1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
r1bio_pool_alloc(gfp_t gfp_flags,void * data)73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
r1bio_pool_free(void * r1_bio,void * data)82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
r1buf_pool_alloc(gfp_t gfp_flags,void * data)95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
121 */
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
129
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158 }
159
r1buf_pool_free(void * __r1_bio,void * data)160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
165
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 }
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177 }
178
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 int i;
182
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
188 }
189 }
190
free_r1bio(struct r1bio * r1_bio)191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 struct r1conf *conf = r1_bio->mddev->private;
194
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
put_buf(struct r1bio * r1_bio)199 static void put_buf(struct r1bio *r1_bio)
200 {
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
203
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
212 lower_barrier(conf);
213 }
214
reschedule_retry(struct r1bio * r1_bio)215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
call_bio_endio(struct r1bio * r1_bio)235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
265 allow_barrier(conf, start_next_window, bi_sector);
266 }
267 }
268
raid_end_bio_io(struct r1bio * r1_bio)269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 struct bio *bio = r1_bio->master_bio;
272
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
279
280 call_bio_endio(r1_bio);
281 }
282 free_r1bio(r1_bio);
283 }
284
285 /*
286 * Update disk head position estimator based on IRQ completion info.
287 */
update_head_pos(int disk,struct r1bio * r1_bio)288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 struct r1conf *conf = r1_bio->mddev->private;
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297 * Find the disk number which triggered given bio
298 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
304
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313 }
314
raid1_end_read_request(struct bio * bio,int error)315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
321
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
326 update_head_pos(mirror, r1_bio);
327
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
334 */
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
343
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
362 }
363 }
364
close_write(struct r1bio * r1_bio)365 static void close_write(struct r1bio *r1_bio)
366 {
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382 }
383
r1_bio_write_done(struct r1bio * r1_bio)384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
397 }
398 }
399
raid1_end_write_request(struct bio * bio,int error)400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
407
408 mirror = find_bio_disk(r1_bio, bio);
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
423 /*
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
432 */
433 sector_t first_bad;
434 int bad_sectors;
435
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
480 }
481 }
482 }
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
486
487 /*
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
491 r1_bio_write_done(r1_bio);
492
493 if (to_put)
494 bio_put(to_put);
495 }
496
497 /*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 const sector_t this_sector = r1_bio->sector;
514 int sectors;
515 int best_good_sectors;
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
518 int disk;
519 sector_t best_dist;
520 unsigned int min_pending;
521 struct md_rdev *rdev;
522 int choose_first;
523 int choose_next_idle;
524
525 rcu_read_lock();
526 /*
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
532 sectors = r1_bio->sectors;
533 best_disk = -1;
534 best_dist_disk = -1;
535 best_dist = MaxSector;
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
538 best_good_sectors = 0;
539 has_nonrot_disk = 0;
540 choose_next_idle = 0;
541
542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 sector_t dist;
546 sector_t first_bad;
547 int bad_sectors;
548 unsigned int pending;
549 bool nonrot;
550
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
553 || rdev == NULL
554 || test_bit(Unmerged, &rdev->flags)
555 || test_bit(Faulty, &rdev->flags))
556 continue;
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
559 continue;
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
563 if (best_dist_disk < 0) {
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad <= this_sector)
567 /* Cannot use this */
568 continue;
569 best_good_sectors = first_bad - this_sector;
570 } else
571 best_good_sectors = sectors;
572 best_dist_disk = disk;
573 best_pending_disk = disk;
574 }
575 continue;
576 }
577 /* This is a reasonable device to use. It might
578 * even be best.
579 */
580 if (is_badblock(rdev, this_sector, sectors,
581 &first_bad, &bad_sectors)) {
582 if (best_dist < MaxSector)
583 /* already have a better device */
584 continue;
585 if (first_bad <= this_sector) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
589 */
590 bad_sectors -= (this_sector - first_bad);
591 if (choose_first && sectors > bad_sectors)
592 sectors = bad_sectors;
593 if (best_good_sectors > sectors)
594 best_good_sectors = sectors;
595
596 } else {
597 sector_t good_sectors = first_bad - this_sector;
598 if (good_sectors > best_good_sectors) {
599 best_good_sectors = good_sectors;
600 best_disk = disk;
601 }
602 if (choose_first)
603 break;
604 }
605 continue;
606 } else
607 best_good_sectors = sectors;
608
609 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 has_nonrot_disk |= nonrot;
611 pending = atomic_read(&rdev->nr_pending);
612 dist = abs(this_sector - conf->mirrors[disk].head_position);
613 if (choose_first) {
614 best_disk = disk;
615 break;
616 }
617 /* Don't change to another disk for sequential reads */
618 if (conf->mirrors[disk].next_seq_sect == this_sector
619 || dist == 0) {
620 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 struct raid1_info *mirror = &conf->mirrors[disk];
622
623 best_disk = disk;
624 /*
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
636 */
637 if (nonrot && opt_iosize > 0 &&
638 mirror->seq_start != MaxSector &&
639 mirror->next_seq_sect > opt_iosize &&
640 mirror->next_seq_sect - opt_iosize >=
641 mirror->seq_start) {
642 choose_next_idle = 1;
643 continue;
644 }
645 break;
646 }
647 /* If device is idle, use it */
648 if (pending == 0) {
649 best_disk = disk;
650 break;
651 }
652
653 if (choose_next_idle)
654 continue;
655
656 if (min_pending > pending) {
657 min_pending = pending;
658 best_pending_disk = disk;
659 }
660
661 if (dist < best_dist) {
662 best_dist = dist;
663 best_dist_disk = disk;
664 }
665 }
666
667 /*
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
672 */
673 if (best_disk == -1) {
674 if (has_nonrot_disk)
675 best_disk = best_pending_disk;
676 else
677 best_disk = best_dist_disk;
678 }
679
680 if (best_disk >= 0) {
681 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 if (!rdev)
683 goto retry;
684 atomic_inc(&rdev->nr_pending);
685 if (test_bit(Faulty, &rdev->flags)) {
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
688 */
689 rdev_dec_pending(rdev, conf->mddev);
690 goto retry;
691 }
692 sectors = best_good_sectors;
693
694 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 conf->mirrors[best_disk].seq_start = this_sector;
696
697 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 }
699 rcu_read_unlock();
700 *max_sectors = sectors;
701
702 return best_disk;
703 }
704
raid1_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)705 static int raid1_mergeable_bvec(struct request_queue *q,
706 struct bvec_merge_data *bvm,
707 struct bio_vec *biovec)
708 {
709 struct mddev *mddev = q->queuedata;
710 struct r1conf *conf = mddev->private;
711 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 int max = biovec->bv_len;
713
714 if (mddev->merge_check_needed) {
715 int disk;
716 rcu_read_lock();
717 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 struct md_rdev *rdev = rcu_dereference(
719 conf->mirrors[disk].rdev);
720 if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 struct request_queue *q =
722 bdev_get_queue(rdev->bdev);
723 if (q->merge_bvec_fn) {
724 bvm->bi_sector = sector +
725 rdev->data_offset;
726 bvm->bi_bdev = rdev->bdev;
727 max = min(max, q->merge_bvec_fn(
728 q, bvm, biovec));
729 }
730 }
731 }
732 rcu_read_unlock();
733 }
734 return max;
735
736 }
737
md_raid1_congested(struct mddev * mddev,int bits)738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740 struct r1conf *conf = mddev->private;
741 int i, ret = 0;
742
743 if ((bits & (1 << BDI_async_congested)) &&
744 conf->pending_count >= max_queued_requests)
745 return 1;
746
747 rcu_read_lock();
748 for (i = 0; i < conf->raid_disks * 2; i++) {
749 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 struct request_queue *q = bdev_get_queue(rdev->bdev);
752
753 BUG_ON(!q);
754
755 /* Note the '|| 1' - when read_balance prefers
756 * non-congested targets, it can be removed
757 */
758 if ((bits & (1<<BDI_async_congested)) || 1)
759 ret |= bdi_congested(&q->backing_dev_info, bits);
760 else
761 ret &= bdi_congested(&q->backing_dev_info, bits);
762 }
763 }
764 rcu_read_unlock();
765 return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768
raid1_congested(void * data,int bits)769 static int raid1_congested(void *data, int bits)
770 {
771 struct mddev *mddev = data;
772
773 return mddev_congested(mddev, bits) ||
774 md_raid1_congested(mddev, bits);
775 }
776
flush_pending_writes(struct r1conf * conf)777 static void flush_pending_writes(struct r1conf *conf)
778 {
779 /* Any writes that have been queued but are awaiting
780 * bitmap updates get flushed here.
781 */
782 spin_lock_irq(&conf->device_lock);
783
784 if (conf->pending_bio_list.head) {
785 struct bio *bio;
786 bio = bio_list_get(&conf->pending_bio_list);
787 conf->pending_count = 0;
788 spin_unlock_irq(&conf->device_lock);
789 /* flush any pending bitmap writes to
790 * disk before proceeding w/ I/O */
791 bitmap_unplug(conf->mddev->bitmap);
792 wake_up(&conf->wait_barrier);
793
794 while (bio) { /* submit pending writes */
795 struct bio *next = bio->bi_next;
796 bio->bi_next = NULL;
797 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 /* Just ignore it */
800 bio_endio(bio, 0);
801 else
802 generic_make_request(bio);
803 bio = next;
804 }
805 } else
806 spin_unlock_irq(&conf->device_lock);
807 }
808
809 /* Barriers....
810 * Sometimes we need to suspend IO while we do something else,
811 * either some resync/recovery, or reconfigure the array.
812 * To do this we raise a 'barrier'.
813 * The 'barrier' is a counter that can be raised multiple times
814 * to count how many activities are happening which preclude
815 * normal IO.
816 * We can only raise the barrier if there is no pending IO.
817 * i.e. if nr_pending == 0.
818 * We choose only to raise the barrier if no-one is waiting for the
819 * barrier to go down. This means that as soon as an IO request
820 * is ready, no other operations which require a barrier will start
821 * until the IO request has had a chance.
822 *
823 * So: regular IO calls 'wait_barrier'. When that returns there
824 * is no backgroup IO happening, It must arrange to call
825 * allow_barrier when it has finished its IO.
826 * backgroup IO calls must call raise_barrier. Once that returns
827 * there is no normal IO happeing. It must arrange to call
828 * lower_barrier when the particular background IO completes.
829 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)830 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
831 {
832 spin_lock_irq(&conf->resync_lock);
833
834 /* Wait until no block IO is waiting */
835 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836 conf->resync_lock);
837
838 /* block any new IO from starting */
839 conf->barrier++;
840 conf->next_resync = sector_nr;
841
842 /* For these conditions we must wait:
843 * A: while the array is in frozen state
844 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 * the max count which allowed.
846 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 * next resync will reach to the window which normal bios are
848 * handling.
849 * D: while there are any active requests in the current window.
850 */
851 wait_event_lock_irq(conf->wait_barrier,
852 !conf->array_frozen &&
853 conf->barrier < RESYNC_DEPTH &&
854 conf->current_window_requests == 0 &&
855 (conf->start_next_window >=
856 conf->next_resync + RESYNC_SECTORS),
857 conf->resync_lock);
858
859 conf->nr_pending++;
860 spin_unlock_irq(&conf->resync_lock);
861 }
862
lower_barrier(struct r1conf * conf)863 static void lower_barrier(struct r1conf *conf)
864 {
865 unsigned long flags;
866 BUG_ON(conf->barrier <= 0);
867 spin_lock_irqsave(&conf->resync_lock, flags);
868 conf->barrier--;
869 conf->nr_pending--;
870 spin_unlock_irqrestore(&conf->resync_lock, flags);
871 wake_up(&conf->wait_barrier);
872 }
873
need_to_wait_for_sync(struct r1conf * conf,struct bio * bio)874 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
875 {
876 bool wait = false;
877
878 if (conf->array_frozen || !bio)
879 wait = true;
880 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
881 if ((conf->mddev->curr_resync_completed
882 >= bio_end_sector(bio)) ||
883 (conf->next_resync + NEXT_NORMALIO_DISTANCE
884 <= bio->bi_iter.bi_sector))
885 wait = false;
886 else
887 wait = true;
888 }
889
890 return wait;
891 }
892
wait_barrier(struct r1conf * conf,struct bio * bio)893 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
894 {
895 sector_t sector = 0;
896
897 spin_lock_irq(&conf->resync_lock);
898 if (need_to_wait_for_sync(conf, bio)) {
899 conf->nr_waiting++;
900 /* Wait for the barrier to drop.
901 * However if there are already pending
902 * requests (preventing the barrier from
903 * rising completely), and the
904 * per-process bio queue isn't empty,
905 * then don't wait, as we need to empty
906 * that queue to allow conf->start_next_window
907 * to increase.
908 */
909 wait_event_lock_irq(conf->wait_barrier,
910 !conf->array_frozen &&
911 (!conf->barrier ||
912 ((conf->start_next_window <
913 conf->next_resync + RESYNC_SECTORS) &&
914 current->bio_list &&
915 !bio_list_empty(current->bio_list))),
916 conf->resync_lock);
917 conf->nr_waiting--;
918 }
919
920 if (bio && bio_data_dir(bio) == WRITE) {
921 if (bio->bi_iter.bi_sector >=
922 conf->mddev->curr_resync_completed) {
923 if (conf->start_next_window == MaxSector)
924 conf->start_next_window =
925 conf->next_resync +
926 NEXT_NORMALIO_DISTANCE;
927
928 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
929 <= bio->bi_iter.bi_sector)
930 conf->next_window_requests++;
931 else
932 conf->current_window_requests++;
933 sector = conf->start_next_window;
934 }
935 }
936
937 conf->nr_pending++;
938 spin_unlock_irq(&conf->resync_lock);
939 return sector;
940 }
941
allow_barrier(struct r1conf * conf,sector_t start_next_window,sector_t bi_sector)942 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
943 sector_t bi_sector)
944 {
945 unsigned long flags;
946
947 spin_lock_irqsave(&conf->resync_lock, flags);
948 conf->nr_pending--;
949 if (start_next_window) {
950 if (start_next_window == conf->start_next_window) {
951 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
952 <= bi_sector)
953 conf->next_window_requests--;
954 else
955 conf->current_window_requests--;
956 } else
957 conf->current_window_requests--;
958
959 if (!conf->current_window_requests) {
960 if (conf->next_window_requests) {
961 conf->current_window_requests =
962 conf->next_window_requests;
963 conf->next_window_requests = 0;
964 conf->start_next_window +=
965 NEXT_NORMALIO_DISTANCE;
966 } else
967 conf->start_next_window = MaxSector;
968 }
969 }
970 spin_unlock_irqrestore(&conf->resync_lock, flags);
971 wake_up(&conf->wait_barrier);
972 }
973
freeze_array(struct r1conf * conf,int extra)974 static void freeze_array(struct r1conf *conf, int extra)
975 {
976 /* stop syncio and normal IO and wait for everything to
977 * go quite.
978 * We wait until nr_pending match nr_queued+extra
979 * This is called in the context of one normal IO request
980 * that has failed. Thus any sync request that might be pending
981 * will be blocked by nr_pending, and we need to wait for
982 * pending IO requests to complete or be queued for re-try.
983 * Thus the number queued (nr_queued) plus this request (extra)
984 * must match the number of pending IOs (nr_pending) before
985 * we continue.
986 */
987 spin_lock_irq(&conf->resync_lock);
988 conf->array_frozen = 1;
989 wait_event_lock_irq_cmd(conf->wait_barrier,
990 conf->nr_pending == conf->nr_queued+extra,
991 conf->resync_lock,
992 flush_pending_writes(conf));
993 spin_unlock_irq(&conf->resync_lock);
994 }
unfreeze_array(struct r1conf * conf)995 static void unfreeze_array(struct r1conf *conf)
996 {
997 /* reverse the effect of the freeze */
998 spin_lock_irq(&conf->resync_lock);
999 conf->array_frozen = 0;
1000 wake_up(&conf->wait_barrier);
1001 spin_unlock_irq(&conf->resync_lock);
1002 }
1003
1004 /* duplicate the data pages for behind I/O
1005 */
alloc_behind_pages(struct bio * bio,struct r1bio * r1_bio)1006 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1007 {
1008 int i;
1009 struct bio_vec *bvec;
1010 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1011 GFP_NOIO);
1012 if (unlikely(!bvecs))
1013 return;
1014
1015 bio_for_each_segment_all(bvec, bio, i) {
1016 bvecs[i] = *bvec;
1017 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1018 if (unlikely(!bvecs[i].bv_page))
1019 goto do_sync_io;
1020 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1021 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1022 kunmap(bvecs[i].bv_page);
1023 kunmap(bvec->bv_page);
1024 }
1025 r1_bio->behind_bvecs = bvecs;
1026 r1_bio->behind_page_count = bio->bi_vcnt;
1027 set_bit(R1BIO_BehindIO, &r1_bio->state);
1028 return;
1029
1030 do_sync_io:
1031 for (i = 0; i < bio->bi_vcnt; i++)
1032 if (bvecs[i].bv_page)
1033 put_page(bvecs[i].bv_page);
1034 kfree(bvecs);
1035 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1036 bio->bi_iter.bi_size);
1037 }
1038
1039 struct raid1_plug_cb {
1040 struct blk_plug_cb cb;
1041 struct bio_list pending;
1042 int pending_cnt;
1043 };
1044
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1045 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1046 {
1047 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1048 cb);
1049 struct mddev *mddev = plug->cb.data;
1050 struct r1conf *conf = mddev->private;
1051 struct bio *bio;
1052
1053 if (from_schedule || current->bio_list) {
1054 spin_lock_irq(&conf->device_lock);
1055 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1056 conf->pending_count += plug->pending_cnt;
1057 spin_unlock_irq(&conf->device_lock);
1058 wake_up(&conf->wait_barrier);
1059 md_wakeup_thread(mddev->thread);
1060 kfree(plug);
1061 return;
1062 }
1063
1064 /* we aren't scheduling, so we can do the write-out directly. */
1065 bio = bio_list_get(&plug->pending);
1066 bitmap_unplug(mddev->bitmap);
1067 wake_up(&conf->wait_barrier);
1068
1069 while (bio) { /* submit pending writes */
1070 struct bio *next = bio->bi_next;
1071 bio->bi_next = NULL;
1072 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1073 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1074 /* Just ignore it */
1075 bio_endio(bio, 0);
1076 else
1077 generic_make_request(bio);
1078 bio = next;
1079 }
1080 kfree(plug);
1081 }
1082
make_request(struct mddev * mddev,struct bio * bio)1083 static void make_request(struct mddev *mddev, struct bio * bio)
1084 {
1085 struct r1conf *conf = mddev->private;
1086 struct raid1_info *mirror;
1087 struct r1bio *r1_bio;
1088 struct bio *read_bio;
1089 int i, disks;
1090 struct bitmap *bitmap;
1091 unsigned long flags;
1092 const int rw = bio_data_dir(bio);
1093 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1094 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1095 const unsigned long do_discard = (bio->bi_rw
1096 & (REQ_DISCARD | REQ_SECURE));
1097 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1098 struct md_rdev *blocked_rdev;
1099 struct blk_plug_cb *cb;
1100 struct raid1_plug_cb *plug = NULL;
1101 int first_clone;
1102 int sectors_handled;
1103 int max_sectors;
1104 sector_t start_next_window;
1105
1106 /*
1107 * Register the new request and wait if the reconstruction
1108 * thread has put up a bar for new requests.
1109 * Continue immediately if no resync is active currently.
1110 */
1111
1112 md_write_start(mddev, bio); /* wait on superblock update early */
1113
1114 if (bio_data_dir(bio) == WRITE &&
1115 bio_end_sector(bio) > mddev->suspend_lo &&
1116 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1117 /* As the suspend_* range is controlled by
1118 * userspace, we want an interruptible
1119 * wait.
1120 */
1121 DEFINE_WAIT(w);
1122 for (;;) {
1123 sigset_t full, old;
1124 prepare_to_wait(&conf->wait_barrier,
1125 &w, TASK_INTERRUPTIBLE);
1126 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1127 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1128 break;
1129 sigfillset(&full);
1130 sigprocmask(SIG_BLOCK, &full, &old);
1131 schedule();
1132 sigprocmask(SIG_SETMASK, &old, NULL);
1133 }
1134 finish_wait(&conf->wait_barrier, &w);
1135 }
1136
1137 start_next_window = wait_barrier(conf, bio);
1138
1139 bitmap = mddev->bitmap;
1140
1141 /*
1142 * make_request() can abort the operation when READA is being
1143 * used and no empty request is available.
1144 *
1145 */
1146 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1147
1148 r1_bio->master_bio = bio;
1149 r1_bio->sectors = bio_sectors(bio);
1150 r1_bio->state = 0;
1151 r1_bio->mddev = mddev;
1152 r1_bio->sector = bio->bi_iter.bi_sector;
1153
1154 /* We might need to issue multiple reads to different
1155 * devices if there are bad blocks around, so we keep
1156 * track of the number of reads in bio->bi_phys_segments.
1157 * If this is 0, there is only one r1_bio and no locking
1158 * will be needed when requests complete. If it is
1159 * non-zero, then it is the number of not-completed requests.
1160 */
1161 bio->bi_phys_segments = 0;
1162 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1163
1164 if (rw == READ) {
1165 /*
1166 * read balancing logic:
1167 */
1168 int rdisk;
1169
1170 read_again:
1171 rdisk = read_balance(conf, r1_bio, &max_sectors);
1172
1173 if (rdisk < 0) {
1174 /* couldn't find anywhere to read from */
1175 raid_end_bio_io(r1_bio);
1176 return;
1177 }
1178 mirror = conf->mirrors + rdisk;
1179
1180 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1181 bitmap) {
1182 /* Reading from a write-mostly device must
1183 * take care not to over-take any writes
1184 * that are 'behind'
1185 */
1186 wait_event(bitmap->behind_wait,
1187 atomic_read(&bitmap->behind_writes) == 0);
1188 }
1189 r1_bio->read_disk = rdisk;
1190 r1_bio->start_next_window = 0;
1191
1192 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1193 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1194 max_sectors);
1195
1196 r1_bio->bios[rdisk] = read_bio;
1197
1198 read_bio->bi_iter.bi_sector = r1_bio->sector +
1199 mirror->rdev->data_offset;
1200 read_bio->bi_bdev = mirror->rdev->bdev;
1201 read_bio->bi_end_io = raid1_end_read_request;
1202 read_bio->bi_rw = READ | do_sync;
1203 read_bio->bi_private = r1_bio;
1204
1205 if (max_sectors < r1_bio->sectors) {
1206 /* could not read all from this device, so we will
1207 * need another r1_bio.
1208 */
1209
1210 sectors_handled = (r1_bio->sector + max_sectors
1211 - bio->bi_iter.bi_sector);
1212 r1_bio->sectors = max_sectors;
1213 spin_lock_irq(&conf->device_lock);
1214 if (bio->bi_phys_segments == 0)
1215 bio->bi_phys_segments = 2;
1216 else
1217 bio->bi_phys_segments++;
1218 spin_unlock_irq(&conf->device_lock);
1219 /* Cannot call generic_make_request directly
1220 * as that will be queued in __make_request
1221 * and subsequent mempool_alloc might block waiting
1222 * for it. So hand bio over to raid1d.
1223 */
1224 reschedule_retry(r1_bio);
1225
1226 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1227
1228 r1_bio->master_bio = bio;
1229 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1230 r1_bio->state = 0;
1231 r1_bio->mddev = mddev;
1232 r1_bio->sector = bio->bi_iter.bi_sector +
1233 sectors_handled;
1234 goto read_again;
1235 } else
1236 generic_make_request(read_bio);
1237 return;
1238 }
1239
1240 /*
1241 * WRITE:
1242 */
1243 if (conf->pending_count >= max_queued_requests) {
1244 md_wakeup_thread(mddev->thread);
1245 wait_event(conf->wait_barrier,
1246 conf->pending_count < max_queued_requests);
1247 }
1248 /* first select target devices under rcu_lock and
1249 * inc refcount on their rdev. Record them by setting
1250 * bios[x] to bio
1251 * If there are known/acknowledged bad blocks on any device on
1252 * which we have seen a write error, we want to avoid writing those
1253 * blocks.
1254 * This potentially requires several writes to write around
1255 * the bad blocks. Each set of writes gets it's own r1bio
1256 * with a set of bios attached.
1257 */
1258
1259 disks = conf->raid_disks * 2;
1260 retry_write:
1261 r1_bio->start_next_window = start_next_window;
1262 blocked_rdev = NULL;
1263 rcu_read_lock();
1264 max_sectors = r1_bio->sectors;
1265 for (i = 0; i < disks; i++) {
1266 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1267 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1268 atomic_inc(&rdev->nr_pending);
1269 blocked_rdev = rdev;
1270 break;
1271 }
1272 r1_bio->bios[i] = NULL;
1273 if (!rdev || test_bit(Faulty, &rdev->flags)
1274 || test_bit(Unmerged, &rdev->flags)) {
1275 if (i < conf->raid_disks)
1276 set_bit(R1BIO_Degraded, &r1_bio->state);
1277 continue;
1278 }
1279
1280 atomic_inc(&rdev->nr_pending);
1281 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1282 sector_t first_bad;
1283 int bad_sectors;
1284 int is_bad;
1285
1286 is_bad = is_badblock(rdev, r1_bio->sector,
1287 max_sectors,
1288 &first_bad, &bad_sectors);
1289 if (is_bad < 0) {
1290 /* mustn't write here until the bad block is
1291 * acknowledged*/
1292 set_bit(BlockedBadBlocks, &rdev->flags);
1293 blocked_rdev = rdev;
1294 break;
1295 }
1296 if (is_bad && first_bad <= r1_bio->sector) {
1297 /* Cannot write here at all */
1298 bad_sectors -= (r1_bio->sector - first_bad);
1299 if (bad_sectors < max_sectors)
1300 /* mustn't write more than bad_sectors
1301 * to other devices yet
1302 */
1303 max_sectors = bad_sectors;
1304 rdev_dec_pending(rdev, mddev);
1305 /* We don't set R1BIO_Degraded as that
1306 * only applies if the disk is
1307 * missing, so it might be re-added,
1308 * and we want to know to recover this
1309 * chunk.
1310 * In this case the device is here,
1311 * and the fact that this chunk is not
1312 * in-sync is recorded in the bad
1313 * block log
1314 */
1315 continue;
1316 }
1317 if (is_bad) {
1318 int good_sectors = first_bad - r1_bio->sector;
1319 if (good_sectors < max_sectors)
1320 max_sectors = good_sectors;
1321 }
1322 }
1323 r1_bio->bios[i] = bio;
1324 }
1325 rcu_read_unlock();
1326
1327 if (unlikely(blocked_rdev)) {
1328 /* Wait for this device to become unblocked */
1329 int j;
1330 sector_t old = start_next_window;
1331
1332 for (j = 0; j < i; j++)
1333 if (r1_bio->bios[j])
1334 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1335 r1_bio->state = 0;
1336 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1337 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1338 start_next_window = wait_barrier(conf, bio);
1339 /*
1340 * We must make sure the multi r1bios of bio have
1341 * the same value of bi_phys_segments
1342 */
1343 if (bio->bi_phys_segments && old &&
1344 old != start_next_window)
1345 /* Wait for the former r1bio(s) to complete */
1346 wait_event(conf->wait_barrier,
1347 bio->bi_phys_segments == 1);
1348 goto retry_write;
1349 }
1350
1351 if (max_sectors < r1_bio->sectors) {
1352 /* We are splitting this write into multiple parts, so
1353 * we need to prepare for allocating another r1_bio.
1354 */
1355 r1_bio->sectors = max_sectors;
1356 spin_lock_irq(&conf->device_lock);
1357 if (bio->bi_phys_segments == 0)
1358 bio->bi_phys_segments = 2;
1359 else
1360 bio->bi_phys_segments++;
1361 spin_unlock_irq(&conf->device_lock);
1362 }
1363 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1364
1365 atomic_set(&r1_bio->remaining, 1);
1366 atomic_set(&r1_bio->behind_remaining, 0);
1367
1368 first_clone = 1;
1369 for (i = 0; i < disks; i++) {
1370 struct bio *mbio;
1371 if (!r1_bio->bios[i])
1372 continue;
1373
1374 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1375 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1376
1377 if (first_clone) {
1378 /* do behind I/O ?
1379 * Not if there are too many, or cannot
1380 * allocate memory, or a reader on WriteMostly
1381 * is waiting for behind writes to flush */
1382 if (bitmap &&
1383 (atomic_read(&bitmap->behind_writes)
1384 < mddev->bitmap_info.max_write_behind) &&
1385 !waitqueue_active(&bitmap->behind_wait))
1386 alloc_behind_pages(mbio, r1_bio);
1387
1388 bitmap_startwrite(bitmap, r1_bio->sector,
1389 r1_bio->sectors,
1390 test_bit(R1BIO_BehindIO,
1391 &r1_bio->state));
1392 first_clone = 0;
1393 }
1394 if (r1_bio->behind_bvecs) {
1395 struct bio_vec *bvec;
1396 int j;
1397
1398 /*
1399 * We trimmed the bio, so _all is legit
1400 */
1401 bio_for_each_segment_all(bvec, mbio, j)
1402 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1403 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1404 atomic_inc(&r1_bio->behind_remaining);
1405 }
1406
1407 r1_bio->bios[i] = mbio;
1408
1409 mbio->bi_iter.bi_sector = (r1_bio->sector +
1410 conf->mirrors[i].rdev->data_offset);
1411 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1412 mbio->bi_end_io = raid1_end_write_request;
1413 mbio->bi_rw =
1414 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1415 mbio->bi_private = r1_bio;
1416
1417 atomic_inc(&r1_bio->remaining);
1418
1419 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1420 if (cb)
1421 plug = container_of(cb, struct raid1_plug_cb, cb);
1422 else
1423 plug = NULL;
1424 spin_lock_irqsave(&conf->device_lock, flags);
1425 if (plug) {
1426 bio_list_add(&plug->pending, mbio);
1427 plug->pending_cnt++;
1428 } else {
1429 bio_list_add(&conf->pending_bio_list, mbio);
1430 conf->pending_count++;
1431 }
1432 spin_unlock_irqrestore(&conf->device_lock, flags);
1433 if (!plug)
1434 md_wakeup_thread(mddev->thread);
1435 }
1436 /* Mustn't call r1_bio_write_done before this next test,
1437 * as it could result in the bio being freed.
1438 */
1439 if (sectors_handled < bio_sectors(bio)) {
1440 r1_bio_write_done(r1_bio);
1441 /* We need another r1_bio. It has already been counted
1442 * in bio->bi_phys_segments
1443 */
1444 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1445 r1_bio->master_bio = bio;
1446 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1447 r1_bio->state = 0;
1448 r1_bio->mddev = mddev;
1449 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1450 goto retry_write;
1451 }
1452
1453 r1_bio_write_done(r1_bio);
1454
1455 /* In case raid1d snuck in to freeze_array */
1456 wake_up(&conf->wait_barrier);
1457 }
1458
status(struct seq_file * seq,struct mddev * mddev)1459 static void status(struct seq_file *seq, struct mddev *mddev)
1460 {
1461 struct r1conf *conf = mddev->private;
1462 int i;
1463
1464 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1465 conf->raid_disks - mddev->degraded);
1466 rcu_read_lock();
1467 for (i = 0; i < conf->raid_disks; i++) {
1468 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1469 seq_printf(seq, "%s",
1470 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1471 }
1472 rcu_read_unlock();
1473 seq_printf(seq, "]");
1474 }
1475
error(struct mddev * mddev,struct md_rdev * rdev)1476 static void error(struct mddev *mddev, struct md_rdev *rdev)
1477 {
1478 char b[BDEVNAME_SIZE];
1479 struct r1conf *conf = mddev->private;
1480 unsigned long flags;
1481
1482 /*
1483 * If it is not operational, then we have already marked it as dead
1484 * else if it is the last working disks, ignore the error, let the
1485 * next level up know.
1486 * else mark the drive as failed
1487 */
1488 if (test_bit(In_sync, &rdev->flags)
1489 && (conf->raid_disks - mddev->degraded) == 1) {
1490 /*
1491 * Don't fail the drive, act as though we were just a
1492 * normal single drive.
1493 * However don't try a recovery from this drive as
1494 * it is very likely to fail.
1495 */
1496 conf->recovery_disabled = mddev->recovery_disabled;
1497 return;
1498 }
1499 set_bit(Blocked, &rdev->flags);
1500 spin_lock_irqsave(&conf->device_lock, flags);
1501 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1502 mddev->degraded++;
1503 set_bit(Faulty, &rdev->flags);
1504 } else
1505 set_bit(Faulty, &rdev->flags);
1506 spin_unlock_irqrestore(&conf->device_lock, flags);
1507 /*
1508 * if recovery is running, make sure it aborts.
1509 */
1510 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1511 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1512 printk(KERN_ALERT
1513 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1514 "md/raid1:%s: Operation continuing on %d devices.\n",
1515 mdname(mddev), bdevname(rdev->bdev, b),
1516 mdname(mddev), conf->raid_disks - mddev->degraded);
1517 }
1518
print_conf(struct r1conf * conf)1519 static void print_conf(struct r1conf *conf)
1520 {
1521 int i;
1522
1523 printk(KERN_DEBUG "RAID1 conf printout:\n");
1524 if (!conf) {
1525 printk(KERN_DEBUG "(!conf)\n");
1526 return;
1527 }
1528 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1529 conf->raid_disks);
1530
1531 rcu_read_lock();
1532 for (i = 0; i < conf->raid_disks; i++) {
1533 char b[BDEVNAME_SIZE];
1534 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535 if (rdev)
1536 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1537 i, !test_bit(In_sync, &rdev->flags),
1538 !test_bit(Faulty, &rdev->flags),
1539 bdevname(rdev->bdev,b));
1540 }
1541 rcu_read_unlock();
1542 }
1543
close_sync(struct r1conf * conf)1544 static void close_sync(struct r1conf *conf)
1545 {
1546 wait_barrier(conf, NULL);
1547 allow_barrier(conf, 0, 0);
1548
1549 mempool_destroy(conf->r1buf_pool);
1550 conf->r1buf_pool = NULL;
1551
1552 spin_lock_irq(&conf->resync_lock);
1553 conf->next_resync = 0;
1554 conf->start_next_window = MaxSector;
1555 conf->current_window_requests +=
1556 conf->next_window_requests;
1557 conf->next_window_requests = 0;
1558 spin_unlock_irq(&conf->resync_lock);
1559 }
1560
raid1_spare_active(struct mddev * mddev)1561 static int raid1_spare_active(struct mddev *mddev)
1562 {
1563 int i;
1564 struct r1conf *conf = mddev->private;
1565 int count = 0;
1566 unsigned long flags;
1567
1568 /*
1569 * Find all failed disks within the RAID1 configuration
1570 * and mark them readable.
1571 * Called under mddev lock, so rcu protection not needed.
1572 * device_lock used to avoid races with raid1_end_read_request
1573 * which expects 'In_sync' flags and ->degraded to be consistent.
1574 */
1575 spin_lock_irqsave(&conf->device_lock, flags);
1576 for (i = 0; i < conf->raid_disks; i++) {
1577 struct md_rdev *rdev = conf->mirrors[i].rdev;
1578 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1579 if (repl
1580 && repl->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &repl->flags)
1582 && !test_and_set_bit(In_sync, &repl->flags)) {
1583 /* replacement has just become active */
1584 if (!rdev ||
1585 !test_and_clear_bit(In_sync, &rdev->flags))
1586 count++;
1587 if (rdev) {
1588 /* Replaced device not technically
1589 * faulty, but we need to be sure
1590 * it gets removed and never re-added
1591 */
1592 set_bit(Faulty, &rdev->flags);
1593 sysfs_notify_dirent_safe(
1594 rdev->sysfs_state);
1595 }
1596 }
1597 if (rdev
1598 && rdev->recovery_offset == MaxSector
1599 && !test_bit(Faulty, &rdev->flags)
1600 && !test_and_set_bit(In_sync, &rdev->flags)) {
1601 count++;
1602 sysfs_notify_dirent_safe(rdev->sysfs_state);
1603 }
1604 }
1605 mddev->degraded -= count;
1606 spin_unlock_irqrestore(&conf->device_lock, flags);
1607
1608 print_conf(conf);
1609 return count;
1610 }
1611
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1612 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1613 {
1614 struct r1conf *conf = mddev->private;
1615 int err = -EEXIST;
1616 int mirror = 0;
1617 struct raid1_info *p;
1618 int first = 0;
1619 int last = conf->raid_disks - 1;
1620 struct request_queue *q = bdev_get_queue(rdev->bdev);
1621
1622 if (mddev->recovery_disabled == conf->recovery_disabled)
1623 return -EBUSY;
1624
1625 if (rdev->raid_disk >= 0)
1626 first = last = rdev->raid_disk;
1627
1628 if (q->merge_bvec_fn) {
1629 set_bit(Unmerged, &rdev->flags);
1630 mddev->merge_check_needed = 1;
1631 }
1632
1633 for (mirror = first; mirror <= last; mirror++) {
1634 p = conf->mirrors+mirror;
1635 if (!p->rdev) {
1636
1637 if (mddev->gendisk)
1638 disk_stack_limits(mddev->gendisk, rdev->bdev,
1639 rdev->data_offset << 9);
1640
1641 p->head_position = 0;
1642 rdev->raid_disk = mirror;
1643 err = 0;
1644 /* As all devices are equivalent, we don't need a full recovery
1645 * if this was recently any drive of the array
1646 */
1647 if (rdev->saved_raid_disk < 0)
1648 conf->fullsync = 1;
1649 rcu_assign_pointer(p->rdev, rdev);
1650 break;
1651 }
1652 if (test_bit(WantReplacement, &p->rdev->flags) &&
1653 p[conf->raid_disks].rdev == NULL) {
1654 /* Add this device as a replacement */
1655 clear_bit(In_sync, &rdev->flags);
1656 set_bit(Replacement, &rdev->flags);
1657 rdev->raid_disk = mirror;
1658 err = 0;
1659 conf->fullsync = 1;
1660 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1661 break;
1662 }
1663 }
1664 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1665 /* Some requests might not have seen this new
1666 * merge_bvec_fn. We must wait for them to complete
1667 * before merging the device fully.
1668 * First we make sure any code which has tested
1669 * our function has submitted the request, then
1670 * we wait for all outstanding requests to complete.
1671 */
1672 synchronize_sched();
1673 freeze_array(conf, 0);
1674 unfreeze_array(conf);
1675 clear_bit(Unmerged, &rdev->flags);
1676 }
1677 md_integrity_add_rdev(rdev, mddev);
1678 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1679 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1680 print_conf(conf);
1681 return err;
1682 }
1683
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1684 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686 struct r1conf *conf = mddev->private;
1687 int err = 0;
1688 int number = rdev->raid_disk;
1689 struct raid1_info *p = conf->mirrors + number;
1690
1691 if (rdev != p->rdev)
1692 p = conf->mirrors + conf->raid_disks + number;
1693
1694 print_conf(conf);
1695 if (rdev == p->rdev) {
1696 if (test_bit(In_sync, &rdev->flags) ||
1697 atomic_read(&rdev->nr_pending)) {
1698 err = -EBUSY;
1699 goto abort;
1700 }
1701 /* Only remove non-faulty devices if recovery
1702 * is not possible.
1703 */
1704 if (!test_bit(Faulty, &rdev->flags) &&
1705 mddev->recovery_disabled != conf->recovery_disabled &&
1706 mddev->degraded < conf->raid_disks) {
1707 err = -EBUSY;
1708 goto abort;
1709 }
1710 p->rdev = NULL;
1711 synchronize_rcu();
1712 if (atomic_read(&rdev->nr_pending)) {
1713 /* lost the race, try later */
1714 err = -EBUSY;
1715 p->rdev = rdev;
1716 goto abort;
1717 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1718 /* We just removed a device that is being replaced.
1719 * Move down the replacement. We drain all IO before
1720 * doing this to avoid confusion.
1721 */
1722 struct md_rdev *repl =
1723 conf->mirrors[conf->raid_disks + number].rdev;
1724 freeze_array(conf, 0);
1725 clear_bit(Replacement, &repl->flags);
1726 p->rdev = repl;
1727 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1728 unfreeze_array(conf);
1729 clear_bit(WantReplacement, &rdev->flags);
1730 } else
1731 clear_bit(WantReplacement, &rdev->flags);
1732 err = md_integrity_register(mddev);
1733 }
1734 abort:
1735
1736 print_conf(conf);
1737 return err;
1738 }
1739
end_sync_read(struct bio * bio,int error)1740 static void end_sync_read(struct bio *bio, int error)
1741 {
1742 struct r1bio *r1_bio = bio->bi_private;
1743
1744 update_head_pos(r1_bio->read_disk, r1_bio);
1745
1746 /*
1747 * we have read a block, now it needs to be re-written,
1748 * or re-read if the read failed.
1749 * We don't do much here, just schedule handling by raid1d
1750 */
1751 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1752 set_bit(R1BIO_Uptodate, &r1_bio->state);
1753
1754 if (atomic_dec_and_test(&r1_bio->remaining))
1755 reschedule_retry(r1_bio);
1756 }
1757
end_sync_write(struct bio * bio,int error)1758 static void end_sync_write(struct bio *bio, int error)
1759 {
1760 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1761 struct r1bio *r1_bio = bio->bi_private;
1762 struct mddev *mddev = r1_bio->mddev;
1763 struct r1conf *conf = mddev->private;
1764 int mirror=0;
1765 sector_t first_bad;
1766 int bad_sectors;
1767
1768 mirror = find_bio_disk(r1_bio, bio);
1769
1770 if (!uptodate) {
1771 sector_t sync_blocks = 0;
1772 sector_t s = r1_bio->sector;
1773 long sectors_to_go = r1_bio->sectors;
1774 /* make sure these bits doesn't get cleared. */
1775 do {
1776 bitmap_end_sync(mddev->bitmap, s,
1777 &sync_blocks, 1);
1778 s += sync_blocks;
1779 sectors_to_go -= sync_blocks;
1780 } while (sectors_to_go > 0);
1781 set_bit(WriteErrorSeen,
1782 &conf->mirrors[mirror].rdev->flags);
1783 if (!test_and_set_bit(WantReplacement,
1784 &conf->mirrors[mirror].rdev->flags))
1785 set_bit(MD_RECOVERY_NEEDED, &
1786 mddev->recovery);
1787 set_bit(R1BIO_WriteError, &r1_bio->state);
1788 } else if (is_badblock(conf->mirrors[mirror].rdev,
1789 r1_bio->sector,
1790 r1_bio->sectors,
1791 &first_bad, &bad_sectors) &&
1792 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1793 r1_bio->sector,
1794 r1_bio->sectors,
1795 &first_bad, &bad_sectors)
1796 )
1797 set_bit(R1BIO_MadeGood, &r1_bio->state);
1798
1799 if (atomic_dec_and_test(&r1_bio->remaining)) {
1800 int s = r1_bio->sectors;
1801 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1802 test_bit(R1BIO_WriteError, &r1_bio->state))
1803 reschedule_retry(r1_bio);
1804 else {
1805 put_buf(r1_bio);
1806 md_done_sync(mddev, s, uptodate);
1807 }
1808 }
1809 }
1810
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1811 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1812 int sectors, struct page *page, int rw)
1813 {
1814 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1815 /* success */
1816 return 1;
1817 if (rw == WRITE) {
1818 set_bit(WriteErrorSeen, &rdev->flags);
1819 if (!test_and_set_bit(WantReplacement,
1820 &rdev->flags))
1821 set_bit(MD_RECOVERY_NEEDED, &
1822 rdev->mddev->recovery);
1823 }
1824 /* need to record an error - either for the block or the device */
1825 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1826 md_error(rdev->mddev, rdev);
1827 return 0;
1828 }
1829
fix_sync_read_error(struct r1bio * r1_bio)1830 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 {
1832 /* Try some synchronous reads of other devices to get
1833 * good data, much like with normal read errors. Only
1834 * read into the pages we already have so we don't
1835 * need to re-issue the read request.
1836 * We don't need to freeze the array, because being in an
1837 * active sync request, there is no normal IO, and
1838 * no overlapping syncs.
1839 * We don't need to check is_badblock() again as we
1840 * made sure that anything with a bad block in range
1841 * will have bi_end_io clear.
1842 */
1843 struct mddev *mddev = r1_bio->mddev;
1844 struct r1conf *conf = mddev->private;
1845 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1846 sector_t sect = r1_bio->sector;
1847 int sectors = r1_bio->sectors;
1848 int idx = 0;
1849
1850 while(sectors) {
1851 int s = sectors;
1852 int d = r1_bio->read_disk;
1853 int success = 0;
1854 struct md_rdev *rdev;
1855 int start;
1856
1857 if (s > (PAGE_SIZE>>9))
1858 s = PAGE_SIZE >> 9;
1859 do {
1860 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1861 /* No rcu protection needed here devices
1862 * can only be removed when no resync is
1863 * active, and resync is currently active
1864 */
1865 rdev = conf->mirrors[d].rdev;
1866 if (sync_page_io(rdev, sect, s<<9,
1867 bio->bi_io_vec[idx].bv_page,
1868 READ, false)) {
1869 success = 1;
1870 break;
1871 }
1872 }
1873 d++;
1874 if (d == conf->raid_disks * 2)
1875 d = 0;
1876 } while (!success && d != r1_bio->read_disk);
1877
1878 if (!success) {
1879 char b[BDEVNAME_SIZE];
1880 int abort = 0;
1881 /* Cannot read from anywhere, this block is lost.
1882 * Record a bad block on each device. If that doesn't
1883 * work just disable and interrupt the recovery.
1884 * Don't fail devices as that won't really help.
1885 */
1886 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1887 " for block %llu\n",
1888 mdname(mddev),
1889 bdevname(bio->bi_bdev, b),
1890 (unsigned long long)r1_bio->sector);
1891 for (d = 0; d < conf->raid_disks * 2; d++) {
1892 rdev = conf->mirrors[d].rdev;
1893 if (!rdev || test_bit(Faulty, &rdev->flags))
1894 continue;
1895 if (!rdev_set_badblocks(rdev, sect, s, 0))
1896 abort = 1;
1897 }
1898 if (abort) {
1899 conf->recovery_disabled =
1900 mddev->recovery_disabled;
1901 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1902 md_done_sync(mddev, r1_bio->sectors, 0);
1903 put_buf(r1_bio);
1904 return 0;
1905 }
1906 /* Try next page */
1907 sectors -= s;
1908 sect += s;
1909 idx++;
1910 continue;
1911 }
1912
1913 start = d;
1914 /* write it back and re-read */
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 WRITE) == 0) {
1925 r1_bio->bios[d]->bi_end_io = NULL;
1926 rdev_dec_pending(rdev, mddev);
1927 }
1928 }
1929 d = start;
1930 while (d != r1_bio->read_disk) {
1931 if (d == 0)
1932 d = conf->raid_disks * 2;
1933 d--;
1934 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935 continue;
1936 rdev = conf->mirrors[d].rdev;
1937 if (r1_sync_page_io(rdev, sect, s,
1938 bio->bi_io_vec[idx].bv_page,
1939 READ) != 0)
1940 atomic_add(s, &rdev->corrected_errors);
1941 }
1942 sectors -= s;
1943 sect += s;
1944 idx ++;
1945 }
1946 set_bit(R1BIO_Uptodate, &r1_bio->state);
1947 set_bit(BIO_UPTODATE, &bio->bi_flags);
1948 return 1;
1949 }
1950
process_checks(struct r1bio * r1_bio)1951 static void process_checks(struct r1bio *r1_bio)
1952 {
1953 /* We have read all readable devices. If we haven't
1954 * got the block, then there is no hope left.
1955 * If we have, then we want to do a comparison
1956 * and skip the write if everything is the same.
1957 * If any blocks failed to read, then we need to
1958 * attempt an over-write
1959 */
1960 struct mddev *mddev = r1_bio->mddev;
1961 struct r1conf *conf = mddev->private;
1962 int primary;
1963 int i;
1964 int vcnt;
1965
1966 /* Fix variable parts of all bios */
1967 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1968 for (i = 0; i < conf->raid_disks * 2; i++) {
1969 int j;
1970 int size;
1971 int uptodate;
1972 struct bio *b = r1_bio->bios[i];
1973 if (b->bi_end_io != end_sync_read)
1974 continue;
1975 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1976 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1977 bio_reset(b);
1978 if (!uptodate)
1979 clear_bit(BIO_UPTODATE, &b->bi_flags);
1980 b->bi_vcnt = vcnt;
1981 b->bi_iter.bi_size = r1_bio->sectors << 9;
1982 b->bi_iter.bi_sector = r1_bio->sector +
1983 conf->mirrors[i].rdev->data_offset;
1984 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1985 b->bi_end_io = end_sync_read;
1986 b->bi_private = r1_bio;
1987
1988 size = b->bi_iter.bi_size;
1989 for (j = 0; j < vcnt ; j++) {
1990 struct bio_vec *bi;
1991 bi = &b->bi_io_vec[j];
1992 bi->bv_offset = 0;
1993 if (size > PAGE_SIZE)
1994 bi->bv_len = PAGE_SIZE;
1995 else
1996 bi->bv_len = size;
1997 size -= PAGE_SIZE;
1998 }
1999 }
2000 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2001 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2002 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2003 r1_bio->bios[primary]->bi_end_io = NULL;
2004 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2005 break;
2006 }
2007 r1_bio->read_disk = primary;
2008 for (i = 0; i < conf->raid_disks * 2; i++) {
2009 int j;
2010 struct bio *pbio = r1_bio->bios[primary];
2011 struct bio *sbio = r1_bio->bios[i];
2012 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013
2014 if (sbio->bi_end_io != end_sync_read)
2015 continue;
2016 /* Now we can 'fixup' the BIO_UPTODATE flag */
2017 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2018
2019 if (uptodate) {
2020 for (j = vcnt; j-- ; ) {
2021 struct page *p, *s;
2022 p = pbio->bi_io_vec[j].bv_page;
2023 s = sbio->bi_io_vec[j].bv_page;
2024 if (memcmp(page_address(p),
2025 page_address(s),
2026 sbio->bi_io_vec[j].bv_len))
2027 break;
2028 }
2029 } else
2030 j = 0;
2031 if (j >= 0)
2032 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2033 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2034 && uptodate)) {
2035 /* No need to write to this device. */
2036 sbio->bi_end_io = NULL;
2037 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2038 continue;
2039 }
2040
2041 bio_copy_data(sbio, pbio);
2042 }
2043 }
2044
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 {
2047 struct r1conf *conf = mddev->private;
2048 int i;
2049 int disks = conf->raid_disks * 2;
2050 struct bio *bio, *wbio;
2051
2052 bio = r1_bio->bios[r1_bio->read_disk];
2053
2054 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 /* ouch - failed to read all of that. */
2056 if (!fix_sync_read_error(r1_bio))
2057 return;
2058
2059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060 process_checks(r1_bio);
2061
2062 /*
2063 * schedule writes
2064 */
2065 atomic_set(&r1_bio->remaining, 1);
2066 for (i = 0; i < disks ; i++) {
2067 wbio = r1_bio->bios[i];
2068 if (wbio->bi_end_io == NULL ||
2069 (wbio->bi_end_io == end_sync_read &&
2070 (i == r1_bio->read_disk ||
2071 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2072 continue;
2073 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2074 continue;
2075
2076 wbio->bi_rw = WRITE;
2077 wbio->bi_end_io = end_sync_write;
2078 atomic_inc(&r1_bio->remaining);
2079 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2080
2081 generic_make_request(wbio);
2082 }
2083
2084 if (atomic_dec_and_test(&r1_bio->remaining)) {
2085 /* if we're here, all write(s) have completed, so clean up */
2086 int s = r1_bio->sectors;
2087 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2088 test_bit(R1BIO_WriteError, &r1_bio->state))
2089 reschedule_retry(r1_bio);
2090 else {
2091 put_buf(r1_bio);
2092 md_done_sync(mddev, s, 1);
2093 }
2094 }
2095 }
2096
2097 /*
2098 * This is a kernel thread which:
2099 *
2100 * 1. Retries failed read operations on working mirrors.
2101 * 2. Updates the raid superblock when problems encounter.
2102 * 3. Performs writes following reads for array synchronising.
2103 */
2104
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2105 static void fix_read_error(struct r1conf *conf, int read_disk,
2106 sector_t sect, int sectors)
2107 {
2108 struct mddev *mddev = conf->mddev;
2109 while(sectors) {
2110 int s = sectors;
2111 int d = read_disk;
2112 int success = 0;
2113 int start;
2114 struct md_rdev *rdev;
2115
2116 if (s > (PAGE_SIZE>>9))
2117 s = PAGE_SIZE >> 9;
2118
2119 do {
2120 /* Note: no rcu protection needed here
2121 * as this is synchronous in the raid1d thread
2122 * which is the thread that might remove
2123 * a device. If raid1d ever becomes multi-threaded....
2124 */
2125 sector_t first_bad;
2126 int bad_sectors;
2127
2128 rdev = conf->mirrors[d].rdev;
2129 if (rdev &&
2130 (test_bit(In_sync, &rdev->flags) ||
2131 (!test_bit(Faulty, &rdev->flags) &&
2132 rdev->recovery_offset >= sect + s)) &&
2133 is_badblock(rdev, sect, s,
2134 &first_bad, &bad_sectors) == 0 &&
2135 sync_page_io(rdev, sect, s<<9,
2136 conf->tmppage, READ, false))
2137 success = 1;
2138 else {
2139 d++;
2140 if (d == conf->raid_disks * 2)
2141 d = 0;
2142 }
2143 } while (!success && d != read_disk);
2144
2145 if (!success) {
2146 /* Cannot read from anywhere - mark it bad */
2147 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2148 if (!rdev_set_badblocks(rdev, sect, s, 0))
2149 md_error(mddev, rdev);
2150 break;
2151 }
2152 /* write it back and re-read */
2153 start = d;
2154 while (d != read_disk) {
2155 if (d==0)
2156 d = conf->raid_disks * 2;
2157 d--;
2158 rdev = conf->mirrors[d].rdev;
2159 if (rdev &&
2160 !test_bit(Faulty, &rdev->flags))
2161 r1_sync_page_io(rdev, sect, s,
2162 conf->tmppage, WRITE);
2163 }
2164 d = start;
2165 while (d != read_disk) {
2166 char b[BDEVNAME_SIZE];
2167 if (d==0)
2168 d = conf->raid_disks * 2;
2169 d--;
2170 rdev = conf->mirrors[d].rdev;
2171 if (rdev &&
2172 !test_bit(Faulty, &rdev->flags)) {
2173 if (r1_sync_page_io(rdev, sect, s,
2174 conf->tmppage, READ)) {
2175 atomic_add(s, &rdev->corrected_errors);
2176 printk(KERN_INFO
2177 "md/raid1:%s: read error corrected "
2178 "(%d sectors at %llu on %s)\n",
2179 mdname(mddev), s,
2180 (unsigned long long)(sect +
2181 rdev->data_offset),
2182 bdevname(rdev->bdev, b));
2183 }
2184 }
2185 }
2186 sectors -= s;
2187 sect += s;
2188 }
2189 }
2190
narrow_write_error(struct r1bio * r1_bio,int i)2191 static int narrow_write_error(struct r1bio *r1_bio, int i)
2192 {
2193 struct mddev *mddev = r1_bio->mddev;
2194 struct r1conf *conf = mddev->private;
2195 struct md_rdev *rdev = conf->mirrors[i].rdev;
2196
2197 /* bio has the data to be written to device 'i' where
2198 * we just recently had a write error.
2199 * We repeatedly clone the bio and trim down to one block,
2200 * then try the write. Where the write fails we record
2201 * a bad block.
2202 * It is conceivable that the bio doesn't exactly align with
2203 * blocks. We must handle this somehow.
2204 *
2205 * We currently own a reference on the rdev.
2206 */
2207
2208 int block_sectors;
2209 sector_t sector;
2210 int sectors;
2211 int sect_to_write = r1_bio->sectors;
2212 int ok = 1;
2213
2214 if (rdev->badblocks.shift < 0)
2215 return 0;
2216
2217 block_sectors = 1 << rdev->badblocks.shift;
2218 sector = r1_bio->sector;
2219 sectors = ((sector + block_sectors)
2220 & ~(sector_t)(block_sectors - 1))
2221 - sector;
2222
2223 while (sect_to_write) {
2224 struct bio *wbio;
2225 if (sectors > sect_to_write)
2226 sectors = sect_to_write;
2227 /* Write at 'sector' for 'sectors'*/
2228
2229 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2230 unsigned vcnt = r1_bio->behind_page_count;
2231 struct bio_vec *vec = r1_bio->behind_bvecs;
2232
2233 while (!vec->bv_page) {
2234 vec++;
2235 vcnt--;
2236 }
2237
2238 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2239 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2240
2241 wbio->bi_vcnt = vcnt;
2242 } else {
2243 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 }
2245
2246 wbio->bi_rw = WRITE;
2247 wbio->bi_iter.bi_sector = r1_bio->sector;
2248 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2249
2250 bio_trim(wbio, sector - r1_bio->sector, sectors);
2251 wbio->bi_iter.bi_sector += rdev->data_offset;
2252 wbio->bi_bdev = rdev->bdev;
2253 if (submit_bio_wait(WRITE, wbio) < 0)
2254 /* failure! */
2255 ok = rdev_set_badblocks(rdev, sector,
2256 sectors, 0)
2257 && ok;
2258
2259 bio_put(wbio);
2260 sect_to_write -= sectors;
2261 sector += sectors;
2262 sectors = block_sectors;
2263 }
2264 return ok;
2265 }
2266
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2267 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2268 {
2269 int m;
2270 int s = r1_bio->sectors;
2271 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2272 struct md_rdev *rdev = conf->mirrors[m].rdev;
2273 struct bio *bio = r1_bio->bios[m];
2274 if (bio->bi_end_io == NULL)
2275 continue;
2276 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2277 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2278 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2279 }
2280 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2281 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2282 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2283 md_error(conf->mddev, rdev);
2284 }
2285 }
2286 put_buf(r1_bio);
2287 md_done_sync(conf->mddev, s, 1);
2288 }
2289
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2290 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2291 {
2292 int m;
2293 for (m = 0; m < conf->raid_disks * 2 ; m++)
2294 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2295 struct md_rdev *rdev = conf->mirrors[m].rdev;
2296 rdev_clear_badblocks(rdev,
2297 r1_bio->sector,
2298 r1_bio->sectors, 0);
2299 rdev_dec_pending(rdev, conf->mddev);
2300 } else if (r1_bio->bios[m] != NULL) {
2301 /* This drive got a write error. We need to
2302 * narrow down and record precise write
2303 * errors.
2304 */
2305 if (!narrow_write_error(r1_bio, m)) {
2306 md_error(conf->mddev,
2307 conf->mirrors[m].rdev);
2308 /* an I/O failed, we can't clear the bitmap */
2309 set_bit(R1BIO_Degraded, &r1_bio->state);
2310 }
2311 rdev_dec_pending(conf->mirrors[m].rdev,
2312 conf->mddev);
2313 }
2314 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2315 close_write(r1_bio);
2316 raid_end_bio_io(r1_bio);
2317 }
2318
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2319 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2320 {
2321 int disk;
2322 int max_sectors;
2323 struct mddev *mddev = conf->mddev;
2324 struct bio *bio;
2325 char b[BDEVNAME_SIZE];
2326 struct md_rdev *rdev;
2327
2328 clear_bit(R1BIO_ReadError, &r1_bio->state);
2329 /* we got a read error. Maybe the drive is bad. Maybe just
2330 * the block and we can fix it.
2331 * We freeze all other IO, and try reading the block from
2332 * other devices. When we find one, we re-write
2333 * and check it that fixes the read error.
2334 * This is all done synchronously while the array is
2335 * frozen
2336 */
2337 if (mddev->ro == 0) {
2338 freeze_array(conf, 1);
2339 fix_read_error(conf, r1_bio->read_disk,
2340 r1_bio->sector, r1_bio->sectors);
2341 unfreeze_array(conf);
2342 } else
2343 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2344 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2345
2346 bio = r1_bio->bios[r1_bio->read_disk];
2347 bdevname(bio->bi_bdev, b);
2348 read_more:
2349 disk = read_balance(conf, r1_bio, &max_sectors);
2350 if (disk == -1) {
2351 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2352 " read error for block %llu\n",
2353 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2354 raid_end_bio_io(r1_bio);
2355 } else {
2356 const unsigned long do_sync
2357 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2358 if (bio) {
2359 r1_bio->bios[r1_bio->read_disk] =
2360 mddev->ro ? IO_BLOCKED : NULL;
2361 bio_put(bio);
2362 }
2363 r1_bio->read_disk = disk;
2364 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2365 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2366 max_sectors);
2367 r1_bio->bios[r1_bio->read_disk] = bio;
2368 rdev = conf->mirrors[disk].rdev;
2369 printk_ratelimited(KERN_ERR
2370 "md/raid1:%s: redirecting sector %llu"
2371 " to other mirror: %s\n",
2372 mdname(mddev),
2373 (unsigned long long)r1_bio->sector,
2374 bdevname(rdev->bdev, b));
2375 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2376 bio->bi_bdev = rdev->bdev;
2377 bio->bi_end_io = raid1_end_read_request;
2378 bio->bi_rw = READ | do_sync;
2379 bio->bi_private = r1_bio;
2380 if (max_sectors < r1_bio->sectors) {
2381 /* Drat - have to split this up more */
2382 struct bio *mbio = r1_bio->master_bio;
2383 int sectors_handled = (r1_bio->sector + max_sectors
2384 - mbio->bi_iter.bi_sector);
2385 r1_bio->sectors = max_sectors;
2386 spin_lock_irq(&conf->device_lock);
2387 if (mbio->bi_phys_segments == 0)
2388 mbio->bi_phys_segments = 2;
2389 else
2390 mbio->bi_phys_segments++;
2391 spin_unlock_irq(&conf->device_lock);
2392 generic_make_request(bio);
2393 bio = NULL;
2394
2395 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2396
2397 r1_bio->master_bio = mbio;
2398 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2399 r1_bio->state = 0;
2400 set_bit(R1BIO_ReadError, &r1_bio->state);
2401 r1_bio->mddev = mddev;
2402 r1_bio->sector = mbio->bi_iter.bi_sector +
2403 sectors_handled;
2404
2405 goto read_more;
2406 } else
2407 generic_make_request(bio);
2408 }
2409 }
2410
raid1d(struct md_thread * thread)2411 static void raid1d(struct md_thread *thread)
2412 {
2413 struct mddev *mddev = thread->mddev;
2414 struct r1bio *r1_bio;
2415 unsigned long flags;
2416 struct r1conf *conf = mddev->private;
2417 struct list_head *head = &conf->retry_list;
2418 struct blk_plug plug;
2419
2420 md_check_recovery(mddev);
2421
2422 blk_start_plug(&plug);
2423 for (;;) {
2424
2425 flush_pending_writes(conf);
2426
2427 spin_lock_irqsave(&conf->device_lock, flags);
2428 if (list_empty(head)) {
2429 spin_unlock_irqrestore(&conf->device_lock, flags);
2430 break;
2431 }
2432 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2433 list_del(head->prev);
2434 conf->nr_queued--;
2435 spin_unlock_irqrestore(&conf->device_lock, flags);
2436
2437 mddev = r1_bio->mddev;
2438 conf = mddev->private;
2439 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2440 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2441 test_bit(R1BIO_WriteError, &r1_bio->state))
2442 handle_sync_write_finished(conf, r1_bio);
2443 else
2444 sync_request_write(mddev, r1_bio);
2445 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2446 test_bit(R1BIO_WriteError, &r1_bio->state))
2447 handle_write_finished(conf, r1_bio);
2448 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2449 handle_read_error(conf, r1_bio);
2450 else
2451 /* just a partial read to be scheduled from separate
2452 * context
2453 */
2454 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2455
2456 cond_resched();
2457 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2458 md_check_recovery(mddev);
2459 }
2460 blk_finish_plug(&plug);
2461 }
2462
init_resync(struct r1conf * conf)2463 static int init_resync(struct r1conf *conf)
2464 {
2465 int buffs;
2466
2467 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2468 BUG_ON(conf->r1buf_pool);
2469 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2470 conf->poolinfo);
2471 if (!conf->r1buf_pool)
2472 return -ENOMEM;
2473 conf->next_resync = 0;
2474 return 0;
2475 }
2476
2477 /*
2478 * perform a "sync" on one "block"
2479 *
2480 * We need to make sure that no normal I/O request - particularly write
2481 * requests - conflict with active sync requests.
2482 *
2483 * This is achieved by tracking pending requests and a 'barrier' concept
2484 * that can be installed to exclude normal IO requests.
2485 */
2486
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)2487 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2488 {
2489 struct r1conf *conf = mddev->private;
2490 struct r1bio *r1_bio;
2491 struct bio *bio;
2492 sector_t max_sector, nr_sectors;
2493 int disk = -1;
2494 int i;
2495 int wonly = -1;
2496 int write_targets = 0, read_targets = 0;
2497 sector_t sync_blocks;
2498 int still_degraded = 0;
2499 int good_sectors = RESYNC_SECTORS;
2500 int min_bad = 0; /* number of sectors that are bad in all devices */
2501
2502 if (!conf->r1buf_pool)
2503 if (init_resync(conf))
2504 return 0;
2505
2506 max_sector = mddev->dev_sectors;
2507 if (sector_nr >= max_sector) {
2508 /* If we aborted, we need to abort the
2509 * sync on the 'current' bitmap chunk (there will
2510 * only be one in raid1 resync.
2511 * We can find the current addess in mddev->curr_resync
2512 */
2513 if (mddev->curr_resync < max_sector) /* aborted */
2514 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2515 &sync_blocks, 1);
2516 else /* completed sync */
2517 conf->fullsync = 0;
2518
2519 bitmap_close_sync(mddev->bitmap);
2520 close_sync(conf);
2521 return 0;
2522 }
2523
2524 if (mddev->bitmap == NULL &&
2525 mddev->recovery_cp == MaxSector &&
2526 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2527 conf->fullsync == 0) {
2528 *skipped = 1;
2529 return max_sector - sector_nr;
2530 }
2531 /* before building a request, check if we can skip these blocks..
2532 * This call the bitmap_start_sync doesn't actually record anything
2533 */
2534 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2535 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2536 /* We can skip this block, and probably several more */
2537 *skipped = 1;
2538 return sync_blocks;
2539 }
2540 /*
2541 * If there is non-resync activity waiting for a turn,
2542 * and resync is going fast enough,
2543 * then let it though before starting on this new sync request.
2544 */
2545 if (!go_faster && conf->nr_waiting)
2546 msleep_interruptible(1000);
2547
2548 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2549 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2550
2551 raise_barrier(conf, sector_nr);
2552
2553 rcu_read_lock();
2554 /*
2555 * If we get a correctably read error during resync or recovery,
2556 * we might want to read from a different device. So we
2557 * flag all drives that could conceivably be read from for READ,
2558 * and any others (which will be non-In_sync devices) for WRITE.
2559 * If a read fails, we try reading from something else for which READ
2560 * is OK.
2561 */
2562
2563 r1_bio->mddev = mddev;
2564 r1_bio->sector = sector_nr;
2565 r1_bio->state = 0;
2566 set_bit(R1BIO_IsSync, &r1_bio->state);
2567
2568 for (i = 0; i < conf->raid_disks * 2; i++) {
2569 struct md_rdev *rdev;
2570 bio = r1_bio->bios[i];
2571 bio_reset(bio);
2572
2573 rdev = rcu_dereference(conf->mirrors[i].rdev);
2574 if (rdev == NULL ||
2575 test_bit(Faulty, &rdev->flags)) {
2576 if (i < conf->raid_disks)
2577 still_degraded = 1;
2578 } else if (!test_bit(In_sync, &rdev->flags)) {
2579 bio->bi_rw = WRITE;
2580 bio->bi_end_io = end_sync_write;
2581 write_targets ++;
2582 } else {
2583 /* may need to read from here */
2584 sector_t first_bad = MaxSector;
2585 int bad_sectors;
2586
2587 if (is_badblock(rdev, sector_nr, good_sectors,
2588 &first_bad, &bad_sectors)) {
2589 if (first_bad > sector_nr)
2590 good_sectors = first_bad - sector_nr;
2591 else {
2592 bad_sectors -= (sector_nr - first_bad);
2593 if (min_bad == 0 ||
2594 min_bad > bad_sectors)
2595 min_bad = bad_sectors;
2596 }
2597 }
2598 if (sector_nr < first_bad) {
2599 if (test_bit(WriteMostly, &rdev->flags)) {
2600 if (wonly < 0)
2601 wonly = i;
2602 } else {
2603 if (disk < 0)
2604 disk = i;
2605 }
2606 bio->bi_rw = READ;
2607 bio->bi_end_io = end_sync_read;
2608 read_targets++;
2609 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2610 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2611 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2612 /*
2613 * The device is suitable for reading (InSync),
2614 * but has bad block(s) here. Let's try to correct them,
2615 * if we are doing resync or repair. Otherwise, leave
2616 * this device alone for this sync request.
2617 */
2618 bio->bi_rw = WRITE;
2619 bio->bi_end_io = end_sync_write;
2620 write_targets++;
2621 }
2622 }
2623 if (bio->bi_end_io) {
2624 atomic_inc(&rdev->nr_pending);
2625 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2626 bio->bi_bdev = rdev->bdev;
2627 bio->bi_private = r1_bio;
2628 }
2629 }
2630 rcu_read_unlock();
2631 if (disk < 0)
2632 disk = wonly;
2633 r1_bio->read_disk = disk;
2634
2635 if (read_targets == 0 && min_bad > 0) {
2636 /* These sectors are bad on all InSync devices, so we
2637 * need to mark them bad on all write targets
2638 */
2639 int ok = 1;
2640 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2641 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2642 struct md_rdev *rdev = conf->mirrors[i].rdev;
2643 ok = rdev_set_badblocks(rdev, sector_nr,
2644 min_bad, 0
2645 ) && ok;
2646 }
2647 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2648 *skipped = 1;
2649 put_buf(r1_bio);
2650
2651 if (!ok) {
2652 /* Cannot record the badblocks, so need to
2653 * abort the resync.
2654 * If there are multiple read targets, could just
2655 * fail the really bad ones ???
2656 */
2657 conf->recovery_disabled = mddev->recovery_disabled;
2658 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2659 return 0;
2660 } else
2661 return min_bad;
2662
2663 }
2664 if (min_bad > 0 && min_bad < good_sectors) {
2665 /* only resync enough to reach the next bad->good
2666 * transition */
2667 good_sectors = min_bad;
2668 }
2669
2670 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2671 /* extra read targets are also write targets */
2672 write_targets += read_targets-1;
2673
2674 if (write_targets == 0 || read_targets == 0) {
2675 /* There is nowhere to write, so all non-sync
2676 * drives must be failed - so we are finished
2677 */
2678 sector_t rv;
2679 if (min_bad > 0)
2680 max_sector = sector_nr + min_bad;
2681 rv = max_sector - sector_nr;
2682 *skipped = 1;
2683 put_buf(r1_bio);
2684 return rv;
2685 }
2686
2687 if (max_sector > mddev->resync_max)
2688 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2689 if (max_sector > sector_nr + good_sectors)
2690 max_sector = sector_nr + good_sectors;
2691 nr_sectors = 0;
2692 sync_blocks = 0;
2693 do {
2694 struct page *page;
2695 int len = PAGE_SIZE;
2696 if (sector_nr + (len>>9) > max_sector)
2697 len = (max_sector - sector_nr) << 9;
2698 if (len == 0)
2699 break;
2700 if (sync_blocks == 0) {
2701 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2702 &sync_blocks, still_degraded) &&
2703 !conf->fullsync &&
2704 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2705 break;
2706 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2707 if ((len >> 9) > sync_blocks)
2708 len = sync_blocks<<9;
2709 }
2710
2711 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2712 bio = r1_bio->bios[i];
2713 if (bio->bi_end_io) {
2714 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2715 if (bio_add_page(bio, page, len, 0) == 0) {
2716 /* stop here */
2717 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2718 while (i > 0) {
2719 i--;
2720 bio = r1_bio->bios[i];
2721 if (bio->bi_end_io==NULL)
2722 continue;
2723 /* remove last page from this bio */
2724 bio->bi_vcnt--;
2725 bio->bi_iter.bi_size -= len;
2726 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2727 }
2728 goto bio_full;
2729 }
2730 }
2731 }
2732 nr_sectors += len>>9;
2733 sector_nr += len>>9;
2734 sync_blocks -= (len>>9);
2735 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2736 bio_full:
2737 r1_bio->sectors = nr_sectors;
2738
2739 /* For a user-requested sync, we read all readable devices and do a
2740 * compare
2741 */
2742 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2743 atomic_set(&r1_bio->remaining, read_targets);
2744 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2745 bio = r1_bio->bios[i];
2746 if (bio->bi_end_io == end_sync_read) {
2747 read_targets--;
2748 md_sync_acct(bio->bi_bdev, nr_sectors);
2749 generic_make_request(bio);
2750 }
2751 }
2752 } else {
2753 atomic_set(&r1_bio->remaining, 1);
2754 bio = r1_bio->bios[r1_bio->read_disk];
2755 md_sync_acct(bio->bi_bdev, nr_sectors);
2756 generic_make_request(bio);
2757
2758 }
2759 return nr_sectors;
2760 }
2761
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2762 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2763 {
2764 if (sectors)
2765 return sectors;
2766
2767 return mddev->dev_sectors;
2768 }
2769
setup_conf(struct mddev * mddev)2770 static struct r1conf *setup_conf(struct mddev *mddev)
2771 {
2772 struct r1conf *conf;
2773 int i;
2774 struct raid1_info *disk;
2775 struct md_rdev *rdev;
2776 int err = -ENOMEM;
2777
2778 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2779 if (!conf)
2780 goto abort;
2781
2782 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2783 * mddev->raid_disks * 2,
2784 GFP_KERNEL);
2785 if (!conf->mirrors)
2786 goto abort;
2787
2788 conf->tmppage = alloc_page(GFP_KERNEL);
2789 if (!conf->tmppage)
2790 goto abort;
2791
2792 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2793 if (!conf->poolinfo)
2794 goto abort;
2795 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2796 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2797 r1bio_pool_free,
2798 conf->poolinfo);
2799 if (!conf->r1bio_pool)
2800 goto abort;
2801
2802 conf->poolinfo->mddev = mddev;
2803
2804 err = -EINVAL;
2805 spin_lock_init(&conf->device_lock);
2806 rdev_for_each(rdev, mddev) {
2807 struct request_queue *q;
2808 int disk_idx = rdev->raid_disk;
2809 if (disk_idx >= mddev->raid_disks
2810 || disk_idx < 0)
2811 continue;
2812 if (test_bit(Replacement, &rdev->flags))
2813 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2814 else
2815 disk = conf->mirrors + disk_idx;
2816
2817 if (disk->rdev)
2818 goto abort;
2819 disk->rdev = rdev;
2820 q = bdev_get_queue(rdev->bdev);
2821 if (q->merge_bvec_fn)
2822 mddev->merge_check_needed = 1;
2823
2824 disk->head_position = 0;
2825 disk->seq_start = MaxSector;
2826 }
2827 conf->raid_disks = mddev->raid_disks;
2828 conf->mddev = mddev;
2829 INIT_LIST_HEAD(&conf->retry_list);
2830
2831 spin_lock_init(&conf->resync_lock);
2832 init_waitqueue_head(&conf->wait_barrier);
2833
2834 bio_list_init(&conf->pending_bio_list);
2835 conf->pending_count = 0;
2836 conf->recovery_disabled = mddev->recovery_disabled - 1;
2837
2838 conf->start_next_window = MaxSector;
2839 conf->current_window_requests = conf->next_window_requests = 0;
2840
2841 err = -EIO;
2842 for (i = 0; i < conf->raid_disks * 2; i++) {
2843
2844 disk = conf->mirrors + i;
2845
2846 if (i < conf->raid_disks &&
2847 disk[conf->raid_disks].rdev) {
2848 /* This slot has a replacement. */
2849 if (!disk->rdev) {
2850 /* No original, just make the replacement
2851 * a recovering spare
2852 */
2853 disk->rdev =
2854 disk[conf->raid_disks].rdev;
2855 disk[conf->raid_disks].rdev = NULL;
2856 } else if (!test_bit(In_sync, &disk->rdev->flags))
2857 /* Original is not in_sync - bad */
2858 goto abort;
2859 }
2860
2861 if (!disk->rdev ||
2862 !test_bit(In_sync, &disk->rdev->flags)) {
2863 disk->head_position = 0;
2864 if (disk->rdev &&
2865 (disk->rdev->saved_raid_disk < 0))
2866 conf->fullsync = 1;
2867 }
2868 }
2869
2870 err = -ENOMEM;
2871 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2872 if (!conf->thread) {
2873 printk(KERN_ERR
2874 "md/raid1:%s: couldn't allocate thread\n",
2875 mdname(mddev));
2876 goto abort;
2877 }
2878
2879 return conf;
2880
2881 abort:
2882 if (conf) {
2883 if (conf->r1bio_pool)
2884 mempool_destroy(conf->r1bio_pool);
2885 kfree(conf->mirrors);
2886 safe_put_page(conf->tmppage);
2887 kfree(conf->poolinfo);
2888 kfree(conf);
2889 }
2890 return ERR_PTR(err);
2891 }
2892
2893 static int stop(struct mddev *mddev);
run(struct mddev * mddev)2894 static int run(struct mddev *mddev)
2895 {
2896 struct r1conf *conf;
2897 int i;
2898 struct md_rdev *rdev;
2899 int ret;
2900 bool discard_supported = false;
2901
2902 if (mddev->level != 1) {
2903 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2904 mdname(mddev), mddev->level);
2905 return -EIO;
2906 }
2907 if (mddev->reshape_position != MaxSector) {
2908 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2909 mdname(mddev));
2910 return -EIO;
2911 }
2912 /*
2913 * copy the already verified devices into our private RAID1
2914 * bookkeeping area. [whatever we allocate in run(),
2915 * should be freed in stop()]
2916 */
2917 if (mddev->private == NULL)
2918 conf = setup_conf(mddev);
2919 else
2920 conf = mddev->private;
2921
2922 if (IS_ERR(conf))
2923 return PTR_ERR(conf);
2924
2925 if (mddev->queue)
2926 blk_queue_max_write_same_sectors(mddev->queue, 0);
2927
2928 rdev_for_each(rdev, mddev) {
2929 if (!mddev->gendisk)
2930 continue;
2931 disk_stack_limits(mddev->gendisk, rdev->bdev,
2932 rdev->data_offset << 9);
2933 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2934 discard_supported = true;
2935 }
2936
2937 mddev->degraded = 0;
2938 for (i=0; i < conf->raid_disks; i++)
2939 if (conf->mirrors[i].rdev == NULL ||
2940 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2941 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2942 mddev->degraded++;
2943
2944 if (conf->raid_disks - mddev->degraded == 1)
2945 mddev->recovery_cp = MaxSector;
2946
2947 if (mddev->recovery_cp != MaxSector)
2948 printk(KERN_NOTICE "md/raid1:%s: not clean"
2949 " -- starting background reconstruction\n",
2950 mdname(mddev));
2951 printk(KERN_INFO
2952 "md/raid1:%s: active with %d out of %d mirrors\n",
2953 mdname(mddev), mddev->raid_disks - mddev->degraded,
2954 mddev->raid_disks);
2955
2956 /*
2957 * Ok, everything is just fine now
2958 */
2959 mddev->thread = conf->thread;
2960 conf->thread = NULL;
2961 mddev->private = conf;
2962
2963 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2964
2965 if (mddev->queue) {
2966 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2967 mddev->queue->backing_dev_info.congested_data = mddev;
2968 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2969
2970 if (discard_supported)
2971 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2972 mddev->queue);
2973 else
2974 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2975 mddev->queue);
2976 }
2977
2978 ret = md_integrity_register(mddev);
2979 if (ret)
2980 stop(mddev);
2981 return ret;
2982 }
2983
stop(struct mddev * mddev)2984 static int stop(struct mddev *mddev)
2985 {
2986 struct r1conf *conf = mddev->private;
2987 struct bitmap *bitmap = mddev->bitmap;
2988
2989 /* wait for behind writes to complete */
2990 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2991 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2992 mdname(mddev));
2993 /* need to kick something here to make sure I/O goes? */
2994 wait_event(bitmap->behind_wait,
2995 atomic_read(&bitmap->behind_writes) == 0);
2996 }
2997
2998 freeze_array(conf, 0);
2999 unfreeze_array(conf);
3000
3001 md_unregister_thread(&mddev->thread);
3002 if (conf->r1bio_pool)
3003 mempool_destroy(conf->r1bio_pool);
3004 kfree(conf->mirrors);
3005 safe_put_page(conf->tmppage);
3006 kfree(conf->poolinfo);
3007 kfree(conf);
3008 mddev->private = NULL;
3009 return 0;
3010 }
3011
raid1_resize(struct mddev * mddev,sector_t sectors)3012 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3013 {
3014 /* no resync is happening, and there is enough space
3015 * on all devices, so we can resize.
3016 * We need to make sure resync covers any new space.
3017 * If the array is shrinking we should possibly wait until
3018 * any io in the removed space completes, but it hardly seems
3019 * worth it.
3020 */
3021 sector_t newsize = raid1_size(mddev, sectors, 0);
3022 if (mddev->external_size &&
3023 mddev->array_sectors > newsize)
3024 return -EINVAL;
3025 if (mddev->bitmap) {
3026 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3027 if (ret)
3028 return ret;
3029 }
3030 md_set_array_sectors(mddev, newsize);
3031 set_capacity(mddev->gendisk, mddev->array_sectors);
3032 revalidate_disk(mddev->gendisk);
3033 if (sectors > mddev->dev_sectors &&
3034 mddev->recovery_cp > mddev->dev_sectors) {
3035 mddev->recovery_cp = mddev->dev_sectors;
3036 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3037 }
3038 mddev->dev_sectors = sectors;
3039 mddev->resync_max_sectors = sectors;
3040 return 0;
3041 }
3042
raid1_reshape(struct mddev * mddev)3043 static int raid1_reshape(struct mddev *mddev)
3044 {
3045 /* We need to:
3046 * 1/ resize the r1bio_pool
3047 * 2/ resize conf->mirrors
3048 *
3049 * We allocate a new r1bio_pool if we can.
3050 * Then raise a device barrier and wait until all IO stops.
3051 * Then resize conf->mirrors and swap in the new r1bio pool.
3052 *
3053 * At the same time, we "pack" the devices so that all the missing
3054 * devices have the higher raid_disk numbers.
3055 */
3056 mempool_t *newpool, *oldpool;
3057 struct pool_info *newpoolinfo;
3058 struct raid1_info *newmirrors;
3059 struct r1conf *conf = mddev->private;
3060 int cnt, raid_disks;
3061 unsigned long flags;
3062 int d, d2, err;
3063
3064 /* Cannot change chunk_size, layout, or level */
3065 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3066 mddev->layout != mddev->new_layout ||
3067 mddev->level != mddev->new_level) {
3068 mddev->new_chunk_sectors = mddev->chunk_sectors;
3069 mddev->new_layout = mddev->layout;
3070 mddev->new_level = mddev->level;
3071 return -EINVAL;
3072 }
3073
3074 err = md_allow_write(mddev);
3075 if (err)
3076 return err;
3077
3078 raid_disks = mddev->raid_disks + mddev->delta_disks;
3079
3080 if (raid_disks < conf->raid_disks) {
3081 cnt=0;
3082 for (d= 0; d < conf->raid_disks; d++)
3083 if (conf->mirrors[d].rdev)
3084 cnt++;
3085 if (cnt > raid_disks)
3086 return -EBUSY;
3087 }
3088
3089 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3090 if (!newpoolinfo)
3091 return -ENOMEM;
3092 newpoolinfo->mddev = mddev;
3093 newpoolinfo->raid_disks = raid_disks * 2;
3094
3095 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3096 r1bio_pool_free, newpoolinfo);
3097 if (!newpool) {
3098 kfree(newpoolinfo);
3099 return -ENOMEM;
3100 }
3101 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3102 GFP_KERNEL);
3103 if (!newmirrors) {
3104 kfree(newpoolinfo);
3105 mempool_destroy(newpool);
3106 return -ENOMEM;
3107 }
3108
3109 freeze_array(conf, 0);
3110
3111 /* ok, everything is stopped */
3112 oldpool = conf->r1bio_pool;
3113 conf->r1bio_pool = newpool;
3114
3115 for (d = d2 = 0; d < conf->raid_disks; d++) {
3116 struct md_rdev *rdev = conf->mirrors[d].rdev;
3117 if (rdev && rdev->raid_disk != d2) {
3118 sysfs_unlink_rdev(mddev, rdev);
3119 rdev->raid_disk = d2;
3120 sysfs_unlink_rdev(mddev, rdev);
3121 if (sysfs_link_rdev(mddev, rdev))
3122 printk(KERN_WARNING
3123 "md/raid1:%s: cannot register rd%d\n",
3124 mdname(mddev), rdev->raid_disk);
3125 }
3126 if (rdev)
3127 newmirrors[d2++].rdev = rdev;
3128 }
3129 kfree(conf->mirrors);
3130 conf->mirrors = newmirrors;
3131 kfree(conf->poolinfo);
3132 conf->poolinfo = newpoolinfo;
3133
3134 spin_lock_irqsave(&conf->device_lock, flags);
3135 mddev->degraded += (raid_disks - conf->raid_disks);
3136 spin_unlock_irqrestore(&conf->device_lock, flags);
3137 conf->raid_disks = mddev->raid_disks = raid_disks;
3138 mddev->delta_disks = 0;
3139
3140 unfreeze_array(conf);
3141
3142 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3143 md_wakeup_thread(mddev->thread);
3144
3145 mempool_destroy(oldpool);
3146 return 0;
3147 }
3148
raid1_quiesce(struct mddev * mddev,int state)3149 static void raid1_quiesce(struct mddev *mddev, int state)
3150 {
3151 struct r1conf *conf = mddev->private;
3152
3153 switch(state) {
3154 case 2: /* wake for suspend */
3155 wake_up(&conf->wait_barrier);
3156 break;
3157 case 1:
3158 freeze_array(conf, 0);
3159 break;
3160 case 0:
3161 unfreeze_array(conf);
3162 break;
3163 }
3164 }
3165
raid1_takeover(struct mddev * mddev)3166 static void *raid1_takeover(struct mddev *mddev)
3167 {
3168 /* raid1 can take over:
3169 * raid5 with 2 devices, any layout or chunk size
3170 */
3171 if (mddev->level == 5 && mddev->raid_disks == 2) {
3172 struct r1conf *conf;
3173 mddev->new_level = 1;
3174 mddev->new_layout = 0;
3175 mddev->new_chunk_sectors = 0;
3176 conf = setup_conf(mddev);
3177 if (!IS_ERR(conf))
3178 /* Array must appear to be quiesced */
3179 conf->array_frozen = 1;
3180 return conf;
3181 }
3182 return ERR_PTR(-EINVAL);
3183 }
3184
3185 static struct md_personality raid1_personality =
3186 {
3187 .name = "raid1",
3188 .level = 1,
3189 .owner = THIS_MODULE,
3190 .make_request = make_request,
3191 .run = run,
3192 .stop = stop,
3193 .status = status,
3194 .error_handler = error,
3195 .hot_add_disk = raid1_add_disk,
3196 .hot_remove_disk= raid1_remove_disk,
3197 .spare_active = raid1_spare_active,
3198 .sync_request = sync_request,
3199 .resize = raid1_resize,
3200 .size = raid1_size,
3201 .check_reshape = raid1_reshape,
3202 .quiesce = raid1_quiesce,
3203 .takeover = raid1_takeover,
3204 };
3205
raid_init(void)3206 static int __init raid_init(void)
3207 {
3208 return register_md_personality(&raid1_personality);
3209 }
3210
raid_exit(void)3211 static void raid_exit(void)
3212 {
3213 unregister_md_personality(&raid1_personality);
3214 }
3215
3216 module_init(raid_init);
3217 module_exit(raid_exit);
3218 MODULE_LICENSE("GPL");
3219 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3220 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3221 MODULE_ALIAS("md-raid1");
3222 MODULE_ALIAS("md-level-1");
3223
3224 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3225