• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
r1bio_pool_free(void * r1_bio,void * data)82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
r1buf_pool_free(void * __r1_bio,void * data)160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
free_r1bio(struct r1bio * r1_bio)191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
put_buf(struct r1bio * r1_bio)199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
reschedule_retry(struct r1bio * r1_bio)215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
call_bio_endio(struct r1bio * r1_bio)235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
raid_end_bio_io(struct r1bio * r1_bio)269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
update_head_pos(int disk,struct r1bio * r1_bio)288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
raid1_end_read_request(struct bio * bio,int error)315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
close_write(struct r1bio * r1_bio)365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
r1_bio_write_done(struct r1bio * r1_bio)384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
raid1_end_write_request(struct bio * bio,int error)400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543 
544 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 		sector_t dist;
546 		sector_t first_bad;
547 		int bad_sectors;
548 		unsigned int pending;
549 		bool nonrot;
550 
551 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 		if (r1_bio->bios[disk] == IO_BLOCKED
553 		    || rdev == NULL
554 		    || test_bit(Unmerged, &rdev->flags)
555 		    || test_bit(Faulty, &rdev->flags))
556 			continue;
557 		if (!test_bit(In_sync, &rdev->flags) &&
558 		    rdev->recovery_offset < this_sector + sectors)
559 			continue;
560 		if (test_bit(WriteMostly, &rdev->flags)) {
561 			/* Don't balance among write-mostly, just
562 			 * use the first as a last resort */
563 			if (best_dist_disk < 0) {
564 				if (is_badblock(rdev, this_sector, sectors,
565 						&first_bad, &bad_sectors)) {
566 					if (first_bad <= this_sector)
567 						/* Cannot use this */
568 						continue;
569 					best_good_sectors = first_bad - this_sector;
570 				} else
571 					best_good_sectors = sectors;
572 				best_dist_disk = disk;
573 				best_pending_disk = disk;
574 			}
575 			continue;
576 		}
577 		/* This is a reasonable device to use.  It might
578 		 * even be best.
579 		 */
580 		if (is_badblock(rdev, this_sector, sectors,
581 				&first_bad, &bad_sectors)) {
582 			if (best_dist < MaxSector)
583 				/* already have a better device */
584 				continue;
585 			if (first_bad <= this_sector) {
586 				/* cannot read here. If this is the 'primary'
587 				 * device, then we must not read beyond
588 				 * bad_sectors from another device..
589 				 */
590 				bad_sectors -= (this_sector - first_bad);
591 				if (choose_first && sectors > bad_sectors)
592 					sectors = bad_sectors;
593 				if (best_good_sectors > sectors)
594 					best_good_sectors = sectors;
595 
596 			} else {
597 				sector_t good_sectors = first_bad - this_sector;
598 				if (good_sectors > best_good_sectors) {
599 					best_good_sectors = good_sectors;
600 					best_disk = disk;
601 				}
602 				if (choose_first)
603 					break;
604 			}
605 			continue;
606 		} else
607 			best_good_sectors = sectors;
608 
609 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 		has_nonrot_disk |= nonrot;
611 		pending = atomic_read(&rdev->nr_pending);
612 		dist = abs(this_sector - conf->mirrors[disk].head_position);
613 		if (choose_first) {
614 			best_disk = disk;
615 			break;
616 		}
617 		/* Don't change to another disk for sequential reads */
618 		if (conf->mirrors[disk].next_seq_sect == this_sector
619 		    || dist == 0) {
620 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 			struct raid1_info *mirror = &conf->mirrors[disk];
622 
623 			best_disk = disk;
624 			/*
625 			 * If buffered sequential IO size exceeds optimal
626 			 * iosize, check if there is idle disk. If yes, choose
627 			 * the idle disk. read_balance could already choose an
628 			 * idle disk before noticing it's a sequential IO in
629 			 * this disk. This doesn't matter because this disk
630 			 * will idle, next time it will be utilized after the
631 			 * first disk has IO size exceeds optimal iosize. In
632 			 * this way, iosize of the first disk will be optimal
633 			 * iosize at least. iosize of the second disk might be
634 			 * small, but not a big deal since when the second disk
635 			 * starts IO, the first disk is likely still busy.
636 			 */
637 			if (nonrot && opt_iosize > 0 &&
638 			    mirror->seq_start != MaxSector &&
639 			    mirror->next_seq_sect > opt_iosize &&
640 			    mirror->next_seq_sect - opt_iosize >=
641 			    mirror->seq_start) {
642 				choose_next_idle = 1;
643 				continue;
644 			}
645 			break;
646 		}
647 		/* If device is idle, use it */
648 		if (pending == 0) {
649 			best_disk = disk;
650 			break;
651 		}
652 
653 		if (choose_next_idle)
654 			continue;
655 
656 		if (min_pending > pending) {
657 			min_pending = pending;
658 			best_pending_disk = disk;
659 		}
660 
661 		if (dist < best_dist) {
662 			best_dist = dist;
663 			best_dist_disk = disk;
664 		}
665 	}
666 
667 	/*
668 	 * If all disks are rotational, choose the closest disk. If any disk is
669 	 * non-rotational, choose the disk with less pending request even the
670 	 * disk is rotational, which might/might not be optimal for raids with
671 	 * mixed ratation/non-rotational disks depending on workload.
672 	 */
673 	if (best_disk == -1) {
674 		if (has_nonrot_disk)
675 			best_disk = best_pending_disk;
676 		else
677 			best_disk = best_dist_disk;
678 	}
679 
680 	if (best_disk >= 0) {
681 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 		if (!rdev)
683 			goto retry;
684 		atomic_inc(&rdev->nr_pending);
685 		if (test_bit(Faulty, &rdev->flags)) {
686 			/* cannot risk returning a device that failed
687 			 * before we inc'ed nr_pending
688 			 */
689 			rdev_dec_pending(rdev, conf->mddev);
690 			goto retry;
691 		}
692 		sectors = best_good_sectors;
693 
694 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 			conf->mirrors[best_disk].seq_start = this_sector;
696 
697 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 	}
699 	rcu_read_unlock();
700 	*max_sectors = sectors;
701 
702 	return best_disk;
703 }
704 
raid1_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)705 static int raid1_mergeable_bvec(struct request_queue *q,
706 				struct bvec_merge_data *bvm,
707 				struct bio_vec *biovec)
708 {
709 	struct mddev *mddev = q->queuedata;
710 	struct r1conf *conf = mddev->private;
711 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 	int max = biovec->bv_len;
713 
714 	if (mddev->merge_check_needed) {
715 		int disk;
716 		rcu_read_lock();
717 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 			struct md_rdev *rdev = rcu_dereference(
719 				conf->mirrors[disk].rdev);
720 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 				struct request_queue *q =
722 					bdev_get_queue(rdev->bdev);
723 				if (q->merge_bvec_fn) {
724 					bvm->bi_sector = sector +
725 						rdev->data_offset;
726 					bvm->bi_bdev = rdev->bdev;
727 					max = min(max, q->merge_bvec_fn(
728 							  q, bvm, biovec));
729 				}
730 			}
731 		}
732 		rcu_read_unlock();
733 	}
734 	return max;
735 
736 }
737 
md_raid1_congested(struct mddev * mddev,int bits)738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740 	struct r1conf *conf = mddev->private;
741 	int i, ret = 0;
742 
743 	if ((bits & (1 << BDI_async_congested)) &&
744 	    conf->pending_count >= max_queued_requests)
745 		return 1;
746 
747 	rcu_read_lock();
748 	for (i = 0; i < conf->raid_disks * 2; i++) {
749 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 			struct request_queue *q = bdev_get_queue(rdev->bdev);
752 
753 			BUG_ON(!q);
754 
755 			/* Note the '|| 1' - when read_balance prefers
756 			 * non-congested targets, it can be removed
757 			 */
758 			if ((bits & (1<<BDI_async_congested)) || 1)
759 				ret |= bdi_congested(&q->backing_dev_info, bits);
760 			else
761 				ret &= bdi_congested(&q->backing_dev_info, bits);
762 		}
763 	}
764 	rcu_read_unlock();
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768 
raid1_congested(void * data,int bits)769 static int raid1_congested(void *data, int bits)
770 {
771 	struct mddev *mddev = data;
772 
773 	return mddev_congested(mddev, bits) ||
774 		md_raid1_congested(mddev, bits);
775 }
776 
flush_pending_writes(struct r1conf * conf)777 static void flush_pending_writes(struct r1conf *conf)
778 {
779 	/* Any writes that have been queued but are awaiting
780 	 * bitmap updates get flushed here.
781 	 */
782 	spin_lock_irq(&conf->device_lock);
783 
784 	if (conf->pending_bio_list.head) {
785 		struct bio *bio;
786 		bio = bio_list_get(&conf->pending_bio_list);
787 		conf->pending_count = 0;
788 		spin_unlock_irq(&conf->device_lock);
789 		/* flush any pending bitmap writes to
790 		 * disk before proceeding w/ I/O */
791 		bitmap_unplug(conf->mddev->bitmap);
792 		wake_up(&conf->wait_barrier);
793 
794 		while (bio) { /* submit pending writes */
795 			struct bio *next = bio->bi_next;
796 			bio->bi_next = NULL;
797 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 				/* Just ignore it */
800 				bio_endio(bio, 0);
801 			else
802 				generic_make_request(bio);
803 			bio = next;
804 		}
805 	} else
806 		spin_unlock_irq(&conf->device_lock);
807 }
808 
809 /* Barriers....
810  * Sometimes we need to suspend IO while we do something else,
811  * either some resync/recovery, or reconfigure the array.
812  * To do this we raise a 'barrier'.
813  * The 'barrier' is a counter that can be raised multiple times
814  * to count how many activities are happening which preclude
815  * normal IO.
816  * We can only raise the barrier if there is no pending IO.
817  * i.e. if nr_pending == 0.
818  * We choose only to raise the barrier if no-one is waiting for the
819  * barrier to go down.  This means that as soon as an IO request
820  * is ready, no other operations which require a barrier will start
821  * until the IO request has had a chance.
822  *
823  * So: regular IO calls 'wait_barrier'.  When that returns there
824  *    is no backgroup IO happening,  It must arrange to call
825  *    allow_barrier when it has finished its IO.
826  * backgroup IO calls must call raise_barrier.  Once that returns
827  *    there is no normal IO happeing.  It must arrange to call
828  *    lower_barrier when the particular background IO completes.
829  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)830 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
831 {
832 	spin_lock_irq(&conf->resync_lock);
833 
834 	/* Wait until no block IO is waiting */
835 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836 			    conf->resync_lock);
837 
838 	/* block any new IO from starting */
839 	conf->barrier++;
840 	conf->next_resync = sector_nr;
841 
842 	/* For these conditions we must wait:
843 	 * A: while the array is in frozen state
844 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 	 *    the max count which allowed.
846 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 	 *    next resync will reach to the window which normal bios are
848 	 *    handling.
849 	 * D: while there are any active requests in the current window.
850 	 */
851 	wait_event_lock_irq(conf->wait_barrier,
852 			    !conf->array_frozen &&
853 			    conf->barrier < RESYNC_DEPTH &&
854 			    conf->current_window_requests == 0 &&
855 			    (conf->start_next_window >=
856 			     conf->next_resync + RESYNC_SECTORS),
857 			    conf->resync_lock);
858 
859 	conf->nr_pending++;
860 	spin_unlock_irq(&conf->resync_lock);
861 }
862 
lower_barrier(struct r1conf * conf)863 static void lower_barrier(struct r1conf *conf)
864 {
865 	unsigned long flags;
866 	BUG_ON(conf->barrier <= 0);
867 	spin_lock_irqsave(&conf->resync_lock, flags);
868 	conf->barrier--;
869 	conf->nr_pending--;
870 	spin_unlock_irqrestore(&conf->resync_lock, flags);
871 	wake_up(&conf->wait_barrier);
872 }
873 
need_to_wait_for_sync(struct r1conf * conf,struct bio * bio)874 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
875 {
876 	bool wait = false;
877 
878 	if (conf->array_frozen || !bio)
879 		wait = true;
880 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
881 		if ((conf->mddev->curr_resync_completed
882 		     >= bio_end_sector(bio)) ||
883 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
884 		     <= bio->bi_iter.bi_sector))
885 			wait = false;
886 		else
887 			wait = true;
888 	}
889 
890 	return wait;
891 }
892 
wait_barrier(struct r1conf * conf,struct bio * bio)893 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
894 {
895 	sector_t sector = 0;
896 
897 	spin_lock_irq(&conf->resync_lock);
898 	if (need_to_wait_for_sync(conf, bio)) {
899 		conf->nr_waiting++;
900 		/* Wait for the barrier to drop.
901 		 * However if there are already pending
902 		 * requests (preventing the barrier from
903 		 * rising completely), and the
904 		 * per-process bio queue isn't empty,
905 		 * then don't wait, as we need to empty
906 		 * that queue to allow conf->start_next_window
907 		 * to increase.
908 		 */
909 		wait_event_lock_irq(conf->wait_barrier,
910 				    !conf->array_frozen &&
911 				    (!conf->barrier ||
912 				     ((conf->start_next_window <
913 				       conf->next_resync + RESYNC_SECTORS) &&
914 				      current->bio_list &&
915 				      !bio_list_empty(current->bio_list))),
916 				    conf->resync_lock);
917 		conf->nr_waiting--;
918 	}
919 
920 	if (bio && bio_data_dir(bio) == WRITE) {
921 		if (bio->bi_iter.bi_sector >=
922 		    conf->mddev->curr_resync_completed) {
923 			if (conf->start_next_window == MaxSector)
924 				conf->start_next_window =
925 					conf->next_resync +
926 					NEXT_NORMALIO_DISTANCE;
927 
928 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
929 			    <= bio->bi_iter.bi_sector)
930 				conf->next_window_requests++;
931 			else
932 				conf->current_window_requests++;
933 			sector = conf->start_next_window;
934 		}
935 	}
936 
937 	conf->nr_pending++;
938 	spin_unlock_irq(&conf->resync_lock);
939 	return sector;
940 }
941 
allow_barrier(struct r1conf * conf,sector_t start_next_window,sector_t bi_sector)942 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
943 			  sector_t bi_sector)
944 {
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&conf->resync_lock, flags);
948 	conf->nr_pending--;
949 	if (start_next_window) {
950 		if (start_next_window == conf->start_next_window) {
951 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
952 			    <= bi_sector)
953 				conf->next_window_requests--;
954 			else
955 				conf->current_window_requests--;
956 		} else
957 			conf->current_window_requests--;
958 
959 		if (!conf->current_window_requests) {
960 			if (conf->next_window_requests) {
961 				conf->current_window_requests =
962 					conf->next_window_requests;
963 				conf->next_window_requests = 0;
964 				conf->start_next_window +=
965 					NEXT_NORMALIO_DISTANCE;
966 			} else
967 				conf->start_next_window = MaxSector;
968 		}
969 	}
970 	spin_unlock_irqrestore(&conf->resync_lock, flags);
971 	wake_up(&conf->wait_barrier);
972 }
973 
freeze_array(struct r1conf * conf,int extra)974 static void freeze_array(struct r1conf *conf, int extra)
975 {
976 	/* stop syncio and normal IO and wait for everything to
977 	 * go quite.
978 	 * We wait until nr_pending match nr_queued+extra
979 	 * This is called in the context of one normal IO request
980 	 * that has failed. Thus any sync request that might be pending
981 	 * will be blocked by nr_pending, and we need to wait for
982 	 * pending IO requests to complete or be queued for re-try.
983 	 * Thus the number queued (nr_queued) plus this request (extra)
984 	 * must match the number of pending IOs (nr_pending) before
985 	 * we continue.
986 	 */
987 	spin_lock_irq(&conf->resync_lock);
988 	conf->array_frozen = 1;
989 	wait_event_lock_irq_cmd(conf->wait_barrier,
990 				conf->nr_pending == conf->nr_queued+extra,
991 				conf->resync_lock,
992 				flush_pending_writes(conf));
993 	spin_unlock_irq(&conf->resync_lock);
994 }
unfreeze_array(struct r1conf * conf)995 static void unfreeze_array(struct r1conf *conf)
996 {
997 	/* reverse the effect of the freeze */
998 	spin_lock_irq(&conf->resync_lock);
999 	conf->array_frozen = 0;
1000 	wake_up(&conf->wait_barrier);
1001 	spin_unlock_irq(&conf->resync_lock);
1002 }
1003 
1004 /* duplicate the data pages for behind I/O
1005  */
alloc_behind_pages(struct bio * bio,struct r1bio * r1_bio)1006 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1007 {
1008 	int i;
1009 	struct bio_vec *bvec;
1010 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1011 					GFP_NOIO);
1012 	if (unlikely(!bvecs))
1013 		return;
1014 
1015 	bio_for_each_segment_all(bvec, bio, i) {
1016 		bvecs[i] = *bvec;
1017 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1018 		if (unlikely(!bvecs[i].bv_page))
1019 			goto do_sync_io;
1020 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1021 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1022 		kunmap(bvecs[i].bv_page);
1023 		kunmap(bvec->bv_page);
1024 	}
1025 	r1_bio->behind_bvecs = bvecs;
1026 	r1_bio->behind_page_count = bio->bi_vcnt;
1027 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1028 	return;
1029 
1030 do_sync_io:
1031 	for (i = 0; i < bio->bi_vcnt; i++)
1032 		if (bvecs[i].bv_page)
1033 			put_page(bvecs[i].bv_page);
1034 	kfree(bvecs);
1035 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1036 		 bio->bi_iter.bi_size);
1037 }
1038 
1039 struct raid1_plug_cb {
1040 	struct blk_plug_cb	cb;
1041 	struct bio_list		pending;
1042 	int			pending_cnt;
1043 };
1044 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1045 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1046 {
1047 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1048 						  cb);
1049 	struct mddev *mddev = plug->cb.data;
1050 	struct r1conf *conf = mddev->private;
1051 	struct bio *bio;
1052 
1053 	if (from_schedule || current->bio_list) {
1054 		spin_lock_irq(&conf->device_lock);
1055 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1056 		conf->pending_count += plug->pending_cnt;
1057 		spin_unlock_irq(&conf->device_lock);
1058 		wake_up(&conf->wait_barrier);
1059 		md_wakeup_thread(mddev->thread);
1060 		kfree(plug);
1061 		return;
1062 	}
1063 
1064 	/* we aren't scheduling, so we can do the write-out directly. */
1065 	bio = bio_list_get(&plug->pending);
1066 	bitmap_unplug(mddev->bitmap);
1067 	wake_up(&conf->wait_barrier);
1068 
1069 	while (bio) { /* submit pending writes */
1070 		struct bio *next = bio->bi_next;
1071 		bio->bi_next = NULL;
1072 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1073 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1074 			/* Just ignore it */
1075 			bio_endio(bio, 0);
1076 		else
1077 			generic_make_request(bio);
1078 		bio = next;
1079 	}
1080 	kfree(plug);
1081 }
1082 
make_request(struct mddev * mddev,struct bio * bio)1083 static void make_request(struct mddev *mddev, struct bio * bio)
1084 {
1085 	struct r1conf *conf = mddev->private;
1086 	struct raid1_info *mirror;
1087 	struct r1bio *r1_bio;
1088 	struct bio *read_bio;
1089 	int i, disks;
1090 	struct bitmap *bitmap;
1091 	unsigned long flags;
1092 	const int rw = bio_data_dir(bio);
1093 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1094 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1095 	const unsigned long do_discard = (bio->bi_rw
1096 					  & (REQ_DISCARD | REQ_SECURE));
1097 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1098 	struct md_rdev *blocked_rdev;
1099 	struct blk_plug_cb *cb;
1100 	struct raid1_plug_cb *plug = NULL;
1101 	int first_clone;
1102 	int sectors_handled;
1103 	int max_sectors;
1104 	sector_t start_next_window;
1105 
1106 	/*
1107 	 * Register the new request and wait if the reconstruction
1108 	 * thread has put up a bar for new requests.
1109 	 * Continue immediately if no resync is active currently.
1110 	 */
1111 
1112 	md_write_start(mddev, bio); /* wait on superblock update early */
1113 
1114 	if (bio_data_dir(bio) == WRITE &&
1115 	    bio_end_sector(bio) > mddev->suspend_lo &&
1116 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1117 		/* As the suspend_* range is controlled by
1118 		 * userspace, we want an interruptible
1119 		 * wait.
1120 		 */
1121 		DEFINE_WAIT(w);
1122 		for (;;) {
1123 			sigset_t full, old;
1124 			prepare_to_wait(&conf->wait_barrier,
1125 					&w, TASK_INTERRUPTIBLE);
1126 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1127 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1128 				break;
1129 			sigfillset(&full);
1130 			sigprocmask(SIG_BLOCK, &full, &old);
1131 			schedule();
1132 			sigprocmask(SIG_SETMASK, &old, NULL);
1133 		}
1134 		finish_wait(&conf->wait_barrier, &w);
1135 	}
1136 
1137 	start_next_window = wait_barrier(conf, bio);
1138 
1139 	bitmap = mddev->bitmap;
1140 
1141 	/*
1142 	 * make_request() can abort the operation when READA is being
1143 	 * used and no empty request is available.
1144 	 *
1145 	 */
1146 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1147 
1148 	r1_bio->master_bio = bio;
1149 	r1_bio->sectors = bio_sectors(bio);
1150 	r1_bio->state = 0;
1151 	r1_bio->mddev = mddev;
1152 	r1_bio->sector = bio->bi_iter.bi_sector;
1153 
1154 	/* We might need to issue multiple reads to different
1155 	 * devices if there are bad blocks around, so we keep
1156 	 * track of the number of reads in bio->bi_phys_segments.
1157 	 * If this is 0, there is only one r1_bio and no locking
1158 	 * will be needed when requests complete.  If it is
1159 	 * non-zero, then it is the number of not-completed requests.
1160 	 */
1161 	bio->bi_phys_segments = 0;
1162 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1163 
1164 	if (rw == READ) {
1165 		/*
1166 		 * read balancing logic:
1167 		 */
1168 		int rdisk;
1169 
1170 read_again:
1171 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1172 
1173 		if (rdisk < 0) {
1174 			/* couldn't find anywhere to read from */
1175 			raid_end_bio_io(r1_bio);
1176 			return;
1177 		}
1178 		mirror = conf->mirrors + rdisk;
1179 
1180 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1181 		    bitmap) {
1182 			/* Reading from a write-mostly device must
1183 			 * take care not to over-take any writes
1184 			 * that are 'behind'
1185 			 */
1186 			wait_event(bitmap->behind_wait,
1187 				   atomic_read(&bitmap->behind_writes) == 0);
1188 		}
1189 		r1_bio->read_disk = rdisk;
1190 		r1_bio->start_next_window = 0;
1191 
1192 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1193 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1194 			 max_sectors);
1195 
1196 		r1_bio->bios[rdisk] = read_bio;
1197 
1198 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1199 			mirror->rdev->data_offset;
1200 		read_bio->bi_bdev = mirror->rdev->bdev;
1201 		read_bio->bi_end_io = raid1_end_read_request;
1202 		read_bio->bi_rw = READ | do_sync;
1203 		read_bio->bi_private = r1_bio;
1204 
1205 		if (max_sectors < r1_bio->sectors) {
1206 			/* could not read all from this device, so we will
1207 			 * need another r1_bio.
1208 			 */
1209 
1210 			sectors_handled = (r1_bio->sector + max_sectors
1211 					   - bio->bi_iter.bi_sector);
1212 			r1_bio->sectors = max_sectors;
1213 			spin_lock_irq(&conf->device_lock);
1214 			if (bio->bi_phys_segments == 0)
1215 				bio->bi_phys_segments = 2;
1216 			else
1217 				bio->bi_phys_segments++;
1218 			spin_unlock_irq(&conf->device_lock);
1219 			/* Cannot call generic_make_request directly
1220 			 * as that will be queued in __make_request
1221 			 * and subsequent mempool_alloc might block waiting
1222 			 * for it.  So hand bio over to raid1d.
1223 			 */
1224 			reschedule_retry(r1_bio);
1225 
1226 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1227 
1228 			r1_bio->master_bio = bio;
1229 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1230 			r1_bio->state = 0;
1231 			r1_bio->mddev = mddev;
1232 			r1_bio->sector = bio->bi_iter.bi_sector +
1233 				sectors_handled;
1234 			goto read_again;
1235 		} else
1236 			generic_make_request(read_bio);
1237 		return;
1238 	}
1239 
1240 	/*
1241 	 * WRITE:
1242 	 */
1243 	if (conf->pending_count >= max_queued_requests) {
1244 		md_wakeup_thread(mddev->thread);
1245 		wait_event(conf->wait_barrier,
1246 			   conf->pending_count < max_queued_requests);
1247 	}
1248 	/* first select target devices under rcu_lock and
1249 	 * inc refcount on their rdev.  Record them by setting
1250 	 * bios[x] to bio
1251 	 * If there are known/acknowledged bad blocks on any device on
1252 	 * which we have seen a write error, we want to avoid writing those
1253 	 * blocks.
1254 	 * This potentially requires several writes to write around
1255 	 * the bad blocks.  Each set of writes gets it's own r1bio
1256 	 * with a set of bios attached.
1257 	 */
1258 
1259 	disks = conf->raid_disks * 2;
1260  retry_write:
1261 	r1_bio->start_next_window = start_next_window;
1262 	blocked_rdev = NULL;
1263 	rcu_read_lock();
1264 	max_sectors = r1_bio->sectors;
1265 	for (i = 0;  i < disks; i++) {
1266 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1267 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1268 			atomic_inc(&rdev->nr_pending);
1269 			blocked_rdev = rdev;
1270 			break;
1271 		}
1272 		r1_bio->bios[i] = NULL;
1273 		if (!rdev || test_bit(Faulty, &rdev->flags)
1274 		    || test_bit(Unmerged, &rdev->flags)) {
1275 			if (i < conf->raid_disks)
1276 				set_bit(R1BIO_Degraded, &r1_bio->state);
1277 			continue;
1278 		}
1279 
1280 		atomic_inc(&rdev->nr_pending);
1281 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1282 			sector_t first_bad;
1283 			int bad_sectors;
1284 			int is_bad;
1285 
1286 			is_bad = is_badblock(rdev, r1_bio->sector,
1287 					     max_sectors,
1288 					     &first_bad, &bad_sectors);
1289 			if (is_bad < 0) {
1290 				/* mustn't write here until the bad block is
1291 				 * acknowledged*/
1292 				set_bit(BlockedBadBlocks, &rdev->flags);
1293 				blocked_rdev = rdev;
1294 				break;
1295 			}
1296 			if (is_bad && first_bad <= r1_bio->sector) {
1297 				/* Cannot write here at all */
1298 				bad_sectors -= (r1_bio->sector - first_bad);
1299 				if (bad_sectors < max_sectors)
1300 					/* mustn't write more than bad_sectors
1301 					 * to other devices yet
1302 					 */
1303 					max_sectors = bad_sectors;
1304 				rdev_dec_pending(rdev, mddev);
1305 				/* We don't set R1BIO_Degraded as that
1306 				 * only applies if the disk is
1307 				 * missing, so it might be re-added,
1308 				 * and we want to know to recover this
1309 				 * chunk.
1310 				 * In this case the device is here,
1311 				 * and the fact that this chunk is not
1312 				 * in-sync is recorded in the bad
1313 				 * block log
1314 				 */
1315 				continue;
1316 			}
1317 			if (is_bad) {
1318 				int good_sectors = first_bad - r1_bio->sector;
1319 				if (good_sectors < max_sectors)
1320 					max_sectors = good_sectors;
1321 			}
1322 		}
1323 		r1_bio->bios[i] = bio;
1324 	}
1325 	rcu_read_unlock();
1326 
1327 	if (unlikely(blocked_rdev)) {
1328 		/* Wait for this device to become unblocked */
1329 		int j;
1330 		sector_t old = start_next_window;
1331 
1332 		for (j = 0; j < i; j++)
1333 			if (r1_bio->bios[j])
1334 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1335 		r1_bio->state = 0;
1336 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1337 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1338 		start_next_window = wait_barrier(conf, bio);
1339 		/*
1340 		 * We must make sure the multi r1bios of bio have
1341 		 * the same value of bi_phys_segments
1342 		 */
1343 		if (bio->bi_phys_segments && old &&
1344 		    old != start_next_window)
1345 			/* Wait for the former r1bio(s) to complete */
1346 			wait_event(conf->wait_barrier,
1347 				   bio->bi_phys_segments == 1);
1348 		goto retry_write;
1349 	}
1350 
1351 	if (max_sectors < r1_bio->sectors) {
1352 		/* We are splitting this write into multiple parts, so
1353 		 * we need to prepare for allocating another r1_bio.
1354 		 */
1355 		r1_bio->sectors = max_sectors;
1356 		spin_lock_irq(&conf->device_lock);
1357 		if (bio->bi_phys_segments == 0)
1358 			bio->bi_phys_segments = 2;
1359 		else
1360 			bio->bi_phys_segments++;
1361 		spin_unlock_irq(&conf->device_lock);
1362 	}
1363 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1364 
1365 	atomic_set(&r1_bio->remaining, 1);
1366 	atomic_set(&r1_bio->behind_remaining, 0);
1367 
1368 	first_clone = 1;
1369 	for (i = 0; i < disks; i++) {
1370 		struct bio *mbio;
1371 		if (!r1_bio->bios[i])
1372 			continue;
1373 
1374 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1375 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1376 
1377 		if (first_clone) {
1378 			/* do behind I/O ?
1379 			 * Not if there are too many, or cannot
1380 			 * allocate memory, or a reader on WriteMostly
1381 			 * is waiting for behind writes to flush */
1382 			if (bitmap &&
1383 			    (atomic_read(&bitmap->behind_writes)
1384 			     < mddev->bitmap_info.max_write_behind) &&
1385 			    !waitqueue_active(&bitmap->behind_wait))
1386 				alloc_behind_pages(mbio, r1_bio);
1387 
1388 			bitmap_startwrite(bitmap, r1_bio->sector,
1389 					  r1_bio->sectors,
1390 					  test_bit(R1BIO_BehindIO,
1391 						   &r1_bio->state));
1392 			first_clone = 0;
1393 		}
1394 		if (r1_bio->behind_bvecs) {
1395 			struct bio_vec *bvec;
1396 			int j;
1397 
1398 			/*
1399 			 * We trimmed the bio, so _all is legit
1400 			 */
1401 			bio_for_each_segment_all(bvec, mbio, j)
1402 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1403 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1404 				atomic_inc(&r1_bio->behind_remaining);
1405 		}
1406 
1407 		r1_bio->bios[i] = mbio;
1408 
1409 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1410 				   conf->mirrors[i].rdev->data_offset);
1411 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1412 		mbio->bi_end_io	= raid1_end_write_request;
1413 		mbio->bi_rw =
1414 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1415 		mbio->bi_private = r1_bio;
1416 
1417 		atomic_inc(&r1_bio->remaining);
1418 
1419 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1420 		if (cb)
1421 			plug = container_of(cb, struct raid1_plug_cb, cb);
1422 		else
1423 			plug = NULL;
1424 		spin_lock_irqsave(&conf->device_lock, flags);
1425 		if (plug) {
1426 			bio_list_add(&plug->pending, mbio);
1427 			plug->pending_cnt++;
1428 		} else {
1429 			bio_list_add(&conf->pending_bio_list, mbio);
1430 			conf->pending_count++;
1431 		}
1432 		spin_unlock_irqrestore(&conf->device_lock, flags);
1433 		if (!plug)
1434 			md_wakeup_thread(mddev->thread);
1435 	}
1436 	/* Mustn't call r1_bio_write_done before this next test,
1437 	 * as it could result in the bio being freed.
1438 	 */
1439 	if (sectors_handled < bio_sectors(bio)) {
1440 		r1_bio_write_done(r1_bio);
1441 		/* We need another r1_bio.  It has already been counted
1442 		 * in bio->bi_phys_segments
1443 		 */
1444 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1445 		r1_bio->master_bio = bio;
1446 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1447 		r1_bio->state = 0;
1448 		r1_bio->mddev = mddev;
1449 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1450 		goto retry_write;
1451 	}
1452 
1453 	r1_bio_write_done(r1_bio);
1454 
1455 	/* In case raid1d snuck in to freeze_array */
1456 	wake_up(&conf->wait_barrier);
1457 }
1458 
status(struct seq_file * seq,struct mddev * mddev)1459 static void status(struct seq_file *seq, struct mddev *mddev)
1460 {
1461 	struct r1conf *conf = mddev->private;
1462 	int i;
1463 
1464 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1465 		   conf->raid_disks - mddev->degraded);
1466 	rcu_read_lock();
1467 	for (i = 0; i < conf->raid_disks; i++) {
1468 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1469 		seq_printf(seq, "%s",
1470 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1471 	}
1472 	rcu_read_unlock();
1473 	seq_printf(seq, "]");
1474 }
1475 
error(struct mddev * mddev,struct md_rdev * rdev)1476 static void error(struct mddev *mddev, struct md_rdev *rdev)
1477 {
1478 	char b[BDEVNAME_SIZE];
1479 	struct r1conf *conf = mddev->private;
1480 	unsigned long flags;
1481 
1482 	/*
1483 	 * If it is not operational, then we have already marked it as dead
1484 	 * else if it is the last working disks, ignore the error, let the
1485 	 * next level up know.
1486 	 * else mark the drive as failed
1487 	 */
1488 	if (test_bit(In_sync, &rdev->flags)
1489 	    && (conf->raid_disks - mddev->degraded) == 1) {
1490 		/*
1491 		 * Don't fail the drive, act as though we were just a
1492 		 * normal single drive.
1493 		 * However don't try a recovery from this drive as
1494 		 * it is very likely to fail.
1495 		 */
1496 		conf->recovery_disabled = mddev->recovery_disabled;
1497 		return;
1498 	}
1499 	set_bit(Blocked, &rdev->flags);
1500 	spin_lock_irqsave(&conf->device_lock, flags);
1501 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1502 		mddev->degraded++;
1503 		set_bit(Faulty, &rdev->flags);
1504 	} else
1505 		set_bit(Faulty, &rdev->flags);
1506 	spin_unlock_irqrestore(&conf->device_lock, flags);
1507 	/*
1508 	 * if recovery is running, make sure it aborts.
1509 	 */
1510 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1511 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1512 	printk(KERN_ALERT
1513 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1514 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1515 	       mdname(mddev), bdevname(rdev->bdev, b),
1516 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1517 }
1518 
print_conf(struct r1conf * conf)1519 static void print_conf(struct r1conf *conf)
1520 {
1521 	int i;
1522 
1523 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1524 	if (!conf) {
1525 		printk(KERN_DEBUG "(!conf)\n");
1526 		return;
1527 	}
1528 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1529 		conf->raid_disks);
1530 
1531 	rcu_read_lock();
1532 	for (i = 0; i < conf->raid_disks; i++) {
1533 		char b[BDEVNAME_SIZE];
1534 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535 		if (rdev)
1536 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1537 			       i, !test_bit(In_sync, &rdev->flags),
1538 			       !test_bit(Faulty, &rdev->flags),
1539 			       bdevname(rdev->bdev,b));
1540 	}
1541 	rcu_read_unlock();
1542 }
1543 
close_sync(struct r1conf * conf)1544 static void close_sync(struct r1conf *conf)
1545 {
1546 	wait_barrier(conf, NULL);
1547 	allow_barrier(conf, 0, 0);
1548 
1549 	mempool_destroy(conf->r1buf_pool);
1550 	conf->r1buf_pool = NULL;
1551 
1552 	spin_lock_irq(&conf->resync_lock);
1553 	conf->next_resync = 0;
1554 	conf->start_next_window = MaxSector;
1555 	conf->current_window_requests +=
1556 		conf->next_window_requests;
1557 	conf->next_window_requests = 0;
1558 	spin_unlock_irq(&conf->resync_lock);
1559 }
1560 
raid1_spare_active(struct mddev * mddev)1561 static int raid1_spare_active(struct mddev *mddev)
1562 {
1563 	int i;
1564 	struct r1conf *conf = mddev->private;
1565 	int count = 0;
1566 	unsigned long flags;
1567 
1568 	/*
1569 	 * Find all failed disks within the RAID1 configuration
1570 	 * and mark them readable.
1571 	 * Called under mddev lock, so rcu protection not needed.
1572 	 * device_lock used to avoid races with raid1_end_read_request
1573 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1574 	 */
1575 	spin_lock_irqsave(&conf->device_lock, flags);
1576 	for (i = 0; i < conf->raid_disks; i++) {
1577 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1578 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1579 		if (repl
1580 		    && repl->recovery_offset == MaxSector
1581 		    && !test_bit(Faulty, &repl->flags)
1582 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1583 			/* replacement has just become active */
1584 			if (!rdev ||
1585 			    !test_and_clear_bit(In_sync, &rdev->flags))
1586 				count++;
1587 			if (rdev) {
1588 				/* Replaced device not technically
1589 				 * faulty, but we need to be sure
1590 				 * it gets removed and never re-added
1591 				 */
1592 				set_bit(Faulty, &rdev->flags);
1593 				sysfs_notify_dirent_safe(
1594 					rdev->sysfs_state);
1595 			}
1596 		}
1597 		if (rdev
1598 		    && rdev->recovery_offset == MaxSector
1599 		    && !test_bit(Faulty, &rdev->flags)
1600 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1601 			count++;
1602 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1603 		}
1604 	}
1605 	mddev->degraded -= count;
1606 	spin_unlock_irqrestore(&conf->device_lock, flags);
1607 
1608 	print_conf(conf);
1609 	return count;
1610 }
1611 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1612 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1613 {
1614 	struct r1conf *conf = mddev->private;
1615 	int err = -EEXIST;
1616 	int mirror = 0;
1617 	struct raid1_info *p;
1618 	int first = 0;
1619 	int last = conf->raid_disks - 1;
1620 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1621 
1622 	if (mddev->recovery_disabled == conf->recovery_disabled)
1623 		return -EBUSY;
1624 
1625 	if (rdev->raid_disk >= 0)
1626 		first = last = rdev->raid_disk;
1627 
1628 	if (q->merge_bvec_fn) {
1629 		set_bit(Unmerged, &rdev->flags);
1630 		mddev->merge_check_needed = 1;
1631 	}
1632 
1633 	for (mirror = first; mirror <= last; mirror++) {
1634 		p = conf->mirrors+mirror;
1635 		if (!p->rdev) {
1636 
1637 			if (mddev->gendisk)
1638 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1639 						  rdev->data_offset << 9);
1640 
1641 			p->head_position = 0;
1642 			rdev->raid_disk = mirror;
1643 			err = 0;
1644 			/* As all devices are equivalent, we don't need a full recovery
1645 			 * if this was recently any drive of the array
1646 			 */
1647 			if (rdev->saved_raid_disk < 0)
1648 				conf->fullsync = 1;
1649 			rcu_assign_pointer(p->rdev, rdev);
1650 			break;
1651 		}
1652 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1653 		    p[conf->raid_disks].rdev == NULL) {
1654 			/* Add this device as a replacement */
1655 			clear_bit(In_sync, &rdev->flags);
1656 			set_bit(Replacement, &rdev->flags);
1657 			rdev->raid_disk = mirror;
1658 			err = 0;
1659 			conf->fullsync = 1;
1660 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1661 			break;
1662 		}
1663 	}
1664 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1665 		/* Some requests might not have seen this new
1666 		 * merge_bvec_fn.  We must wait for them to complete
1667 		 * before merging the device fully.
1668 		 * First we make sure any code which has tested
1669 		 * our function has submitted the request, then
1670 		 * we wait for all outstanding requests to complete.
1671 		 */
1672 		synchronize_sched();
1673 		freeze_array(conf, 0);
1674 		unfreeze_array(conf);
1675 		clear_bit(Unmerged, &rdev->flags);
1676 	}
1677 	md_integrity_add_rdev(rdev, mddev);
1678 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1679 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1680 	print_conf(conf);
1681 	return err;
1682 }
1683 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1684 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686 	struct r1conf *conf = mddev->private;
1687 	int err = 0;
1688 	int number = rdev->raid_disk;
1689 	struct raid1_info *p = conf->mirrors + number;
1690 
1691 	if (rdev != p->rdev)
1692 		p = conf->mirrors + conf->raid_disks + number;
1693 
1694 	print_conf(conf);
1695 	if (rdev == p->rdev) {
1696 		if (test_bit(In_sync, &rdev->flags) ||
1697 		    atomic_read(&rdev->nr_pending)) {
1698 			err = -EBUSY;
1699 			goto abort;
1700 		}
1701 		/* Only remove non-faulty devices if recovery
1702 		 * is not possible.
1703 		 */
1704 		if (!test_bit(Faulty, &rdev->flags) &&
1705 		    mddev->recovery_disabled != conf->recovery_disabled &&
1706 		    mddev->degraded < conf->raid_disks) {
1707 			err = -EBUSY;
1708 			goto abort;
1709 		}
1710 		p->rdev = NULL;
1711 		synchronize_rcu();
1712 		if (atomic_read(&rdev->nr_pending)) {
1713 			/* lost the race, try later */
1714 			err = -EBUSY;
1715 			p->rdev = rdev;
1716 			goto abort;
1717 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1718 			/* We just removed a device that is being replaced.
1719 			 * Move down the replacement.  We drain all IO before
1720 			 * doing this to avoid confusion.
1721 			 */
1722 			struct md_rdev *repl =
1723 				conf->mirrors[conf->raid_disks + number].rdev;
1724 			freeze_array(conf, 0);
1725 			clear_bit(Replacement, &repl->flags);
1726 			p->rdev = repl;
1727 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1728 			unfreeze_array(conf);
1729 			clear_bit(WantReplacement, &rdev->flags);
1730 		} else
1731 			clear_bit(WantReplacement, &rdev->flags);
1732 		err = md_integrity_register(mddev);
1733 	}
1734 abort:
1735 
1736 	print_conf(conf);
1737 	return err;
1738 }
1739 
end_sync_read(struct bio * bio,int error)1740 static void end_sync_read(struct bio *bio, int error)
1741 {
1742 	struct r1bio *r1_bio = bio->bi_private;
1743 
1744 	update_head_pos(r1_bio->read_disk, r1_bio);
1745 
1746 	/*
1747 	 * we have read a block, now it needs to be re-written,
1748 	 * or re-read if the read failed.
1749 	 * We don't do much here, just schedule handling by raid1d
1750 	 */
1751 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1752 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1753 
1754 	if (atomic_dec_and_test(&r1_bio->remaining))
1755 		reschedule_retry(r1_bio);
1756 }
1757 
end_sync_write(struct bio * bio,int error)1758 static void end_sync_write(struct bio *bio, int error)
1759 {
1760 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1761 	struct r1bio *r1_bio = bio->bi_private;
1762 	struct mddev *mddev = r1_bio->mddev;
1763 	struct r1conf *conf = mddev->private;
1764 	int mirror=0;
1765 	sector_t first_bad;
1766 	int bad_sectors;
1767 
1768 	mirror = find_bio_disk(r1_bio, bio);
1769 
1770 	if (!uptodate) {
1771 		sector_t sync_blocks = 0;
1772 		sector_t s = r1_bio->sector;
1773 		long sectors_to_go = r1_bio->sectors;
1774 		/* make sure these bits doesn't get cleared. */
1775 		do {
1776 			bitmap_end_sync(mddev->bitmap, s,
1777 					&sync_blocks, 1);
1778 			s += sync_blocks;
1779 			sectors_to_go -= sync_blocks;
1780 		} while (sectors_to_go > 0);
1781 		set_bit(WriteErrorSeen,
1782 			&conf->mirrors[mirror].rdev->flags);
1783 		if (!test_and_set_bit(WantReplacement,
1784 				      &conf->mirrors[mirror].rdev->flags))
1785 			set_bit(MD_RECOVERY_NEEDED, &
1786 				mddev->recovery);
1787 		set_bit(R1BIO_WriteError, &r1_bio->state);
1788 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1789 			       r1_bio->sector,
1790 			       r1_bio->sectors,
1791 			       &first_bad, &bad_sectors) &&
1792 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1793 				r1_bio->sector,
1794 				r1_bio->sectors,
1795 				&first_bad, &bad_sectors)
1796 		)
1797 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1798 
1799 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1800 		int s = r1_bio->sectors;
1801 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1802 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1803 			reschedule_retry(r1_bio);
1804 		else {
1805 			put_buf(r1_bio);
1806 			md_done_sync(mddev, s, uptodate);
1807 		}
1808 	}
1809 }
1810 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1811 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1812 			    int sectors, struct page *page, int rw)
1813 {
1814 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1815 		/* success */
1816 		return 1;
1817 	if (rw == WRITE) {
1818 		set_bit(WriteErrorSeen, &rdev->flags);
1819 		if (!test_and_set_bit(WantReplacement,
1820 				      &rdev->flags))
1821 			set_bit(MD_RECOVERY_NEEDED, &
1822 				rdev->mddev->recovery);
1823 	}
1824 	/* need to record an error - either for the block or the device */
1825 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1826 		md_error(rdev->mddev, rdev);
1827 	return 0;
1828 }
1829 
fix_sync_read_error(struct r1bio * r1_bio)1830 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 {
1832 	/* Try some synchronous reads of other devices to get
1833 	 * good data, much like with normal read errors.  Only
1834 	 * read into the pages we already have so we don't
1835 	 * need to re-issue the read request.
1836 	 * We don't need to freeze the array, because being in an
1837 	 * active sync request, there is no normal IO, and
1838 	 * no overlapping syncs.
1839 	 * We don't need to check is_badblock() again as we
1840 	 * made sure that anything with a bad block in range
1841 	 * will have bi_end_io clear.
1842 	 */
1843 	struct mddev *mddev = r1_bio->mddev;
1844 	struct r1conf *conf = mddev->private;
1845 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1846 	sector_t sect = r1_bio->sector;
1847 	int sectors = r1_bio->sectors;
1848 	int idx = 0;
1849 
1850 	while(sectors) {
1851 		int s = sectors;
1852 		int d = r1_bio->read_disk;
1853 		int success = 0;
1854 		struct md_rdev *rdev;
1855 		int start;
1856 
1857 		if (s > (PAGE_SIZE>>9))
1858 			s = PAGE_SIZE >> 9;
1859 		do {
1860 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1861 				/* No rcu protection needed here devices
1862 				 * can only be removed when no resync is
1863 				 * active, and resync is currently active
1864 				 */
1865 				rdev = conf->mirrors[d].rdev;
1866 				if (sync_page_io(rdev, sect, s<<9,
1867 						 bio->bi_io_vec[idx].bv_page,
1868 						 READ, false)) {
1869 					success = 1;
1870 					break;
1871 				}
1872 			}
1873 			d++;
1874 			if (d == conf->raid_disks * 2)
1875 				d = 0;
1876 		} while (!success && d != r1_bio->read_disk);
1877 
1878 		if (!success) {
1879 			char b[BDEVNAME_SIZE];
1880 			int abort = 0;
1881 			/* Cannot read from anywhere, this block is lost.
1882 			 * Record a bad block on each device.  If that doesn't
1883 			 * work just disable and interrupt the recovery.
1884 			 * Don't fail devices as that won't really help.
1885 			 */
1886 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1887 			       " for block %llu\n",
1888 			       mdname(mddev),
1889 			       bdevname(bio->bi_bdev, b),
1890 			       (unsigned long long)r1_bio->sector);
1891 			for (d = 0; d < conf->raid_disks * 2; d++) {
1892 				rdev = conf->mirrors[d].rdev;
1893 				if (!rdev || test_bit(Faulty, &rdev->flags))
1894 					continue;
1895 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1896 					abort = 1;
1897 			}
1898 			if (abort) {
1899 				conf->recovery_disabled =
1900 					mddev->recovery_disabled;
1901 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1902 				md_done_sync(mddev, r1_bio->sectors, 0);
1903 				put_buf(r1_bio);
1904 				return 0;
1905 			}
1906 			/* Try next page */
1907 			sectors -= s;
1908 			sect += s;
1909 			idx++;
1910 			continue;
1911 		}
1912 
1913 		start = d;
1914 		/* write it back and re-read */
1915 		while (d != r1_bio->read_disk) {
1916 			if (d == 0)
1917 				d = conf->raid_disks * 2;
1918 			d--;
1919 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 				continue;
1921 			rdev = conf->mirrors[d].rdev;
1922 			if (r1_sync_page_io(rdev, sect, s,
1923 					    bio->bi_io_vec[idx].bv_page,
1924 					    WRITE) == 0) {
1925 				r1_bio->bios[d]->bi_end_io = NULL;
1926 				rdev_dec_pending(rdev, mddev);
1927 			}
1928 		}
1929 		d = start;
1930 		while (d != r1_bio->read_disk) {
1931 			if (d == 0)
1932 				d = conf->raid_disks * 2;
1933 			d--;
1934 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935 				continue;
1936 			rdev = conf->mirrors[d].rdev;
1937 			if (r1_sync_page_io(rdev, sect, s,
1938 					    bio->bi_io_vec[idx].bv_page,
1939 					    READ) != 0)
1940 				atomic_add(s, &rdev->corrected_errors);
1941 		}
1942 		sectors -= s;
1943 		sect += s;
1944 		idx ++;
1945 	}
1946 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1947 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1948 	return 1;
1949 }
1950 
process_checks(struct r1bio * r1_bio)1951 static void process_checks(struct r1bio *r1_bio)
1952 {
1953 	/* We have read all readable devices.  If we haven't
1954 	 * got the block, then there is no hope left.
1955 	 * If we have, then we want to do a comparison
1956 	 * and skip the write if everything is the same.
1957 	 * If any blocks failed to read, then we need to
1958 	 * attempt an over-write
1959 	 */
1960 	struct mddev *mddev = r1_bio->mddev;
1961 	struct r1conf *conf = mddev->private;
1962 	int primary;
1963 	int i;
1964 	int vcnt;
1965 
1966 	/* Fix variable parts of all bios */
1967 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1968 	for (i = 0; i < conf->raid_disks * 2; i++) {
1969 		int j;
1970 		int size;
1971 		int uptodate;
1972 		struct bio *b = r1_bio->bios[i];
1973 		if (b->bi_end_io != end_sync_read)
1974 			continue;
1975 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1976 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1977 		bio_reset(b);
1978 		if (!uptodate)
1979 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1980 		b->bi_vcnt = vcnt;
1981 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1982 		b->bi_iter.bi_sector = r1_bio->sector +
1983 			conf->mirrors[i].rdev->data_offset;
1984 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1985 		b->bi_end_io = end_sync_read;
1986 		b->bi_private = r1_bio;
1987 
1988 		size = b->bi_iter.bi_size;
1989 		for (j = 0; j < vcnt ; j++) {
1990 			struct bio_vec *bi;
1991 			bi = &b->bi_io_vec[j];
1992 			bi->bv_offset = 0;
1993 			if (size > PAGE_SIZE)
1994 				bi->bv_len = PAGE_SIZE;
1995 			else
1996 				bi->bv_len = size;
1997 			size -= PAGE_SIZE;
1998 		}
1999 	}
2000 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2001 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2002 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2003 			r1_bio->bios[primary]->bi_end_io = NULL;
2004 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2005 			break;
2006 		}
2007 	r1_bio->read_disk = primary;
2008 	for (i = 0; i < conf->raid_disks * 2; i++) {
2009 		int j;
2010 		struct bio *pbio = r1_bio->bios[primary];
2011 		struct bio *sbio = r1_bio->bios[i];
2012 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 
2014 		if (sbio->bi_end_io != end_sync_read)
2015 			continue;
2016 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2017 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2018 
2019 		if (uptodate) {
2020 			for (j = vcnt; j-- ; ) {
2021 				struct page *p, *s;
2022 				p = pbio->bi_io_vec[j].bv_page;
2023 				s = sbio->bi_io_vec[j].bv_page;
2024 				if (memcmp(page_address(p),
2025 					   page_address(s),
2026 					   sbio->bi_io_vec[j].bv_len))
2027 					break;
2028 			}
2029 		} else
2030 			j = 0;
2031 		if (j >= 0)
2032 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2033 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2034 			      && uptodate)) {
2035 			/* No need to write to this device. */
2036 			sbio->bi_end_io = NULL;
2037 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2038 			continue;
2039 		}
2040 
2041 		bio_copy_data(sbio, pbio);
2042 	}
2043 }
2044 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 {
2047 	struct r1conf *conf = mddev->private;
2048 	int i;
2049 	int disks = conf->raid_disks * 2;
2050 	struct bio *bio, *wbio;
2051 
2052 	bio = r1_bio->bios[r1_bio->read_disk];
2053 
2054 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 		/* ouch - failed to read all of that. */
2056 		if (!fix_sync_read_error(r1_bio))
2057 			return;
2058 
2059 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 		process_checks(r1_bio);
2061 
2062 	/*
2063 	 * schedule writes
2064 	 */
2065 	atomic_set(&r1_bio->remaining, 1);
2066 	for (i = 0; i < disks ; i++) {
2067 		wbio = r1_bio->bios[i];
2068 		if (wbio->bi_end_io == NULL ||
2069 		    (wbio->bi_end_io == end_sync_read &&
2070 		     (i == r1_bio->read_disk ||
2071 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2072 			continue;
2073 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2074 			continue;
2075 
2076 		wbio->bi_rw = WRITE;
2077 		wbio->bi_end_io = end_sync_write;
2078 		atomic_inc(&r1_bio->remaining);
2079 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2080 
2081 		generic_make_request(wbio);
2082 	}
2083 
2084 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2085 		/* if we're here, all write(s) have completed, so clean up */
2086 		int s = r1_bio->sectors;
2087 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2088 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2089 			reschedule_retry(r1_bio);
2090 		else {
2091 			put_buf(r1_bio);
2092 			md_done_sync(mddev, s, 1);
2093 		}
2094 	}
2095 }
2096 
2097 /*
2098  * This is a kernel thread which:
2099  *
2100  *	1.	Retries failed read operations on working mirrors.
2101  *	2.	Updates the raid superblock when problems encounter.
2102  *	3.	Performs writes following reads for array synchronising.
2103  */
2104 
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2105 static void fix_read_error(struct r1conf *conf, int read_disk,
2106 			   sector_t sect, int sectors)
2107 {
2108 	struct mddev *mddev = conf->mddev;
2109 	while(sectors) {
2110 		int s = sectors;
2111 		int d = read_disk;
2112 		int success = 0;
2113 		int start;
2114 		struct md_rdev *rdev;
2115 
2116 		if (s > (PAGE_SIZE>>9))
2117 			s = PAGE_SIZE >> 9;
2118 
2119 		do {
2120 			/* Note: no rcu protection needed here
2121 			 * as this is synchronous in the raid1d thread
2122 			 * which is the thread that might remove
2123 			 * a device.  If raid1d ever becomes multi-threaded....
2124 			 */
2125 			sector_t first_bad;
2126 			int bad_sectors;
2127 
2128 			rdev = conf->mirrors[d].rdev;
2129 			if (rdev &&
2130 			    (test_bit(In_sync, &rdev->flags) ||
2131 			     (!test_bit(Faulty, &rdev->flags) &&
2132 			      rdev->recovery_offset >= sect + s)) &&
2133 			    is_badblock(rdev, sect, s,
2134 					&first_bad, &bad_sectors) == 0 &&
2135 			    sync_page_io(rdev, sect, s<<9,
2136 					 conf->tmppage, READ, false))
2137 				success = 1;
2138 			else {
2139 				d++;
2140 				if (d == conf->raid_disks * 2)
2141 					d = 0;
2142 			}
2143 		} while (!success && d != read_disk);
2144 
2145 		if (!success) {
2146 			/* Cannot read from anywhere - mark it bad */
2147 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2148 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2149 				md_error(mddev, rdev);
2150 			break;
2151 		}
2152 		/* write it back and re-read */
2153 		start = d;
2154 		while (d != read_disk) {
2155 			if (d==0)
2156 				d = conf->raid_disks * 2;
2157 			d--;
2158 			rdev = conf->mirrors[d].rdev;
2159 			if (rdev &&
2160 			    !test_bit(Faulty, &rdev->flags))
2161 				r1_sync_page_io(rdev, sect, s,
2162 						conf->tmppage, WRITE);
2163 		}
2164 		d = start;
2165 		while (d != read_disk) {
2166 			char b[BDEVNAME_SIZE];
2167 			if (d==0)
2168 				d = conf->raid_disks * 2;
2169 			d--;
2170 			rdev = conf->mirrors[d].rdev;
2171 			if (rdev &&
2172 			    !test_bit(Faulty, &rdev->flags)) {
2173 				if (r1_sync_page_io(rdev, sect, s,
2174 						    conf->tmppage, READ)) {
2175 					atomic_add(s, &rdev->corrected_errors);
2176 					printk(KERN_INFO
2177 					       "md/raid1:%s: read error corrected "
2178 					       "(%d sectors at %llu on %s)\n",
2179 					       mdname(mddev), s,
2180 					       (unsigned long long)(sect +
2181 					           rdev->data_offset),
2182 					       bdevname(rdev->bdev, b));
2183 				}
2184 			}
2185 		}
2186 		sectors -= s;
2187 		sect += s;
2188 	}
2189 }
2190 
narrow_write_error(struct r1bio * r1_bio,int i)2191 static int narrow_write_error(struct r1bio *r1_bio, int i)
2192 {
2193 	struct mddev *mddev = r1_bio->mddev;
2194 	struct r1conf *conf = mddev->private;
2195 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2196 
2197 	/* bio has the data to be written to device 'i' where
2198 	 * we just recently had a write error.
2199 	 * We repeatedly clone the bio and trim down to one block,
2200 	 * then try the write.  Where the write fails we record
2201 	 * a bad block.
2202 	 * It is conceivable that the bio doesn't exactly align with
2203 	 * blocks.  We must handle this somehow.
2204 	 *
2205 	 * We currently own a reference on the rdev.
2206 	 */
2207 
2208 	int block_sectors;
2209 	sector_t sector;
2210 	int sectors;
2211 	int sect_to_write = r1_bio->sectors;
2212 	int ok = 1;
2213 
2214 	if (rdev->badblocks.shift < 0)
2215 		return 0;
2216 
2217 	block_sectors = 1 << rdev->badblocks.shift;
2218 	sector = r1_bio->sector;
2219 	sectors = ((sector + block_sectors)
2220 		   & ~(sector_t)(block_sectors - 1))
2221 		- sector;
2222 
2223 	while (sect_to_write) {
2224 		struct bio *wbio;
2225 		if (sectors > sect_to_write)
2226 			sectors = sect_to_write;
2227 		/* Write at 'sector' for 'sectors'*/
2228 
2229 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2230 			unsigned vcnt = r1_bio->behind_page_count;
2231 			struct bio_vec *vec = r1_bio->behind_bvecs;
2232 
2233 			while (!vec->bv_page) {
2234 				vec++;
2235 				vcnt--;
2236 			}
2237 
2238 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2239 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2240 
2241 			wbio->bi_vcnt = vcnt;
2242 		} else {
2243 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 		}
2245 
2246 		wbio->bi_rw = WRITE;
2247 		wbio->bi_iter.bi_sector = r1_bio->sector;
2248 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2249 
2250 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2251 		wbio->bi_iter.bi_sector += rdev->data_offset;
2252 		wbio->bi_bdev = rdev->bdev;
2253 		if (submit_bio_wait(WRITE, wbio) < 0)
2254 			/* failure! */
2255 			ok = rdev_set_badblocks(rdev, sector,
2256 						sectors, 0)
2257 				&& ok;
2258 
2259 		bio_put(wbio);
2260 		sect_to_write -= sectors;
2261 		sector += sectors;
2262 		sectors = block_sectors;
2263 	}
2264 	return ok;
2265 }
2266 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2267 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2268 {
2269 	int m;
2270 	int s = r1_bio->sectors;
2271 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2272 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2273 		struct bio *bio = r1_bio->bios[m];
2274 		if (bio->bi_end_io == NULL)
2275 			continue;
2276 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2277 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2278 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2279 		}
2280 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2281 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2282 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2283 				md_error(conf->mddev, rdev);
2284 		}
2285 	}
2286 	put_buf(r1_bio);
2287 	md_done_sync(conf->mddev, s, 1);
2288 }
2289 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2290 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2291 {
2292 	int m;
2293 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2294 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2295 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2296 			rdev_clear_badblocks(rdev,
2297 					     r1_bio->sector,
2298 					     r1_bio->sectors, 0);
2299 			rdev_dec_pending(rdev, conf->mddev);
2300 		} else if (r1_bio->bios[m] != NULL) {
2301 			/* This drive got a write error.  We need to
2302 			 * narrow down and record precise write
2303 			 * errors.
2304 			 */
2305 			if (!narrow_write_error(r1_bio, m)) {
2306 				md_error(conf->mddev,
2307 					 conf->mirrors[m].rdev);
2308 				/* an I/O failed, we can't clear the bitmap */
2309 				set_bit(R1BIO_Degraded, &r1_bio->state);
2310 			}
2311 			rdev_dec_pending(conf->mirrors[m].rdev,
2312 					 conf->mddev);
2313 		}
2314 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2315 		close_write(r1_bio);
2316 	raid_end_bio_io(r1_bio);
2317 }
2318 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2319 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2320 {
2321 	int disk;
2322 	int max_sectors;
2323 	struct mddev *mddev = conf->mddev;
2324 	struct bio *bio;
2325 	char b[BDEVNAME_SIZE];
2326 	struct md_rdev *rdev;
2327 
2328 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2329 	/* we got a read error. Maybe the drive is bad.  Maybe just
2330 	 * the block and we can fix it.
2331 	 * We freeze all other IO, and try reading the block from
2332 	 * other devices.  When we find one, we re-write
2333 	 * and check it that fixes the read error.
2334 	 * This is all done synchronously while the array is
2335 	 * frozen
2336 	 */
2337 	if (mddev->ro == 0) {
2338 		freeze_array(conf, 1);
2339 		fix_read_error(conf, r1_bio->read_disk,
2340 			       r1_bio->sector, r1_bio->sectors);
2341 		unfreeze_array(conf);
2342 	} else
2343 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2344 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2345 
2346 	bio = r1_bio->bios[r1_bio->read_disk];
2347 	bdevname(bio->bi_bdev, b);
2348 read_more:
2349 	disk = read_balance(conf, r1_bio, &max_sectors);
2350 	if (disk == -1) {
2351 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2352 		       " read error for block %llu\n",
2353 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2354 		raid_end_bio_io(r1_bio);
2355 	} else {
2356 		const unsigned long do_sync
2357 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2358 		if (bio) {
2359 			r1_bio->bios[r1_bio->read_disk] =
2360 				mddev->ro ? IO_BLOCKED : NULL;
2361 			bio_put(bio);
2362 		}
2363 		r1_bio->read_disk = disk;
2364 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2365 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2366 			 max_sectors);
2367 		r1_bio->bios[r1_bio->read_disk] = bio;
2368 		rdev = conf->mirrors[disk].rdev;
2369 		printk_ratelimited(KERN_ERR
2370 				   "md/raid1:%s: redirecting sector %llu"
2371 				   " to other mirror: %s\n",
2372 				   mdname(mddev),
2373 				   (unsigned long long)r1_bio->sector,
2374 				   bdevname(rdev->bdev, b));
2375 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2376 		bio->bi_bdev = rdev->bdev;
2377 		bio->bi_end_io = raid1_end_read_request;
2378 		bio->bi_rw = READ | do_sync;
2379 		bio->bi_private = r1_bio;
2380 		if (max_sectors < r1_bio->sectors) {
2381 			/* Drat - have to split this up more */
2382 			struct bio *mbio = r1_bio->master_bio;
2383 			int sectors_handled = (r1_bio->sector + max_sectors
2384 					       - mbio->bi_iter.bi_sector);
2385 			r1_bio->sectors = max_sectors;
2386 			spin_lock_irq(&conf->device_lock);
2387 			if (mbio->bi_phys_segments == 0)
2388 				mbio->bi_phys_segments = 2;
2389 			else
2390 				mbio->bi_phys_segments++;
2391 			spin_unlock_irq(&conf->device_lock);
2392 			generic_make_request(bio);
2393 			bio = NULL;
2394 
2395 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2396 
2397 			r1_bio->master_bio = mbio;
2398 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2399 			r1_bio->state = 0;
2400 			set_bit(R1BIO_ReadError, &r1_bio->state);
2401 			r1_bio->mddev = mddev;
2402 			r1_bio->sector = mbio->bi_iter.bi_sector +
2403 				sectors_handled;
2404 
2405 			goto read_more;
2406 		} else
2407 			generic_make_request(bio);
2408 	}
2409 }
2410 
raid1d(struct md_thread * thread)2411 static void raid1d(struct md_thread *thread)
2412 {
2413 	struct mddev *mddev = thread->mddev;
2414 	struct r1bio *r1_bio;
2415 	unsigned long flags;
2416 	struct r1conf *conf = mddev->private;
2417 	struct list_head *head = &conf->retry_list;
2418 	struct blk_plug plug;
2419 
2420 	md_check_recovery(mddev);
2421 
2422 	blk_start_plug(&plug);
2423 	for (;;) {
2424 
2425 		flush_pending_writes(conf);
2426 
2427 		spin_lock_irqsave(&conf->device_lock, flags);
2428 		if (list_empty(head)) {
2429 			spin_unlock_irqrestore(&conf->device_lock, flags);
2430 			break;
2431 		}
2432 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2433 		list_del(head->prev);
2434 		conf->nr_queued--;
2435 		spin_unlock_irqrestore(&conf->device_lock, flags);
2436 
2437 		mddev = r1_bio->mddev;
2438 		conf = mddev->private;
2439 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2440 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2441 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2442 				handle_sync_write_finished(conf, r1_bio);
2443 			else
2444 				sync_request_write(mddev, r1_bio);
2445 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2446 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2447 			handle_write_finished(conf, r1_bio);
2448 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2449 			handle_read_error(conf, r1_bio);
2450 		else
2451 			/* just a partial read to be scheduled from separate
2452 			 * context
2453 			 */
2454 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2455 
2456 		cond_resched();
2457 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2458 			md_check_recovery(mddev);
2459 	}
2460 	blk_finish_plug(&plug);
2461 }
2462 
init_resync(struct r1conf * conf)2463 static int init_resync(struct r1conf *conf)
2464 {
2465 	int buffs;
2466 
2467 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2468 	BUG_ON(conf->r1buf_pool);
2469 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2470 					  conf->poolinfo);
2471 	if (!conf->r1buf_pool)
2472 		return -ENOMEM;
2473 	conf->next_resync = 0;
2474 	return 0;
2475 }
2476 
2477 /*
2478  * perform a "sync" on one "block"
2479  *
2480  * We need to make sure that no normal I/O request - particularly write
2481  * requests - conflict with active sync requests.
2482  *
2483  * This is achieved by tracking pending requests and a 'barrier' concept
2484  * that can be installed to exclude normal IO requests.
2485  */
2486 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)2487 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2488 {
2489 	struct r1conf *conf = mddev->private;
2490 	struct r1bio *r1_bio;
2491 	struct bio *bio;
2492 	sector_t max_sector, nr_sectors;
2493 	int disk = -1;
2494 	int i;
2495 	int wonly = -1;
2496 	int write_targets = 0, read_targets = 0;
2497 	sector_t sync_blocks;
2498 	int still_degraded = 0;
2499 	int good_sectors = RESYNC_SECTORS;
2500 	int min_bad = 0; /* number of sectors that are bad in all devices */
2501 
2502 	if (!conf->r1buf_pool)
2503 		if (init_resync(conf))
2504 			return 0;
2505 
2506 	max_sector = mddev->dev_sectors;
2507 	if (sector_nr >= max_sector) {
2508 		/* If we aborted, we need to abort the
2509 		 * sync on the 'current' bitmap chunk (there will
2510 		 * only be one in raid1 resync.
2511 		 * We can find the current addess in mddev->curr_resync
2512 		 */
2513 		if (mddev->curr_resync < max_sector) /* aborted */
2514 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2515 						&sync_blocks, 1);
2516 		else /* completed sync */
2517 			conf->fullsync = 0;
2518 
2519 		bitmap_close_sync(mddev->bitmap);
2520 		close_sync(conf);
2521 		return 0;
2522 	}
2523 
2524 	if (mddev->bitmap == NULL &&
2525 	    mddev->recovery_cp == MaxSector &&
2526 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2527 	    conf->fullsync == 0) {
2528 		*skipped = 1;
2529 		return max_sector - sector_nr;
2530 	}
2531 	/* before building a request, check if we can skip these blocks..
2532 	 * This call the bitmap_start_sync doesn't actually record anything
2533 	 */
2534 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2535 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2536 		/* We can skip this block, and probably several more */
2537 		*skipped = 1;
2538 		return sync_blocks;
2539 	}
2540 	/*
2541 	 * If there is non-resync activity waiting for a turn,
2542 	 * and resync is going fast enough,
2543 	 * then let it though before starting on this new sync request.
2544 	 */
2545 	if (!go_faster && conf->nr_waiting)
2546 		msleep_interruptible(1000);
2547 
2548 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2549 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2550 
2551 	raise_barrier(conf, sector_nr);
2552 
2553 	rcu_read_lock();
2554 	/*
2555 	 * If we get a correctably read error during resync or recovery,
2556 	 * we might want to read from a different device.  So we
2557 	 * flag all drives that could conceivably be read from for READ,
2558 	 * and any others (which will be non-In_sync devices) for WRITE.
2559 	 * If a read fails, we try reading from something else for which READ
2560 	 * is OK.
2561 	 */
2562 
2563 	r1_bio->mddev = mddev;
2564 	r1_bio->sector = sector_nr;
2565 	r1_bio->state = 0;
2566 	set_bit(R1BIO_IsSync, &r1_bio->state);
2567 
2568 	for (i = 0; i < conf->raid_disks * 2; i++) {
2569 		struct md_rdev *rdev;
2570 		bio = r1_bio->bios[i];
2571 		bio_reset(bio);
2572 
2573 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2574 		if (rdev == NULL ||
2575 		    test_bit(Faulty, &rdev->flags)) {
2576 			if (i < conf->raid_disks)
2577 				still_degraded = 1;
2578 		} else if (!test_bit(In_sync, &rdev->flags)) {
2579 			bio->bi_rw = WRITE;
2580 			bio->bi_end_io = end_sync_write;
2581 			write_targets ++;
2582 		} else {
2583 			/* may need to read from here */
2584 			sector_t first_bad = MaxSector;
2585 			int bad_sectors;
2586 
2587 			if (is_badblock(rdev, sector_nr, good_sectors,
2588 					&first_bad, &bad_sectors)) {
2589 				if (first_bad > sector_nr)
2590 					good_sectors = first_bad - sector_nr;
2591 				else {
2592 					bad_sectors -= (sector_nr - first_bad);
2593 					if (min_bad == 0 ||
2594 					    min_bad > bad_sectors)
2595 						min_bad = bad_sectors;
2596 				}
2597 			}
2598 			if (sector_nr < first_bad) {
2599 				if (test_bit(WriteMostly, &rdev->flags)) {
2600 					if (wonly < 0)
2601 						wonly = i;
2602 				} else {
2603 					if (disk < 0)
2604 						disk = i;
2605 				}
2606 				bio->bi_rw = READ;
2607 				bio->bi_end_io = end_sync_read;
2608 				read_targets++;
2609 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2610 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2611 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2612 				/*
2613 				 * The device is suitable for reading (InSync),
2614 				 * but has bad block(s) here. Let's try to correct them,
2615 				 * if we are doing resync or repair. Otherwise, leave
2616 				 * this device alone for this sync request.
2617 				 */
2618 				bio->bi_rw = WRITE;
2619 				bio->bi_end_io = end_sync_write;
2620 				write_targets++;
2621 			}
2622 		}
2623 		if (bio->bi_end_io) {
2624 			atomic_inc(&rdev->nr_pending);
2625 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2626 			bio->bi_bdev = rdev->bdev;
2627 			bio->bi_private = r1_bio;
2628 		}
2629 	}
2630 	rcu_read_unlock();
2631 	if (disk < 0)
2632 		disk = wonly;
2633 	r1_bio->read_disk = disk;
2634 
2635 	if (read_targets == 0 && min_bad > 0) {
2636 		/* These sectors are bad on all InSync devices, so we
2637 		 * need to mark them bad on all write targets
2638 		 */
2639 		int ok = 1;
2640 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2641 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2642 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2643 				ok = rdev_set_badblocks(rdev, sector_nr,
2644 							min_bad, 0
2645 					) && ok;
2646 			}
2647 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2648 		*skipped = 1;
2649 		put_buf(r1_bio);
2650 
2651 		if (!ok) {
2652 			/* Cannot record the badblocks, so need to
2653 			 * abort the resync.
2654 			 * If there are multiple read targets, could just
2655 			 * fail the really bad ones ???
2656 			 */
2657 			conf->recovery_disabled = mddev->recovery_disabled;
2658 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2659 			return 0;
2660 		} else
2661 			return min_bad;
2662 
2663 	}
2664 	if (min_bad > 0 && min_bad < good_sectors) {
2665 		/* only resync enough to reach the next bad->good
2666 		 * transition */
2667 		good_sectors = min_bad;
2668 	}
2669 
2670 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2671 		/* extra read targets are also write targets */
2672 		write_targets += read_targets-1;
2673 
2674 	if (write_targets == 0 || read_targets == 0) {
2675 		/* There is nowhere to write, so all non-sync
2676 		 * drives must be failed - so we are finished
2677 		 */
2678 		sector_t rv;
2679 		if (min_bad > 0)
2680 			max_sector = sector_nr + min_bad;
2681 		rv = max_sector - sector_nr;
2682 		*skipped = 1;
2683 		put_buf(r1_bio);
2684 		return rv;
2685 	}
2686 
2687 	if (max_sector > mddev->resync_max)
2688 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2689 	if (max_sector > sector_nr + good_sectors)
2690 		max_sector = sector_nr + good_sectors;
2691 	nr_sectors = 0;
2692 	sync_blocks = 0;
2693 	do {
2694 		struct page *page;
2695 		int len = PAGE_SIZE;
2696 		if (sector_nr + (len>>9) > max_sector)
2697 			len = (max_sector - sector_nr) << 9;
2698 		if (len == 0)
2699 			break;
2700 		if (sync_blocks == 0) {
2701 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2702 					       &sync_blocks, still_degraded) &&
2703 			    !conf->fullsync &&
2704 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2705 				break;
2706 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2707 			if ((len >> 9) > sync_blocks)
2708 				len = sync_blocks<<9;
2709 		}
2710 
2711 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2712 			bio = r1_bio->bios[i];
2713 			if (bio->bi_end_io) {
2714 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2715 				if (bio_add_page(bio, page, len, 0) == 0) {
2716 					/* stop here */
2717 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2718 					while (i > 0) {
2719 						i--;
2720 						bio = r1_bio->bios[i];
2721 						if (bio->bi_end_io==NULL)
2722 							continue;
2723 						/* remove last page from this bio */
2724 						bio->bi_vcnt--;
2725 						bio->bi_iter.bi_size -= len;
2726 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2727 					}
2728 					goto bio_full;
2729 				}
2730 			}
2731 		}
2732 		nr_sectors += len>>9;
2733 		sector_nr += len>>9;
2734 		sync_blocks -= (len>>9);
2735 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2736  bio_full:
2737 	r1_bio->sectors = nr_sectors;
2738 
2739 	/* For a user-requested sync, we read all readable devices and do a
2740 	 * compare
2741 	 */
2742 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2743 		atomic_set(&r1_bio->remaining, read_targets);
2744 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2745 			bio = r1_bio->bios[i];
2746 			if (bio->bi_end_io == end_sync_read) {
2747 				read_targets--;
2748 				md_sync_acct(bio->bi_bdev, nr_sectors);
2749 				generic_make_request(bio);
2750 			}
2751 		}
2752 	} else {
2753 		atomic_set(&r1_bio->remaining, 1);
2754 		bio = r1_bio->bios[r1_bio->read_disk];
2755 		md_sync_acct(bio->bi_bdev, nr_sectors);
2756 		generic_make_request(bio);
2757 
2758 	}
2759 	return nr_sectors;
2760 }
2761 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2762 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2763 {
2764 	if (sectors)
2765 		return sectors;
2766 
2767 	return mddev->dev_sectors;
2768 }
2769 
setup_conf(struct mddev * mddev)2770 static struct r1conf *setup_conf(struct mddev *mddev)
2771 {
2772 	struct r1conf *conf;
2773 	int i;
2774 	struct raid1_info *disk;
2775 	struct md_rdev *rdev;
2776 	int err = -ENOMEM;
2777 
2778 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2779 	if (!conf)
2780 		goto abort;
2781 
2782 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2783 				* mddev->raid_disks * 2,
2784 				 GFP_KERNEL);
2785 	if (!conf->mirrors)
2786 		goto abort;
2787 
2788 	conf->tmppage = alloc_page(GFP_KERNEL);
2789 	if (!conf->tmppage)
2790 		goto abort;
2791 
2792 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2793 	if (!conf->poolinfo)
2794 		goto abort;
2795 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2796 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2797 					  r1bio_pool_free,
2798 					  conf->poolinfo);
2799 	if (!conf->r1bio_pool)
2800 		goto abort;
2801 
2802 	conf->poolinfo->mddev = mddev;
2803 
2804 	err = -EINVAL;
2805 	spin_lock_init(&conf->device_lock);
2806 	rdev_for_each(rdev, mddev) {
2807 		struct request_queue *q;
2808 		int disk_idx = rdev->raid_disk;
2809 		if (disk_idx >= mddev->raid_disks
2810 		    || disk_idx < 0)
2811 			continue;
2812 		if (test_bit(Replacement, &rdev->flags))
2813 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2814 		else
2815 			disk = conf->mirrors + disk_idx;
2816 
2817 		if (disk->rdev)
2818 			goto abort;
2819 		disk->rdev = rdev;
2820 		q = bdev_get_queue(rdev->bdev);
2821 		if (q->merge_bvec_fn)
2822 			mddev->merge_check_needed = 1;
2823 
2824 		disk->head_position = 0;
2825 		disk->seq_start = MaxSector;
2826 	}
2827 	conf->raid_disks = mddev->raid_disks;
2828 	conf->mddev = mddev;
2829 	INIT_LIST_HEAD(&conf->retry_list);
2830 
2831 	spin_lock_init(&conf->resync_lock);
2832 	init_waitqueue_head(&conf->wait_barrier);
2833 
2834 	bio_list_init(&conf->pending_bio_list);
2835 	conf->pending_count = 0;
2836 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2837 
2838 	conf->start_next_window = MaxSector;
2839 	conf->current_window_requests = conf->next_window_requests = 0;
2840 
2841 	err = -EIO;
2842 	for (i = 0; i < conf->raid_disks * 2; i++) {
2843 
2844 		disk = conf->mirrors + i;
2845 
2846 		if (i < conf->raid_disks &&
2847 		    disk[conf->raid_disks].rdev) {
2848 			/* This slot has a replacement. */
2849 			if (!disk->rdev) {
2850 				/* No original, just make the replacement
2851 				 * a recovering spare
2852 				 */
2853 				disk->rdev =
2854 					disk[conf->raid_disks].rdev;
2855 				disk[conf->raid_disks].rdev = NULL;
2856 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2857 				/* Original is not in_sync - bad */
2858 				goto abort;
2859 		}
2860 
2861 		if (!disk->rdev ||
2862 		    !test_bit(In_sync, &disk->rdev->flags)) {
2863 			disk->head_position = 0;
2864 			if (disk->rdev &&
2865 			    (disk->rdev->saved_raid_disk < 0))
2866 				conf->fullsync = 1;
2867 		}
2868 	}
2869 
2870 	err = -ENOMEM;
2871 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2872 	if (!conf->thread) {
2873 		printk(KERN_ERR
2874 		       "md/raid1:%s: couldn't allocate thread\n",
2875 		       mdname(mddev));
2876 		goto abort;
2877 	}
2878 
2879 	return conf;
2880 
2881  abort:
2882 	if (conf) {
2883 		if (conf->r1bio_pool)
2884 			mempool_destroy(conf->r1bio_pool);
2885 		kfree(conf->mirrors);
2886 		safe_put_page(conf->tmppage);
2887 		kfree(conf->poolinfo);
2888 		kfree(conf);
2889 	}
2890 	return ERR_PTR(err);
2891 }
2892 
2893 static int stop(struct mddev *mddev);
run(struct mddev * mddev)2894 static int run(struct mddev *mddev)
2895 {
2896 	struct r1conf *conf;
2897 	int i;
2898 	struct md_rdev *rdev;
2899 	int ret;
2900 	bool discard_supported = false;
2901 
2902 	if (mddev->level != 1) {
2903 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2904 		       mdname(mddev), mddev->level);
2905 		return -EIO;
2906 	}
2907 	if (mddev->reshape_position != MaxSector) {
2908 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2909 		       mdname(mddev));
2910 		return -EIO;
2911 	}
2912 	/*
2913 	 * copy the already verified devices into our private RAID1
2914 	 * bookkeeping area. [whatever we allocate in run(),
2915 	 * should be freed in stop()]
2916 	 */
2917 	if (mddev->private == NULL)
2918 		conf = setup_conf(mddev);
2919 	else
2920 		conf = mddev->private;
2921 
2922 	if (IS_ERR(conf))
2923 		return PTR_ERR(conf);
2924 
2925 	if (mddev->queue)
2926 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2927 
2928 	rdev_for_each(rdev, mddev) {
2929 		if (!mddev->gendisk)
2930 			continue;
2931 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2932 				  rdev->data_offset << 9);
2933 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2934 			discard_supported = true;
2935 	}
2936 
2937 	mddev->degraded = 0;
2938 	for (i=0; i < conf->raid_disks; i++)
2939 		if (conf->mirrors[i].rdev == NULL ||
2940 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2941 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2942 			mddev->degraded++;
2943 
2944 	if (conf->raid_disks - mddev->degraded == 1)
2945 		mddev->recovery_cp = MaxSector;
2946 
2947 	if (mddev->recovery_cp != MaxSector)
2948 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2949 		       " -- starting background reconstruction\n",
2950 		       mdname(mddev));
2951 	printk(KERN_INFO
2952 		"md/raid1:%s: active with %d out of %d mirrors\n",
2953 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2954 		mddev->raid_disks);
2955 
2956 	/*
2957 	 * Ok, everything is just fine now
2958 	 */
2959 	mddev->thread = conf->thread;
2960 	conf->thread = NULL;
2961 	mddev->private = conf;
2962 
2963 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2964 
2965 	if (mddev->queue) {
2966 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2967 		mddev->queue->backing_dev_info.congested_data = mddev;
2968 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2969 
2970 		if (discard_supported)
2971 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2972 						mddev->queue);
2973 		else
2974 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2975 						  mddev->queue);
2976 	}
2977 
2978 	ret =  md_integrity_register(mddev);
2979 	if (ret)
2980 		stop(mddev);
2981 	return ret;
2982 }
2983 
stop(struct mddev * mddev)2984 static int stop(struct mddev *mddev)
2985 {
2986 	struct r1conf *conf = mddev->private;
2987 	struct bitmap *bitmap = mddev->bitmap;
2988 
2989 	/* wait for behind writes to complete */
2990 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2991 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2992 		       mdname(mddev));
2993 		/* need to kick something here to make sure I/O goes? */
2994 		wait_event(bitmap->behind_wait,
2995 			   atomic_read(&bitmap->behind_writes) == 0);
2996 	}
2997 
2998 	freeze_array(conf, 0);
2999 	unfreeze_array(conf);
3000 
3001 	md_unregister_thread(&mddev->thread);
3002 	if (conf->r1bio_pool)
3003 		mempool_destroy(conf->r1bio_pool);
3004 	kfree(conf->mirrors);
3005 	safe_put_page(conf->tmppage);
3006 	kfree(conf->poolinfo);
3007 	kfree(conf);
3008 	mddev->private = NULL;
3009 	return 0;
3010 }
3011 
raid1_resize(struct mddev * mddev,sector_t sectors)3012 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3013 {
3014 	/* no resync is happening, and there is enough space
3015 	 * on all devices, so we can resize.
3016 	 * We need to make sure resync covers any new space.
3017 	 * If the array is shrinking we should possibly wait until
3018 	 * any io in the removed space completes, but it hardly seems
3019 	 * worth it.
3020 	 */
3021 	sector_t newsize = raid1_size(mddev, sectors, 0);
3022 	if (mddev->external_size &&
3023 	    mddev->array_sectors > newsize)
3024 		return -EINVAL;
3025 	if (mddev->bitmap) {
3026 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3027 		if (ret)
3028 			return ret;
3029 	}
3030 	md_set_array_sectors(mddev, newsize);
3031 	set_capacity(mddev->gendisk, mddev->array_sectors);
3032 	revalidate_disk(mddev->gendisk);
3033 	if (sectors > mddev->dev_sectors &&
3034 	    mddev->recovery_cp > mddev->dev_sectors) {
3035 		mddev->recovery_cp = mddev->dev_sectors;
3036 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3037 	}
3038 	mddev->dev_sectors = sectors;
3039 	mddev->resync_max_sectors = sectors;
3040 	return 0;
3041 }
3042 
raid1_reshape(struct mddev * mddev)3043 static int raid1_reshape(struct mddev *mddev)
3044 {
3045 	/* We need to:
3046 	 * 1/ resize the r1bio_pool
3047 	 * 2/ resize conf->mirrors
3048 	 *
3049 	 * We allocate a new r1bio_pool if we can.
3050 	 * Then raise a device barrier and wait until all IO stops.
3051 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3052 	 *
3053 	 * At the same time, we "pack" the devices so that all the missing
3054 	 * devices have the higher raid_disk numbers.
3055 	 */
3056 	mempool_t *newpool, *oldpool;
3057 	struct pool_info *newpoolinfo;
3058 	struct raid1_info *newmirrors;
3059 	struct r1conf *conf = mddev->private;
3060 	int cnt, raid_disks;
3061 	unsigned long flags;
3062 	int d, d2, err;
3063 
3064 	/* Cannot change chunk_size, layout, or level */
3065 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3066 	    mddev->layout != mddev->new_layout ||
3067 	    mddev->level != mddev->new_level) {
3068 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3069 		mddev->new_layout = mddev->layout;
3070 		mddev->new_level = mddev->level;
3071 		return -EINVAL;
3072 	}
3073 
3074 	err = md_allow_write(mddev);
3075 	if (err)
3076 		return err;
3077 
3078 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3079 
3080 	if (raid_disks < conf->raid_disks) {
3081 		cnt=0;
3082 		for (d= 0; d < conf->raid_disks; d++)
3083 			if (conf->mirrors[d].rdev)
3084 				cnt++;
3085 		if (cnt > raid_disks)
3086 			return -EBUSY;
3087 	}
3088 
3089 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3090 	if (!newpoolinfo)
3091 		return -ENOMEM;
3092 	newpoolinfo->mddev = mddev;
3093 	newpoolinfo->raid_disks = raid_disks * 2;
3094 
3095 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3096 				 r1bio_pool_free, newpoolinfo);
3097 	if (!newpool) {
3098 		kfree(newpoolinfo);
3099 		return -ENOMEM;
3100 	}
3101 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3102 			     GFP_KERNEL);
3103 	if (!newmirrors) {
3104 		kfree(newpoolinfo);
3105 		mempool_destroy(newpool);
3106 		return -ENOMEM;
3107 	}
3108 
3109 	freeze_array(conf, 0);
3110 
3111 	/* ok, everything is stopped */
3112 	oldpool = conf->r1bio_pool;
3113 	conf->r1bio_pool = newpool;
3114 
3115 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3116 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3117 		if (rdev && rdev->raid_disk != d2) {
3118 			sysfs_unlink_rdev(mddev, rdev);
3119 			rdev->raid_disk = d2;
3120 			sysfs_unlink_rdev(mddev, rdev);
3121 			if (sysfs_link_rdev(mddev, rdev))
3122 				printk(KERN_WARNING
3123 				       "md/raid1:%s: cannot register rd%d\n",
3124 				       mdname(mddev), rdev->raid_disk);
3125 		}
3126 		if (rdev)
3127 			newmirrors[d2++].rdev = rdev;
3128 	}
3129 	kfree(conf->mirrors);
3130 	conf->mirrors = newmirrors;
3131 	kfree(conf->poolinfo);
3132 	conf->poolinfo = newpoolinfo;
3133 
3134 	spin_lock_irqsave(&conf->device_lock, flags);
3135 	mddev->degraded += (raid_disks - conf->raid_disks);
3136 	spin_unlock_irqrestore(&conf->device_lock, flags);
3137 	conf->raid_disks = mddev->raid_disks = raid_disks;
3138 	mddev->delta_disks = 0;
3139 
3140 	unfreeze_array(conf);
3141 
3142 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3143 	md_wakeup_thread(mddev->thread);
3144 
3145 	mempool_destroy(oldpool);
3146 	return 0;
3147 }
3148 
raid1_quiesce(struct mddev * mddev,int state)3149 static void raid1_quiesce(struct mddev *mddev, int state)
3150 {
3151 	struct r1conf *conf = mddev->private;
3152 
3153 	switch(state) {
3154 	case 2: /* wake for suspend */
3155 		wake_up(&conf->wait_barrier);
3156 		break;
3157 	case 1:
3158 		freeze_array(conf, 0);
3159 		break;
3160 	case 0:
3161 		unfreeze_array(conf);
3162 		break;
3163 	}
3164 }
3165 
raid1_takeover(struct mddev * mddev)3166 static void *raid1_takeover(struct mddev *mddev)
3167 {
3168 	/* raid1 can take over:
3169 	 *  raid5 with 2 devices, any layout or chunk size
3170 	 */
3171 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3172 		struct r1conf *conf;
3173 		mddev->new_level = 1;
3174 		mddev->new_layout = 0;
3175 		mddev->new_chunk_sectors = 0;
3176 		conf = setup_conf(mddev);
3177 		if (!IS_ERR(conf))
3178 			/* Array must appear to be quiesced */
3179 			conf->array_frozen = 1;
3180 		return conf;
3181 	}
3182 	return ERR_PTR(-EINVAL);
3183 }
3184 
3185 static struct md_personality raid1_personality =
3186 {
3187 	.name		= "raid1",
3188 	.level		= 1,
3189 	.owner		= THIS_MODULE,
3190 	.make_request	= make_request,
3191 	.run		= run,
3192 	.stop		= stop,
3193 	.status		= status,
3194 	.error_handler	= error,
3195 	.hot_add_disk	= raid1_add_disk,
3196 	.hot_remove_disk= raid1_remove_disk,
3197 	.spare_active	= raid1_spare_active,
3198 	.sync_request	= sync_request,
3199 	.resize		= raid1_resize,
3200 	.size		= raid1_size,
3201 	.check_reshape	= raid1_reshape,
3202 	.quiesce	= raid1_quiesce,
3203 	.takeover	= raid1_takeover,
3204 };
3205 
raid_init(void)3206 static int __init raid_init(void)
3207 {
3208 	return register_md_personality(&raid1_personality);
3209 }
3210 
raid_exit(void)3211 static void raid_exit(void)
3212 {
3213 	unregister_md_personality(&raid1_personality);
3214 }
3215 
3216 module_init(raid_init);
3217 module_exit(raid_exit);
3218 MODULE_LICENSE("GPL");
3219 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3220 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3221 MODULE_ALIAS("md-raid1");
3222 MODULE_ALIAS("md-level-1");
3223 
3224 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3225