_remove = &md_redundancy_group;
5083 module_put(mddev->pers->owner);
5084 mddev->pers = NULL;
5085 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5086 }
5087
md_stop(struct mddev * mddev)5088 void md_stop(struct mddev *mddev)
5089 {
5090 /* stop the array and free an attached data structures.
5091 * This is called from dm-raid
5092 */
5093 __md_stop(mddev);
5094 bitmap_destroy(mddev);
5095 if (mddev->bio_set)
5096 bioset_free(mddev->bio_set);
5097 }
5098
5099 EXPORT_SYMBOL_GPL(md_stop);
5100
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5101 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5102 {
5103 int err = 0;
5104 int did_freeze = 0;
5105
5106 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5107 did_freeze = 1;
5108 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5109 md_wakeup_thread(mddev->thread);
5110 }
5111 if (mddev->sync_thread) {
5112 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5113 /* Thread might be blocked waiting for metadata update
5114 * which will now never happen */
5115 wake_up_process(mddev->sync_thread->tsk);
5116 }
5117 mddev_unlock(mddev);
5118 wait_event(resync_wait, mddev->sync_thread == NULL);
5119 mddev_lock_nointr(mddev);
5120
5121 mutex_lock(&mddev->open_mutex);
5122 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5123 mddev->sync_thread ||
5124 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5125 printk("md: %s still in use.\n",mdname(mddev));
5126 if (did_freeze) {
5127 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5129 md_wakeup_thread(mddev->thread);
5130 }
5131 err = -EBUSY;
5132 goto out;
5133 }
5134 if (mddev->pers) {
5135 __md_stop_writes(mddev);
5136
5137 err = -ENXIO;
5138 if (mddev->ro==1)
5139 goto out;
5140 mddev->ro = 1;
5141 set_disk_ro(mddev->gendisk, 1);
5142 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5143 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5144 md_wakeup_thread(mddev->thread);
5145 sysfs_notify_dirent_safe(mddev->sysfs_state);
5146 err = 0;
5147 }
5148 out:
5149 mutex_unlock(&mddev->open_mutex);
5150 return err;
5151 }
5152
5153 /* mode:
5154 * 0 - completely stop and dis-assemble array
5155 * 2 - stop but do not disassemble array
5156 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5157 static int do_md_stop(struct mddev *mddev, int mode,
5158 struct block_device *bdev)
5159 {
5160 struct gendisk *disk = mddev->gendisk;
5161 struct md_rdev *rdev;
5162 int did_freeze = 0;
5163
5164 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5165 did_freeze = 1;
5166 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5167 md_wakeup_thread(mddev->thread);
5168 }
5169 if (mddev->sync_thread) {
5170 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5171 /* Thread might be blocked waiting for metadata update
5172 * which will now never happen */
5173 wake_up_process(mddev->sync_thread->tsk);
5174 }
5175 mddev_unlock(mddev);
5176 wait_event(resync_wait, mddev->sync_thread == NULL);
5177 mddev_lock_nointr(mddev);
5178
5179 mutex_lock(&mddev->open_mutex);
5180 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5181 mddev->sysfs_active ||
5182 mddev->sync_thread ||
5183 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5184 printk("md: %s still in use.\n",mdname(mddev));
5185 mutex_unlock(&mddev->open_mutex);
5186 if (did_freeze) {
5187 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5188 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5189 md_wakeup_thread(mddev->thread);
5190 }
5191 return -EBUSY;
5192 }
5193 if (mddev->pers) {
5194 if (mddev->ro)
5195 set_disk_ro(disk, 0);
5196
5197 __md_stop_writes(mddev);
5198 __md_stop(mddev);
5199 mddev->queue->merge_bvec_fn = NULL;
5200 mddev->queue->backing_dev_info.congested_fn = NULL;
5201
5202 /* tell userspace to handle 'inactive' */
5203 sysfs_notify_dirent_safe(mddev->sysfs_state);
5204
5205 rdev_for_each(rdev, mddev)
5206 if (rdev->raid_disk >= 0)
5207 sysfs_unlink_rdev(mddev, rdev);
5208
5209 set_capacity(disk, 0);
5210 mutex_unlock(&mddev->open_mutex);
5211 mddev->changed = 1;
5212 revalidate_disk(disk);
5213
5214 if (mddev->ro)
5215 mddev->ro = 0;
5216 } else
5217 mutex_unlock(&mddev->open_mutex);
5218 /*
5219 * Free resources if final stop
5220 */
5221 if (mode == 0) {
5222 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5223
5224 bitmap_destroy(mddev);
5225 if (mddev->bitmap_info.file) {
5226 fput(mddev->bitmap_info.file);
5227 mddev->bitmap_info.file = NULL;
5228 }
5229 mddev->bitmap_info.offset = 0;
5230
5231 export_array(mddev);
5232
5233 md_clean(mddev);
5234 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5235 if (mddev->hold_active == UNTIL_STOP)
5236 mddev->hold_active = 0;
5237 }
5238 blk_integrity_unregister(disk);
5239 md_new_event(mddev);
5240 sysfs_notify_dirent_safe(mddev->sysfs_state);
5241 return 0;
5242 }
5243
5244 #ifndef MODULE
autorun_array(struct mddev * mddev)5245 static void autorun_array(struct mddev *mddev)
5246 {
5247 struct md_rdev *rdev;
5248 int err;
5249
5250 if (list_empty(&mddev->disks))
5251 return;
5252
5253 printk(KERN_INFO "md: running: ");
5254
5255 rdev_for_each(rdev, mddev) {
5256 char b[BDEVNAME_SIZE];
5257 printk("<%s>", bdevname(rdev->bdev,b));
5258 }
5259 printk("\n");
5260
5261 err = do_md_run(mddev);
5262 if (err) {
5263 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5264 do_md_stop(mddev, 0, NULL);
5265 }
5266 }
5267
5268 /*
5269 * lets try to run arrays based on all disks that have arrived
5270 * until now. (those are in pending_raid_disks)
5271 *
5272 * the method: pick the first pending disk, collect all disks with
5273 * the same UUID, remove all from the pending list and put them into
5274 * the 'same_array' list. Then order this list based on superblock
5275 * update time (freshest comes first), kick out 'old' disks and
5276 * compare superblocks. If everything's fine then run it.
5277 *
5278 * If "unit" is allocated, then bump its reference count
5279 */
autorun_devices(int part)5280 static void autorun_devices(int part)
5281 {
5282 struct md_rdev *rdev0, *rdev, *tmp;
5283 struct mddev *mddev;
5284 char b[BDEVNAME_SIZE];
5285
5286 printk(KERN_INFO "md: autorun ...\n");
5287 while (!list_empty(&pending_raid_disks)) {
5288 int unit;
5289 dev_t dev;
5290 LIST_HEAD(candidates);
5291 rdev0 = list_entry(pending_raid_disks.next,
5292 struct md_rdev, same_set);
5293
5294 printk(KERN_INFO "md: considering %s ...\n",
5295 bdevname(rdev0->bdev,b));
5296 INIT_LIST_HEAD(&candidates);
5297 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5298 if (super_90_load(rdev, rdev0, 0) >= 0) {
5299 printk(KERN_INFO "md: adding %s ...\n",
5300 bdevname(rdev->bdev,b));
5301 list_move(&rdev->same_set, &candidates);
5302 }
5303 /*
5304 * now we have a set of devices, with all of them having
5305 * mostly sane superblocks. It's time to allocate the
5306 * mddev.
5307 */
5308 if (part) {
5309 dev = MKDEV(mdp_major,
5310 rdev0->preferred_minor << MdpMinorShift);
5311 unit = MINOR(dev) >> MdpMinorShift;
5312 } else {
5313 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5314 unit = MINOR(dev);
5315 }
5316 if (rdev0->preferred_minor != unit) {
5317 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5318 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5319 break;
5320 }
5321
5322 md_probe(dev, NULL, NULL);
5323 mddev = mddev_find(dev);
5324 if (!mddev || !mddev->gendisk) {
5325 if (mddev)
5326 mddev_put(mddev);
5327 printk(KERN_ERR
5328 "md: cannot allocate memory for md drive.\n");
5329 break;
5330 }
5331 if (mddev_lock(mddev))
5332 printk(KERN_WARNING "md: %s locked, cannot run\n",
5333 mdname(mddev));
5334 else if (mddev->raid_disks || mddev->major_version
5335 || !list_empty(&mddev->disks)) {
5336 printk(KERN_WARNING
5337 "md: %s already running, cannot run %s\n",
5338 mdname(mddev), bdevname(rdev0->bdev,b));
5339 mddev_unlock(mddev);
5340 } else {
5341 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5342 mddev->persistent = 1;
5343 rdev_for_each_list(rdev, tmp, &candidates) {
5344 list_del_init(&rdev->same_set);
5345 if (bind_rdev_to_array(rdev, mddev))
5346 export_rdev(rdev);
5347 }
5348 autorun_array(mddev);
5349 mddev_unlock(mddev);
5350 }
5351 /* on success, candidates will be empty, on error
5352 * it won't...
5353 */
5354 rdev_for_each_list(rdev, tmp, &candidates) {
5355 list_del_init(&rdev->same_set);
5356 export_rdev(rdev);
5357 }
5358 mddev_put(mddev);
5359 }
5360 printk(KERN_INFO "md: ... autorun DONE.\n");
5361 }
5362 #endif /* !MODULE */
5363
get_version(void __user * arg)5364 static int get_version(void __user *arg)
5365 {
5366 mdu_version_t ver;
5367
5368 ver.major = MD_MAJOR_VERSION;
5369 ver.minor = MD_MINOR_VERSION;
5370 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5371
5372 if (copy_to_user(arg, &ver, sizeof(ver)))
5373 return -EFAULT;
5374
5375 return 0;
5376 }
5377
get_array_info(struct mddev * mddev,void __user * arg)5378 static int get_array_info(struct mddev *mddev, void __user *arg)
5379 {
5380 mdu_array_info_t info;
5381 int nr,working,insync,failed,spare;
5382 struct md_rdev *rdev;
5383
5384 nr = working = insync = failed = spare = 0;
5385 rcu_read_lock();
5386 rdev_for_each_rcu(rdev, mddev) {
5387 nr++;
5388 if (test_bit(Faulty, &rdev->flags))
5389 failed++;
5390 else {
5391 working++;
5392 if (test_bit(In_sync, &rdev->flags))
5393 insync++;
5394 else
5395 spare++;
5396 }
5397 }
5398 rcu_read_unlock();
5399
5400 info.major_version = mddev->major_version;
5401 info.minor_version = mddev->minor_version;
5402 info.patch_version = MD_PATCHLEVEL_VERSION;
5403 info.ctime = mddev->ctime;
5404 info.level = mddev->level;
5405 info.size = mddev->dev_sectors / 2;
5406 if (info.size != mddev->dev_sectors / 2) /* overflow */
5407 info.size = -1;
5408 info.nr_disks = nr;
5409 info.raid_disks = mddev->raid_disks;
5410 info.md_minor = mddev->md_minor;
5411 info.not_persistent= !mddev->persistent;
5412
5413 info.utime = mddev->utime;
5414 info.state = 0;
5415 if (mddev->in_sync)
5416 info.state = (1<<MD_SB_CLEAN);
5417 if (mddev->bitmap && mddev->bitmap_info.offset)
5418 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5419 info.active_disks = insync;
5420 info.working_disks = working;
5421 info.failed_disks = failed;
5422 info.spare_disks = spare;
5423
5424 info.layout = mddev->layout;
5425 info.chunk_size = mddev->chunk_sectors << 9;
5426
5427 if (copy_to_user(arg, &info, sizeof(info)))
5428 return -EFAULT;
5429
5430 return 0;
5431 }
5432
get_bitmap_file(struct mddev * mddev,void __user * arg)5433 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5434 {
5435 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5436 char *ptr, *buf = NULL;
5437 int err = -ENOMEM;
5438
5439 file = kzalloc(sizeof(*file), GFP_NOIO);
5440 if (!file)
5441 goto out;
5442
5443 /* bitmap disabled, zero the first byte and copy out */
5444 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5445 file->pathname[0] = '\0';
5446 goto copy_out;
5447 }
5448
5449 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5450 if (!buf)
5451 goto out;
5452
5453 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5454 buf, sizeof(file->pathname));
5455 if (IS_ERR(ptr))
5456 goto out;
5457
5458 strcpy(file->pathname, ptr);
5459
5460 copy_out:
5461 err = 0;
5462 if (copy_to_user(arg, file, sizeof(*file)))
5463 err = -EFAULT;
5464 out:
5465 kfree(buf);
5466 kfree(file);
5467 return err;
5468 }
5469
get_disk_info(struct mddev * mddev,void __user * arg)5470 static int get_disk_info(struct mddev *mddev, void __user * arg)
5471 {
5472 mdu_disk_info_t info;
5473 struct md_rdev *rdev;
5474
5475 if (copy_from_user(&info, arg, sizeof(info)))
5476 return -EFAULT;
5477
5478 rcu_read_lock();
5479 rdev = find_rdev_nr_rcu(mddev, info.number);
5480 if (rdev) {
5481 info.major = MAJOR(rdev->bdev->bd_dev);
5482 info.minor = MINOR(rdev->bdev->bd_dev);
5483 info.raid_disk = rdev->raid_disk;
5484 info.state = 0;
5485 if (test_bit(Faulty, &rdev->flags))
5486 info.state |= (1<<MD_DISK_FAULTY);
5487 else if (test_bit(In_sync, &rdev->flags)) {
5488 info.state |= (1<<MD_DISK_ACTIVE);
5489 info.state |= (1<<MD_DISK_SYNC);
5490 }
5491 if (test_bit(WriteMostly, &rdev->flags))
5492 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5493 } else {
5494 info.major = info.minor = 0;
5495 info.raid_disk = -1;
5496 info.state = (1<<MD_DISK_REMOVED);
5497 }
5498 rcu_read_unlock();
5499
5500 if (copy_to_user(arg, &info, sizeof(info)))
5501 return -EFAULT;
5502
5503 return 0;
5504 }
5505
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5506 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5507 {
5508 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5509 struct md_rdev *rdev;
5510 dev_t dev = MKDEV(info->major,info->minor);
5511
5512 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5513 return -EOVERFLOW;
5514
5515 if (!mddev->raid_disks) {
5516 int err;
5517 /* expecting a device which has a superblock */
5518 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5519 if (IS_ERR(rdev)) {
5520 printk(KERN_WARNING
5521 "md: md_import_device returned %ld\n",
5522 PTR_ERR(rdev));
5523 return PTR_ERR(rdev);
5524 }
5525 if (!list_empty(&mddev->disks)) {
5526 struct md_rdev *rdev0
5527 = list_entry(mddev->disks.next,
5528 struct md_rdev, same_set);
5529 err = super_types[mddev->major_version]
5530 .load_super(rdev, rdev0, mddev->minor_version);
5531 if (err < 0) {
5532 printk(KERN_WARNING
5533 "md: %s has different UUID to %s\n",
5534 bdevname(rdev->bdev,b),
5535 bdevname(rdev0->bdev,b2));
5536 export_rdev(rdev);
5537 return -EINVAL;
5538 }
5539 }
5540 err = bind_rdev_to_array(rdev, mddev);
5541 if (err)
5542 export_rdev(rdev);
5543 return err;
5544 }
5545
5546 /*
5547 * add_new_disk can be used once the array is assembled
5548 * to add "hot spares". They must already have a superblock
5549 * written
5550 */
5551 if (mddev->pers) {
5552 int err;
5553 if (!mddev->pers->hot_add_disk) {
5554 printk(KERN_WARNING
5555 "%s: personality does not support diskops!\n",
5556 mdname(mddev));
5557 return -EINVAL;
5558 }
5559 if (mddev->persistent)
5560 rdev = md_import_device(dev, mddev->major_version,
5561 mddev->minor_version);
5562 else
5563 rdev = md_import_device(dev, -1, -1);
5564 if (IS_ERR(rdev)) {
5565 printk(KERN_WARNING
5566 "md: md_import_device returned %ld\n",
5567 PTR_ERR(rdev));
5568 return PTR_ERR(rdev);
5569 }
5570 /* set saved_raid_disk if appropriate */
5571 if (!mddev->persistent) {
5572 if (info->state & (1<<MD_DISK_SYNC) &&
5573 info->raid_disk < mddev->raid_disks) {
5574 rdev->raid_disk = info->raid_disk;
5575 set_bit(In_sync, &rdev->flags);
5576 clear_bit(Bitmap_sync, &rdev->flags);
5577 } else
5578 rdev->raid_disk = -1;
5579 rdev->saved_raid_disk = rdev->raid_disk;
5580 } else
5581 super_types[mddev->major_version].
5582 validate_super(mddev, rdev);
5583 if ((info->state & (1<<MD_DISK_SYNC)) &&
5584 rdev->raid_disk != info->raid_disk) {
5585 /* This was a hot-add request, but events doesn't
5586 * match, so reject it.
5587 */
5588 export_rdev(rdev);
5589 return -EINVAL;
5590 }
5591
5592 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5593 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5594 set_bit(WriteMostly, &rdev->flags);
5595 else
5596 clear_bit(WriteMostly, &rdev->flags);
5597
5598 rdev->raid_disk = -1;
5599 err = bind_rdev_to_array(rdev, mddev);
5600 if (!err && !mddev->pers->hot_remove_disk) {
5601 /* If there is hot_add_disk but no hot_remove_disk
5602 * then added disks for geometry changes,
5603 * and should be added immediately.
5604 */
5605 super_types[mddev->major_version].
5606 validate_super(mddev, rdev);
5607 err = mddev->pers->hot_add_disk(mddev, rdev);
5608 if (err)
5609 unbind_rdev_from_array(rdev);
5610 }
5611 if (err)
5612 export_rdev(rdev);
5613 else
5614 sysfs_notify_dirent_safe(rdev->sysfs_state);
5615
5616 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5617 if (mddev->degraded)
5618 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5619 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5620 if (!err)
5621 md_new_event(mddev);
5622 md_wakeup_thread(mddev->thread);
5623 return err;
5624 }
5625
5626 /* otherwise, add_new_disk is only allowed
5627 * for major_version==0 superblocks
5628 */
5629 if (mddev->major_version != 0) {
5630 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5631 mdname(mddev));
5632 return -EINVAL;
5633 }
5634
5635 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5636 int err;
5637 rdev = md_import_device(dev, -1, 0);
5638 if (IS_ERR(rdev)) {
5639 printk(KERN_WARNING
5640 "md: error, md_import_device() returned %ld\n",
5641 PTR_ERR(rdev));
5642 return PTR_ERR(rdev);
5643 }
5644 rdev->desc_nr = info->number;
5645 if (info->raid_disk < mddev->raid_disks)
5646 rdev->raid_disk = info->raid_disk;
5647 else
5648 rdev->raid_disk = -1;
5649
5650 if (rdev->raid_disk < mddev->raid_disks)
5651 if (info->state & (1<<MD_DISK_SYNC))
5652 set_bit(In_sync, &rdev->flags);
5653
5654 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5655 set_bit(WriteMostly, &rdev->flags);
5656
5657 if (!mddev->persistent) {
5658 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5659 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5660 } else
5661 rdev->sb_start = calc_dev_sboffset(rdev);
5662 rdev->sectors = rdev->sb_start;
5663
5664 err = bind_rdev_to_array(rdev, mddev);
5665 if (err) {
5666 export_rdev(rdev);
5667 return err;
5668 }
5669 }
5670
5671 return 0;
5672 }
5673
hot_remove_disk(struct mddev * mddev,dev_t dev)5674 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5675 {
5676 char b[BDEVNAME_SIZE];
5677 struct md_rdev *rdev;
5678
5679 rdev = find_rdev(mddev, dev);
5680 if (!rdev)
5681 return -ENXIO;
5682
5683 clear_bit(Blocked, &rdev->flags);
5684 remove_and_add_spares(mddev, rdev);
5685
5686 if (rdev->raid_disk >= 0)
5687 goto busy;
5688
5689 kick_rdev_from_array(rdev);
5690 md_update_sb(mddev, 1);
5691 md_new_event(mddev);
5692
5693 return 0;
5694 busy:
5695 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5696 bdevname(rdev->bdev,b), mdname(mddev));
5697 return -EBUSY;
5698 }
5699
hot_add_disk(struct mddev * mddev,dev_t dev)5700 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5701 {
5702 char b[BDEVNAME_SIZE];
5703 int err;
5704 struct md_rdev *rdev;
5705
5706 if (!mddev->pers)
5707 return -ENODEV;
5708
5709 if (mddev->major_version != 0) {
5710 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5711 " version-0 superblocks.\n",
5712 mdname(mddev));
5713 return -EINVAL;
5714 }
5715 if (!mddev->pers->hot_add_disk) {
5716 printk(KERN_WARNING
5717 "%s: personality does not support diskops!\n",
5718 mdname(mddev));
5719 return -EINVAL;
5720 }
5721
5722 rdev = md_import_device(dev, -1, 0);
5723 if (IS_ERR(rdev)) {
5724 printk(KERN_WARNING
5725 "md: error, md_import_device() returned %ld\n",
5726 PTR_ERR(rdev));
5727 return -EINVAL;
5728 }
5729
5730 if (mddev->persistent)
5731 rdev->sb_start = calc_dev_sboffset(rdev);
5732 else
5733 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5734
5735 rdev->sectors = rdev->sb_start;
5736
5737 if (test_bit(Faulty, &rdev->flags)) {
5738 printk(KERN_WARNING
5739 "md: can not hot-add faulty %s disk to %s!\n",
5740 bdevname(rdev->bdev,b), mdname(mddev));
5741 err = -EINVAL;
5742 goto abort_export;
5743 }
5744 clear_bit(In_sync, &rdev->flags);
5745 rdev->desc_nr = -1;
5746 rdev->saved_raid_disk = -1;
5747 err = bind_rdev_to_array(rdev, mddev);
5748 if (err)
5749 goto abort_export;
5750
5751 /*
5752 * The rest should better be atomic, we can have disk failures
5753 * noticed in interrupt contexts ...
5754 */
5755
5756 rdev->raid_disk = -1;
5757
5758 md_update_sb(mddev, 1);
5759
5760 /*
5761 * Kick recovery, maybe this spare has to be added to the
5762 * array immediately.
5763 */
5764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5765 md_wakeup_thread(mddev->thread);
5766 md_new_event(mddev);
5767 return 0;
5768
5769 abort_export:
5770 export_rdev(rdev);
5771 return err;
5772 }
5773
set_bitmap_file(struct mddev * mddev,int fd)5774 static int set_bitmap_file(struct mddev *mddev, int fd)
5775 {
5776 int err = 0;
5777
5778 if (mddev->pers) {
5779 if (!mddev->pers->quiesce || !mddev->thread)
5780 return -EBUSY;
5781 if (mddev->recovery || mddev->sync_thread)
5782 return -EBUSY;
5783 /* we should be able to change the bitmap.. */
5784 }
5785
5786 if (fd >= 0) {
5787 struct inode *inode;
5788 if (mddev->bitmap)
5789 return -EEXIST; /* cannot add when bitmap is present */
5790 mddev->bitmap_info.file = fget(fd);
5791
5792 if (mddev->bitmap_info.file == NULL) {
5793 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5794 mdname(mddev));
5795 return -EBADF;
5796 }
5797
5798 inode = mddev->bitmap_info.file->f_mapping->host;
5799 if (!S_ISREG(inode->i_mode)) {
5800 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5801 mdname(mddev));
5802 err = -EBADF;
5803 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5804 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5805 mdname(mddev));
5806 err = -EBADF;
5807 } else if (atomic_read(&inode->i_writecount) != 1) {
5808 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5809 mdname(mddev));
5810 err = -EBUSY;
5811 }
5812 if (err) {
5813 fput(mddev->bitmap_info.file);
5814 mddev->bitmap_info.file = NULL;
5815 return err;
5816 }
5817 mddev->bitmap_info.offset = 0; /* file overrides offset */
5818 } else if (mddev->bitmap == NULL)
5819 return -ENOENT; /* cannot remove what isn't there */
5820 err = 0;
5821 if (mddev->pers) {
5822 mddev->pers->quiesce(mddev, 1);
5823 if (fd >= 0) {
5824 err = bitmap_create(mddev);
5825 if (!err)
5826 err = bitmap_load(mddev);
5827 }
5828 if (fd < 0 || err) {
5829 bitmap_destroy(mddev);
5830 fd = -1; /* make sure to put the file */
5831 }
5832 mddev->pers->quiesce(mddev, 0);
5833 }
5834 if (fd < 0) {
5835 if (mddev->bitmap_info.file)
5836 fput(mddev->bitmap_info.file);
5837 mddev->bitmap_info.file = NULL;
5838 }
5839
5840 return err;
5841 }
5842
5843 /*
5844 * set_array_info is used two different ways
5845 * The original usage is when creating a new array.
5846 * In this usage, raid_disks is > 0 and it together with
5847 * level, size, not_persistent,layout,chunksize determine the
5848 * shape of the array.
5849 * This will always create an array with a type-0.90.0 superblock.
5850 * The newer usage is when assembling an array.
5851 * In this case raid_disks will be 0, and the major_version field is
5852 * use to determine which style super-blocks are to be found on the devices.
5853 * The minor and patch _version numbers are also kept incase the
5854 * super_block handler wishes to interpret them.
5855 */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)5856 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5857 {
5858
5859 if (info->raid_disks == 0) {
5860 /* just setting version number for superblock loading */
5861 if (info->major_version < 0 ||
5862 info->major_version >= ARRAY_SIZE(super_types) ||
5863 super_types[info->major_version].name == NULL) {
5864 /* maybe try to auto-load a module? */
5865 printk(KERN_INFO
5866 "md: superblock version %d not known\n",
5867 info->major_version);
5868 return -EINVAL;
5869 }
5870 mddev->major_version = info->major_version;
5871 mddev->minor_version = info->minor_version;
5872 mddev->patch_version = info->patch_version;
5873 mddev->persistent = !info->not_persistent;
5874 /* ensure mddev_put doesn't delete this now that there
5875 * is some minimal configuration.
5876 */
5877 mddev->ctime = get_seconds();
5878 return 0;
5879 }
5880 mddev->major_version = MD_MAJOR_VERSION;
5881 mddev->minor_version = MD_MINOR_VERSION;
5882 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5883 mddev->ctime = get_seconds();
5884
5885 mddev->level = info->level;
5886 mddev->clevel[0] = 0;
5887 mddev->dev_sectors = 2 * (sector_t)info->size;
5888 mddev->raid_disks = info->raid_disks;
5889 /* don't set md_minor, it is determined by which /dev/md* was
5890 * openned
5891 */
5892 if (info->state & (1<<MD_SB_CLEAN))
5893 mddev->recovery_cp = MaxSector;
5894 else
5895 mddev->recovery_cp = 0;
5896 mddev->persistent = ! info->not_persistent;
5897 mddev->external = 0;
5898
5899 mddev->layout = info->layout;
5900 mddev->chunk_sectors = info->chunk_size >> 9;
5901
5902 mddev->max_disks = MD_SB_DISKS;
5903
5904 if (mddev->persistent)
5905 mddev->flags = 0;
5906 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5907
5908 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5909 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5910 mddev->bitmap_info.offset = 0;
5911
5912 mddev->reshape_position = MaxSector;
5913
5914 /*
5915 * Generate a 128 bit UUID
5916 */
5917 get_random_bytes(mddev->uuid, 16);
5918
5919 mddev->new_level = mddev->level;
5920 mddev->new_chunk_sectors = mddev->chunk_sectors;
5921 mddev->new_layout = mddev->layout;
5922 mddev->delta_disks = 0;
5923 mddev->reshape_backwards = 0;
5924
5925 return 0;
5926 }
5927
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)5928 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5929 {
5930 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5931
5932 if (mddev->external_size)
5933 return;
5934
5935 mddev->array_sectors = array_sectors;
5936 }
5937 EXPORT_SYMBOL(md_set_array_sectors);
5938
update_size(struct mddev * mddev,sector_t num_sectors)5939 static int update_size(struct mddev *mddev, sector_t num_sectors)
5940 {
5941 struct md_rdev *rdev;
5942 int rv;
5943 int fit = (num_sectors == 0);
5944
5945 if (mddev->pers->resize == NULL)
5946 return -EINVAL;
5947 /* The "num_sectors" is the number of sectors of each device that
5948 * is used. This can only make sense for arrays with redundancy.
5949 * linear and raid0 always use whatever space is available. We can only
5950 * consider changing this number if no resync or reconstruction is
5951 * happening, and if the new size is acceptable. It must fit before the
5952 * sb_start or, if that is <data_offset, it must fit before the size
5953 * of each device. If num_sectors is zero, we find the largest size
5954 * that fits.
5955 */
5956 if (mddev->sync_thread)
5957 return -EBUSY;
5958 if (mddev->ro)
5959 return -EROFS;
5960
5961 rdev_for_each(rdev, mddev) {
5962 sector_t avail = rdev->sectors;
5963
5964 if (fit && (num_sectors == 0 || num_sectors > avail))
5965 num_sectors = avail;
5966 if (avail < num_sectors)
5967 return -ENOSPC;
5968 }
5969 rv = mddev->pers->resize(mddev, num_sectors);
5970 if (!rv)
5971 revalidate_disk(mddev->gendisk);
5972 return rv;
5973 }
5974
update_raid_disks(struct mddev * mddev,int raid_disks)5975 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5976 {
5977 int rv;
5978 struct md_rdev *rdev;
5979 /* change the number of raid disks */
5980 if (mddev->pers->check_reshape == NULL)
5981 return -EINVAL;
5982 if (mddev->ro)
5983 return -EROFS;
5984 if (raid_disks <= 0 ||
5985 (mddev->max_disks && raid_disks >= mddev->max_disks))
5986 return -EINVAL;
5987 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5988 return -EBUSY;
5989
5990 rdev_for_each(rdev, mddev) {
5991 if (mddev->raid_disks < raid_disks &&
5992 rdev->data_offset < rdev->new_data_offset)
5993 return -EINVAL;
5994 if (mddev->raid_disks > raid_disks &&
5995 rdev->data_offset > rdev->new_data_offset)
5996 return -EINVAL;
5997 }
5998
5999 mddev->delta_disks = raid_disks - mddev->raid_disks;
6000 if (mddev->delta_disks < 0)
6001 mddev->reshape_backwards = 1;
6002 else if (mddev->delta_disks > 0)
6003 mddev->reshape_backwards = 0;
6004
6005 rv = mddev->pers->check_reshape(mddev);
6006 if (rv < 0) {
6007 mddev->delta_disks = 0;
6008 mddev->reshape_backwards = 0;
6009 }
6010 return rv;
6011 }
6012
6013 /*
6014 * update_array_info is used to change the configuration of an
6015 * on-line array.
6016 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6017 * fields in the info are checked against the array.
6018 * Any differences that cannot be handled will cause an error.
6019 * Normally, only one change can be managed at a time.
6020 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6021 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6022 {
6023 int rv = 0;
6024 int cnt = 0;
6025 int state = 0;
6026
6027 /* calculate expected state,ignoring low bits */
6028 if (mddev->bitmap && mddev->bitmap_info.offset)
6029 state |= (1 << MD_SB_BITMAP_PRESENT);
6030
6031 if (mddev->major_version != info->major_version ||
6032 mddev->minor_version != info->minor_version ||
6033 /* mddev->patch_version != info->patch_version || */
6034 mddev->ctime != info->ctime ||
6035 mddev->level != info->level ||
6036 /* mddev->layout != info->layout || */
6037 mddev->persistent != !info->not_persistent ||
6038 mddev->chunk_sectors != info->chunk_size >> 9 ||
6039 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6040 ((state^info->state) & 0xfffffe00)
6041 )
6042 return -EINVAL;
6043 /* Check there is only one change */
6044 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6045 cnt++;
6046 if (mddev->raid_disks != info->raid_disks)
6047 cnt++;
6048 if (mddev->layout != info->layout)
6049 cnt++;
6050 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6051 cnt++;
6052 if (cnt == 0)
6053 return 0;
6054 if (cnt > 1)
6055 return -EINVAL;
6056
6057 if (mddev->layout != info->layout) {
6058 /* Change layout
6059 * we don't need to do anything at the md level, the
6060 * personality will take care of it all.
6061 */
6062 if (mddev->pers->check_reshape == NULL)
6063 return -EINVAL;
6064 else {
6065 mddev->new_layout = info->layout;
6066 rv = mddev->pers->check_reshape(mddev);
6067 if (rv)
6068 mddev->new_layout = mddev->layout;
6069 return rv;
6070 }
6071 }
6072 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6073 rv = update_size(mddev, (sector_t)info->size * 2);
6074
6075 if (mddev->raid_disks != info->raid_disks)
6076 rv = update_raid_disks(mddev, info->raid_disks);
6077
6078 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6079 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6080 return -EINVAL;
6081 if (mddev->recovery || mddev->sync_thread)
6082 return -EBUSY;
6083 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6084 /* add the bitmap */
6085 if (mddev->bitmap)
6086 return -EEXIST;
6087 if (mddev->bitmap_info.default_offset == 0)
6088 return -EINVAL;
6089 mddev->bitmap_info.offset =
6090 mddev->bitmap_info.default_offset;
6091 mddev->bitmap_info.space =
6092 mddev->bitmap_info.default_space;
6093 mddev->pers->quiesce(mddev, 1);
6094 rv = bitmap_create(mddev);
6095 if (!rv)
6096 rv = bitmap_load(mddev);
6097 if (rv)
6098 bitmap_destroy(mddev);
6099 mddev->pers->quiesce(mddev, 0);
6100 } else {
6101 /* remove the bitmap */
6102 if (!mddev->bitmap)
6103 return -ENOENT;
6104 if (mddev->bitmap->storage.file)
6105 return -EINVAL;
6106 mddev->pers->quiesce(mddev, 1);
6107 bitmap_destroy(mddev);
6108 mddev->pers->quiesce(mddev, 0);
6109 mddev->bitmap_info.offset = 0;
6110 }
6111 }
6112 md_update_sb(mddev, 1);
6113 return rv;
6114 }
6115
set_disk_faulty(struct mddev * mddev,dev_t dev)6116 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6117 {
6118 struct md_rdev *rdev;
6119 int err = 0;
6120
6121 if (mddev->pers == NULL)
6122 return -ENODEV;
6123
6124 rcu_read_lock();
6125 rdev = find_rdev_rcu(mddev, dev);
6126 if (!rdev)
6127 err = -ENODEV;
6128 else {
6129 md_error(mddev, rdev);
6130 if (!test_bit(Faulty, &rdev->flags))
6131 err = -EBUSY;
6132 }
6133 rcu_read_unlock();
6134 return err;
6135 }
6136
6137 /*
6138 * We have a problem here : there is no easy way to give a CHS
6139 * virtual geometry. We currently pretend that we have a 2 heads
6140 * 4 sectors (with a BIG number of cylinders...). This drives
6141 * dosfs just mad... ;-)
6142 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6143 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6144 {
6145 struct mddev *mddev = bdev->bd_disk->private_data;
6146
6147 geo->heads = 2;
6148 geo->sectors = 4;
6149 geo->cylinders = mddev->array_sectors / 8;
6150 return 0;
6151 }
6152
md_ioctl_valid(unsigned int cmd)6153 static inline bool md_ioctl_valid(unsigned int cmd)
6154 {
6155 switch (cmd) {
6156 case ADD_NEW_DISK:
6157 case BLKROSET:
6158 case GET_ARRAY_INFO:
6159 case GET_BITMAP_FILE:
6160 case GET_DISK_INFO:
6161 case HOT_ADD_DISK:
6162 case HOT_REMOVE_DISK:
6163 case RAID_AUTORUN:
6164 case RAID_VERSION:
6165 case RESTART_ARRAY_RW:
6166 case RUN_ARRAY:
6167 case SET_ARRAY_INFO:
6168 case SET_BITMAP_FILE:
6169 case SET_DISK_FAULTY:
6170 case STOP_ARRAY:
6171 case STOP_ARRAY_RO:
6172 return true;
6173 default:
6174 return false;
6175 }
6176 }
6177
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6178 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6179 unsigned int cmd, unsigned long arg)
6180 {
6181 int err = 0;
6182 void __user *argp = (void __user *)arg;
6183 struct mddev *mddev = NULL;
6184 int ro;
6185
6186 if (!md_ioctl_valid(cmd))
6187 return -ENOTTY;
6188
6189 switch (cmd) {
6190 case RAID_VERSION:
6191 case GET_ARRAY_INFO:
6192 case GET_DISK_INFO:
6193 break;
6194 default:
6195 if (!capable(CAP_SYS_ADMIN))
6196 return -EACCES;
6197 }
6198
6199 /*
6200 * Commands dealing with the RAID driver but not any
6201 * particular array:
6202 */
6203 switch (cmd) {
6204 case RAID_VERSION:
6205 err = get_version(argp);
6206 goto out;
6207
6208 #ifndef MODULE
6209 case RAID_AUTORUN:
6210 err = 0;
6211 autostart_arrays(arg);
6212 goto out;
6213 #endif
6214 default:;
6215 }
6216
6217 /*
6218 * Commands creating/starting a new array:
6219 */
6220
6221 mddev = bdev->bd_disk->private_data;
6222
6223 if (!mddev) {
6224 BUG();
6225 goto out;
6226 }
6227
6228 /* Some actions do not requires the mutex */
6229 switch (cmd) {
6230 case GET_ARRAY_INFO:
6231 if (!mddev->raid_disks && !mddev->external)
6232 err = -ENODEV;
6233 else
6234 err = get_array_info(mddev, argp);
6235 goto out;
6236
6237 case GET_DISK_INFO:
6238 if (!mddev->raid_disks && !mddev->external)
6239 err = -ENODEV;
6240 else
6241 err = get_disk_info(mddev, argp);
6242 goto out;
6243
6244 case SET_DISK_FAULTY:
6245 err = set_disk_faulty(mddev, new_decode_dev(arg));
6246 goto out;
6247 }
6248
6249 if (cmd == ADD_NEW_DISK)
6250 /* need to ensure md_delayed_delete() has completed */
6251 flush_workqueue(md_misc_wq);
6252
6253 if (cmd == HOT_REMOVE_DISK)
6254 /* need to ensure recovery thread has run */
6255 wait_event_interruptible_timeout(mddev->sb_wait,
6256 !test_bit(MD_RECOVERY_NEEDED,
6257 &mddev->flags),
6258 msecs_to_jiffies(5000));
6259 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6260 /* Need to flush page cache, and ensure no-one else opens
6261 * and writes
6262 */
6263 mutex_lock(&mddev->open_mutex);
6264 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6265 mutex_unlock(&mddev->open_mutex);
6266 err = -EBUSY;
6267 goto out;
6268 }
6269 set_bit(MD_STILL_CLOSED, &mddev->flags);
6270 mutex_unlock(&mddev->open_mutex);
6271 sync_blockdev(bdev);
6272 }
6273 err = mddev_lock(mddev);
6274 if (err) {
6275 printk(KERN_INFO
6276 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6277 err, cmd);
6278 goto out;
6279 }
6280
6281 if (cmd == SET_ARRAY_INFO) {
6282 mdu_array_info_t info;
6283 if (!arg)
6284 memset(&info, 0, sizeof(info));
6285 else if (copy_from_user(&info, argp, sizeof(info))) {
6286 err = -EFAULT;
6287 goto unlock;
6288 }
6289 if (mddev->pers) {
6290 err = update_array_info(mddev, &info);
6291 if (err) {
6292 printk(KERN_WARNING "md: couldn't update"
6293 " array info. %d\n", err);
6294 goto unlock;
6295 }
6296 goto unlock;
6297 }
6298 if (!list_empty(&mddev->disks)) {
6299 printk(KERN_WARNING
6300 "md: array %s already has disks!\n",
6301 mdname(mddev));
6302 err = -EBUSY;
6303 goto unlock;
6304 }
6305 if (mddev->raid_disks) {
6306 printk(KERN_WARNING
6307 "md: array %s already initialised!\n",
6308 mdname(mddev));
6309 err = -EBUSY;
6310 goto unlock;
6311 }
6312 err = set_array_info(mddev, &info);
6313 if (err) {
6314 printk(KERN_WARNING "md: couldn't set"
6315 " array info. %d\n", err);
6316 goto unlock;
6317 }
6318 goto unlock;
6319 }
6320
6321 /*
6322 * Commands querying/configuring an existing array:
6323 */
6324 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6325 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6326 if ((!mddev->raid_disks && !mddev->external)
6327 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6328 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6329 && cmd != GET_BITMAP_FILE) {
6330 err = -ENODEV;
6331 goto unlock;
6332 }
6333
6334 /*
6335 * Commands even a read-only array can execute:
6336 */
6337 switch (cmd) {
6338 case GET_BITMAP_FILE:
6339 err = get_bitmap_file(mddev, argp);
6340 goto unlock;
6341
6342 case RESTART_ARRAY_RW:
6343 err = restart_array(mddev);
6344 goto unlock;
6345
6346 case STOP_ARRAY:
6347 err = do_md_stop(mddev, 0, bdev);
6348 goto unlock;
6349
6350 case STOP_ARRAY_RO:
6351 err = md_set_readonly(mddev, bdev);
6352 goto unlock;
6353
6354 case HOT_REMOVE_DISK:
6355 err = hot_remove_disk(mddev, new_decode_dev(arg));
6356 goto unlock;
6357
6358 case ADD_NEW_DISK:
6359 /* We can support ADD_NEW_DISK on read-only arrays
6360 * on if we are re-adding a preexisting device.
6361 * So require mddev->pers and MD_DISK_SYNC.
6362 */
6363 if (mddev->pers) {
6364 mdu_disk_info_t info;
6365 if (copy_from_user(&info, argp, sizeof(info)))
6366 err = -EFAULT;
6367 else if (!(info.state & (1<<MD_DISK_SYNC)))
6368 /* Need to clear read-only for this */
6369 break;
6370 else
6371 err = add_new_disk(mddev, &info);
6372 goto unlock;
6373 }
6374 break;
6375
6376 case BLKROSET:
6377 if (get_user(ro, (int __user *)(arg))) {
6378 err = -EFAULT;
6379 goto unlock;
6380 }
6381 err = -EINVAL;
6382
6383 /* if the bdev is going readonly the value of mddev->ro
6384 * does not matter, no writes are coming
6385 */
6386 if (ro)
6387 goto unlock;
6388
6389 /* are we are already prepared for writes? */
6390 if (mddev->ro != 1)
6391 goto unlock;
6392
6393 /* transitioning to readauto need only happen for
6394 * arrays that call md_write_start
6395 */
6396 if (mddev->pers) {
6397 err = restart_array(mddev);
6398 if (err == 0) {
6399 mddev->ro = 2;
6400 set_disk_ro(mddev->gendisk, 0);
6401 }
6402 }
6403 goto unlock;
6404 }
6405
6406 /*
6407 * The remaining ioctls are changing the state of the
6408 * superblock, so we do not allow them on read-only arrays.
6409 */
6410 if (mddev->ro && mddev->pers) {
6411 if (mddev->ro == 2) {
6412 mddev->ro = 0;
6413 sysfs_notify_dirent_safe(mddev->sysfs_state);
6414 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6415 /* mddev_unlock will wake thread */
6416 /* If a device failed while we were read-only, we
6417 * need to make sure the metadata is updated now.
6418 */
6419 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6420 mddev_unlock(mddev);
6421 wait_event(mddev->sb_wait,
6422 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6423 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6424 mddev_lock_nointr(mddev);
6425 }
6426 } else {
6427 err = -EROFS;
6428 goto unlock;
6429 }
6430 }
6431
6432 switch (cmd) {
6433 case ADD_NEW_DISK:
6434 {
6435 mdu_disk_info_t info;
6436 if (copy_from_user(&info, argp, sizeof(info)))
6437 err = -EFAULT;
6438 else
6439 err = add_new_disk(mddev, &info);
6440 goto unlock;
6441 }
6442
6443 case HOT_ADD_DISK:
6444 err = hot_add_disk(mddev, new_decode_dev(arg));
6445 goto unlock;
6446
6447 case RUN_ARRAY:
6448 err = do_md_run(mddev);
6449 goto unlock;
6450
6451 case SET_BITMAP_FILE:
6452 err = set_bitmap_file(mddev, (int)arg);
6453 goto unlock;
6454
6455 default:
6456 err = -EINVAL;
6457 goto unlock;
6458 }
6459
6460 unlock:
6461 if (mddev->hold_active == UNTIL_IOCTL &&
6462 err != -EINVAL)
6463 mddev->hold_active = 0;
6464 mddev_unlock(mddev);
6465 out:
6466 return err;
6467 }
6468 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6469 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6470 unsigned int cmd, unsigned long arg)
6471 {
6472 switch (cmd) {
6473 case HOT_REMOVE_DISK:
6474 case HOT_ADD_DISK:
6475 case SET_DISK_FAULTY:
6476 case SET_BITMAP_FILE:
6477 /* These take in integer arg, do not convert */
6478 break;
6479 default:
6480 arg = (unsigned long)compat_ptr(arg);
6481 break;
6482 }
6483
6484 return md_ioctl(bdev, mode, cmd, arg);
6485 }
6486 #endif /* CONFIG_COMPAT */
6487
md_open(struct block_device * bdev,fmode_t mode)6488 static int md_open(struct block_device *bdev, fmode_t mode)
6489 {
6490 /*
6491 * Succeed if we can lock the mddev, which confirms that
6492 * it isn't being stopped right now.
6493 */
6494 struct mddev *mddev = mddev_find(bdev->bd_dev);
6495 int err;
6496
6497 if (!mddev)
6498 return -ENODEV;
6499
6500 if (mddev->gendisk != bdev->bd_disk) {
6501 /* we are racing with mddev_put which is discarding this
6502 * bd_disk.
6503 */
6504 mddev_put(mddev);
6505 /* Wait until bdev->bd_disk is definitely gone */
6506 flush_workqueue(md_misc_wq);
6507 /* Then retry the open from the top */
6508 return -ERESTARTSYS;
6509 }
6510 BUG_ON(mddev != bdev->bd_disk->private_data);
6511
6512 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6513 goto out;
6514
6515 err = 0;
6516 atomic_inc(&mddev->openers);
6517 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6518 mutex_unlock(&mddev->open_mutex);
6519
6520 check_disk_change(bdev);
6521 out:
6522 return err;
6523 }
6524
md_release(struct gendisk * disk,fmode_t mode)6525 static void md_release(struct gendisk *disk, fmode_t mode)
6526 {
6527 struct mddev *mddev = disk->private_data;
6528
6529 BUG_ON(!mddev);
6530 atomic_dec(&mddev->openers);
6531 mddev_put(mddev);
6532 }
6533
md_media_changed(struct gendisk * disk)6534 static int md_media_changed(struct gendisk *disk)
6535 {
6536 struct mddev *mddev = disk->private_data;
6537
6538 return mddev->changed;
6539 }
6540
md_revalidate(struct gendisk * disk)6541 static int md_revalidate(struct gendisk *disk)
6542 {
6543 struct mddev *mddev = disk->private_data;
6544
6545 mddev->changed = 0;
6546 return 0;
6547 }
6548 static const struct block_device_operations md_fops =
6549 {
6550 .owner = THIS_MODULE,
6551 .open = md_open,
6552 .release = md_release,
6553 .ioctl = md_ioctl,
6554 #ifdef CONFIG_COMPAT
6555 .compat_ioctl = md_compat_ioctl,
6556 #endif
6557 .getgeo = md_getgeo,
6558 .media_changed = md_media_changed,
6559 .revalidate_disk= md_revalidate,
6560 };
6561
md_thread(void * arg)6562 static int md_thread(void *arg)
6563 {
6564 struct md_thread *thread = arg;
6565
6566 /*
6567 * md_thread is a 'system-thread', it's priority should be very
6568 * high. We avoid resource deadlocks individually in each
6569 * raid personality. (RAID5 does preallocation) We also use RR and
6570 * the very same RT priority as kswapd, thus we will never get
6571 * into a priority inversion deadlock.
6572 *
6573 * we definitely have to have equal or higher priority than
6574 * bdflush, otherwise bdflush will deadlock if there are too
6575 * many dirty RAID5 blocks.
6576 */
6577
6578 allow_signal(SIGKILL);
6579 while (!kthread_should_stop()) {
6580
6581 /* We need to wait INTERRUPTIBLE so that
6582 * we don't add to the load-average.
6583 * That means we need to be sure no signals are
6584 * pending
6585 */
6586 if (signal_pending(current))
6587 flush_signals(current);
6588
6589 wait_event_interruptible_timeout
6590 (thread->wqueue,
6591 test_bit(THREAD_WAKEUP, &thread->flags)
6592 || kthread_should_stop(),
6593 thread->timeout);
6594
6595 clear_bit(THREAD_WAKEUP, &thread->flags);
6596 if (!kthread_should_stop())
6597 thread->run(thread);
6598 }
6599
6600 return 0;
6601 }
6602
md_wakeup_thread(struct md_thread * thread)6603 void md_wakeup_thread(struct md_thread *thread)
6604 {
6605 if (thread) {
6606 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6607 set_bit(THREAD_WAKEUP, &thread->flags);
6608 wake_up(&thread->wqueue);
6609 }
6610 }
6611 EXPORT_SYMBOL(md_wakeup_thread);
6612
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)6613 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6614 struct mddev *mddev, const char *name)
6615 {
6616 struct md_thread *thread;
6617
6618 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6619 if (!thread)
6620 return NULL;
6621
6622 init_waitqueue_head(&thread->wqueue);
6623
6624 thread->run = run;
6625 thread->mddev = mddev;
6626 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6627 thread->tsk = kthread_run(md_thread, thread,
6628 "%s_%s",
6629 mdname(thread->mddev),
6630 name);
6631 if (IS_ERR(thread->tsk)) {
6632 kfree(thread);
6633 return NULL;
6634 }
6635 return thread;
6636 }
6637 EXPORT_SYMBOL(md_register_thread);
6638
md_unregister_thread(struct md_thread ** threadp)6639 void md_unregister_thread(struct md_thread **threadp)
6640 {
6641 struct md_thread *thread = *threadp;
6642 if (!thread)
6643 return;
6644 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6645 /* Locking ensures that mddev_unlock does not wake_up a
6646 * non-existent thread
6647 */
6648 spin_lock(&pers_lock);
6649 *threadp = NULL;
6650 spin_unlock(&pers_lock);
6651
6652 kthread_stop(thread->tsk);
6653 kfree(thread);
6654 }
6655 EXPORT_SYMBOL(md_unregister_thread);
6656
md_error(struct mddev * mddev,struct md_rdev * rdev)6657 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6658 {
6659 if (!rdev || test_bit(Faulty, &rdev->flags))
6660 return;
6661
6662 if (!mddev->pers || !mddev->pers->error_handler)
6663 return;
6664 mddev->pers->error_handler(mddev,rdev);
6665 if (mddev->degraded)
6666 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6667 sysfs_notify_dirent_safe(rdev->sysfs_state);
6668 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6669 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6670 md_wakeup_thread(mddev->thread);
6671 if (mddev->event_work.func)
6672 queue_work(md_misc_wq, &mddev->event_work);
6673 md_new_event_inintr(mddev);
6674 }
6675 EXPORT_SYMBOL(md_error);
6676
6677 /* seq_file implementation /proc/mdstat */
6678
status_unused(struct seq_file * seq)6679 static void status_unused(struct seq_file *seq)
6680 {
6681 int i = 0;
6682 struct md_rdev *rdev;
6683
6684 seq_printf(seq, "unused devices: ");
6685
6686 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6687 char b[BDEVNAME_SIZE];
6688 i++;
6689 seq_printf(seq, "%s ",
6690 bdevname(rdev->bdev,b));
6691 }
6692 if (!i)
6693 seq_printf(seq, "<none>");
6694
6695 seq_printf(seq, "\n");
6696 }
6697
status_resync(struct seq_file * seq,struct mddev * mddev)6698 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6699 {
6700 sector_t max_sectors, resync, res;
6701 unsigned long dt, db;
6702 sector_t rt;
6703 int scale;
6704 unsigned int per_milli;
6705
6706 if (mddev->curr_resync <= 3)
6707 resync = 0;
6708 else
6709 resync = mddev->curr_resync
6710 - atomic_read(&mddev->recovery_active);
6711
6712 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6713 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6714 max_sectors = mddev->resync_max_sectors;
6715 else
6716 max_sectors = mddev->dev_sectors;
6717
6718 WARN_ON(max_sectors == 0);
6719 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6720 * in a sector_t, and (max_sectors>>scale) will fit in a
6721 * u32, as those are the requirements for sector_div.
6722 * Thus 'scale' must be at least 10
6723 */
6724 scale = 10;
6725 if (sizeof(sector_t) > sizeof(unsigned long)) {
6726 while ( max_sectors/2 > (1ULL<<(scale+32)))
6727 scale++;
6728 }
6729 res = (resync>>scale)*1000;
6730 sector_div(res, (u32)((max_sectors>>scale)+1));
6731
6732 per_milli = res;
6733 {
6734 int i, x = per_milli/50, y = 20-x;
6735 seq_printf(seq, "[");
6736 for (i = 0; i < x; i++)
6737 seq_printf(seq, "=");
6738 seq_printf(seq, ">");
6739 for (i = 0; i < y; i++)
6740 seq_printf(seq, ".");
6741 seq_printf(seq, "] ");
6742 }
6743 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6744 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6745 "reshape" :
6746 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6747 "check" :
6748 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6749 "resync" : "recovery"))),
6750 per_milli/10, per_milli % 10,
6751 (unsigned long long) resync/2,
6752 (unsigned long long) max_sectors/2);
6753
6754 /*
6755 * dt: time from mark until now
6756 * db: blocks written from mark until now
6757 * rt: remaining time
6758 *
6759 * rt is a sector_t, so could be 32bit or 64bit.
6760 * So we divide before multiply in case it is 32bit and close
6761 * to the limit.
6762 * We scale the divisor (db) by 32 to avoid losing precision
6763 * near the end of resync when the number of remaining sectors
6764 * is close to 'db'.
6765 * We then divide rt by 32 after multiplying by db to compensate.
6766 * The '+1' avoids division by zero if db is very small.
6767 */
6768 dt = ((jiffies - mddev->resync_mark) / HZ);
6769 if (!dt) dt++;
6770 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6771 - mddev->resync_mark_cnt;
6772
6773 rt = max_sectors - resync; /* number of remaining sectors */
6774 sector_div(rt, db/32+1);
6775 rt *= dt;
6776 rt >>= 5;
6777
6778 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6779 ((unsigned long)rt % 60)/6);
6780
6781 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6782 }
6783
md_seq_start(struct seq_file * seq,loff_t * pos)6784 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6785 {
6786 struct list_head *tmp;
6787 loff_t l = *pos;
6788 struct mddev *mddev;
6789
6790 if (l >= 0x10000)
6791 return NULL;
6792 if (!l--)
6793 /* header */
6794 return (void*)1;
6795
6796 spin_lock(&all_mddevs_lock);
6797 list_for_each(tmp,&all_mddevs)
6798 if (!l--) {
6799 mddev = list_entry(tmp, struct mddev, all_mddevs);
6800 mddev_get(mddev);
6801 spin_unlock(&all_mddevs_lock);
6802 return mddev;
6803 }
6804 spin_unlock(&all_mddevs_lock);
6805 if (!l--)
6806 return (void*)2;/* tail */
6807 return NULL;
6808 }
6809
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)6810 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6811 {
6812 struct list_head *tmp;
6813 struct mddev *next_mddev, *mddev = v;
6814
6815 ++*pos;
6816 if (v == (void*)2)
6817 return NULL;
6818
6819 spin_lock(&all_mddevs_lock);
6820 if (v == (void*)1)
6821 tmp = all_mddevs.next;
6822 else
6823 tmp = mddev->all_mddevs.next;
6824 if (tmp != &all_mddevs)
6825 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6826 else {
6827 next_mddev = (void*)2;
6828 *pos = 0x10000;
6829 }
6830 spin_unlock(&all_mddevs_lock);
6831
6832 if (v != (void*)1)
6833 mddev_put(mddev);
6834 return next_mddev;
6835
6836 }
6837
md_seq_stop(struct seq_file * seq,void * v)6838 static void md_seq_stop(struct seq_file *seq, void *v)
6839 {
6840 struct mddev *mddev = v;
6841
6842 if (mddev && v != (void*)1 && v != (void*)2)
6843 mddev_put(mddev);
6844 }
6845
md_seq_show(struct seq_file * seq,void * v)6846 static int md_seq_show(struct seq_file *seq, void *v)
6847 {
6848 struct mddev *mddev = v;
6849 sector_t sectors;
6850 struct md_rdev *rdev;
6851
6852 if (v == (void*)1) {
6853 struct md_personality *pers;
6854 seq_printf(seq, "Personalities : ");
6855 spin_lock(&pers_lock);
6856 list_for_each_entry(pers, &pers_list, list)
6857 seq_printf(seq, "[%s] ", pers->name);
6858
6859 spin_unlock(&pers_lock);
6860 seq_printf(seq, "\n");
6861 seq->poll_event = atomic_read(&md_event_count);
6862 return 0;
6863 }
6864 if (v == (void*)2) {
6865 status_unused(seq);
6866 return 0;
6867 }
6868
6869 if (mddev_lock(mddev) < 0)
6870 return -EINTR;
6871
6872 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6873 seq_printf(seq, "%s : %sactive", mdname(mddev),
6874 mddev->pers ? "" : "in");
6875 if (mddev->pers) {
6876 if (mddev->ro==1)
6877 seq_printf(seq, " (read-only)");
6878 if (mddev->ro==2)
6879 seq_printf(seq, " (auto-read-only)");
6880 seq_printf(seq, " %s", mddev->pers->name);
6881 }
6882
6883 sectors = 0;
6884 rdev_for_each(rdev, mddev) {
6885 char b[BDEVNAME_SIZE];
6886 seq_printf(seq, " %s[%d]",
6887 bdevname(rdev->bdev,b), rdev->desc_nr);
6888 if (test_bit(WriteMostly, &rdev->flags))
6889 seq_printf(seq, "(W)");
6890 if (test_bit(Faulty, &rdev->flags)) {
6891 seq_printf(seq, "(F)");
6892 continue;
6893 }
6894 if (rdev->raid_disk < 0)
6895 seq_printf(seq, "(S)"); /* spare */
6896 if (test_bit(Replacement, &rdev->flags))
6897 seq_printf(seq, "(R)");
6898 sectors += rdev->sectors;
6899 }
6900
6901 if (!list_empty(&mddev->disks)) {
6902 if (mddev->pers)
6903 seq_printf(seq, "\n %llu blocks",
6904 (unsigned long long)
6905 mddev->array_sectors / 2);
6906 else
6907 seq_printf(seq, "\n %llu blocks",
6908 (unsigned long long)sectors / 2);
6909 }
6910 if (mddev->persistent) {
6911 if (mddev->major_version != 0 ||
6912 mddev->minor_version != 90) {
6913 seq_printf(seq," super %d.%d",
6914 mddev->major_version,
6915 mddev->minor_version);
6916 }
6917 } else if (mddev->external)
6918 seq_printf(seq, " super external:%s",
6919 mddev->metadata_type);
6920 else
6921 seq_printf(seq, " super non-persistent");
6922
6923 if (mddev->pers) {
6924 mddev->pers->status(seq, mddev);
6925 seq_printf(seq, "\n ");
6926 if (mddev->pers->sync_request) {
6927 if (mddev->curr_resync > 2) {
6928 status_resync(seq, mddev);
6929 seq_printf(seq, "\n ");
6930 } else if (mddev->curr_resync >= 1)
6931 seq_printf(seq, "\tresync=DELAYED\n ");
6932 else if (mddev->recovery_cp < MaxSector)
6933 seq_printf(seq, "\tresync=PENDING\n ");
6934 }
6935 } else
6936 seq_printf(seq, "\n ");
6937
6938 bitmap_status(seq, mddev->bitmap);
6939
6940 seq_printf(seq, "\n");
6941 }
6942 mddev_unlock(mddev);
6943
6944 return 0;
6945 }
6946
6947 static const struct seq_operations md_seq_ops = {
6948 .start = md_seq_start,
6949 .next = md_seq_next,
6950 .stop = md_seq_stop,
6951 .show = md_seq_show,
6952 };
6953
md_seq_open(struct inode * inode,struct file * file)6954 static int md_seq_open(struct inode *inode, struct file *file)
6955 {
6956 struct seq_file *seq;
6957 int error;
6958
6959 error = seq_open(file, &md_seq_ops);
6960 if (error)
6961 return error;
6962
6963 seq = file->private_data;
6964 seq->poll_event = atomic_read(&md_event_count);
6965 return error;
6966 }
6967
6968 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)6969 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6970 {
6971 struct seq_file *seq = filp->private_data;
6972 int mask;
6973
6974 if (md_unloading)
6975 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
6976 poll_wait(filp, &md_event_waiters, wait);
6977
6978 /* always allow read */
6979 mask = POLLIN | POLLRDNORM;
6980
6981 if (seq->poll_event != atomic_read(&md_event_count))
6982 mask |= POLLERR | POLLPRI;
6983 return mask;
6984 }
6985
6986 static const struct file_operations md_seq_fops = {
6987 .owner = THIS_MODULE,
6988 .open = md_seq_open,
6989 .read = seq_read,
6990 .llseek = seq_lseek,
6991 .release = seq_release_private,
6992 .poll = mdstat_poll,
6993 };
6994
register_md_personality(struct md_personality * p)6995 int register_md_personality(struct md_personality *p)
6996 {
6997 printk(KERN_INFO "md: %s personality registered for level %d\n",
6998 p->name, p->level);
6999 spin_lock(&pers_lock);
7000 list_add_tail(&p->list, &pers_list);
7001 spin_unlock(&pers_lock);
7002 return 0;
7003 }
7004 EXPORT_SYMBOL(register_md_personality);
7005
unregister_md_personality(struct md_personality * p)7006 int unregister_md_personality(struct md_personality *p)
7007 {
7008 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7009 spin_lock(&pers_lock);
7010 list_del_init(&p->list);
7011 spin_unlock(&pers_lock);
7012 return 0;
7013 }
7014 EXPORT_SYMBOL(unregister_md_personality);
7015
is_mddev_idle(struct mddev * mddev,int init)7016 static int is_mddev_idle(struct mddev *mddev, int init)
7017 {
7018 struct md_rdev *rdev;
7019 int idle;
7020 int curr_events;
7021
7022 idle = 1;
7023 rcu_read_lock();
7024 rdev_for_each_rcu(rdev, mddev) {
7025 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7026 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7027 (int)part_stat_read(&disk->part0, sectors[1]) -
7028 atomic_read(&disk->sync_io);
7029 /* sync IO will cause sync_io to increase before the disk_stats
7030 * as sync_io is counted when a request starts, and
7031 * disk_stats is counted when it completes.
7032 * So resync activity will cause curr_events to be smaller than
7033 * when there was no such activity.
7034 * non-sync IO will cause disk_stat to increase without
7035 * increasing sync_io so curr_events will (eventually)
7036 * be larger than it was before. Once it becomes
7037 * substantially larger, the test below will cause
7038 * the array to appear non-idle, and resync will slow
7039 * down.
7040 * If there is a lot of outstanding resync activity when
7041 * we set last_event to curr_events, then all that activity
7042 * completing might cause the array to appear non-idle
7043 * and resync will be slowed down even though there might
7044 * not have been non-resync activity. This will only
7045 * happen once though. 'last_events' will soon reflect
7046 * the state where there is little or no outstanding
7047 * resync requests, and further resync activity will
7048 * always make curr_events less than last_events.
7049 *
7050 */
7051 if (init || curr_events - rdev->last_events > 64) {
7052 rdev->last_events = curr_events;
7053 idle = 0;
7054 }
7055 }
7056 rcu_read_unlock();
7057 return idle;
7058 }
7059
md_done_sync(struct mddev * mddev,int blocks,int ok)7060 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7061 {
7062 /* another "blocks" (512byte) blocks have been synced */
7063 atomic_sub(blocks, &mddev->recovery_active);
7064 wake_up(&mddev->recovery_wait);
7065 if (!ok) {
7066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7067 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7068 md_wakeup_thread(mddev->thread);
7069 // stop recovery, signal do_sync ....
7070 }
7071 }
7072 EXPORT_SYMBOL(md_done_sync);
7073
7074 /* md_write_start(mddev, bi)
7075 * If we need to update some array metadata (e.g. 'active' flag
7076 * in superblock) before writing, schedule a superblock update
7077 * and wait for it to complete.
7078 */
md_write_start(struct mddev * mddev,struct bio * bi)7079 void md_write_start(struct mddev *mddev, struct bio *bi)
7080 {
7081 int did_change = 0;
7082 if (bio_data_dir(bi) != WRITE)
7083 return;
7084
7085 BUG_ON(mddev->ro == 1);
7086 if (mddev->ro == 2) {
7087 /* need to switch to read/write */
7088 mddev->ro = 0;
7089 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7090 md_wakeup_thread(mddev->thread);
7091 md_wakeup_thread(mddev->sync_thread);
7092 did_change = 1;
7093 }
7094 atomic_inc(&mddev->writes_pending);
7095 if (mddev->safemode == 1)
7096 mddev->safemode = 0;
7097 if (mddev->in_sync) {
7098 spin_lock_irq(&mddev->write_lock);
7099 if (mddev->in_sync) {
7100 mddev->in_sync = 0;
7101 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7102 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7103 md_wakeup_thread(mddev->thread);
7104 did_change = 1;
7105 }
7106 spin_unlock_irq(&mddev->write_lock);
7107 }
7108 if (did_change)
7109 sysfs_notify_dirent_safe(mddev->sysfs_state);
7110 wait_event(mddev->sb_wait,
7111 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7112 }
7113 EXPORT_SYMBOL(md_write_start);
7114
md_write_end(struct mddev * mddev)7115 void md_write_end(struct mddev *mddev)
7116 {
7117 if (atomic_dec_and_test(&mddev->writes_pending)) {
7118 if (mddev->safemode == 2)
7119 md_wakeup_thread(mddev->thread);
7120 else if (mddev->safemode_delay)
7121 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7122 }
7123 }
7124 EXPORT_SYMBOL(md_write_end);
7125
7126 /* md_allow_write(mddev)
7127 * Calling this ensures that the array is marked 'active' so that writes
7128 * may proceed without blocking. It is important to call this before
7129 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7130 * Must be called with mddev_lock held.
7131 *
7132 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7133 * is dropped, so return -EAGAIN after notifying userspace.
7134 */
md_allow_write(struct mddev * mddev)7135 int md_allow_write(struct mddev *mddev)
7136 {
7137 if (!mddev->pers)
7138 return 0;
7139 if (mddev->ro)
7140 return 0;
7141 if (!mddev->pers->sync_request)
7142 return 0;
7143
7144 spin_lock_irq(&mddev->write_lock);
7145 if (mddev->in_sync) {
7146 mddev->in_sync = 0;
7147 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7148 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7149 if (mddev->safemode_delay &&
7150 mddev->safemode == 0)
7151 mddev->safemode = 1;
7152 spin_unlock_irq(&mddev->write_lock);
7153 md_update_sb(mddev, 0);
7154 sysfs_notify_dirent_safe(mddev->sysfs_state);
7155 } else
7156 spin_unlock_irq(&mddev->write_lock);
7157
7158 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7159 return -EAGAIN;
7160 else
7161 return 0;
7162 }
7163 EXPORT_SYMBOL_GPL(md_allow_write);
7164
7165 #define SYNC_MARKS 10
7166 #define SYNC_MARK_STEP (3*HZ)
7167 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7168 void md_do_sync(struct md_thread *thread)
7169 {
7170 struct mddev *mddev = thread->mddev;
7171 struct mddev *mddev2;
7172 unsigned int currspeed = 0,
7173 window;
7174 sector_t max_sectors,j, io_sectors, recovery_done;
7175 unsigned long mark[SYNC_MARKS];
7176 unsigned long update_time;
7177 sector_t mark_cnt[SYNC_MARKS];
7178 int last_mark,m;
7179 struct list_head *tmp;
7180 sector_t last_check;
7181 int skipped = 0;
7182 struct md_rdev *rdev;
7183 char *desc, *action = NULL;
7184 struct blk_plug plug;
7185
7186 /* just incase thread restarts... */
7187 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7188 return;
7189 if (mddev->ro) {/* never try to sync a read-only array */
7190 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7191 return;
7192 }
7193
7194 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7195 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7196 desc = "data-check";
7197 action = "check";
7198 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7199 desc = "requested-resync";
7200 action = "repair";
7201 } else
7202 desc = "resync";
7203 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7204 desc = "reshape";
7205 else
7206 desc = "recovery";
7207
7208 mddev->last_sync_action = action ?: desc;
7209
7210 /* we overload curr_resync somewhat here.
7211 * 0 == not engaged in resync at all
7212 * 2 == checking that there is no conflict with another sync
7213 * 1 == like 2, but have yielded to allow conflicting resync to
7214 * commense
7215 * other == active in resync - this many blocks
7216 *
7217 * Before starting a resync we must have set curr_resync to
7218 * 2, and then checked that every "conflicting" array has curr_resync
7219 * less than ours. When we find one that is the same or higher
7220 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7221 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7222 * This will mean we have to start checking from the beginning again.
7223 *
7224 */
7225
7226 do {
7227 mddev->curr_resync = 2;
7228
7229 try_again:
7230 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7231 goto skip;
7232 for_each_mddev(mddev2, tmp) {
7233 if (mddev2 == mddev)
7234 continue;
7235 if (!mddev->parallel_resync
7236 && mddev2->curr_resync
7237 && match_mddev_units(mddev, mddev2)) {
7238 DEFINE_WAIT(wq);
7239 if (mddev < mddev2 && mddev->curr_resync == 2) {
7240 /* arbitrarily yield */
7241 mddev->curr_resync = 1;
7242 wake_up(&resync_wait);
7243 }
7244 if (mddev > mddev2 && mddev->curr_resync == 1)
7245 /* no need to wait here, we can wait the next
7246 * time 'round when curr_resync == 2
7247 */
7248 continue;
7249 /* We need to wait 'interruptible' so as not to
7250 * contribute to the load average, and not to
7251 * be caught by 'softlockup'
7252 */
7253 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7254 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7255 mddev2->curr_resync >= mddev->curr_resync) {
7256 printk(KERN_INFO "md: delaying %s of %s"
7257 " until %s has finished (they"
7258 " share one or more physical units)\n",
7259 desc, mdname(mddev), mdname(mddev2));
7260 mddev_put(mddev2);
7261 if (signal_pending(current))
7262 flush_signals(current);
7263 schedule();
7264 finish_wait(&resync_wait, &wq);
7265 goto try_again;
7266 }
7267 finish_wait(&resync_wait, &wq);
7268 }
7269 }
7270 } while (mddev->curr_resync < 2);
7271
7272 j = 0;
7273 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7274 /* resync follows the size requested by the personality,
7275 * which defaults to physical size, but can be virtual size
7276 */
7277 max_sectors = mddev->resync_max_sectors;
7278 atomic64_set(&mddev->resync_mismatches, 0);
7279 /* we don't use the checkpoint if there's a bitmap */
7280 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7281 j = mddev->resync_min;
7282 else if (!mddev->bitmap)
7283 j = mddev->recovery_cp;
7284
7285 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7286 max_sectors = mddev->resync_max_sectors;
7287 else {
7288 /* recovery follows the physical size of devices */
7289 max_sectors = mddev->dev_sectors;
7290 j = MaxSector;
7291 rcu_read_lock();
7292 rdev_for_each_rcu(rdev, mddev)
7293 if (rdev->raid_disk >= 0 &&
7294 !test_bit(Faulty, &rdev->flags) &&
7295 !test_bit(In_sync, &rdev->flags) &&
7296 rdev->recovery_offset < j)
7297 j = rdev->recovery_offset;
7298 rcu_read_unlock();
7299
7300 /* If there is a bitmap, we need to make sure all
7301 * writes that started before we added a spare
7302 * complete before we start doing a recovery.
7303 * Otherwise the write might complete and (via
7304 * bitmap_endwrite) set a bit in the bitmap after the
7305 * recovery has checked that bit and skipped that
7306 * region.
7307 */
7308 if (mddev->bitmap) {
7309 mddev->pers->quiesce(mddev, 1);
7310 mddev->pers->quiesce(mddev, 0);
7311 }
7312 }
7313
7314 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7315 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7316 " %d KB/sec/disk.\n", speed_min(mddev));
7317 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7318 "(but not more than %d KB/sec) for %s.\n",
7319 speed_max(mddev), desc);
7320
7321 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7322
7323 io_sectors = 0;
7324 for (m = 0; m < SYNC_MARKS; m++) {
7325 mark[m] = jiffies;
7326 mark_cnt[m] = io_sectors;
7327 }
7328 last_mark = 0;
7329 mddev->resync_mark = mark[last_mark];
7330 mddev->resync_mark_cnt = mark_cnt[last_mark];
7331
7332 /*
7333 * Tune reconstruction:
7334 */
7335 window = 32*(PAGE_SIZE/512);
7336 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7337 window/2, (unsigned long long)max_sectors/2);
7338
7339 atomic_set(&mddev->recovery_active, 0);
7340 last_check = 0;
7341
7342 if (j>2) {
7343 printk(KERN_INFO
7344 "md: resuming %s of %s from checkpoint.\n",
7345 desc, mdname(mddev));
7346 mddev->curr_resync = j;
7347 } else
7348 mddev->curr_resync = 3; /* no longer delayed */
7349 mddev->curr_resync_completed = j;
7350 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7351 md_new_event(mddev);
7352 update_time = jiffies;
7353
7354 blk_start_plug(&plug);
7355 while (j < max_sectors) {
7356 sector_t sectors;
7357
7358 skipped = 0;
7359
7360 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7361 ((mddev->curr_resync > mddev->curr_resync_completed &&
7362 (mddev->curr_resync - mddev->curr_resync_completed)
7363 > (max_sectors >> 4)) ||
7364 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7365 (j - mddev->curr_resync_completed)*2
7366 >= mddev->resync_max - mddev->curr_resync_completed
7367 )) {
7368 /* time to update curr_resync_completed */
7369 wait_event(mddev->recovery_wait,
7370 atomic_read(&mddev->recovery_active) == 0);
7371 mddev->curr_resync_completed = j;
7372 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7373 j > mddev->recovery_cp)
7374 mddev->recovery_cp = j;
7375 update_time = jiffies;
7376 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7377 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7378 }
7379
7380 while (j >= mddev->resync_max &&
7381 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7382 /* As this condition is controlled by user-space,
7383 * we can block indefinitely, so use '_interruptible'
7384 * to avoid triggering warnings.
7385 */
7386 flush_signals(current); /* just in case */
7387 wait_event_interruptible(mddev->recovery_wait,
7388 mddev->resync_max > j
7389 || test_bit(MD_RECOVERY_INTR,
7390 &mddev->recovery));
7391 }
7392
7393 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7394 break;
7395
7396 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7397 currspeed < speed_min(mddev));
7398 if (sectors == 0) {
7399 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7400 break;
7401 }
7402
7403 if (!skipped) { /* actual IO requested */
7404 io_sectors += sectors;
7405 atomic_add(sectors, &mddev->recovery_active);
7406 }
7407
7408 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7409 break;
7410
7411 j += sectors;
7412 if (j > max_sectors)
7413 /* when skipping, extra large numbers can be returned. */
7414 j = max_sectors;
7415 if (j > 2)
7416 mddev->curr_resync = j;
7417 mddev->curr_mark_cnt = io_sectors;
7418 if (last_check == 0)
7419 /* this is the earliest that rebuild will be
7420 * visible in /proc/mdstat
7421 */
7422 md_new_event(mddev);
7423
7424 if (last_check + window > io_sectors || j == max_sectors)
7425 continue;
7426
7427 last_check = io_sectors;
7428 repeat:
7429 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7430 /* step marks */
7431 int next = (last_mark+1) % SYNC_MARKS;
7432
7433 mddev->resync_mark = mark[next];
7434 mddev->resync_mark_cnt = mark_cnt[next];
7435 mark[next] = jiffies;
7436 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7437 last_mark = next;
7438 }
7439
7440 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7441 break;
7442
7443 /*
7444 * this loop exits only if either when we are slower than
7445 * the 'hard' speed limit, or the system was IO-idle for
7446 * a jiffy.
7447 * the system might be non-idle CPU-wise, but we only care
7448 * about not overloading the IO subsystem. (things like an
7449 * e2fsck being done on the RAID array should execute fast)
7450 */
7451 cond_resched();
7452
7453 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7454 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7455 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7456
7457 if (currspeed > speed_min(mddev)) {
7458 if ((currspeed > speed_max(mddev)) ||
7459 !is_mddev_idle(mddev, 0)) {
7460 msleep(500);
7461 goto repeat;
7462 }
7463 }
7464 }
7465 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7466 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7467 ? "interrupted" : "done");
7468 /*
7469 * this also signals 'finished resyncing' to md_stop
7470 */
7471 blk_finish_plug(&plug);
7472 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7473
7474 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7475 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7476 mddev->curr_resync > 3) {
7477 mddev->curr_resync_completed = mddev->curr_resync;
7478 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7479 }
7480 /* tell personality that we are finished */
7481 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7482
7483 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7484 mddev->curr_resync > 3) {
7485 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7486 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7487 if (mddev->curr_resync >= mddev->recovery_cp) {
7488 printk(KERN_INFO
7489 "md: checkpointing %s of %s.\n",
7490 desc, mdname(mddev));
7491 if (test_bit(MD_RECOVERY_ERROR,
7492 &mddev->recovery))
7493 mddev->recovery_cp =
7494 mddev->curr_resync_completed;
7495 else
7496 mddev->recovery_cp =
7497 mddev->curr_resync;
7498 }
7499 } else
7500 mddev->recovery_cp = MaxSector;
7501 } else {
7502 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7503 mddev->curr_resync = MaxSector;
7504 rcu_read_lock();
7505 rdev_for_each_rcu(rdev, mddev)
7506 if (rdev->raid_disk >= 0 &&
7507 mddev->delta_disks >= 0 &&
7508 !test_bit(Faulty, &rdev->flags) &&
7509 !test_bit(In_sync, &rdev->flags) &&
7510 rdev->recovery_offset < mddev->curr_resync)
7511 rdev->recovery_offset = mddev->curr_resync;
7512 rcu_read_unlock();
7513 }
7514 }
7515 skip:
7516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7517
7518 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7519 /* We completed so min/max setting can be forgotten if used. */
7520 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7521 mddev->resync_min = 0;
7522 mddev->resync_max = MaxSector;
7523 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7524 mddev->resync_min = mddev->curr_resync_completed;
7525 mddev->curr_resync = 0;
7526 wake_up(&resync_wait);
7527 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7528 md_wakeup_thread(mddev->thread);
7529 return;
7530 }
7531 EXPORT_SYMBOL_GPL(md_do_sync);
7532
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)7533 static int remove_and_add_spares(struct mddev *mddev,
7534 struct md_rdev *this)
7535 {
7536 struct md_rdev *rdev;
7537 int spares = 0;
7538 int removed = 0;
7539
7540 rdev_for_each(rdev, mddev)
7541 if ((this == NULL || rdev == this) &&
7542 rdev->raid_disk >= 0 &&
7543 !test_bit(Blocked, &rdev->flags) &&
7544 (test_bit(Faulty, &rdev->flags) ||
7545 ! test_bit(In_sync, &rdev->flags)) &&
7546 atomic_read(&rdev->nr_pending)==0) {
7547 if (mddev->pers->hot_remove_disk(
7548 mddev, rdev) == 0) {
7549 sysfs_unlink_rdev(mddev, rdev);
7550 rdev->raid_disk = -1;
7551 removed++;
7552 }
7553 }
7554 if (removed && mddev->kobj.sd)
7555 sysfs_notify(&mddev->kobj, NULL, "degraded");
7556
7557 if (this)
7558 goto no_add;
7559
7560 rdev_for_each(rdev, mddev) {
7561 if (rdev->raid_disk >= 0 &&
7562 !test_bit(In_sync, &rdev->flags) &&
7563 !test_bit(Faulty, &rdev->flags))
7564 spares++;
7565 if (rdev->raid_disk >= 0)
7566 continue;
7567 if (test_bit(Faulty, &rdev->flags))
7568 continue;
7569 if (mddev->ro &&
7570 ! (rdev->saved_raid_disk >= 0 &&
7571 !test_bit(Bitmap_sync, &rdev->flags)))
7572 continue;
7573
7574 rdev->recovery_offset = 0;
7575 if (mddev->pers->
7576 hot_add_disk(mddev, rdev) == 0) {
7577 if (sysfs_link_rdev(mddev, rdev))
7578 /* failure here is OK */;
7579 spares++;
7580 md_new_event(mddev);
7581 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7582 }
7583 }
7584 no_add:
7585 if (removed)
7586 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7587 return spares;
7588 }
7589
md_start_sync(struct work_struct * ws)7590 static void md_start_sync(struct work_struct *ws)
7591 {
7592 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7593
7594 mddev->sync_thread = md_register_thread(md_do_sync,
7595 mddev,
7596 "resync");
7597 if (!mddev->sync_thread) {
7598 printk(KERN_ERR "%s: could not start resync"
7599 " thread...\n",
7600 mdname(mddev));
7601 /* leave the spares where they are, it shouldn't hurt */
7602 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7603 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7604 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7605 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7606 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7607 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7608 &mddev->recovery))
7609 if (mddev->sysfs_action)
7610 sysfs_notify_dirent_safe(mddev->sysfs_action);
7611 } else
7612 md_wakeup_thread(mddev->sync_thread);
7613 sysfs_notify_dirent_safe(mddev->sysfs_action);
7614 md_new_event(mddev);
7615 }
7616
7617 /*
7618 * This routine is regularly called by all per-raid-array threads to
7619 * deal with generic issues like resync and super-block update.
7620 * Raid personalities that don't have a thread (linear/raid0) do not
7621 * need this as they never do any recovery or update the superblock.
7622 *
7623 * It does not do any resync itself, but rather "forks" off other threads
7624 * to do that as needed.
7625 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7626 * "->recovery" and create a thread at ->sync_thread.
7627 * When the thread finishes it sets MD_RECOVERY_DONE
7628 * and wakeups up this thread which will reap the thread and finish up.
7629 * This thread also removes any faulty devices (with nr_pending == 0).
7630 *
7631 * The overall approach is:
7632 * 1/ if the superblock needs updating, update it.
7633 * 2/ If a recovery thread is running, don't do anything else.
7634 * 3/ If recovery has finished, clean up, possibly marking spares active.
7635 * 4/ If there are any faulty devices, remove them.
7636 * 5/ If array is degraded, try to add spares devices
7637 * 6/ If array has spares or is not in-sync, start a resync thread.
7638 */
md_check_recovery(struct mddev * mddev)7639 void md_check_recovery(struct mddev *mddev)
7640 {
7641 if (mddev->suspended)
7642 return;
7643
7644 if (mddev->bitmap)
7645 bitmap_daemon_work(mddev);
7646
7647 if (signal_pending(current)) {
7648 if (mddev->pers->sync_request && !mddev->external) {
7649 printk(KERN_INFO "md: %s in immediate safe mode\n",
7650 mdname(mddev));
7651 mddev->safemode = 2;
7652 }
7653 flush_signals(current);
7654 }
7655
7656 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7657 return;
7658 if ( ! (
7659 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7660 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7661 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7662 (mddev->external == 0 && mddev->safemode == 1) ||
7663 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7664 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7665 ))
7666 return;
7667
7668 if (mddev_trylock(mddev)) {
7669 int spares = 0;
7670
7671 if (mddev->ro) {
7672 /* On a read-only array we can:
7673 * - remove failed devices
7674 * - add already-in_sync devices if the array itself
7675 * is in-sync.
7676 * As we only add devices that are already in-sync,
7677 * we can activate the spares immediately.
7678 */
7679 remove_and_add_spares(mddev, NULL);
7680 /* There is no thread, but we need to call
7681 * ->spare_active and clear saved_raid_disk
7682 */
7683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7684 md_reap_sync_thread(mddev);
7685 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7686 goto unlock;
7687 }
7688
7689 if (!mddev->external) {
7690 int did_change = 0;
7691 spin_lock_irq(&mddev->write_lock);
7692 if (mddev->safemode &&
7693 !atomic_read(&mddev->writes_pending) &&
7694 !mddev->in_sync &&
7695 mddev->recovery_cp == MaxSector) {
7696 mddev->in_sync = 1;
7697 did_change = 1;
7698 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7699 }
7700 if (mddev->safemode == 1)
7701 mddev->safemode = 0;
7702 spin_unlock_irq(&mddev->write_lock);
7703 if (did_change)
7704 sysfs_notify_dirent_safe(mddev->sysfs_state);
7705 }
7706
7707 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7708 md_update_sb(mddev, 0);
7709
7710 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7711 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7712 /* resync/recovery still happening */
7713 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7714 goto unlock;
7715 }
7716 if (mddev->sync_thread) {
7717 md_reap_sync_thread(mddev);
7718 goto unlock;
7719 }
7720 /* Set RUNNING before clearing NEEDED to avoid
7721 * any transients in the value of "sync_action".
7722 */
7723 mddev->curr_resync_completed = 0;
7724 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7725 /* Clear some bits that don't mean anything, but
7726 * might be left set
7727 */
7728 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7729 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7730
7731 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7732 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7733 goto not_running;
7734 /* no recovery is running.
7735 * remove any failed drives, then
7736 * add spares if possible.
7737 * Spares are also removed and re-added, to allow
7738 * the personality to fail the re-add.
7739 */
7740
7741 if (mddev->reshape_position != MaxSector) {
7742 if (mddev->pers->check_reshape == NULL ||
7743 mddev->pers->check_reshape(mddev) != 0)
7744 /* Cannot proceed */
7745 goto not_running;
7746 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7747 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7748 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7749 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7750 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7751 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7752 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7753 } else if (mddev->recovery_cp < MaxSector) {
7754 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7755 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7756 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7757 /* nothing to be done ... */
7758 goto not_running;
7759
7760 if (mddev->pers->sync_request) {
7761 if (spares) {
7762 /* We are adding a device or devices to an array
7763 * which has the bitmap stored on all devices.
7764 * So make sure all bitmap pages get written
7765 */
7766 bitmap_write_all(mddev->bitmap);
7767 }
7768 INIT_WORK(&mddev->del_work, md_start_sync);
7769 queue_work(md_misc_wq, &mddev->del_work);
7770 goto unlock;
7771 }
7772 not_running:
7773 if (!mddev->sync_thread) {
7774 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7775 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7776 &mddev->recovery))
7777 if (mddev->sysfs_action)
7778 sysfs_notify_dirent_safe(mddev->sysfs_action);
7779 }
7780 unlock:
7781 wake_up(&mddev->sb_wait);
7782 mddev_unlock(mddev);
7783 }
7784 }
7785 EXPORT_SYMBOL(md_check_recovery);
7786
md_reap_sync_thread(struct mddev * mddev)7787 void md_reap_sync_thread(struct mddev *mddev)
7788 {
7789 struct md_rdev *rdev;
7790
7791 /* resync has finished, collect result */
7792 md_unregister_thread(&mddev->sync_thread);
7793 wake_up(&resync_wait);
7794 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7795 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7796 /* success...*/
7797 /* activate any spares */
7798 if (mddev->pers->spare_active(mddev)) {
7799 sysfs_notify(&mddev->kobj, NULL,
7800 "degraded");
7801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 }
7803 }
7804 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7805 mddev->pers->finish_reshape)
7806 mddev->pers->finish_reshape(mddev);
7807
7808 /* If array is no-longer degraded, then any saved_raid_disk
7809 * information must be scrapped.
7810 */
7811 if (!mddev->degraded)
7812 rdev_for_each(rdev, mddev)
7813 rdev->saved_raid_disk = -1;
7814
7815 md_update_sb(mddev, 1);
7816 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7817 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 /* flag recovery needed just to double check */
7822 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7823 sysfs_notify_dirent_safe(mddev->sysfs_action);
7824 md_new_event(mddev);
7825 if (mddev->event_work.func)
7826 queue_work(md_misc_wq, &mddev->event_work);
7827 }
7828 EXPORT_SYMBOL(md_reap_sync_thread);
7829
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)7830 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7831 {
7832 sysfs_notify_dirent_safe(rdev->sysfs_state);
7833 wait_event_timeout(rdev->blocked_wait,
7834 !test_bit(Blocked, &rdev->flags) &&
7835 !test_bit(BlockedBadBlocks, &rdev->flags),
7836 msecs_to_jiffies(5000));
7837 rdev_dec_pending(rdev, mddev);
7838 }
7839 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7840
md_finish_reshape(struct mddev * mddev)7841 void md_finish_reshape(struct mddev *mddev)
7842 {
7843 /* called be personality module when reshape completes. */
7844 struct md_rdev *rdev;
7845
7846 rdev_for_each(rdev, mddev) {
7847 if (rdev->data_offset > rdev->new_data_offset)
7848 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7849 else
7850 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7851 rdev->data_offset = rdev->new_data_offset;
7852 }
7853 }
7854 EXPORT_SYMBOL(md_finish_reshape);
7855
7856 /* Bad block management.
7857 * We can record which blocks on each device are 'bad' and so just
7858 * fail those blocks, or that stripe, rather than the whole device.
7859 * Entries in the bad-block table are 64bits wide. This comprises:
7860 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7861 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7862 * A 'shift' can be set so that larger blocks are tracked and
7863 * consequently larger devices can be covered.
7864 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7865 *
7866 * Locking of the bad-block table uses a seqlock so md_is_badblock
7867 * might need to retry if it is very unlucky.
7868 * We will sometimes want to check for bad blocks in a bi_end_io function,
7869 * so we use the write_seqlock_irq variant.
7870 *
7871 * When looking for a bad block we specify a range and want to
7872 * know if any block in the range is bad. So we binary-search
7873 * to the last range that starts at-or-before the given endpoint,
7874 * (or "before the sector after the target range")
7875 * then see if it ends after the given start.
7876 * We return
7877 * 0 if there are no known bad blocks in the range
7878 * 1 if there are known bad block which are all acknowledged
7879 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7880 * plus the start/length of the first bad section we overlap.
7881 */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)7882 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7883 sector_t *first_bad, int *bad_sectors)
7884 {
7885 int hi;
7886 int lo;
7887 u64 *p = bb->page;
7888 int rv;
7889 sector_t target = s + sectors;
7890 unsigned seq;
7891
7892 if (bb->shift > 0) {
7893 /* round the start down, and the end up */
7894 s >>= bb->shift;
7895 target += (1<<bb->shift) - 1;
7896 target >>= bb->shift;
7897 sectors = target - s;
7898 }
7899 /* 'target' is now the first block after the bad range */
7900
7901 retry:
7902 seq = read_seqbegin(&bb->lock);
7903 lo = 0;
7904 rv = 0;
7905 hi = bb->count;
7906
7907 /* Binary search between lo and hi for 'target'
7908 * i.e. for the last range that starts before 'target'
7909 */
7910 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7911 * are known not to be the last range before target.
7912 * VARIANT: hi-lo is the number of possible
7913 * ranges, and decreases until it reaches 1
7914 */
7915 while (hi - lo > 1) {
7916 int mid = (lo + hi) / 2;
7917 sector_t a = BB_OFFSET(p[mid]);
7918 if (a < target)
7919 /* This could still be the one, earlier ranges
7920 * could not. */
7921 lo = mid;
7922 else
7923 /* This and later ranges are definitely out. */
7924 hi = mid;
7925 }
7926 /* 'lo' might be the last that started before target, but 'hi' isn't */
7927 if (hi > lo) {
7928 /* need to check all range that end after 's' to see if
7929 * any are unacknowledged.
7930 */
7931 while (lo >= 0 &&
7932 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7933 if (BB_OFFSET(p[lo]) < target) {
7934 /* starts before the end, and finishes after
7935 * the start, so they must overlap
7936 */
7937 if (rv != -1 && BB_ACK(p[lo]))
7938 rv = 1;
7939 else
7940 rv = -1;
7941 *first_bad = BB_OFFSET(p[lo]);
7942 *bad_sectors = BB_LEN(p[lo]);
7943 }
7944 lo--;
7945 }
7946 }
7947
7948 if (read_seqretry(&bb->lock, seq))
7949 goto retry;
7950
7951 return rv;
7952 }
7953 EXPORT_SYMBOL_GPL(md_is_badblock);
7954
7955 /*
7956 * Add a range of bad blocks to the table.
7957 * This might extend the table, or might contract it
7958 * if two adjacent ranges can be merged.
7959 * We binary-search to find the 'insertion' point, then
7960 * decide how best to handle it.
7961 */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)7962 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7963 int acknowledged)
7964 {
7965 u64 *p;
7966 int lo, hi;
7967 int rv = 1;
7968 unsigned long flags;
7969
7970 if (bb->shift < 0)
7971 /* badblocks are disabled */
7972 return 0;
7973
7974 if (bb->shift) {
7975 /* round the start down, and the end up */
7976 sector_t next = s + sectors;
7977 s >>= bb->shift;
7978 next += (1<<bb->shift) - 1;
7979 next >>= bb->shift;
7980 sectors = next - s;
7981 }
7982
7983 write_seqlock_irqsave(&bb->lock, flags);
7984
7985 p = bb->page;
7986 lo = 0;
7987 hi = bb->count;
7988 /* Find the last range that starts at-or-before 's' */
7989 while (hi - lo > 1) {
7990 int mid = (lo + hi) / 2;
7991 sector_t a = BB_OFFSET(p[mid]);
7992 if (a <= s)
7993 lo = mid;
7994 else
7995 hi = mid;
7996 }
7997 if (hi > lo && BB_OFFSET(p[lo]) > s)
7998 hi = lo;
7999
8000 if (hi > lo) {
8001 /* we found a range that might merge with the start
8002 * of our new range
8003 */
8004 sector_t a = BB_OFFSET(p[lo]);
8005 sector_t e = a + BB_LEN(p[lo]);
8006 int ack = BB_ACK(p[lo]);
8007 if (e >= s) {
8008 /* Yes, we can merge with a previous range */
8009 if (s == a && s + sectors >= e)
8010 /* new range covers old */
8011 ack = acknowledged;
8012 else
8013 ack = ack && acknowledged;
8014
8015 if (e < s + sectors)
8016 e = s + sectors;
8017 if (e - a <= BB_MAX_LEN) {
8018 p[lo] = BB_MAKE(a, e-a, ack);
8019 s = e;
8020 } else {
8021 /* does not all fit in one range,
8022 * make p[lo] maximal
8023 */
8024 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8025 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8026 s = a + BB_MAX_LEN;
8027 }
8028 sectors = e - s;
8029 }
8030 }
8031 if (sectors && hi < bb->count) {
8032 /* 'hi' points to the first range that starts after 's'.
8033 * Maybe we can merge with the start of that range */
8034 sector_t a = BB_OFFSET(p[hi]);
8035 sector_t e = a + BB_LEN(p[hi]);
8036 int ack = BB_ACK(p[hi]);
8037 if (a <= s + sectors) {
8038 /* merging is possible */
8039 if (e <= s + sectors) {
8040 /* full overlap */
8041 e = s + sectors;
8042 ack = acknowledged;
8043 } else
8044 ack = ack && acknowledged;
8045
8046 a = s;
8047 if (e - a <= BB_MAX_LEN) {
8048 p[hi] = BB_MAKE(a, e-a, ack);
8049 s = e;
8050 } else {
8051 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8052 s = a + BB_MAX_LEN;
8053 }
8054 sectors = e - s;
8055 lo = hi;
8056 hi++;
8057 }
8058 }
8059 if (sectors == 0 && hi < bb->count) {
8060 /* we might be able to combine lo and hi */
8061 /* Note: 's' is at the end of 'lo' */
8062 sector_t a = BB_OFFSET(p[hi]);
8063 int lolen = BB_LEN(p[lo]);
8064 int hilen = BB_LEN(p[hi]);
8065 int newlen = lolen + hilen - (s - a);
8066 if (s >= a && newlen < BB_MAX_LEN) {
8067 /* yes, we can combine them */
8068 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8069 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8070 memmove(p + hi, p + hi + 1,
8071 (bb->count - hi - 1) * 8);
8072 bb->count--;
8073 }
8074 }
8075 while (sectors) {
8076 /* didn't merge (it all).
8077 * Need to add a range just before 'hi' */
8078 if (bb->count >= MD_MAX_BADBLOCKS) {
8079 /* No room for more */
8080 rv = 0;
8081 break;
8082 } else {
8083 int this_sectors = sectors;
8084 memmove(p + hi + 1, p + hi,
8085 (bb->count - hi) * 8);
8086 bb->count++;
8087
8088 if (this_sectors > BB_MAX_LEN)
8089 this_sectors = BB_MAX_LEN;
8090 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8091 sectors -= this_sectors;
8092 s += this_sectors;
8093 }
8094 }
8095
8096 bb->changed = 1;
8097 if (!acknowledged)
8098 bb->unacked_exist = 1;
8099 write_sequnlock_irqrestore(&bb->lock, flags);
8100
8101 return rv;
8102 }
8103
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8104 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8105 int is_new)
8106 {
8107 int rv;
8108 if (is_new)
8109 s += rdev->new_data_offset;
8110 else
8111 s += rdev->data_offset;
8112 rv = md_set_badblocks(&rdev->badblocks,
8113 s, sectors, 0);
8114 if (rv) {
8115 /* Make sure they get written out promptly */
8116 sysfs_notify_dirent_safe(rdev->sysfs_state);
8117 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8118 md_wakeup_thread(rdev->mddev->thread);
8119 }
8120 return rv;
8121 }
8122 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8123
8124 /*
8125 * Remove a range of bad blocks from the table.
8126 * This may involve extending the table if we spilt a region,
8127 * but it must not fail. So if the table becomes full, we just
8128 * drop the remove request.
8129 */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8130 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8131 {
8132 u64 *p;
8133 int lo, hi;
8134 sector_t target = s + sectors;
8135 int rv = 0;
8136
8137 if (bb->shift > 0) {
8138 /* When clearing we round the start up and the end down.
8139 * This should not matter as the shift should align with
8140 * the block size and no rounding should ever be needed.
8141 * However it is better the think a block is bad when it
8142 * isn't than to think a block is not bad when it is.
8143 */
8144 s += (1<<bb->shift) - 1;
8145 s >>= bb->shift;
8146 target >>= bb->shift;
8147 sectors = target - s;
8148 }
8149
8150 write_seqlock_irq(&bb->lock);
8151
8152 p = bb->page;
8153 lo = 0;
8154 hi = bb->count;
8155 /* Find the last range that starts before 'target' */
8156 while (hi - lo > 1) {
8157 int mid = (lo + hi) / 2;
8158 sector_t a = BB_OFFSET(p[mid]);
8159 if (a < target)
8160 lo = mid;
8161 else
8162 hi = mid;
8163 }
8164 if (hi > lo) {
8165 /* p[lo] is the last range that could overlap the
8166 * current range. Earlier ranges could also overlap,
8167 * but only this one can overlap the end of the range.
8168 */
8169 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8170 /* Partial overlap, leave the tail of this range */
8171 int ack = BB_ACK(p[lo]);
8172 sector_t a = BB_OFFSET(p[lo]);
8173 sector_t end = a + BB_LEN(p[lo]);
8174
8175 if (a < s) {
8176 /* we need to split this range */
8177 if (bb->count >= MD_MAX_BADBLOCKS) {
8178 rv = -ENOSPC;
8179 goto out;
8180 }
8181 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8182 bb->count++;
8183 p[lo] = BB_MAKE(a, s-a, ack);
8184 lo++;
8185 }
8186 p[lo] = BB_MAKE(target, end - target, ack);
8187 /* there is no longer an overlap */
8188 hi = lo;
8189 lo--;
8190 }
8191 while (lo >= 0 &&
8192 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8193 /* This range does overlap */
8194 if (BB_OFFSET(p[lo]) < s) {
8195 /* Keep the early parts of this range. */
8196 int ack = BB_ACK(p[lo]);
8197 sector_t start = BB_OFFSET(p[lo]);
8198 p[lo] = BB_MAKE(start, s - start, ack);
8199 /* now low doesn't overlap, so.. */
8200 break;
8201 }
8202 lo--;
8203 }
8204 /* 'lo' is strictly before, 'hi' is strictly after,
8205 * anything between needs to be discarded
8206 */
8207 if (hi - lo > 1) {
8208 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8209 bb->count -= (hi - lo - 1);
8210 }
8211 }
8212
8213 bb->changed = 1;
8214 out:
8215 write_sequnlock_irq(&bb->lock);
8216 return rv;
8217 }
8218
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8219 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8220 int is_new)
8221 {
8222 if (is_new)
8223 s += rdev->new_data_offset;
8224 else
8225 s += rdev->data_offset;
8226 return md_clear_badblocks(&rdev->badblocks,
8227 s, sectors);
8228 }
8229 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8230
8231 /*
8232 * Acknowledge all bad blocks in a list.
8233 * This only succeeds if ->changed is clear. It is used by
8234 * in-kernel metadata updates
8235 */
md_ack_all_badblocks(struct badblocks * bb)8236 void md_ack_all_badblocks(struct badblocks *bb)
8237 {
8238 if (bb->page == NULL || bb->changed)
8239 /* no point even trying */
8240 return;
8241 write_seqlock_irq(&bb->lock);
8242
8243 if (bb->changed == 0 && bb->unacked_exist) {
8244 u64 *p = bb->page;
8245 int i;
8246 for (i = 0; i < bb->count ; i++) {
8247 if (!BB_ACK(p[i])) {
8248 sector_t start = BB_OFFSET(p[i]);
8249 int len = BB_LEN(p[i]);
8250 p[i] = BB_MAKE(start, len, 1);
8251 }
8252 }
8253 bb->unacked_exist = 0;
8254 }
8255 write_sequnlock_irq(&bb->lock);
8256 }
8257 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8258
8259 /* sysfs access to bad-blocks list.
8260 * We present two files.
8261 * 'bad-blocks' lists sector numbers and lengths of ranges that
8262 * are recorded as bad. The list is truncated to fit within
8263 * the one-page limit of sysfs.
8264 * Writing "sector length" to this file adds an acknowledged
8265 * bad block list.
8266 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8267 * been acknowledged. Writing to this file adds bad blocks
8268 * without acknowledging them. This is largely for testing.
8269 */
8270
8271 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8272 badblocks_show(struct badblocks *bb, char *page, int unack)
8273 {
8274 size_t len;
8275 int i;
8276 u64 *p = bb->page;
8277 unsigned seq;
8278
8279 if (bb->shift < 0)
8280 return 0;
8281
8282 retry:
8283 seq = read_seqbegin(&bb->lock);
8284
8285 len = 0;
8286 i = 0;
8287
8288 while (len < PAGE_SIZE && i < bb->count) {
8289 sector_t s = BB_OFFSET(p[i]);
8290 unsigned int length = BB_LEN(p[i]);
8291 int ack = BB_ACK(p[i]);
8292 i++;
8293
8294 if (unack && ack)
8295 continue;
8296
8297 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8298 (unsigned long long)s << bb->shift,
8299 length << bb->shift);
8300 }
8301 if (unack && len == 0)
8302 bb->unacked_exist = 0;
8303
8304 if (read_seqretry(&bb->lock, seq))
8305 goto retry;
8306
8307 return len;
8308 }
8309
8310 #define DO_DEBUG 1
8311
8312 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8313 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8314 {
8315 unsigned long long sector;
8316 int length;
8317 char newline;
8318 #ifdef DO_DEBUG
8319 /* Allow clearing via sysfs *only* for testing/debugging.
8320 * Normally only a successful write may clear a badblock
8321 */
8322 int clear = 0;
8323 if (page[0] == '-') {
8324 clear = 1;
8325 page++;
8326 }
8327 #endif /* DO_DEBUG */
8328
8329 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8330 case 3:
8331 if (newline != '\n')
8332 return -EINVAL;
8333 case 2:
8334 if (length <= 0)
8335 return -EINVAL;
8336 break;
8337 default:
8338 return -EINVAL;
8339 }
8340
8341 #ifdef DO_DEBUG
8342 if (clear) {
8343 md_clear_badblocks(bb, sector, length);
8344 return len;
8345 }
8346 #endif /* DO_DEBUG */
8347 if (md_set_badblocks(bb, sector, length, !unack))
8348 return len;
8349 else
8350 return -ENOSPC;
8351 }
8352
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8353 static int md_notify_reboot(struct notifier_block *this,
8354 unsigned long code, void *x)
8355 {
8356 struct list_head *tmp;
8357 struct mddev *mddev;
8358 int need_delay = 0;
8359
8360 for_each_mddev(mddev, tmp) {
8361 if (mddev_trylock(mddev)) {
8362 if (mddev->pers)
8363 __md_stop_writes(mddev);
8364 if (mddev->persistent)
8365 mddev->safemode = 2;
8366 mddev_unlock(mddev);
8367 }
8368 need_delay = 1;
8369 }
8370 /*
8371 * certain more exotic SCSI devices are known to be
8372 * volatile wrt too early system reboots. While the
8373 * right place to handle this issue is the given
8374 * driver, we do want to have a safe RAID driver ...
8375 */
8376 if (need_delay)
8377 mdelay(1000*1);
8378
8379 return NOTIFY_DONE;
8380 }
8381
8382 static struct notifier_block md_notifier = {
8383 .notifier_call = md_notify_reboot,
8384 .next = NULL,
8385 .priority = INT_MAX, /* before any real devices */
8386 };
8387
md_geninit(void)8388 static void md_geninit(void)
8389 {
8390 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8391
8392 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8393 }
8394
md_init(void)8395 static int __init md_init(void)
8396 {
8397 int ret = -ENOMEM;
8398
8399 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8400 if (!md_wq)
8401 goto err_wq;
8402
8403 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8404 if (!md_misc_wq)
8405 goto err_misc_wq;
8406
8407 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8408 goto err_md;
8409
8410 if ((ret = register_blkdev(0, "mdp")) < 0)
8411 goto err_mdp;
8412 mdp_major = ret;
8413
8414 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8415 md_probe, NULL, NULL);
8416 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8417 md_probe, NULL, NULL);
8418
8419 register_reboot_notifier(&md_notifier);
8420 raid_table_header = register_sysctl_table(raid_root_table);
8421
8422 md_geninit();
8423 return 0;
8424
8425 err_mdp:
8426 unregister_blkdev(MD_MAJOR, "md");
8427 err_md:
8428 destroy_workqueue(md_misc_wq);
8429 err_misc_wq:
8430 destroy_workqueue(md_wq);
8431 err_wq:
8432 return ret;
8433 }
8434
8435 #ifndef MODULE
8436
8437 /*
8438 * Searches all registered partitions for autorun RAID arrays
8439 * at boot time.
8440 */
8441
8442 static LIST_HEAD(all_detected_devices);
8443 struct detected_devices_node {
8444 struct list_head list;
8445 dev_t dev;
8446 };
8447
md_autodetect_dev(dev_t dev)8448 void md_autodetect_dev(dev_t dev)
8449 {
8450 struct detected_devices_node *node_detected_dev;
8451
8452 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8453 if (node_detected_dev) {
8454 node_detected_dev->dev = dev;
8455 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8456 } else {
8457 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8458 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8459 }
8460 }
8461
autostart_arrays(int part)8462 static void autostart_arrays(int part)
8463 {
8464 struct md_rdev *rdev;
8465 struct detected_devices_node *node_detected_dev;
8466 dev_t dev;
8467 int i_scanned, i_passed;
8468
8469 i_scanned = 0;
8470 i_passed = 0;
8471
8472 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8473
8474 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8475 i_scanned++;
8476 node_detected_dev = list_entry(all_detected_devices.next,
8477 struct detected_devices_node, list);
8478 list_del(&node_detected_dev->list);
8479 dev = node_detected_dev->dev;
8480 kfree(node_detected_dev);
8481 rdev = md_import_device(dev,0, 90);
8482 if (IS_ERR(rdev))
8483 continue;
8484
8485 if (test_bit(Faulty, &rdev->flags))
8486 continue;
8487
8488 set_bit(AutoDetected, &rdev->flags);
8489 list_add(&rdev->same_set, &pending_raid_disks);
8490 i_passed++;
8491 }
8492
8493 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8494 i_scanned, i_passed);
8495
8496 autorun_devices(part);
8497 }
8498
8499 #endif /* !MODULE */
8500
md_exit(void)8501 static __exit void md_exit(void)
8502 {
8503 struct mddev *mddev;
8504 struct list_head *tmp;
8505 int delay = 1;
8506
8507 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8508 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8509
8510 unregister_blkdev(MD_MAJOR,"md");
8511 unregister_blkdev(mdp_major, "mdp");
8512 unregister_reboot_notifier(&md_notifier);
8513 unregister_sysctl_table(raid_table_header);
8514
8515 /* We cannot unload the modules while some process is
8516 * waiting for us in select() or poll() - wake them up
8517 */
8518 md_unloading = 1;
8519 while (waitqueue_active(&md_event_waiters)) {
8520 /* not safe to leave yet */
8521 wake_up(&md_event_waiters);
8522 msleep(delay);
8523 delay += delay;
8524 }
8525 remove_proc_entry("mdstat", NULL);
8526
8527 for_each_mddev(mddev, tmp) {
8528 export_array(mddev);
8529 mddev->hold_active = 0;
8530 }
8531 destroy_workqueue(md_misc_wq);
8532 destroy_workqueue(md_wq);
8533 }
8534
8535 subsys_initcall(md_init);
module_exit(md_exit)8536 module_exit(md_exit)
8537
8538 static int get_ro(char *buffer, struct kernel_param *kp)
8539 {
8540 return sprintf(buffer, "%d", start_readonly);
8541 }
set_ro(const char * val,struct kernel_param * kp)8542 static int set_ro(const char *val, struct kernel_param *kp)
8543 {
8544 char *e;
8545 int num = simple_strtoul(val, &e, 10);
8546 if (*val && (*e == '\0' || *e == '\n')) {
8547 start_readonly = num;
8548 return 0;
8549 }
8550 return -EINVAL;
8551 }
8552
8553 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8554 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8555 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8556
8557 MODULE_LICENSE("GPL");
8558 MODULE_DESCRIPTION("MD RAID framework");
8559 MODULE_ALIAS("md");
8560 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8561