1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
r10bio_pool_alloc(gfp_t gfp_flags,void * data)107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
r10bio_pool_free(void * r10_bio,void * data)117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
r10buf_pool_free(void * __r10_bio,void * data)217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
free_r10bio(struct r10bio * r10_bio)256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
put_buf(struct r10bio * r10_bio)264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
reschedule_retry(struct r10bio * r10_bio)273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
raid_end_bio_io(struct r10bio * r10_bio)295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
update_head_pos(int slot,struct r10bio * r10_bio)325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
raid10_end_read_request(struct bio * bio,int error)361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
396 uptodate = 1;
397 }
398 if (uptodate) {
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
401 } else {
402 /*
403 * oops, read error - keep the refcount on the rdev
404 */
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
413 }
414 }
415
close_write(struct r10bio * r10_bio)416 static void close_write(struct r10bio *r10_bio)
417 {
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424 }
425
one_write_done(struct r10bio * r10_bio)426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439 }
440
raid10_end_write_request(struct bio * bio,int error)441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (!uptodate) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /**
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 * @q: request queue
678 * @bvm: properties of new bio
679 * @biovec: the request that could be merged to it.
680 *
681 * Return amount of bytes we can accept at this offset
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
684 */
raid10_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)685 static int raid10_mergeable_bvec(struct request_queue *q,
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
688 {
689 struct mddev *mddev = q->queuedata;
690 struct r10conf *conf = mddev->private;
691 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692 int max;
693 unsigned int chunk_sectors;
694 unsigned int bio_sectors = bvm->bi_size >> 9;
695 struct geom *geo = &conf->geo;
696
697 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
698 if (conf->reshape_progress != MaxSector &&
699 ((sector >= conf->reshape_progress) !=
700 conf->mddev->reshape_backwards))
701 geo = &conf->prev;
702
703 if (geo->near_copies < geo->raid_disks) {
704 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
705 + bio_sectors)) << 9;
706 if (max < 0)
707 /* bio_add cannot handle a negative return */
708 max = 0;
709 if (max <= biovec->bv_len && bio_sectors == 0)
710 return biovec->bv_len;
711 } else
712 max = biovec->bv_len;
713
714 if (mddev->merge_check_needed) {
715 struct {
716 struct r10bio r10_bio;
717 struct r10dev devs[conf->copies];
718 } on_stack;
719 struct r10bio *r10_bio = &on_stack.r10_bio;
720 int s;
721 if (conf->reshape_progress != MaxSector) {
722 /* Cannot give any guidance during reshape */
723 if (max <= biovec->bv_len && bio_sectors == 0)
724 return biovec->bv_len;
725 return 0;
726 }
727 r10_bio->sector = sector;
728 raid10_find_phys(conf, r10_bio);
729 rcu_read_lock();
730 for (s = 0; s < conf->copies; s++) {
731 int disk = r10_bio->devs[s].devnum;
732 struct md_rdev *rdev = rcu_dereference(
733 conf->mirrors[disk].rdev);
734 if (rdev && !test_bit(Faulty, &rdev->flags)) {
735 struct request_queue *q =
736 bdev_get_queue(rdev->bdev);
737 if (q->merge_bvec_fn) {
738 bvm->bi_sector = r10_bio->devs[s].addr
739 + rdev->data_offset;
740 bvm->bi_bdev = rdev->bdev;
741 max = min(max, q->merge_bvec_fn(
742 q, bvm, biovec));
743 }
744 }
745 rdev = rcu_dereference(conf->mirrors[disk].replacement);
746 if (rdev && !test_bit(Faulty, &rdev->flags)) {
747 struct request_queue *q =
748 bdev_get_queue(rdev->bdev);
749 if (q->merge_bvec_fn) {
750 bvm->bi_sector = r10_bio->devs[s].addr
751 + rdev->data_offset;
752 bvm->bi_bdev = rdev->bdev;
753 max = min(max, q->merge_bvec_fn(
754 q, bvm, biovec));
755 }
756 }
757 }
758 rcu_read_unlock();
759 }
760 return max;
761 }
762
763 /*
764 * This routine returns the disk from which the requested read should
765 * be done. There is a per-array 'next expected sequential IO' sector
766 * number - if this matches on the next IO then we use the last disk.
767 * There is also a per-disk 'last know head position' sector that is
768 * maintained from IRQ contexts, both the normal and the resync IO
769 * completion handlers update this position correctly. If there is no
770 * perfect sequential match then we pick the disk whose head is closest.
771 *
772 * If there are 2 mirrors in the same 2 devices, performance degrades
773 * because position is mirror, not device based.
774 *
775 * The rdev for the device selected will have nr_pending incremented.
776 */
777
778 /*
779 * FIXME: possibly should rethink readbalancing and do it differently
780 * depending on near_copies / far_copies geometry.
781 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)782 static struct md_rdev *read_balance(struct r10conf *conf,
783 struct r10bio *r10_bio,
784 int *max_sectors)
785 {
786 const sector_t this_sector = r10_bio->sector;
787 int disk, slot;
788 int sectors = r10_bio->sectors;
789 int best_good_sectors;
790 sector_t new_distance, best_dist;
791 struct md_rdev *best_rdev, *rdev = NULL;
792 int do_balance;
793 int best_slot;
794 struct geom *geo = &conf->geo;
795
796 raid10_find_phys(conf, r10_bio);
797 rcu_read_lock();
798 retry:
799 sectors = r10_bio->sectors;
800 best_slot = -1;
801 best_rdev = NULL;
802 best_dist = MaxSector;
803 best_good_sectors = 0;
804 do_balance = 1;
805 /*
806 * Check if we can balance. We can balance on the whole
807 * device if no resync is going on (recovery is ok), or below
808 * the resync window. We take the first readable disk when
809 * above the resync window.
810 */
811 if (conf->mddev->recovery_cp < MaxSector
812 && (this_sector + sectors >= conf->next_resync))
813 do_balance = 0;
814
815 for (slot = 0; slot < conf->copies ; slot++) {
816 sector_t first_bad;
817 int bad_sectors;
818 sector_t dev_sector;
819
820 if (r10_bio->devs[slot].bio == IO_BLOCKED)
821 continue;
822 disk = r10_bio->devs[slot].devnum;
823 rdev = rcu_dereference(conf->mirrors[disk].replacement);
824 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
825 test_bit(Unmerged, &rdev->flags) ||
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 rdev = rcu_dereference(conf->mirrors[disk].rdev);
828 if (rdev == NULL ||
829 test_bit(Faulty, &rdev->flags) ||
830 test_bit(Unmerged, &rdev->flags))
831 continue;
832 if (!test_bit(In_sync, &rdev->flags) &&
833 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
834 continue;
835
836 dev_sector = r10_bio->devs[slot].addr;
837 if (is_badblock(rdev, dev_sector, sectors,
838 &first_bad, &bad_sectors)) {
839 if (best_dist < MaxSector)
840 /* Already have a better slot */
841 continue;
842 if (first_bad <= dev_sector) {
843 /* Cannot read here. If this is the
844 * 'primary' device, then we must not read
845 * beyond 'bad_sectors' from another device.
846 */
847 bad_sectors -= (dev_sector - first_bad);
848 if (!do_balance && sectors > bad_sectors)
849 sectors = bad_sectors;
850 if (best_good_sectors > sectors)
851 best_good_sectors = sectors;
852 } else {
853 sector_t good_sectors =
854 first_bad - dev_sector;
855 if (good_sectors > best_good_sectors) {
856 best_good_sectors = good_sectors;
857 best_slot = slot;
858 best_rdev = rdev;
859 }
860 if (!do_balance)
861 /* Must read from here */
862 break;
863 }
864 continue;
865 } else
866 best_good_sectors = sectors;
867
868 if (!do_balance)
869 break;
870
871 /* This optimisation is debatable, and completely destroys
872 * sequential read speed for 'far copies' arrays. So only
873 * keep it for 'near' arrays, and review those later.
874 */
875 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
876 break;
877
878 /* for far > 1 always use the lowest address */
879 if (geo->far_copies > 1)
880 new_distance = r10_bio->devs[slot].addr;
881 else
882 new_distance = abs(r10_bio->devs[slot].addr -
883 conf->mirrors[disk].head_position);
884 if (new_distance < best_dist) {
885 best_dist = new_distance;
886 best_slot = slot;
887 best_rdev = rdev;
888 }
889 }
890 if (slot >= conf->copies) {
891 slot = best_slot;
892 rdev = best_rdev;
893 }
894
895 if (slot >= 0) {
896 atomic_inc(&rdev->nr_pending);
897 if (test_bit(Faulty, &rdev->flags)) {
898 /* Cannot risk returning a device that failed
899 * before we inc'ed nr_pending
900 */
901 rdev_dec_pending(rdev, conf->mddev);
902 goto retry;
903 }
904 r10_bio->read_slot = slot;
905 } else
906 rdev = NULL;
907 rcu_read_unlock();
908 *max_sectors = best_good_sectors;
909
910 return rdev;
911 }
912
md_raid10_congested(struct mddev * mddev,int bits)913 int md_raid10_congested(struct mddev *mddev, int bits)
914 {
915 struct r10conf *conf = mddev->private;
916 int i, ret = 0;
917
918 if ((bits & (1 << BDI_async_congested)) &&
919 conf->pending_count >= max_queued_requests)
920 return 1;
921
922 rcu_read_lock();
923 for (i = 0;
924 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
925 && ret == 0;
926 i++) {
927 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
928 if (rdev && !test_bit(Faulty, &rdev->flags)) {
929 struct request_queue *q = bdev_get_queue(rdev->bdev);
930
931 ret |= bdi_congested(&q->backing_dev_info, bits);
932 }
933 }
934 rcu_read_unlock();
935 return ret;
936 }
937 EXPORT_SYMBOL_GPL(md_raid10_congested);
938
raid10_congested(void * data,int bits)939 static int raid10_congested(void *data, int bits)
940 {
941 struct mddev *mddev = data;
942
943 return mddev_congested(mddev, bits) ||
944 md_raid10_congested(mddev, bits);
945 }
946
flush_pending_writes(struct r10conf * conf)947 static void flush_pending_writes(struct r10conf *conf)
948 {
949 /* Any writes that have been queued but are awaiting
950 * bitmap updates get flushed here.
951 */
952 spin_lock_irq(&conf->device_lock);
953
954 if (conf->pending_bio_list.head) {
955 struct bio *bio;
956 bio = bio_list_get(&conf->pending_bio_list);
957 conf->pending_count = 0;
958 spin_unlock_irq(&conf->device_lock);
959 /* flush any pending bitmap writes to disk
960 * before proceeding w/ I/O */
961 bitmap_unplug(conf->mddev->bitmap);
962 wake_up(&conf->wait_barrier);
963
964 while (bio) { /* submit pending writes */
965 struct bio *next = bio->bi_next;
966 bio->bi_next = NULL;
967 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
968 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
969 /* Just ignore it */
970 bio_endio(bio, 0);
971 else
972 generic_make_request(bio);
973 bio = next;
974 }
975 } else
976 spin_unlock_irq(&conf->device_lock);
977 }
978
979 /* Barriers....
980 * Sometimes we need to suspend IO while we do something else,
981 * either some resync/recovery, or reconfigure the array.
982 * To do this we raise a 'barrier'.
983 * The 'barrier' is a counter that can be raised multiple times
984 * to count how many activities are happening which preclude
985 * normal IO.
986 * We can only raise the barrier if there is no pending IO.
987 * i.e. if nr_pending == 0.
988 * We choose only to raise the barrier if no-one is waiting for the
989 * barrier to go down. This means that as soon as an IO request
990 * is ready, no other operations which require a barrier will start
991 * until the IO request has had a chance.
992 *
993 * So: regular IO calls 'wait_barrier'. When that returns there
994 * is no backgroup IO happening, It must arrange to call
995 * allow_barrier when it has finished its IO.
996 * backgroup IO calls must call raise_barrier. Once that returns
997 * there is no normal IO happeing. It must arrange to call
998 * lower_barrier when the particular background IO completes.
999 */
1000
raise_barrier(struct r10conf * conf,int force)1001 static void raise_barrier(struct r10conf *conf, int force)
1002 {
1003 BUG_ON(force && !conf->barrier);
1004 spin_lock_irq(&conf->resync_lock);
1005
1006 /* Wait until no block IO is waiting (unless 'force') */
1007 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1008 conf->resync_lock);
1009
1010 /* block any new IO from starting */
1011 conf->barrier++;
1012
1013 /* Now wait for all pending IO to complete */
1014 wait_event_lock_irq(conf->wait_barrier,
1015 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1016 conf->resync_lock);
1017
1018 spin_unlock_irq(&conf->resync_lock);
1019 }
1020
lower_barrier(struct r10conf * conf)1021 static void lower_barrier(struct r10conf *conf)
1022 {
1023 unsigned long flags;
1024 spin_lock_irqsave(&conf->resync_lock, flags);
1025 conf->barrier--;
1026 spin_unlock_irqrestore(&conf->resync_lock, flags);
1027 wake_up(&conf->wait_barrier);
1028 }
1029
wait_barrier(struct r10conf * conf)1030 static void wait_barrier(struct r10conf *conf)
1031 {
1032 spin_lock_irq(&conf->resync_lock);
1033 if (conf->barrier) {
1034 conf->nr_waiting++;
1035 /* Wait for the barrier to drop.
1036 * However if there are already pending
1037 * requests (preventing the barrier from
1038 * rising completely), and the
1039 * pre-process bio queue isn't empty,
1040 * then don't wait, as we need to empty
1041 * that queue to get the nr_pending
1042 * count down.
1043 */
1044 wait_event_lock_irq(conf->wait_barrier,
1045 !conf->barrier ||
1046 (conf->nr_pending &&
1047 current->bio_list &&
1048 !bio_list_empty(current->bio_list)),
1049 conf->resync_lock);
1050 conf->nr_waiting--;
1051 }
1052 conf->nr_pending++;
1053 spin_unlock_irq(&conf->resync_lock);
1054 }
1055
allow_barrier(struct r10conf * conf)1056 static void allow_barrier(struct r10conf *conf)
1057 {
1058 unsigned long flags;
1059 spin_lock_irqsave(&conf->resync_lock, flags);
1060 conf->nr_pending--;
1061 spin_unlock_irqrestore(&conf->resync_lock, flags);
1062 wake_up(&conf->wait_barrier);
1063 }
1064
freeze_array(struct r10conf * conf,int extra)1065 static void freeze_array(struct r10conf *conf, int extra)
1066 {
1067 /* stop syncio and normal IO and wait for everything to
1068 * go quiet.
1069 * We increment barrier and nr_waiting, and then
1070 * wait until nr_pending match nr_queued+extra
1071 * This is called in the context of one normal IO request
1072 * that has failed. Thus any sync request that might be pending
1073 * will be blocked by nr_pending, and we need to wait for
1074 * pending IO requests to complete or be queued for re-try.
1075 * Thus the number queued (nr_queued) plus this request (extra)
1076 * must match the number of pending IOs (nr_pending) before
1077 * we continue.
1078 */
1079 spin_lock_irq(&conf->resync_lock);
1080 conf->barrier++;
1081 conf->nr_waiting++;
1082 wait_event_lock_irq_cmd(conf->wait_barrier,
1083 conf->nr_pending == conf->nr_queued+extra,
1084 conf->resync_lock,
1085 flush_pending_writes(conf));
1086
1087 spin_unlock_irq(&conf->resync_lock);
1088 }
1089
unfreeze_array(struct r10conf * conf)1090 static void unfreeze_array(struct r10conf *conf)
1091 {
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf->resync_lock);
1094 conf->barrier--;
1095 conf->nr_waiting--;
1096 wake_up(&conf->wait_barrier);
1097 spin_unlock_irq(&conf->resync_lock);
1098 }
1099
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1100 static sector_t choose_data_offset(struct r10bio *r10_bio,
1101 struct md_rdev *rdev)
1102 {
1103 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104 test_bit(R10BIO_Previous, &r10_bio->state))
1105 return rdev->data_offset;
1106 else
1107 return rdev->new_data_offset;
1108 }
1109
1110 struct raid10_plug_cb {
1111 struct blk_plug_cb cb;
1112 struct bio_list pending;
1113 int pending_cnt;
1114 };
1115
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1116 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1117 {
1118 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1119 cb);
1120 struct mddev *mddev = plug->cb.data;
1121 struct r10conf *conf = mddev->private;
1122 struct bio *bio;
1123
1124 if (from_schedule || current->bio_list) {
1125 spin_lock_irq(&conf->device_lock);
1126 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1127 conf->pending_count += plug->pending_cnt;
1128 spin_unlock_irq(&conf->device_lock);
1129 wake_up(&conf->wait_barrier);
1130 md_wakeup_thread(mddev->thread);
1131 kfree(plug);
1132 return;
1133 }
1134
1135 /* we aren't scheduling, so we can do the write-out directly. */
1136 bio = bio_list_get(&plug->pending);
1137 bitmap_unplug(mddev->bitmap);
1138 wake_up(&conf->wait_barrier);
1139
1140 while (bio) { /* submit pending writes */
1141 struct bio *next = bio->bi_next;
1142 bio->bi_next = NULL;
1143 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1144 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1145 /* Just ignore it */
1146 bio_endio(bio, 0);
1147 else
1148 generic_make_request(bio);
1149 bio = next;
1150 }
1151 kfree(plug);
1152 }
1153
__make_request(struct mddev * mddev,struct bio * bio)1154 static void __make_request(struct mddev *mddev, struct bio *bio)
1155 {
1156 struct r10conf *conf = mddev->private;
1157 struct r10bio *r10_bio;
1158 struct bio *read_bio;
1159 int i;
1160 const int rw = bio_data_dir(bio);
1161 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1162 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1163 const unsigned long do_discard = (bio->bi_rw
1164 & (REQ_DISCARD | REQ_SECURE));
1165 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1166 unsigned long flags;
1167 struct md_rdev *blocked_rdev;
1168 struct blk_plug_cb *cb;
1169 struct raid10_plug_cb *plug = NULL;
1170 int sectors_handled;
1171 int max_sectors;
1172 int sectors;
1173
1174 md_write_start(mddev, bio);
1175
1176 /*
1177 * Register the new request and wait if the reconstruction
1178 * thread has put up a bar for new requests.
1179 * Continue immediately if no resync is active currently.
1180 */
1181 wait_barrier(conf);
1182
1183 sectors = bio_sectors(bio);
1184 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1185 bio->bi_iter.bi_sector < conf->reshape_progress &&
1186 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1187 /* IO spans the reshape position. Need to wait for
1188 * reshape to pass
1189 */
1190 allow_barrier(conf);
1191 wait_event(conf->wait_barrier,
1192 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1193 conf->reshape_progress >= bio->bi_iter.bi_sector +
1194 sectors);
1195 wait_barrier(conf);
1196 }
1197 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1198 bio_data_dir(bio) == WRITE &&
1199 (mddev->reshape_backwards
1200 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1201 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1202 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1203 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1204 /* Need to update reshape_position in metadata */
1205 mddev->reshape_position = conf->reshape_progress;
1206 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1207 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1208 md_wakeup_thread(mddev->thread);
1209 wait_event(mddev->sb_wait,
1210 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1211
1212 conf->reshape_safe = mddev->reshape_position;
1213 }
1214
1215 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1216
1217 r10_bio->master_bio = bio;
1218 r10_bio->sectors = sectors;
1219
1220 r10_bio->mddev = mddev;
1221 r10_bio->sector = bio->bi_iter.bi_sector;
1222 r10_bio->state = 0;
1223
1224 /* We might need to issue multiple reads to different
1225 * devices if there are bad blocks around, so we keep
1226 * track of the number of reads in bio->bi_phys_segments.
1227 * If this is 0, there is only one r10_bio and no locking
1228 * will be needed when the request completes. If it is
1229 * non-zero, then it is the number of not-completed requests.
1230 */
1231 bio->bi_phys_segments = 0;
1232 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1233
1234 if (rw == READ) {
1235 /*
1236 * read balancing logic:
1237 */
1238 struct md_rdev *rdev;
1239 int slot;
1240
1241 read_again:
1242 rdev = read_balance(conf, r10_bio, &max_sectors);
1243 if (!rdev) {
1244 raid_end_bio_io(r10_bio);
1245 return;
1246 }
1247 slot = r10_bio->read_slot;
1248
1249 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1250 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1251 max_sectors);
1252
1253 r10_bio->devs[slot].bio = read_bio;
1254 r10_bio->devs[slot].rdev = rdev;
1255
1256 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1257 choose_data_offset(r10_bio, rdev);
1258 read_bio->bi_bdev = rdev->bdev;
1259 read_bio->bi_end_io = raid10_end_read_request;
1260 read_bio->bi_rw = READ | do_sync;
1261 read_bio->bi_private = r10_bio;
1262
1263 if (max_sectors < r10_bio->sectors) {
1264 /* Could not read all from this device, so we will
1265 * need another r10_bio.
1266 */
1267 sectors_handled = (r10_bio->sector + max_sectors
1268 - bio->bi_iter.bi_sector);
1269 r10_bio->sectors = max_sectors;
1270 spin_lock_irq(&conf->device_lock);
1271 if (bio->bi_phys_segments == 0)
1272 bio->bi_phys_segments = 2;
1273 else
1274 bio->bi_phys_segments++;
1275 spin_unlock_irq(&conf->device_lock);
1276 /* Cannot call generic_make_request directly
1277 * as that will be queued in __generic_make_request
1278 * and subsequent mempool_alloc might block
1279 * waiting for it. so hand bio over to raid10d.
1280 */
1281 reschedule_retry(r10_bio);
1282
1283 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1284
1285 r10_bio->master_bio = bio;
1286 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1287 r10_bio->state = 0;
1288 r10_bio->mddev = mddev;
1289 r10_bio->sector = bio->bi_iter.bi_sector +
1290 sectors_handled;
1291 goto read_again;
1292 } else
1293 generic_make_request(read_bio);
1294 return;
1295 }
1296
1297 /*
1298 * WRITE:
1299 */
1300 if (conf->pending_count >= max_queued_requests) {
1301 md_wakeup_thread(mddev->thread);
1302 wait_event(conf->wait_barrier,
1303 conf->pending_count < max_queued_requests);
1304 }
1305 /* first select target devices under rcu_lock and
1306 * inc refcount on their rdev. Record them by setting
1307 * bios[x] to bio
1308 * If there are known/acknowledged bad blocks on any device
1309 * on which we have seen a write error, we want to avoid
1310 * writing to those blocks. This potentially requires several
1311 * writes to write around the bad blocks. Each set of writes
1312 * gets its own r10_bio with a set of bios attached. The number
1313 * of r10_bios is recored in bio->bi_phys_segments just as with
1314 * the read case.
1315 */
1316
1317 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1318 raid10_find_phys(conf, r10_bio);
1319 retry_write:
1320 blocked_rdev = NULL;
1321 rcu_read_lock();
1322 max_sectors = r10_bio->sectors;
1323
1324 for (i = 0; i < conf->copies; i++) {
1325 int d = r10_bio->devs[i].devnum;
1326 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1327 struct md_rdev *rrdev = rcu_dereference(
1328 conf->mirrors[d].replacement);
1329 if (rdev == rrdev)
1330 rrdev = NULL;
1331 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1332 atomic_inc(&rdev->nr_pending);
1333 blocked_rdev = rdev;
1334 break;
1335 }
1336 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1337 atomic_inc(&rrdev->nr_pending);
1338 blocked_rdev = rrdev;
1339 break;
1340 }
1341 if (rdev && (test_bit(Faulty, &rdev->flags)
1342 || test_bit(Unmerged, &rdev->flags)))
1343 rdev = NULL;
1344 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1345 || test_bit(Unmerged, &rrdev->flags)))
1346 rrdev = NULL;
1347
1348 r10_bio->devs[i].bio = NULL;
1349 r10_bio->devs[i].repl_bio = NULL;
1350
1351 if (!rdev && !rrdev) {
1352 set_bit(R10BIO_Degraded, &r10_bio->state);
1353 continue;
1354 }
1355 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1356 sector_t first_bad;
1357 sector_t dev_sector = r10_bio->devs[i].addr;
1358 int bad_sectors;
1359 int is_bad;
1360
1361 is_bad = is_badblock(rdev, dev_sector,
1362 max_sectors,
1363 &first_bad, &bad_sectors);
1364 if (is_bad < 0) {
1365 /* Mustn't write here until the bad block
1366 * is acknowledged
1367 */
1368 atomic_inc(&rdev->nr_pending);
1369 set_bit(BlockedBadBlocks, &rdev->flags);
1370 blocked_rdev = rdev;
1371 break;
1372 }
1373 if (is_bad && first_bad <= dev_sector) {
1374 /* Cannot write here at all */
1375 bad_sectors -= (dev_sector - first_bad);
1376 if (bad_sectors < max_sectors)
1377 /* Mustn't write more than bad_sectors
1378 * to other devices yet
1379 */
1380 max_sectors = bad_sectors;
1381 /* We don't set R10BIO_Degraded as that
1382 * only applies if the disk is missing,
1383 * so it might be re-added, and we want to
1384 * know to recover this chunk.
1385 * In this case the device is here, and the
1386 * fact that this chunk is not in-sync is
1387 * recorded in the bad block log.
1388 */
1389 continue;
1390 }
1391 if (is_bad) {
1392 int good_sectors = first_bad - dev_sector;
1393 if (good_sectors < max_sectors)
1394 max_sectors = good_sectors;
1395 }
1396 }
1397 if (rdev) {
1398 r10_bio->devs[i].bio = bio;
1399 atomic_inc(&rdev->nr_pending);
1400 }
1401 if (rrdev) {
1402 r10_bio->devs[i].repl_bio = bio;
1403 atomic_inc(&rrdev->nr_pending);
1404 }
1405 }
1406 rcu_read_unlock();
1407
1408 if (unlikely(blocked_rdev)) {
1409 /* Have to wait for this device to get unblocked, then retry */
1410 int j;
1411 int d;
1412
1413 for (j = 0; j < i; j++) {
1414 if (r10_bio->devs[j].bio) {
1415 d = r10_bio->devs[j].devnum;
1416 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1417 }
1418 if (r10_bio->devs[j].repl_bio) {
1419 struct md_rdev *rdev;
1420 d = r10_bio->devs[j].devnum;
1421 rdev = conf->mirrors[d].replacement;
1422 if (!rdev) {
1423 /* Race with remove_disk */
1424 smp_mb();
1425 rdev = conf->mirrors[d].rdev;
1426 }
1427 rdev_dec_pending(rdev, mddev);
1428 }
1429 }
1430 allow_barrier(conf);
1431 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1432 wait_barrier(conf);
1433 goto retry_write;
1434 }
1435
1436 if (max_sectors < r10_bio->sectors) {
1437 /* We are splitting this into multiple parts, so
1438 * we need to prepare for allocating another r10_bio.
1439 */
1440 r10_bio->sectors = max_sectors;
1441 spin_lock_irq(&conf->device_lock);
1442 if (bio->bi_phys_segments == 0)
1443 bio->bi_phys_segments = 2;
1444 else
1445 bio->bi_phys_segments++;
1446 spin_unlock_irq(&conf->device_lock);
1447 }
1448 sectors_handled = r10_bio->sector + max_sectors -
1449 bio->bi_iter.bi_sector;
1450
1451 atomic_set(&r10_bio->remaining, 1);
1452 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1453
1454 for (i = 0; i < conf->copies; i++) {
1455 struct bio *mbio;
1456 int d = r10_bio->devs[i].devnum;
1457 if (r10_bio->devs[i].bio) {
1458 struct md_rdev *rdev = conf->mirrors[d].rdev;
1459 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1460 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1461 max_sectors);
1462 r10_bio->devs[i].bio = mbio;
1463
1464 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1465 choose_data_offset(r10_bio,
1466 rdev));
1467 mbio->bi_bdev = rdev->bdev;
1468 mbio->bi_end_io = raid10_end_write_request;
1469 mbio->bi_rw =
1470 WRITE | do_sync | do_fua | do_discard | do_same;
1471 mbio->bi_private = r10_bio;
1472
1473 atomic_inc(&r10_bio->remaining);
1474
1475 cb = blk_check_plugged(raid10_unplug, mddev,
1476 sizeof(*plug));
1477 if (cb)
1478 plug = container_of(cb, struct raid10_plug_cb,
1479 cb);
1480 else
1481 plug = NULL;
1482 spin_lock_irqsave(&conf->device_lock, flags);
1483 if (plug) {
1484 bio_list_add(&plug->pending, mbio);
1485 plug->pending_cnt++;
1486 } else {
1487 bio_list_add(&conf->pending_bio_list, mbio);
1488 conf->pending_count++;
1489 }
1490 spin_unlock_irqrestore(&conf->device_lock, flags);
1491 if (!plug)
1492 md_wakeup_thread(mddev->thread);
1493 }
1494
1495 if (r10_bio->devs[i].repl_bio) {
1496 struct md_rdev *rdev = conf->mirrors[d].replacement;
1497 if (rdev == NULL) {
1498 /* Replacement just got moved to main 'rdev' */
1499 smp_mb();
1500 rdev = conf->mirrors[d].rdev;
1501 }
1502 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1503 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1504 max_sectors);
1505 r10_bio->devs[i].repl_bio = mbio;
1506
1507 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1508 choose_data_offset(
1509 r10_bio, rdev));
1510 mbio->bi_bdev = rdev->bdev;
1511 mbio->bi_end_io = raid10_end_write_request;
1512 mbio->bi_rw =
1513 WRITE | do_sync | do_fua | do_discard | do_same;
1514 mbio->bi_private = r10_bio;
1515
1516 atomic_inc(&r10_bio->remaining);
1517
1518 cb = blk_check_plugged(raid10_unplug, mddev,
1519 sizeof(*plug));
1520 if (cb)
1521 plug = container_of(cb, struct raid10_plug_cb,
1522 cb);
1523 else
1524 plug = NULL;
1525 spin_lock_irqsave(&conf->device_lock, flags);
1526 if (plug) {
1527 bio_list_add(&plug->pending, mbio);
1528 plug->pending_cnt++;
1529 } else {
1530 bio_list_add(&conf->pending_bio_list, mbio);
1531 conf->pending_count++;
1532 }
1533 spin_unlock_irqrestore(&conf->device_lock, flags);
1534 if (!plug)
1535 md_wakeup_thread(mddev->thread);
1536 }
1537 }
1538
1539 /* Don't remove the bias on 'remaining' (one_write_done) until
1540 * after checking if we need to go around again.
1541 */
1542
1543 if (sectors_handled < bio_sectors(bio)) {
1544 one_write_done(r10_bio);
1545 /* We need another r10_bio. It has already been counted
1546 * in bio->bi_phys_segments.
1547 */
1548 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1549
1550 r10_bio->master_bio = bio;
1551 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1552
1553 r10_bio->mddev = mddev;
1554 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1555 r10_bio->state = 0;
1556 goto retry_write;
1557 }
1558 one_write_done(r10_bio);
1559 }
1560
make_request(struct mddev * mddev,struct bio * bio)1561 static void make_request(struct mddev *mddev, struct bio *bio)
1562 {
1563 struct r10conf *conf = mddev->private;
1564 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1565 int chunk_sects = chunk_mask + 1;
1566
1567 struct bio *split;
1568
1569 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1570 md_flush_request(mddev, bio);
1571 return;
1572 }
1573
1574 do {
1575
1576 /*
1577 * If this request crosses a chunk boundary, we need to split
1578 * it.
1579 */
1580 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1581 bio_sectors(bio) > chunk_sects
1582 && (conf->geo.near_copies < conf->geo.raid_disks
1583 || conf->prev.near_copies <
1584 conf->prev.raid_disks))) {
1585 split = bio_split(bio, chunk_sects -
1586 (bio->bi_iter.bi_sector &
1587 (chunk_sects - 1)),
1588 GFP_NOIO, fs_bio_set);
1589 bio_chain(split, bio);
1590 } else {
1591 split = bio;
1592 }
1593
1594 /*
1595 * If a bio is splitted, the first part of bio will pass
1596 * barrier but the bio is queued in current->bio_list (see
1597 * generic_make_request). If there is a raise_barrier() called
1598 * here, the second part of bio can't pass barrier. But since
1599 * the first part bio isn't dispatched to underlaying disks
1600 * yet, the barrier is never released, hence raise_barrier will
1601 * alays wait. We have a deadlock.
1602 * Note, this only happens in read path. For write path, the
1603 * first part of bio is dispatched in a schedule() call
1604 * (because of blk plug) or offloaded to raid10d.
1605 * Quitting from the function immediately can change the bio
1606 * order queued in bio_list and avoid the deadlock.
1607 */
1608 __make_request(mddev, split);
1609 if (split != bio && bio_data_dir(bio) == READ) {
1610 generic_make_request(bio);
1611 break;
1612 }
1613 } while (split != bio);
1614
1615 /* In case raid10d snuck in to freeze_array */
1616 wake_up(&conf->wait_barrier);
1617 }
1618
status(struct seq_file * seq,struct mddev * mddev)1619 static void status(struct seq_file *seq, struct mddev *mddev)
1620 {
1621 struct r10conf *conf = mddev->private;
1622 int i;
1623
1624 if (conf->geo.near_copies < conf->geo.raid_disks)
1625 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1626 if (conf->geo.near_copies > 1)
1627 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1628 if (conf->geo.far_copies > 1) {
1629 if (conf->geo.far_offset)
1630 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1631 else
1632 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1633 }
1634 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1635 conf->geo.raid_disks - mddev->degraded);
1636 for (i = 0; i < conf->geo.raid_disks; i++)
1637 seq_printf(seq, "%s",
1638 conf->mirrors[i].rdev &&
1639 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1640 seq_printf(seq, "]");
1641 }
1642
1643 /* check if there are enough drives for
1644 * every block to appear on atleast one.
1645 * Don't consider the device numbered 'ignore'
1646 * as we might be about to remove it.
1647 */
_enough(struct r10conf * conf,int previous,int ignore)1648 static int _enough(struct r10conf *conf, int previous, int ignore)
1649 {
1650 int first = 0;
1651 int has_enough = 0;
1652 int disks, ncopies;
1653 if (previous) {
1654 disks = conf->prev.raid_disks;
1655 ncopies = conf->prev.near_copies;
1656 } else {
1657 disks = conf->geo.raid_disks;
1658 ncopies = conf->geo.near_copies;
1659 }
1660
1661 rcu_read_lock();
1662 do {
1663 int n = conf->copies;
1664 int cnt = 0;
1665 int this = first;
1666 while (n--) {
1667 struct md_rdev *rdev;
1668 if (this != ignore &&
1669 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1670 test_bit(In_sync, &rdev->flags))
1671 cnt++;
1672 this = (this+1) % disks;
1673 }
1674 if (cnt == 0)
1675 goto out;
1676 first = (first + ncopies) % disks;
1677 } while (first != 0);
1678 has_enough = 1;
1679 out:
1680 rcu_read_unlock();
1681 return has_enough;
1682 }
1683
enough(struct r10conf * conf,int ignore)1684 static int enough(struct r10conf *conf, int ignore)
1685 {
1686 /* when calling 'enough', both 'prev' and 'geo' must
1687 * be stable.
1688 * This is ensured if ->reconfig_mutex or ->device_lock
1689 * is held.
1690 */
1691 return _enough(conf, 0, ignore) &&
1692 _enough(conf, 1, ignore);
1693 }
1694
error(struct mddev * mddev,struct md_rdev * rdev)1695 static void error(struct mddev *mddev, struct md_rdev *rdev)
1696 {
1697 char b[BDEVNAME_SIZE];
1698 struct r10conf *conf = mddev->private;
1699 unsigned long flags;
1700
1701 /*
1702 * If it is not operational, then we have already marked it as dead
1703 * else if it is the last working disks, ignore the error, let the
1704 * next level up know.
1705 * else mark the drive as failed
1706 */
1707 spin_lock_irqsave(&conf->device_lock, flags);
1708 if (test_bit(In_sync, &rdev->flags)
1709 && !enough(conf, rdev->raid_disk)) {
1710 /*
1711 * Don't fail the drive, just return an IO error.
1712 */
1713 spin_unlock_irqrestore(&conf->device_lock, flags);
1714 return;
1715 }
1716 if (test_and_clear_bit(In_sync, &rdev->flags))
1717 mddev->degraded++;
1718 /*
1719 * If recovery is running, make sure it aborts.
1720 */
1721 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1722 set_bit(Blocked, &rdev->flags);
1723 set_bit(Faulty, &rdev->flags);
1724 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1725 spin_unlock_irqrestore(&conf->device_lock, flags);
1726 printk(KERN_ALERT
1727 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1728 "md/raid10:%s: Operation continuing on %d devices.\n",
1729 mdname(mddev), bdevname(rdev->bdev, b),
1730 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1731 }
1732
print_conf(struct r10conf * conf)1733 static void print_conf(struct r10conf *conf)
1734 {
1735 int i;
1736 struct raid10_info *tmp;
1737
1738 printk(KERN_DEBUG "RAID10 conf printout:\n");
1739 if (!conf) {
1740 printk(KERN_DEBUG "(!conf)\n");
1741 return;
1742 }
1743 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1744 conf->geo.raid_disks);
1745
1746 for (i = 0; i < conf->geo.raid_disks; i++) {
1747 char b[BDEVNAME_SIZE];
1748 tmp = conf->mirrors + i;
1749 if (tmp->rdev)
1750 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1751 i, !test_bit(In_sync, &tmp->rdev->flags),
1752 !test_bit(Faulty, &tmp->rdev->flags),
1753 bdevname(tmp->rdev->bdev,b));
1754 }
1755 }
1756
close_sync(struct r10conf * conf)1757 static void close_sync(struct r10conf *conf)
1758 {
1759 wait_barrier(conf);
1760 allow_barrier(conf);
1761
1762 mempool_destroy(conf->r10buf_pool);
1763 conf->r10buf_pool = NULL;
1764 }
1765
raid10_spare_active(struct mddev * mddev)1766 static int raid10_spare_active(struct mddev *mddev)
1767 {
1768 int i;
1769 struct r10conf *conf = mddev->private;
1770 struct raid10_info *tmp;
1771 int count = 0;
1772 unsigned long flags;
1773
1774 /*
1775 * Find all non-in_sync disks within the RAID10 configuration
1776 * and mark them in_sync
1777 */
1778 for (i = 0; i < conf->geo.raid_disks; i++) {
1779 tmp = conf->mirrors + i;
1780 if (tmp->replacement
1781 && tmp->replacement->recovery_offset == MaxSector
1782 && !test_bit(Faulty, &tmp->replacement->flags)
1783 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1784 /* Replacement has just become active */
1785 if (!tmp->rdev
1786 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1787 count++;
1788 if (tmp->rdev) {
1789 /* Replaced device not technically faulty,
1790 * but we need to be sure it gets removed
1791 * and never re-added.
1792 */
1793 set_bit(Faulty, &tmp->rdev->flags);
1794 sysfs_notify_dirent_safe(
1795 tmp->rdev->sysfs_state);
1796 }
1797 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1798 } else if (tmp->rdev
1799 && tmp->rdev->recovery_offset == MaxSector
1800 && !test_bit(Faulty, &tmp->rdev->flags)
1801 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1802 count++;
1803 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1804 }
1805 }
1806 spin_lock_irqsave(&conf->device_lock, flags);
1807 mddev->degraded -= count;
1808 spin_unlock_irqrestore(&conf->device_lock, flags);
1809
1810 print_conf(conf);
1811 return count;
1812 }
1813
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1814 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1815 {
1816 struct r10conf *conf = mddev->private;
1817 int err = -EEXIST;
1818 int mirror;
1819 int first = 0;
1820 int last = conf->geo.raid_disks - 1;
1821 struct request_queue *q = bdev_get_queue(rdev->bdev);
1822
1823 if (mddev->recovery_cp < MaxSector)
1824 /* only hot-add to in-sync arrays, as recovery is
1825 * very different from resync
1826 */
1827 return -EBUSY;
1828 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1829 return -EINVAL;
1830
1831 if (rdev->raid_disk >= 0)
1832 first = last = rdev->raid_disk;
1833
1834 if (q->merge_bvec_fn) {
1835 set_bit(Unmerged, &rdev->flags);
1836 mddev->merge_check_needed = 1;
1837 }
1838
1839 if (rdev->saved_raid_disk >= first &&
1840 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1841 mirror = rdev->saved_raid_disk;
1842 else
1843 mirror = first;
1844 for ( ; mirror <= last ; mirror++) {
1845 struct raid10_info *p = &conf->mirrors[mirror];
1846 if (p->recovery_disabled == mddev->recovery_disabled)
1847 continue;
1848 if (p->rdev) {
1849 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1850 p->replacement != NULL)
1851 continue;
1852 clear_bit(In_sync, &rdev->flags);
1853 set_bit(Replacement, &rdev->flags);
1854 rdev->raid_disk = mirror;
1855 err = 0;
1856 if (mddev->gendisk)
1857 disk_stack_limits(mddev->gendisk, rdev->bdev,
1858 rdev->data_offset << 9);
1859 conf->fullsync = 1;
1860 rcu_assign_pointer(p->replacement, rdev);
1861 break;
1862 }
1863
1864 if (mddev->gendisk)
1865 disk_stack_limits(mddev->gendisk, rdev->bdev,
1866 rdev->data_offset << 9);
1867
1868 p->head_position = 0;
1869 p->recovery_disabled = mddev->recovery_disabled - 1;
1870 rdev->raid_disk = mirror;
1871 err = 0;
1872 if (rdev->saved_raid_disk != mirror)
1873 conf->fullsync = 1;
1874 rcu_assign_pointer(p->rdev, rdev);
1875 break;
1876 }
1877 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1878 /* Some requests might not have seen this new
1879 * merge_bvec_fn. We must wait for them to complete
1880 * before merging the device fully.
1881 * First we make sure any code which has tested
1882 * our function has submitted the request, then
1883 * we wait for all outstanding requests to complete.
1884 */
1885 synchronize_sched();
1886 freeze_array(conf, 0);
1887 unfreeze_array(conf);
1888 clear_bit(Unmerged, &rdev->flags);
1889 }
1890 md_integrity_add_rdev(rdev, mddev);
1891 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1892 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1893
1894 print_conf(conf);
1895 return err;
1896 }
1897
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1898 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900 struct r10conf *conf = mddev->private;
1901 int err = 0;
1902 int number = rdev->raid_disk;
1903 struct md_rdev **rdevp;
1904 struct raid10_info *p = conf->mirrors + number;
1905
1906 print_conf(conf);
1907 if (rdev == p->rdev)
1908 rdevp = &p->rdev;
1909 else if (rdev == p->replacement)
1910 rdevp = &p->replacement;
1911 else
1912 return 0;
1913
1914 if (test_bit(In_sync, &rdev->flags) ||
1915 atomic_read(&rdev->nr_pending)) {
1916 err = -EBUSY;
1917 goto abort;
1918 }
1919 /* Only remove faulty devices if recovery
1920 * is not possible.
1921 */
1922 if (!test_bit(Faulty, &rdev->flags) &&
1923 mddev->recovery_disabled != p->recovery_disabled &&
1924 (!p->replacement || p->replacement == rdev) &&
1925 number < conf->geo.raid_disks &&
1926 enough(conf, -1)) {
1927 err = -EBUSY;
1928 goto abort;
1929 }
1930 *rdevp = NULL;
1931 synchronize_rcu();
1932 if (atomic_read(&rdev->nr_pending)) {
1933 /* lost the race, try later */
1934 err = -EBUSY;
1935 *rdevp = rdev;
1936 goto abort;
1937 } else if (p->replacement) {
1938 /* We must have just cleared 'rdev' */
1939 p->rdev = p->replacement;
1940 clear_bit(Replacement, &p->replacement->flags);
1941 smp_mb(); /* Make sure other CPUs may see both as identical
1942 * but will never see neither -- if they are careful.
1943 */
1944 p->replacement = NULL;
1945 clear_bit(WantReplacement, &rdev->flags);
1946 } else
1947 /* We might have just remove the Replacement as faulty
1948 * Clear the flag just in case
1949 */
1950 clear_bit(WantReplacement, &rdev->flags);
1951
1952 err = md_integrity_register(mddev);
1953
1954 abort:
1955
1956 print_conf(conf);
1957 return err;
1958 }
1959
end_sync_read(struct bio * bio,int error)1960 static void end_sync_read(struct bio *bio, int error)
1961 {
1962 struct r10bio *r10_bio = bio->bi_private;
1963 struct r10conf *conf = r10_bio->mddev->private;
1964 int d;
1965
1966 if (bio == r10_bio->master_bio) {
1967 /* this is a reshape read */
1968 d = r10_bio->read_slot; /* really the read dev */
1969 } else
1970 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1971
1972 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1973 set_bit(R10BIO_Uptodate, &r10_bio->state);
1974 else
1975 /* The write handler will notice the lack of
1976 * R10BIO_Uptodate and record any errors etc
1977 */
1978 atomic_add(r10_bio->sectors,
1979 &conf->mirrors[d].rdev->corrected_errors);
1980
1981 /* for reconstruct, we always reschedule after a read.
1982 * for resync, only after all reads
1983 */
1984 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1985 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1986 atomic_dec_and_test(&r10_bio->remaining)) {
1987 /* we have read all the blocks,
1988 * do the comparison in process context in raid10d
1989 */
1990 reschedule_retry(r10_bio);
1991 }
1992 }
1993
end_sync_request(struct r10bio * r10_bio)1994 static void end_sync_request(struct r10bio *r10_bio)
1995 {
1996 struct mddev *mddev = r10_bio->mddev;
1997
1998 while (atomic_dec_and_test(&r10_bio->remaining)) {
1999 if (r10_bio->master_bio == NULL) {
2000 /* the primary of several recovery bios */
2001 sector_t s = r10_bio->sectors;
2002 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2003 test_bit(R10BIO_WriteError, &r10_bio->state))
2004 reschedule_retry(r10_bio);
2005 else
2006 put_buf(r10_bio);
2007 md_done_sync(mddev, s, 1);
2008 break;
2009 } else {
2010 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2011 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2012 test_bit(R10BIO_WriteError, &r10_bio->state))
2013 reschedule_retry(r10_bio);
2014 else
2015 put_buf(r10_bio);
2016 r10_bio = r10_bio2;
2017 }
2018 }
2019 }
2020
end_sync_write(struct bio * bio,int error)2021 static void end_sync_write(struct bio *bio, int error)
2022 {
2023 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2024 struct r10bio *r10_bio = bio->bi_private;
2025 struct mddev *mddev = r10_bio->mddev;
2026 struct r10conf *conf = mddev->private;
2027 int d;
2028 sector_t first_bad;
2029 int bad_sectors;
2030 int slot;
2031 int repl;
2032 struct md_rdev *rdev = NULL;
2033
2034 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2035 if (repl)
2036 rdev = conf->mirrors[d].replacement;
2037 else
2038 rdev = conf->mirrors[d].rdev;
2039
2040 if (!uptodate) {
2041 if (repl)
2042 md_error(mddev, rdev);
2043 else {
2044 set_bit(WriteErrorSeen, &rdev->flags);
2045 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2046 set_bit(MD_RECOVERY_NEEDED,
2047 &rdev->mddev->recovery);
2048 set_bit(R10BIO_WriteError, &r10_bio->state);
2049 }
2050 } else if (is_badblock(rdev,
2051 r10_bio->devs[slot].addr,
2052 r10_bio->sectors,
2053 &first_bad, &bad_sectors))
2054 set_bit(R10BIO_MadeGood, &r10_bio->state);
2055
2056 rdev_dec_pending(rdev, mddev);
2057
2058 end_sync_request(r10_bio);
2059 }
2060
2061 /*
2062 * Note: sync and recover and handled very differently for raid10
2063 * This code is for resync.
2064 * For resync, we read through virtual addresses and read all blocks.
2065 * If there is any error, we schedule a write. The lowest numbered
2066 * drive is authoritative.
2067 * However requests come for physical address, so we need to map.
2068 * For every physical address there are raid_disks/copies virtual addresses,
2069 * which is always are least one, but is not necessarly an integer.
2070 * This means that a physical address can span multiple chunks, so we may
2071 * have to submit multiple io requests for a single sync request.
2072 */
2073 /*
2074 * We check if all blocks are in-sync and only write to blocks that
2075 * aren't in sync
2076 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2077 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2078 {
2079 struct r10conf *conf = mddev->private;
2080 int i, first;
2081 struct bio *tbio, *fbio;
2082 int vcnt;
2083
2084 atomic_set(&r10_bio->remaining, 1);
2085
2086 /* find the first device with a block */
2087 for (i=0; i<conf->copies; i++)
2088 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2089 break;
2090
2091 if (i == conf->copies)
2092 goto done;
2093
2094 first = i;
2095 fbio = r10_bio->devs[i].bio;
2096
2097 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2098 /* now find blocks with errors */
2099 for (i=0 ; i < conf->copies ; i++) {
2100 int j, d;
2101
2102 tbio = r10_bio->devs[i].bio;
2103
2104 if (tbio->bi_end_io != end_sync_read)
2105 continue;
2106 if (i == first)
2107 continue;
2108 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2109 /* We know that the bi_io_vec layout is the same for
2110 * both 'first' and 'i', so we just compare them.
2111 * All vec entries are PAGE_SIZE;
2112 */
2113 int sectors = r10_bio->sectors;
2114 for (j = 0; j < vcnt; j++) {
2115 int len = PAGE_SIZE;
2116 if (sectors < (len / 512))
2117 len = sectors * 512;
2118 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2119 page_address(tbio->bi_io_vec[j].bv_page),
2120 len))
2121 break;
2122 sectors -= len/512;
2123 }
2124 if (j == vcnt)
2125 continue;
2126 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2127 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2128 /* Don't fix anything. */
2129 continue;
2130 }
2131 /* Ok, we need to write this bio, either to correct an
2132 * inconsistency or to correct an unreadable block.
2133 * First we need to fixup bv_offset, bv_len and
2134 * bi_vecs, as the read request might have corrupted these
2135 */
2136 bio_reset(tbio);
2137
2138 tbio->bi_vcnt = vcnt;
2139 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2140 tbio->bi_rw = WRITE;
2141 tbio->bi_private = r10_bio;
2142 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2143
2144 for (j=0; j < vcnt ; j++) {
2145 tbio->bi_io_vec[j].bv_offset = 0;
2146 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2147
2148 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2149 page_address(fbio->bi_io_vec[j].bv_page),
2150 PAGE_SIZE);
2151 }
2152 tbio->bi_end_io = end_sync_write;
2153
2154 d = r10_bio->devs[i].devnum;
2155 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156 atomic_inc(&r10_bio->remaining);
2157 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2158
2159 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2160 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2161 generic_make_request(tbio);
2162 }
2163
2164 /* Now write out to any replacement devices
2165 * that are active
2166 */
2167 for (i = 0; i < conf->copies; i++) {
2168 int j, d;
2169
2170 tbio = r10_bio->devs[i].repl_bio;
2171 if (!tbio || !tbio->bi_end_io)
2172 continue;
2173 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2174 && r10_bio->devs[i].bio != fbio)
2175 for (j = 0; j < vcnt; j++)
2176 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2177 page_address(fbio->bi_io_vec[j].bv_page),
2178 PAGE_SIZE);
2179 d = r10_bio->devs[i].devnum;
2180 atomic_inc(&r10_bio->remaining);
2181 md_sync_acct(conf->mirrors[d].replacement->bdev,
2182 bio_sectors(tbio));
2183 generic_make_request(tbio);
2184 }
2185
2186 done:
2187 if (atomic_dec_and_test(&r10_bio->remaining)) {
2188 md_done_sync(mddev, r10_bio->sectors, 1);
2189 put_buf(r10_bio);
2190 }
2191 }
2192
2193 /*
2194 * Now for the recovery code.
2195 * Recovery happens across physical sectors.
2196 * We recover all non-is_sync drives by finding the virtual address of
2197 * each, and then choose a working drive that also has that virt address.
2198 * There is a separate r10_bio for each non-in_sync drive.
2199 * Only the first two slots are in use. The first for reading,
2200 * The second for writing.
2201 *
2202 */
fix_recovery_read_error(struct r10bio * r10_bio)2203 static void fix_recovery_read_error(struct r10bio *r10_bio)
2204 {
2205 /* We got a read error during recovery.
2206 * We repeat the read in smaller page-sized sections.
2207 * If a read succeeds, write it to the new device or record
2208 * a bad block if we cannot.
2209 * If a read fails, record a bad block on both old and
2210 * new devices.
2211 */
2212 struct mddev *mddev = r10_bio->mddev;
2213 struct r10conf *conf = mddev->private;
2214 struct bio *bio = r10_bio->devs[0].bio;
2215 sector_t sect = 0;
2216 int sectors = r10_bio->sectors;
2217 int idx = 0;
2218 int dr = r10_bio->devs[0].devnum;
2219 int dw = r10_bio->devs[1].devnum;
2220
2221 while (sectors) {
2222 int s = sectors;
2223 struct md_rdev *rdev;
2224 sector_t addr;
2225 int ok;
2226
2227 if (s > (PAGE_SIZE>>9))
2228 s = PAGE_SIZE >> 9;
2229
2230 rdev = conf->mirrors[dr].rdev;
2231 addr = r10_bio->devs[0].addr + sect,
2232 ok = sync_page_io(rdev,
2233 addr,
2234 s << 9,
2235 bio->bi_io_vec[idx].bv_page,
2236 READ, false);
2237 if (ok) {
2238 rdev = conf->mirrors[dw].rdev;
2239 addr = r10_bio->devs[1].addr + sect;
2240 ok = sync_page_io(rdev,
2241 addr,
2242 s << 9,
2243 bio->bi_io_vec[idx].bv_page,
2244 WRITE, false);
2245 if (!ok) {
2246 set_bit(WriteErrorSeen, &rdev->flags);
2247 if (!test_and_set_bit(WantReplacement,
2248 &rdev->flags))
2249 set_bit(MD_RECOVERY_NEEDED,
2250 &rdev->mddev->recovery);
2251 }
2252 }
2253 if (!ok) {
2254 /* We don't worry if we cannot set a bad block -
2255 * it really is bad so there is no loss in not
2256 * recording it yet
2257 */
2258 rdev_set_badblocks(rdev, addr, s, 0);
2259
2260 if (rdev != conf->mirrors[dw].rdev) {
2261 /* need bad block on destination too */
2262 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2263 addr = r10_bio->devs[1].addr + sect;
2264 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2265 if (!ok) {
2266 /* just abort the recovery */
2267 printk(KERN_NOTICE
2268 "md/raid10:%s: recovery aborted"
2269 " due to read error\n",
2270 mdname(mddev));
2271
2272 conf->mirrors[dw].recovery_disabled
2273 = mddev->recovery_disabled;
2274 set_bit(MD_RECOVERY_INTR,
2275 &mddev->recovery);
2276 break;
2277 }
2278 }
2279 }
2280
2281 sectors -= s;
2282 sect += s;
2283 idx++;
2284 }
2285 }
2286
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2287 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2288 {
2289 struct r10conf *conf = mddev->private;
2290 int d;
2291 struct bio *wbio, *wbio2;
2292
2293 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2294 fix_recovery_read_error(r10_bio);
2295 end_sync_request(r10_bio);
2296 return;
2297 }
2298
2299 /*
2300 * share the pages with the first bio
2301 * and submit the write request
2302 */
2303 d = r10_bio->devs[1].devnum;
2304 wbio = r10_bio->devs[1].bio;
2305 wbio2 = r10_bio->devs[1].repl_bio;
2306 /* Need to test wbio2->bi_end_io before we call
2307 * generic_make_request as if the former is NULL,
2308 * the latter is free to free wbio2.
2309 */
2310 if (wbio2 && !wbio2->bi_end_io)
2311 wbio2 = NULL;
2312 if (wbio->bi_end_io) {
2313 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2314 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2315 generic_make_request(wbio);
2316 }
2317 if (wbio2) {
2318 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2319 md_sync_acct(conf->mirrors[d].replacement->bdev,
2320 bio_sectors(wbio2));
2321 generic_make_request(wbio2);
2322 }
2323 }
2324
2325 /*
2326 * Used by fix_read_error() to decay the per rdev read_errors.
2327 * We halve the read error count for every hour that has elapsed
2328 * since the last recorded read error.
2329 *
2330 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2331 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2332 {
2333 struct timespec cur_time_mon;
2334 unsigned long hours_since_last;
2335 unsigned int read_errors = atomic_read(&rdev->read_errors);
2336
2337 ktime_get_ts(&cur_time_mon);
2338
2339 if (rdev->last_read_error.tv_sec == 0 &&
2340 rdev->last_read_error.tv_nsec == 0) {
2341 /* first time we've seen a read error */
2342 rdev->last_read_error = cur_time_mon;
2343 return;
2344 }
2345
2346 hours_since_last = (cur_time_mon.tv_sec -
2347 rdev->last_read_error.tv_sec) / 3600;
2348
2349 rdev->last_read_error = cur_time_mon;
2350
2351 /*
2352 * if hours_since_last is > the number of bits in read_errors
2353 * just set read errors to 0. We do this to avoid
2354 * overflowing the shift of read_errors by hours_since_last.
2355 */
2356 if (hours_since_last >= 8 * sizeof(read_errors))
2357 atomic_set(&rdev->read_errors, 0);
2358 else
2359 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2360 }
2361
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2362 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2363 int sectors, struct page *page, int rw)
2364 {
2365 sector_t first_bad;
2366 int bad_sectors;
2367
2368 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2369 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2370 return -1;
2371 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2372 /* success */
2373 return 1;
2374 if (rw == WRITE) {
2375 set_bit(WriteErrorSeen, &rdev->flags);
2376 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2377 set_bit(MD_RECOVERY_NEEDED,
2378 &rdev->mddev->recovery);
2379 }
2380 /* need to record an error - either for the block or the device */
2381 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2382 md_error(rdev->mddev, rdev);
2383 return 0;
2384 }
2385
2386 /*
2387 * This is a kernel thread which:
2388 *
2389 * 1. Retries failed read operations on working mirrors.
2390 * 2. Updates the raid superblock when problems encounter.
2391 * 3. Performs writes following reads for array synchronising.
2392 */
2393
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2394 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2395 {
2396 int sect = 0; /* Offset from r10_bio->sector */
2397 int sectors = r10_bio->sectors;
2398 struct md_rdev*rdev;
2399 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2400 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2401
2402 /* still own a reference to this rdev, so it cannot
2403 * have been cleared recently.
2404 */
2405 rdev = conf->mirrors[d].rdev;
2406
2407 if (test_bit(Faulty, &rdev->flags))
2408 /* drive has already been failed, just ignore any
2409 more fix_read_error() attempts */
2410 return;
2411
2412 check_decay_read_errors(mddev, rdev);
2413 atomic_inc(&rdev->read_errors);
2414 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2415 char b[BDEVNAME_SIZE];
2416 bdevname(rdev->bdev, b);
2417
2418 printk(KERN_NOTICE
2419 "md/raid10:%s: %s: Raid device exceeded "
2420 "read_error threshold [cur %d:max %d]\n",
2421 mdname(mddev), b,
2422 atomic_read(&rdev->read_errors), max_read_errors);
2423 printk(KERN_NOTICE
2424 "md/raid10:%s: %s: Failing raid device\n",
2425 mdname(mddev), b);
2426 md_error(mddev, conf->mirrors[d].rdev);
2427 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2428 return;
2429 }
2430
2431 while(sectors) {
2432 int s = sectors;
2433 int sl = r10_bio->read_slot;
2434 int success = 0;
2435 int start;
2436
2437 if (s > (PAGE_SIZE>>9))
2438 s = PAGE_SIZE >> 9;
2439
2440 rcu_read_lock();
2441 do {
2442 sector_t first_bad;
2443 int bad_sectors;
2444
2445 d = r10_bio->devs[sl].devnum;
2446 rdev = rcu_dereference(conf->mirrors[d].rdev);
2447 if (rdev &&
2448 !test_bit(Unmerged, &rdev->flags) &&
2449 test_bit(In_sync, &rdev->flags) &&
2450 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2451 &first_bad, &bad_sectors) == 0) {
2452 atomic_inc(&rdev->nr_pending);
2453 rcu_read_unlock();
2454 success = sync_page_io(rdev,
2455 r10_bio->devs[sl].addr +
2456 sect,
2457 s<<9,
2458 conf->tmppage, READ, false);
2459 rdev_dec_pending(rdev, mddev);
2460 rcu_read_lock();
2461 if (success)
2462 break;
2463 }
2464 sl++;
2465 if (sl == conf->copies)
2466 sl = 0;
2467 } while (!success && sl != r10_bio->read_slot);
2468 rcu_read_unlock();
2469
2470 if (!success) {
2471 /* Cannot read from anywhere, just mark the block
2472 * as bad on the first device to discourage future
2473 * reads.
2474 */
2475 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2476 rdev = conf->mirrors[dn].rdev;
2477
2478 if (!rdev_set_badblocks(
2479 rdev,
2480 r10_bio->devs[r10_bio->read_slot].addr
2481 + sect,
2482 s, 0)) {
2483 md_error(mddev, rdev);
2484 r10_bio->devs[r10_bio->read_slot].bio
2485 = IO_BLOCKED;
2486 }
2487 break;
2488 }
2489
2490 start = sl;
2491 /* write it back and re-read */
2492 rcu_read_lock();
2493 while (sl != r10_bio->read_slot) {
2494 char b[BDEVNAME_SIZE];
2495
2496 if (sl==0)
2497 sl = conf->copies;
2498 sl--;
2499 d = r10_bio->devs[sl].devnum;
2500 rdev = rcu_dereference(conf->mirrors[d].rdev);
2501 if (!rdev ||
2502 test_bit(Unmerged, &rdev->flags) ||
2503 !test_bit(In_sync, &rdev->flags))
2504 continue;
2505
2506 atomic_inc(&rdev->nr_pending);
2507 rcu_read_unlock();
2508 if (r10_sync_page_io(rdev,
2509 r10_bio->devs[sl].addr +
2510 sect,
2511 s, conf->tmppage, WRITE)
2512 == 0) {
2513 /* Well, this device is dead */
2514 printk(KERN_NOTICE
2515 "md/raid10:%s: read correction "
2516 "write failed"
2517 " (%d sectors at %llu on %s)\n",
2518 mdname(mddev), s,
2519 (unsigned long long)(
2520 sect +
2521 choose_data_offset(r10_bio,
2522 rdev)),
2523 bdevname(rdev->bdev, b));
2524 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2525 "drive\n",
2526 mdname(mddev),
2527 bdevname(rdev->bdev, b));
2528 }
2529 rdev_dec_pending(rdev, mddev);
2530 rcu_read_lock();
2531 }
2532 sl = start;
2533 while (sl != r10_bio->read_slot) {
2534 char b[BDEVNAME_SIZE];
2535
2536 if (sl==0)
2537 sl = conf->copies;
2538 sl--;
2539 d = r10_bio->devs[sl].devnum;
2540 rdev = rcu_dereference(conf->mirrors[d].rdev);
2541 if (!rdev ||
2542 !test_bit(In_sync, &rdev->flags))
2543 continue;
2544
2545 atomic_inc(&rdev->nr_pending);
2546 rcu_read_unlock();
2547 switch (r10_sync_page_io(rdev,
2548 r10_bio->devs[sl].addr +
2549 sect,
2550 s, conf->tmppage,
2551 READ)) {
2552 case 0:
2553 /* Well, this device is dead */
2554 printk(KERN_NOTICE
2555 "md/raid10:%s: unable to read back "
2556 "corrected sectors"
2557 " (%d sectors at %llu on %s)\n",
2558 mdname(mddev), s,
2559 (unsigned long long)(
2560 sect +
2561 choose_data_offset(r10_bio, rdev)),
2562 bdevname(rdev->bdev, b));
2563 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2564 "drive\n",
2565 mdname(mddev),
2566 bdevname(rdev->bdev, b));
2567 break;
2568 case 1:
2569 printk(KERN_INFO
2570 "md/raid10:%s: read error corrected"
2571 " (%d sectors at %llu on %s)\n",
2572 mdname(mddev), s,
2573 (unsigned long long)(
2574 sect +
2575 choose_data_offset(r10_bio, rdev)),
2576 bdevname(rdev->bdev, b));
2577 atomic_add(s, &rdev->corrected_errors);
2578 }
2579
2580 rdev_dec_pending(rdev, mddev);
2581 rcu_read_lock();
2582 }
2583 rcu_read_unlock();
2584
2585 sectors -= s;
2586 sect += s;
2587 }
2588 }
2589
narrow_write_error(struct r10bio * r10_bio,int i)2590 static int narrow_write_error(struct r10bio *r10_bio, int i)
2591 {
2592 struct bio *bio = r10_bio->master_bio;
2593 struct mddev *mddev = r10_bio->mddev;
2594 struct r10conf *conf = mddev->private;
2595 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2596 /* bio has the data to be written to slot 'i' where
2597 * we just recently had a write error.
2598 * We repeatedly clone the bio and trim down to one block,
2599 * then try the write. Where the write fails we record
2600 * a bad block.
2601 * It is conceivable that the bio doesn't exactly align with
2602 * blocks. We must handle this.
2603 *
2604 * We currently own a reference to the rdev.
2605 */
2606
2607 int block_sectors;
2608 sector_t sector;
2609 int sectors;
2610 int sect_to_write = r10_bio->sectors;
2611 int ok = 1;
2612
2613 if (rdev->badblocks.shift < 0)
2614 return 0;
2615
2616 block_sectors = 1 << rdev->badblocks.shift;
2617 sector = r10_bio->sector;
2618 sectors = ((r10_bio->sector + block_sectors)
2619 & ~(sector_t)(block_sectors - 1))
2620 - sector;
2621
2622 while (sect_to_write) {
2623 struct bio *wbio;
2624 if (sectors > sect_to_write)
2625 sectors = sect_to_write;
2626 /* Write at 'sector' for 'sectors' */
2627 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2628 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2629 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2630 choose_data_offset(r10_bio, rdev) +
2631 (sector - r10_bio->sector));
2632 wbio->bi_bdev = rdev->bdev;
2633 if (submit_bio_wait(WRITE, wbio) < 0)
2634 /* Failure! */
2635 ok = rdev_set_badblocks(rdev, sector,
2636 sectors, 0)
2637 && ok;
2638
2639 bio_put(wbio);
2640 sect_to_write -= sectors;
2641 sector += sectors;
2642 sectors = block_sectors;
2643 }
2644 return ok;
2645 }
2646
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2647 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2648 {
2649 int slot = r10_bio->read_slot;
2650 struct bio *bio;
2651 struct r10conf *conf = mddev->private;
2652 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2653 char b[BDEVNAME_SIZE];
2654 unsigned long do_sync;
2655 int max_sectors;
2656
2657 /* we got a read error. Maybe the drive is bad. Maybe just
2658 * the block and we can fix it.
2659 * We freeze all other IO, and try reading the block from
2660 * other devices. When we find one, we re-write
2661 * and check it that fixes the read error.
2662 * This is all done synchronously while the array is
2663 * frozen.
2664 */
2665 bio = r10_bio->devs[slot].bio;
2666 bdevname(bio->bi_bdev, b);
2667 bio_put(bio);
2668 r10_bio->devs[slot].bio = NULL;
2669
2670 if (mddev->ro == 0) {
2671 freeze_array(conf, 1);
2672 fix_read_error(conf, mddev, r10_bio);
2673 unfreeze_array(conf);
2674 } else
2675 r10_bio->devs[slot].bio = IO_BLOCKED;
2676
2677 rdev_dec_pending(rdev, mddev);
2678
2679 read_more:
2680 rdev = read_balance(conf, r10_bio, &max_sectors);
2681 if (rdev == NULL) {
2682 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2683 " read error for block %llu\n",
2684 mdname(mddev), b,
2685 (unsigned long long)r10_bio->sector);
2686 raid_end_bio_io(r10_bio);
2687 return;
2688 }
2689
2690 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2691 slot = r10_bio->read_slot;
2692 printk_ratelimited(
2693 KERN_ERR
2694 "md/raid10:%s: %s: redirecting "
2695 "sector %llu to another mirror\n",
2696 mdname(mddev),
2697 bdevname(rdev->bdev, b),
2698 (unsigned long long)r10_bio->sector);
2699 bio = bio_clone_mddev(r10_bio->master_bio,
2700 GFP_NOIO, mddev);
2701 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2702 r10_bio->devs[slot].bio = bio;
2703 r10_bio->devs[slot].rdev = rdev;
2704 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2705 + choose_data_offset(r10_bio, rdev);
2706 bio->bi_bdev = rdev->bdev;
2707 bio->bi_rw = READ | do_sync;
2708 bio->bi_private = r10_bio;
2709 bio->bi_end_io = raid10_end_read_request;
2710 if (max_sectors < r10_bio->sectors) {
2711 /* Drat - have to split this up more */
2712 struct bio *mbio = r10_bio->master_bio;
2713 int sectors_handled =
2714 r10_bio->sector + max_sectors
2715 - mbio->bi_iter.bi_sector;
2716 r10_bio->sectors = max_sectors;
2717 spin_lock_irq(&conf->device_lock);
2718 if (mbio->bi_phys_segments == 0)
2719 mbio->bi_phys_segments = 2;
2720 else
2721 mbio->bi_phys_segments++;
2722 spin_unlock_irq(&conf->device_lock);
2723 generic_make_request(bio);
2724
2725 r10_bio = mempool_alloc(conf->r10bio_pool,
2726 GFP_NOIO);
2727 r10_bio->master_bio = mbio;
2728 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2729 r10_bio->state = 0;
2730 set_bit(R10BIO_ReadError,
2731 &r10_bio->state);
2732 r10_bio->mddev = mddev;
2733 r10_bio->sector = mbio->bi_iter.bi_sector
2734 + sectors_handled;
2735
2736 goto read_more;
2737 } else
2738 generic_make_request(bio);
2739 }
2740
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2741 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2742 {
2743 /* Some sort of write request has finished and it
2744 * succeeded in writing where we thought there was a
2745 * bad block. So forget the bad block.
2746 * Or possibly if failed and we need to record
2747 * a bad block.
2748 */
2749 int m;
2750 struct md_rdev *rdev;
2751
2752 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2753 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2754 for (m = 0; m < conf->copies; m++) {
2755 int dev = r10_bio->devs[m].devnum;
2756 rdev = conf->mirrors[dev].rdev;
2757 if (r10_bio->devs[m].bio == NULL)
2758 continue;
2759 if (test_bit(BIO_UPTODATE,
2760 &r10_bio->devs[m].bio->bi_flags)) {
2761 rdev_clear_badblocks(
2762 rdev,
2763 r10_bio->devs[m].addr,
2764 r10_bio->sectors, 0);
2765 } else {
2766 if (!rdev_set_badblocks(
2767 rdev,
2768 r10_bio->devs[m].addr,
2769 r10_bio->sectors, 0))
2770 md_error(conf->mddev, rdev);
2771 }
2772 rdev = conf->mirrors[dev].replacement;
2773 if (r10_bio->devs[m].repl_bio == NULL)
2774 continue;
2775 if (test_bit(BIO_UPTODATE,
2776 &r10_bio->devs[m].repl_bio->bi_flags)) {
2777 rdev_clear_badblocks(
2778 rdev,
2779 r10_bio->devs[m].addr,
2780 r10_bio->sectors, 0);
2781 } else {
2782 if (!rdev_set_badblocks(
2783 rdev,
2784 r10_bio->devs[m].addr,
2785 r10_bio->sectors, 0))
2786 md_error(conf->mddev, rdev);
2787 }
2788 }
2789 put_buf(r10_bio);
2790 } else {
2791 for (m = 0; m < conf->copies; m++) {
2792 int dev = r10_bio->devs[m].devnum;
2793 struct bio *bio = r10_bio->devs[m].bio;
2794 rdev = conf->mirrors[dev].rdev;
2795 if (bio == IO_MADE_GOOD) {
2796 rdev_clear_badblocks(
2797 rdev,
2798 r10_bio->devs[m].addr,
2799 r10_bio->sectors, 0);
2800 rdev_dec_pending(rdev, conf->mddev);
2801 } else if (bio != NULL &&
2802 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2803 if (!narrow_write_error(r10_bio, m)) {
2804 md_error(conf->mddev, rdev);
2805 set_bit(R10BIO_Degraded,
2806 &r10_bio->state);
2807 }
2808 rdev_dec_pending(rdev, conf->mddev);
2809 }
2810 bio = r10_bio->devs[m].repl_bio;
2811 rdev = conf->mirrors[dev].replacement;
2812 if (rdev && bio == IO_MADE_GOOD) {
2813 rdev_clear_badblocks(
2814 rdev,
2815 r10_bio->devs[m].addr,
2816 r10_bio->sectors, 0);
2817 rdev_dec_pending(rdev, conf->mddev);
2818 }
2819 }
2820 if (test_bit(R10BIO_WriteError,
2821 &r10_bio->state))
2822 close_write(r10_bio);
2823 raid_end_bio_io(r10_bio);
2824 }
2825 }
2826
raid10d(struct md_thread * thread)2827 static void raid10d(struct md_thread *thread)
2828 {
2829 struct mddev *mddev = thread->mddev;
2830 struct r10bio *r10_bio;
2831 unsigned long flags;
2832 struct r10conf *conf = mddev->private;
2833 struct list_head *head = &conf->retry_list;
2834 struct blk_plug plug;
2835
2836 md_check_recovery(mddev);
2837
2838 blk_start_plug(&plug);
2839 for (;;) {
2840
2841 flush_pending_writes(conf);
2842
2843 spin_lock_irqsave(&conf->device_lock, flags);
2844 if (list_empty(head)) {
2845 spin_unlock_irqrestore(&conf->device_lock, flags);
2846 break;
2847 }
2848 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2849 list_del(head->prev);
2850 conf->nr_queued--;
2851 spin_unlock_irqrestore(&conf->device_lock, flags);
2852
2853 mddev = r10_bio->mddev;
2854 conf = mddev->private;
2855 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2856 test_bit(R10BIO_WriteError, &r10_bio->state))
2857 handle_write_completed(conf, r10_bio);
2858 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2859 reshape_request_write(mddev, r10_bio);
2860 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2861 sync_request_write(mddev, r10_bio);
2862 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2863 recovery_request_write(mddev, r10_bio);
2864 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2865 handle_read_error(mddev, r10_bio);
2866 else {
2867 /* just a partial read to be scheduled from a
2868 * separate context
2869 */
2870 int slot = r10_bio->read_slot;
2871 generic_make_request(r10_bio->devs[slot].bio);
2872 }
2873
2874 cond_resched();
2875 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2876 md_check_recovery(mddev);
2877 }
2878 blk_finish_plug(&plug);
2879 }
2880
init_resync(struct r10conf * conf)2881 static int init_resync(struct r10conf *conf)
2882 {
2883 int buffs;
2884 int i;
2885
2886 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2887 BUG_ON(conf->r10buf_pool);
2888 conf->have_replacement = 0;
2889 for (i = 0; i < conf->geo.raid_disks; i++)
2890 if (conf->mirrors[i].replacement)
2891 conf->have_replacement = 1;
2892 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2893 if (!conf->r10buf_pool)
2894 return -ENOMEM;
2895 conf->next_resync = 0;
2896 return 0;
2897 }
2898
2899 /*
2900 * perform a "sync" on one "block"
2901 *
2902 * We need to make sure that no normal I/O request - particularly write
2903 * requests - conflict with active sync requests.
2904 *
2905 * This is achieved by tracking pending requests and a 'barrier' concept
2906 * that can be installed to exclude normal IO requests.
2907 *
2908 * Resync and recovery are handled very differently.
2909 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2910 *
2911 * For resync, we iterate over virtual addresses, read all copies,
2912 * and update if there are differences. If only one copy is live,
2913 * skip it.
2914 * For recovery, we iterate over physical addresses, read a good
2915 * value for each non-in_sync drive, and over-write.
2916 *
2917 * So, for recovery we may have several outstanding complex requests for a
2918 * given address, one for each out-of-sync device. We model this by allocating
2919 * a number of r10_bio structures, one for each out-of-sync device.
2920 * As we setup these structures, we collect all bio's together into a list
2921 * which we then process collectively to add pages, and then process again
2922 * to pass to generic_make_request.
2923 *
2924 * The r10_bio structures are linked using a borrowed master_bio pointer.
2925 * This link is counted in ->remaining. When the r10_bio that points to NULL
2926 * has its remaining count decremented to 0, the whole complex operation
2927 * is complete.
2928 *
2929 */
2930
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)2931 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2932 int *skipped, int go_faster)
2933 {
2934 struct r10conf *conf = mddev->private;
2935 struct r10bio *r10_bio;
2936 struct bio *biolist = NULL, *bio;
2937 sector_t max_sector, nr_sectors;
2938 int i;
2939 int max_sync;
2940 sector_t sync_blocks;
2941 sector_t sectors_skipped = 0;
2942 int chunks_skipped = 0;
2943 sector_t chunk_mask = conf->geo.chunk_mask;
2944
2945 if (!conf->r10buf_pool)
2946 if (init_resync(conf))
2947 return 0;
2948
2949 /*
2950 * Allow skipping a full rebuild for incremental assembly
2951 * of a clean array, like RAID1 does.
2952 */
2953 if (mddev->bitmap == NULL &&
2954 mddev->recovery_cp == MaxSector &&
2955 mddev->reshape_position == MaxSector &&
2956 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2957 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2958 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2959 conf->fullsync == 0) {
2960 *skipped = 1;
2961 return mddev->dev_sectors - sector_nr;
2962 }
2963
2964 skipped:
2965 max_sector = mddev->dev_sectors;
2966 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2967 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2968 max_sector = mddev->resync_max_sectors;
2969 if (sector_nr >= max_sector) {
2970 /* If we aborted, we need to abort the
2971 * sync on the 'current' bitmap chucks (there can
2972 * be several when recovering multiple devices).
2973 * as we may have started syncing it but not finished.
2974 * We can find the current address in
2975 * mddev->curr_resync, but for recovery,
2976 * we need to convert that to several
2977 * virtual addresses.
2978 */
2979 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2980 end_reshape(conf);
2981 close_sync(conf);
2982 return 0;
2983 }
2984
2985 if (mddev->curr_resync < max_sector) { /* aborted */
2986 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2987 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2988 &sync_blocks, 1);
2989 else for (i = 0; i < conf->geo.raid_disks; i++) {
2990 sector_t sect =
2991 raid10_find_virt(conf, mddev->curr_resync, i);
2992 bitmap_end_sync(mddev->bitmap, sect,
2993 &sync_blocks, 1);
2994 }
2995 } else {
2996 /* completed sync */
2997 if ((!mddev->bitmap || conf->fullsync)
2998 && conf->have_replacement
2999 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3000 /* Completed a full sync so the replacements
3001 * are now fully recovered.
3002 */
3003 for (i = 0; i < conf->geo.raid_disks; i++)
3004 if (conf->mirrors[i].replacement)
3005 conf->mirrors[i].replacement
3006 ->recovery_offset
3007 = MaxSector;
3008 }
3009 conf->fullsync = 0;
3010 }
3011 bitmap_close_sync(mddev->bitmap);
3012 close_sync(conf);
3013 *skipped = 1;
3014 return sectors_skipped;
3015 }
3016
3017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3018 return reshape_request(mddev, sector_nr, skipped);
3019
3020 if (chunks_skipped >= conf->geo.raid_disks) {
3021 /* if there has been nothing to do on any drive,
3022 * then there is nothing to do at all..
3023 */
3024 *skipped = 1;
3025 return (max_sector - sector_nr) + sectors_skipped;
3026 }
3027
3028 if (max_sector > mddev->resync_max)
3029 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3030
3031 /* make sure whole request will fit in a chunk - if chunks
3032 * are meaningful
3033 */
3034 if (conf->geo.near_copies < conf->geo.raid_disks &&
3035 max_sector > (sector_nr | chunk_mask))
3036 max_sector = (sector_nr | chunk_mask) + 1;
3037 /*
3038 * If there is non-resync activity waiting for us then
3039 * put in a delay to throttle resync.
3040 */
3041 if (!go_faster && conf->nr_waiting)
3042 msleep_interruptible(1000);
3043
3044 /* Again, very different code for resync and recovery.
3045 * Both must result in an r10bio with a list of bios that
3046 * have bi_end_io, bi_sector, bi_bdev set,
3047 * and bi_private set to the r10bio.
3048 * For recovery, we may actually create several r10bios
3049 * with 2 bios in each, that correspond to the bios in the main one.
3050 * In this case, the subordinate r10bios link back through a
3051 * borrowed master_bio pointer, and the counter in the master
3052 * includes a ref from each subordinate.
3053 */
3054 /* First, we decide what to do and set ->bi_end_io
3055 * To end_sync_read if we want to read, and
3056 * end_sync_write if we will want to write.
3057 */
3058
3059 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3060 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3061 /* recovery... the complicated one */
3062 int j;
3063 r10_bio = NULL;
3064
3065 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3066 int still_degraded;
3067 struct r10bio *rb2;
3068 sector_t sect;
3069 int must_sync;
3070 int any_working;
3071 struct raid10_info *mirror = &conf->mirrors[i];
3072
3073 if ((mirror->rdev == NULL ||
3074 test_bit(In_sync, &mirror->rdev->flags))
3075 &&
3076 (mirror->replacement == NULL ||
3077 test_bit(Faulty,
3078 &mirror->replacement->flags)))
3079 continue;
3080
3081 still_degraded = 0;
3082 /* want to reconstruct this device */
3083 rb2 = r10_bio;
3084 sect = raid10_find_virt(conf, sector_nr, i);
3085 if (sect >= mddev->resync_max_sectors) {
3086 /* last stripe is not complete - don't
3087 * try to recover this sector.
3088 */
3089 continue;
3090 }
3091 /* Unless we are doing a full sync, or a replacement
3092 * we only need to recover the block if it is set in
3093 * the bitmap
3094 */
3095 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3096 &sync_blocks, 1);
3097 if (sync_blocks < max_sync)
3098 max_sync = sync_blocks;
3099 if (!must_sync &&
3100 mirror->replacement == NULL &&
3101 !conf->fullsync) {
3102 /* yep, skip the sync_blocks here, but don't assume
3103 * that there will never be anything to do here
3104 */
3105 chunks_skipped = -1;
3106 continue;
3107 }
3108
3109 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3110 r10_bio->state = 0;
3111 raise_barrier(conf, rb2 != NULL);
3112 atomic_set(&r10_bio->remaining, 0);
3113
3114 r10_bio->master_bio = (struct bio*)rb2;
3115 if (rb2)
3116 atomic_inc(&rb2->remaining);
3117 r10_bio->mddev = mddev;
3118 set_bit(R10BIO_IsRecover, &r10_bio->state);
3119 r10_bio->sector = sect;
3120
3121 raid10_find_phys(conf, r10_bio);
3122
3123 /* Need to check if the array will still be
3124 * degraded
3125 */
3126 for (j = 0; j < conf->geo.raid_disks; j++)
3127 if (conf->mirrors[j].rdev == NULL ||
3128 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3129 still_degraded = 1;
3130 break;
3131 }
3132
3133 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3134 &sync_blocks, still_degraded);
3135
3136 any_working = 0;
3137 for (j=0; j<conf->copies;j++) {
3138 int k;
3139 int d = r10_bio->devs[j].devnum;
3140 sector_t from_addr, to_addr;
3141 struct md_rdev *rdev;
3142 sector_t sector, first_bad;
3143 int bad_sectors;
3144 if (!conf->mirrors[d].rdev ||
3145 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3146 continue;
3147 /* This is where we read from */
3148 any_working = 1;
3149 rdev = conf->mirrors[d].rdev;
3150 sector = r10_bio->devs[j].addr;
3151
3152 if (is_badblock(rdev, sector, max_sync,
3153 &first_bad, &bad_sectors)) {
3154 if (first_bad > sector)
3155 max_sync = first_bad - sector;
3156 else {
3157 bad_sectors -= (sector
3158 - first_bad);
3159 if (max_sync > bad_sectors)
3160 max_sync = bad_sectors;
3161 continue;
3162 }
3163 }
3164 bio = r10_bio->devs[0].bio;
3165 bio_reset(bio);
3166 bio->bi_next = biolist;
3167 biolist = bio;
3168 bio->bi_private = r10_bio;
3169 bio->bi_end_io = end_sync_read;
3170 bio->bi_rw = READ;
3171 from_addr = r10_bio->devs[j].addr;
3172 bio->bi_iter.bi_sector = from_addr +
3173 rdev->data_offset;
3174 bio->bi_bdev = rdev->bdev;
3175 atomic_inc(&rdev->nr_pending);
3176 /* and we write to 'i' (if not in_sync) */
3177
3178 for (k=0; k<conf->copies; k++)
3179 if (r10_bio->devs[k].devnum == i)
3180 break;
3181 BUG_ON(k == conf->copies);
3182 to_addr = r10_bio->devs[k].addr;
3183 r10_bio->devs[0].devnum = d;
3184 r10_bio->devs[0].addr = from_addr;
3185 r10_bio->devs[1].devnum = i;
3186 r10_bio->devs[1].addr = to_addr;
3187
3188 rdev = mirror->rdev;
3189 if (!test_bit(In_sync, &rdev->flags)) {
3190 bio = r10_bio->devs[1].bio;
3191 bio_reset(bio);
3192 bio->bi_next = biolist;
3193 biolist = bio;
3194 bio->bi_private = r10_bio;
3195 bio->bi_end_io = end_sync_write;
3196 bio->bi_rw = WRITE;
3197 bio->bi_iter.bi_sector = to_addr
3198 + rdev->data_offset;
3199 bio->bi_bdev = rdev->bdev;
3200 atomic_inc(&r10_bio->remaining);
3201 } else
3202 r10_bio->devs[1].bio->bi_end_io = NULL;
3203
3204 /* and maybe write to replacement */
3205 bio = r10_bio->devs[1].repl_bio;
3206 if (bio)
3207 bio->bi_end_io = NULL;
3208 rdev = mirror->replacement;
3209 /* Note: if rdev != NULL, then bio
3210 * cannot be NULL as r10buf_pool_alloc will
3211 * have allocated it.
3212 * So the second test here is pointless.
3213 * But it keeps semantic-checkers happy, and
3214 * this comment keeps human reviewers
3215 * happy.
3216 */
3217 if (rdev == NULL || bio == NULL ||
3218 test_bit(Faulty, &rdev->flags))
3219 break;
3220 bio_reset(bio);
3221 bio->bi_next = biolist;
3222 biolist = bio;
3223 bio->bi_private = r10_bio;
3224 bio->bi_end_io = end_sync_write;
3225 bio->bi_rw = WRITE;
3226 bio->bi_iter.bi_sector = to_addr +
3227 rdev->data_offset;
3228 bio->bi_bdev = rdev->bdev;
3229 atomic_inc(&r10_bio->remaining);
3230 break;
3231 }
3232 if (j == conf->copies) {
3233 /* Cannot recover, so abort the recovery or
3234 * record a bad block */
3235 if (any_working) {
3236 /* problem is that there are bad blocks
3237 * on other device(s)
3238 */
3239 int k;
3240 for (k = 0; k < conf->copies; k++)
3241 if (r10_bio->devs[k].devnum == i)
3242 break;
3243 if (!test_bit(In_sync,
3244 &mirror->rdev->flags)
3245 && !rdev_set_badblocks(
3246 mirror->rdev,
3247 r10_bio->devs[k].addr,
3248 max_sync, 0))
3249 any_working = 0;
3250 if (mirror->replacement &&
3251 !rdev_set_badblocks(
3252 mirror->replacement,
3253 r10_bio->devs[k].addr,
3254 max_sync, 0))
3255 any_working = 0;
3256 }
3257 if (!any_working) {
3258 if (!test_and_set_bit(MD_RECOVERY_INTR,
3259 &mddev->recovery))
3260 printk(KERN_INFO "md/raid10:%s: insufficient "
3261 "working devices for recovery.\n",
3262 mdname(mddev));
3263 mirror->recovery_disabled
3264 = mddev->recovery_disabled;
3265 }
3266 put_buf(r10_bio);
3267 if (rb2)
3268 atomic_dec(&rb2->remaining);
3269 r10_bio = rb2;
3270 break;
3271 }
3272 }
3273 if (biolist == NULL) {
3274 while (r10_bio) {
3275 struct r10bio *rb2 = r10_bio;
3276 r10_bio = (struct r10bio*) rb2->master_bio;
3277 rb2->master_bio = NULL;
3278 put_buf(rb2);
3279 }
3280 goto giveup;
3281 }
3282 } else {
3283 /* resync. Schedule a read for every block at this virt offset */
3284 int count = 0;
3285
3286 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3287
3288 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3289 &sync_blocks, mddev->degraded) &&
3290 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3291 &mddev->recovery)) {
3292 /* We can skip this block */
3293 *skipped = 1;
3294 return sync_blocks + sectors_skipped;
3295 }
3296 if (sync_blocks < max_sync)
3297 max_sync = sync_blocks;
3298 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3299 r10_bio->state = 0;
3300
3301 r10_bio->mddev = mddev;
3302 atomic_set(&r10_bio->remaining, 0);
3303 raise_barrier(conf, 0);
3304 conf->next_resync = sector_nr;
3305
3306 r10_bio->master_bio = NULL;
3307 r10_bio->sector = sector_nr;
3308 set_bit(R10BIO_IsSync, &r10_bio->state);
3309 raid10_find_phys(conf, r10_bio);
3310 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3311
3312 for (i = 0; i < conf->copies; i++) {
3313 int d = r10_bio->devs[i].devnum;
3314 sector_t first_bad, sector;
3315 int bad_sectors;
3316
3317 if (r10_bio->devs[i].repl_bio)
3318 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3319
3320 bio = r10_bio->devs[i].bio;
3321 bio_reset(bio);
3322 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3323 if (conf->mirrors[d].rdev == NULL ||
3324 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3325 continue;
3326 sector = r10_bio->devs[i].addr;
3327 if (is_badblock(conf->mirrors[d].rdev,
3328 sector, max_sync,
3329 &first_bad, &bad_sectors)) {
3330 if (first_bad > sector)
3331 max_sync = first_bad - sector;
3332 else {
3333 bad_sectors -= (sector - first_bad);
3334 if (max_sync > bad_sectors)
3335 max_sync = bad_sectors;
3336 continue;
3337 }
3338 }
3339 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3340 atomic_inc(&r10_bio->remaining);
3341 bio->bi_next = biolist;
3342 biolist = bio;
3343 bio->bi_private = r10_bio;
3344 bio->bi_end_io = end_sync_read;
3345 bio->bi_rw = READ;
3346 bio->bi_iter.bi_sector = sector +
3347 conf->mirrors[d].rdev->data_offset;
3348 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3349 count++;
3350
3351 if (conf->mirrors[d].replacement == NULL ||
3352 test_bit(Faulty,
3353 &conf->mirrors[d].replacement->flags))
3354 continue;
3355
3356 /* Need to set up for writing to the replacement */
3357 bio = r10_bio->devs[i].repl_bio;
3358 bio_reset(bio);
3359 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3360
3361 sector = r10_bio->devs[i].addr;
3362 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3363 bio->bi_next = biolist;
3364 biolist = bio;
3365 bio->bi_private = r10_bio;
3366 bio->bi_end_io = end_sync_write;
3367 bio->bi_rw = WRITE;
3368 bio->bi_iter.bi_sector = sector +
3369 conf->mirrors[d].replacement->data_offset;
3370 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3371 count++;
3372 }
3373
3374 if (count < 2) {
3375 for (i=0; i<conf->copies; i++) {
3376 int d = r10_bio->devs[i].devnum;
3377 if (r10_bio->devs[i].bio->bi_end_io)
3378 rdev_dec_pending(conf->mirrors[d].rdev,
3379 mddev);
3380 if (r10_bio->devs[i].repl_bio &&
3381 r10_bio->devs[i].repl_bio->bi_end_io)
3382 rdev_dec_pending(
3383 conf->mirrors[d].replacement,
3384 mddev);
3385 }
3386 put_buf(r10_bio);
3387 biolist = NULL;
3388 goto giveup;
3389 }
3390 }
3391
3392 nr_sectors = 0;
3393 if (sector_nr + max_sync < max_sector)
3394 max_sector = sector_nr + max_sync;
3395 do {
3396 struct page *page;
3397 int len = PAGE_SIZE;
3398 if (sector_nr + (len>>9) > max_sector)
3399 len = (max_sector - sector_nr) << 9;
3400 if (len == 0)
3401 break;
3402 for (bio= biolist ; bio ; bio=bio->bi_next) {
3403 struct bio *bio2;
3404 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3405 if (bio_add_page(bio, page, len, 0))
3406 continue;
3407
3408 /* stop here */
3409 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3410 for (bio2 = biolist;
3411 bio2 && bio2 != bio;
3412 bio2 = bio2->bi_next) {
3413 /* remove last page from this bio */
3414 bio2->bi_vcnt--;
3415 bio2->bi_iter.bi_size -= len;
3416 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3417 }
3418 goto bio_full;
3419 }
3420 nr_sectors += len>>9;
3421 sector_nr += len>>9;
3422 } while (biolist->bi_vcnt < RESYNC_PAGES);
3423 bio_full:
3424 r10_bio->sectors = nr_sectors;
3425
3426 while (biolist) {
3427 bio = biolist;
3428 biolist = biolist->bi_next;
3429
3430 bio->bi_next = NULL;
3431 r10_bio = bio->bi_private;
3432 r10_bio->sectors = nr_sectors;
3433
3434 if (bio->bi_end_io == end_sync_read) {
3435 md_sync_acct(bio->bi_bdev, nr_sectors);
3436 set_bit(BIO_UPTODATE, &bio->bi_flags);
3437 generic_make_request(bio);
3438 }
3439 }
3440
3441 if (sectors_skipped)
3442 /* pretend they weren't skipped, it makes
3443 * no important difference in this case
3444 */
3445 md_done_sync(mddev, sectors_skipped, 1);
3446
3447 return sectors_skipped + nr_sectors;
3448 giveup:
3449 /* There is nowhere to write, so all non-sync
3450 * drives must be failed or in resync, all drives
3451 * have a bad block, so try the next chunk...
3452 */
3453 if (sector_nr + max_sync < max_sector)
3454 max_sector = sector_nr + max_sync;
3455
3456 sectors_skipped += (max_sector - sector_nr);
3457 chunks_skipped ++;
3458 sector_nr = max_sector;
3459 goto skipped;
3460 }
3461
3462 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3463 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3464 {
3465 sector_t size;
3466 struct r10conf *conf = mddev->private;
3467
3468 if (!raid_disks)
3469 raid_disks = min(conf->geo.raid_disks,
3470 conf->prev.raid_disks);
3471 if (!sectors)
3472 sectors = conf->dev_sectors;
3473
3474 size = sectors >> conf->geo.chunk_shift;
3475 sector_div(size, conf->geo.far_copies);
3476 size = size * raid_disks;
3477 sector_div(size, conf->geo.near_copies);
3478
3479 return size << conf->geo.chunk_shift;
3480 }
3481
calc_sectors(struct r10conf * conf,sector_t size)3482 static void calc_sectors(struct r10conf *conf, sector_t size)
3483 {
3484 /* Calculate the number of sectors-per-device that will
3485 * actually be used, and set conf->dev_sectors and
3486 * conf->stride
3487 */
3488
3489 size = size >> conf->geo.chunk_shift;
3490 sector_div(size, conf->geo.far_copies);
3491 size = size * conf->geo.raid_disks;
3492 sector_div(size, conf->geo.near_copies);
3493 /* 'size' is now the number of chunks in the array */
3494 /* calculate "used chunks per device" */
3495 size = size * conf->copies;
3496
3497 /* We need to round up when dividing by raid_disks to
3498 * get the stride size.
3499 */
3500 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3501
3502 conf->dev_sectors = size << conf->geo.chunk_shift;
3503
3504 if (conf->geo.far_offset)
3505 conf->geo.stride = 1 << conf->geo.chunk_shift;
3506 else {
3507 sector_div(size, conf->geo.far_copies);
3508 conf->geo.stride = size << conf->geo.chunk_shift;
3509 }
3510 }
3511
3512 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3513 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3514 {
3515 int nc, fc, fo;
3516 int layout, chunk, disks;
3517 switch (new) {
3518 case geo_old:
3519 layout = mddev->layout;
3520 chunk = mddev->chunk_sectors;
3521 disks = mddev->raid_disks - mddev->delta_disks;
3522 break;
3523 case geo_new:
3524 layout = mddev->new_layout;
3525 chunk = mddev->new_chunk_sectors;
3526 disks = mddev->raid_disks;
3527 break;
3528 default: /* avoid 'may be unused' warnings */
3529 case geo_start: /* new when starting reshape - raid_disks not
3530 * updated yet. */
3531 layout = mddev->new_layout;
3532 chunk = mddev->new_chunk_sectors;
3533 disks = mddev->raid_disks + mddev->delta_disks;
3534 break;
3535 }
3536 if (layout >> 18)
3537 return -1;
3538 if (chunk < (PAGE_SIZE >> 9) ||
3539 !is_power_of_2(chunk))
3540 return -2;
3541 nc = layout & 255;
3542 fc = (layout >> 8) & 255;
3543 fo = layout & (1<<16);
3544 geo->raid_disks = disks;
3545 geo->near_copies = nc;
3546 geo->far_copies = fc;
3547 geo->far_offset = fo;
3548 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3549 geo->chunk_mask = chunk - 1;
3550 geo->chunk_shift = ffz(~chunk);
3551 return nc*fc;
3552 }
3553
setup_conf(struct mddev * mddev)3554 static struct r10conf *setup_conf(struct mddev *mddev)
3555 {
3556 struct r10conf *conf = NULL;
3557 int err = -EINVAL;
3558 struct geom geo;
3559 int copies;
3560
3561 copies = setup_geo(&geo, mddev, geo_new);
3562
3563 if (copies == -2) {
3564 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3565 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3566 mdname(mddev), PAGE_SIZE);
3567 goto out;
3568 }
3569
3570 if (copies < 2 || copies > mddev->raid_disks) {
3571 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3572 mdname(mddev), mddev->new_layout);
3573 goto out;
3574 }
3575
3576 err = -ENOMEM;
3577 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3578 if (!conf)
3579 goto out;
3580
3581 /* FIXME calc properly */
3582 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3583 max(0,-mddev->delta_disks)),
3584 GFP_KERNEL);
3585 if (!conf->mirrors)
3586 goto out;
3587
3588 conf->tmppage = alloc_page(GFP_KERNEL);
3589 if (!conf->tmppage)
3590 goto out;
3591
3592 conf->geo = geo;
3593 conf->copies = copies;
3594 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3595 r10bio_pool_free, conf);
3596 if (!conf->r10bio_pool)
3597 goto out;
3598
3599 calc_sectors(conf, mddev->dev_sectors);
3600 if (mddev->reshape_position == MaxSector) {
3601 conf->prev = conf->geo;
3602 conf->reshape_progress = MaxSector;
3603 } else {
3604 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3605 err = -EINVAL;
3606 goto out;
3607 }
3608 conf->reshape_progress = mddev->reshape_position;
3609 if (conf->prev.far_offset)
3610 conf->prev.stride = 1 << conf->prev.chunk_shift;
3611 else
3612 /* far_copies must be 1 */
3613 conf->prev.stride = conf->dev_sectors;
3614 }
3615 conf->reshape_safe = conf->reshape_progress;
3616 spin_lock_init(&conf->device_lock);
3617 INIT_LIST_HEAD(&conf->retry_list);
3618
3619 spin_lock_init(&conf->resync_lock);
3620 init_waitqueue_head(&conf->wait_barrier);
3621
3622 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3623 if (!conf->thread)
3624 goto out;
3625
3626 conf->mddev = mddev;
3627 return conf;
3628
3629 out:
3630 if (err == -ENOMEM)
3631 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3632 mdname(mddev));
3633 if (conf) {
3634 if (conf->r10bio_pool)
3635 mempool_destroy(conf->r10bio_pool);
3636 kfree(conf->mirrors);
3637 safe_put_page(conf->tmppage);
3638 kfree(conf);
3639 }
3640 return ERR_PTR(err);
3641 }
3642
run(struct mddev * mddev)3643 static int run(struct mddev *mddev)
3644 {
3645 struct r10conf *conf;
3646 int i, disk_idx, chunk_size;
3647 struct raid10_info *disk;
3648 struct md_rdev *rdev;
3649 sector_t size;
3650 sector_t min_offset_diff = 0;
3651 int first = 1;
3652 bool discard_supported = false;
3653
3654 if (mddev->private == NULL) {
3655 conf = setup_conf(mddev);
3656 if (IS_ERR(conf))
3657 return PTR_ERR(conf);
3658 mddev->private = conf;
3659 }
3660 conf = mddev->private;
3661 if (!conf)
3662 goto out;
3663
3664 mddev->thread = conf->thread;
3665 conf->thread = NULL;
3666
3667 chunk_size = mddev->chunk_sectors << 9;
3668 if (mddev->queue) {
3669 blk_queue_max_discard_sectors(mddev->queue,
3670 mddev->chunk_sectors);
3671 blk_queue_max_write_same_sectors(mddev->queue, 0);
3672 blk_queue_io_min(mddev->queue, chunk_size);
3673 if (conf->geo.raid_disks % conf->geo.near_copies)
3674 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3675 else
3676 blk_queue_io_opt(mddev->queue, chunk_size *
3677 (conf->geo.raid_disks / conf->geo.near_copies));
3678 }
3679
3680 rdev_for_each(rdev, mddev) {
3681 long long diff;
3682 struct request_queue *q;
3683
3684 disk_idx = rdev->raid_disk;
3685 if (disk_idx < 0)
3686 continue;
3687 if (disk_idx >= conf->geo.raid_disks &&
3688 disk_idx >= conf->prev.raid_disks)
3689 continue;
3690 disk = conf->mirrors + disk_idx;
3691
3692 if (test_bit(Replacement, &rdev->flags)) {
3693 if (disk->replacement)
3694 goto out_free_conf;
3695 disk->replacement = rdev;
3696 } else {
3697 if (disk->rdev)
3698 goto out_free_conf;
3699 disk->rdev = rdev;
3700 }
3701 q = bdev_get_queue(rdev->bdev);
3702 if (q->merge_bvec_fn)
3703 mddev->merge_check_needed = 1;
3704 diff = (rdev->new_data_offset - rdev->data_offset);
3705 if (!mddev->reshape_backwards)
3706 diff = -diff;
3707 if (diff < 0)
3708 diff = 0;
3709 if (first || diff < min_offset_diff)
3710 min_offset_diff = diff;
3711
3712 if (mddev->gendisk)
3713 disk_stack_limits(mddev->gendisk, rdev->bdev,
3714 rdev->data_offset << 9);
3715
3716 disk->head_position = 0;
3717
3718 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3719 discard_supported = true;
3720 }
3721
3722 if (mddev->queue) {
3723 if (discard_supported)
3724 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3725 mddev->queue);
3726 else
3727 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3728 mddev->queue);
3729 }
3730 /* need to check that every block has at least one working mirror */
3731 if (!enough(conf, -1)) {
3732 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3733 mdname(mddev));
3734 goto out_free_conf;
3735 }
3736
3737 if (conf->reshape_progress != MaxSector) {
3738 /* must ensure that shape change is supported */
3739 if (conf->geo.far_copies != 1 &&
3740 conf->geo.far_offset == 0)
3741 goto out_free_conf;
3742 if (conf->prev.far_copies != 1 &&
3743 conf->prev.far_offset == 0)
3744 goto out_free_conf;
3745 }
3746
3747 mddev->degraded = 0;
3748 for (i = 0;
3749 i < conf->geo.raid_disks
3750 || i < conf->prev.raid_disks;
3751 i++) {
3752
3753 disk = conf->mirrors + i;
3754
3755 if (!disk->rdev && disk->replacement) {
3756 /* The replacement is all we have - use it */
3757 disk->rdev = disk->replacement;
3758 disk->replacement = NULL;
3759 clear_bit(Replacement, &disk->rdev->flags);
3760 }
3761
3762 if (!disk->rdev ||
3763 !test_bit(In_sync, &disk->rdev->flags)) {
3764 disk->head_position = 0;
3765 mddev->degraded++;
3766 if (disk->rdev &&
3767 disk->rdev->saved_raid_disk < 0)
3768 conf->fullsync = 1;
3769 }
3770 disk->recovery_disabled = mddev->recovery_disabled - 1;
3771 }
3772
3773 if (mddev->recovery_cp != MaxSector)
3774 printk(KERN_NOTICE "md/raid10:%s: not clean"
3775 " -- starting background reconstruction\n",
3776 mdname(mddev));
3777 printk(KERN_INFO
3778 "md/raid10:%s: active with %d out of %d devices\n",
3779 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3780 conf->geo.raid_disks);
3781 /*
3782 * Ok, everything is just fine now
3783 */
3784 mddev->dev_sectors = conf->dev_sectors;
3785 size = raid10_size(mddev, 0, 0);
3786 md_set_array_sectors(mddev, size);
3787 mddev->resync_max_sectors = size;
3788
3789 if (mddev->queue) {
3790 int stripe = conf->geo.raid_disks *
3791 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3792 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3793 mddev->queue->backing_dev_info.congested_data = mddev;
3794
3795 /* Calculate max read-ahead size.
3796 * We need to readahead at least twice a whole stripe....
3797 * maybe...
3798 */
3799 stripe /= conf->geo.near_copies;
3800 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3801 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3802 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3803 }
3804
3805 if (md_integrity_register(mddev))
3806 goto out_free_conf;
3807
3808 if (conf->reshape_progress != MaxSector) {
3809 unsigned long before_length, after_length;
3810
3811 before_length = ((1 << conf->prev.chunk_shift) *
3812 conf->prev.far_copies);
3813 after_length = ((1 << conf->geo.chunk_shift) *
3814 conf->geo.far_copies);
3815
3816 if (max(before_length, after_length) > min_offset_diff) {
3817 /* This cannot work */
3818 printk("md/raid10: offset difference not enough to continue reshape\n");
3819 goto out_free_conf;
3820 }
3821 conf->offset_diff = min_offset_diff;
3822
3823 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3824 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3825 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3826 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3827 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3828 "reshape");
3829 }
3830
3831 return 0;
3832
3833 out_free_conf:
3834 md_unregister_thread(&mddev->thread);
3835 if (conf->r10bio_pool)
3836 mempool_destroy(conf->r10bio_pool);
3837 safe_put_page(conf->tmppage);
3838 kfree(conf->mirrors);
3839 kfree(conf);
3840 mddev->private = NULL;
3841 out:
3842 return -EIO;
3843 }
3844
stop(struct mddev * mddev)3845 static int stop(struct mddev *mddev)
3846 {
3847 struct r10conf *conf = mddev->private;
3848
3849 raise_barrier(conf, 0);
3850 lower_barrier(conf);
3851
3852 md_unregister_thread(&mddev->thread);
3853 if (mddev->queue)
3854 /* the unplug fn references 'conf'*/
3855 blk_sync_queue(mddev->queue);
3856
3857 if (conf->r10bio_pool)
3858 mempool_destroy(conf->r10bio_pool);
3859 safe_put_page(conf->tmppage);
3860 kfree(conf->mirrors);
3861 kfree(conf->mirrors_old);
3862 kfree(conf->mirrors_new);
3863 kfree(conf);
3864 mddev->private = NULL;
3865 return 0;
3866 }
3867
raid10_quiesce(struct mddev * mddev,int state)3868 static void raid10_quiesce(struct mddev *mddev, int state)
3869 {
3870 struct r10conf *conf = mddev->private;
3871
3872 switch(state) {
3873 case 1:
3874 raise_barrier(conf, 0);
3875 break;
3876 case 0:
3877 lower_barrier(conf);
3878 break;
3879 }
3880 }
3881
raid10_resize(struct mddev * mddev,sector_t sectors)3882 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3883 {
3884 /* Resize of 'far' arrays is not supported.
3885 * For 'near' and 'offset' arrays we can set the
3886 * number of sectors used to be an appropriate multiple
3887 * of the chunk size.
3888 * For 'offset', this is far_copies*chunksize.
3889 * For 'near' the multiplier is the LCM of
3890 * near_copies and raid_disks.
3891 * So if far_copies > 1 && !far_offset, fail.
3892 * Else find LCM(raid_disks, near_copy)*far_copies and
3893 * multiply by chunk_size. Then round to this number.
3894 * This is mostly done by raid10_size()
3895 */
3896 struct r10conf *conf = mddev->private;
3897 sector_t oldsize, size;
3898
3899 if (mddev->reshape_position != MaxSector)
3900 return -EBUSY;
3901
3902 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3903 return -EINVAL;
3904
3905 oldsize = raid10_size(mddev, 0, 0);
3906 size = raid10_size(mddev, sectors, 0);
3907 if (mddev->external_size &&
3908 mddev->array_sectors > size)
3909 return -EINVAL;
3910 if (mddev->bitmap) {
3911 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3912 if (ret)
3913 return ret;
3914 }
3915 md_set_array_sectors(mddev, size);
3916 set_capacity(mddev->gendisk, mddev->array_sectors);
3917 revalidate_disk(mddev->gendisk);
3918 if (sectors > mddev->dev_sectors &&
3919 mddev->recovery_cp > oldsize) {
3920 mddev->recovery_cp = oldsize;
3921 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3922 }
3923 calc_sectors(conf, sectors);
3924 mddev->dev_sectors = conf->dev_sectors;
3925 mddev->resync_max_sectors = size;
3926 return 0;
3927 }
3928
raid10_takeover_raid0(struct mddev * mddev)3929 static void *raid10_takeover_raid0(struct mddev *mddev)
3930 {
3931 struct md_rdev *rdev;
3932 struct r10conf *conf;
3933
3934 if (mddev->degraded > 0) {
3935 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3936 mdname(mddev));
3937 return ERR_PTR(-EINVAL);
3938 }
3939
3940 /* Set new parameters */
3941 mddev->new_level = 10;
3942 /* new layout: far_copies = 1, near_copies = 2 */
3943 mddev->new_layout = (1<<8) + 2;
3944 mddev->new_chunk_sectors = mddev->chunk_sectors;
3945 mddev->delta_disks = mddev->raid_disks;
3946 mddev->raid_disks *= 2;
3947 /* make sure it will be not marked as dirty */
3948 mddev->recovery_cp = MaxSector;
3949
3950 conf = setup_conf(mddev);
3951 if (!IS_ERR(conf)) {
3952 rdev_for_each(rdev, mddev)
3953 if (rdev->raid_disk >= 0)
3954 rdev->new_raid_disk = rdev->raid_disk * 2;
3955 conf->barrier = 1;
3956 }
3957
3958 return conf;
3959 }
3960
raid10_takeover(struct mddev * mddev)3961 static void *raid10_takeover(struct mddev *mddev)
3962 {
3963 struct r0conf *raid0_conf;
3964
3965 /* raid10 can take over:
3966 * raid0 - providing it has only two drives
3967 */
3968 if (mddev->level == 0) {
3969 /* for raid0 takeover only one zone is supported */
3970 raid0_conf = mddev->private;
3971 if (raid0_conf->nr_strip_zones > 1) {
3972 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3973 " with more than one zone.\n",
3974 mdname(mddev));
3975 return ERR_PTR(-EINVAL);
3976 }
3977 return raid10_takeover_raid0(mddev);
3978 }
3979 return ERR_PTR(-EINVAL);
3980 }
3981
raid10_check_reshape(struct mddev * mddev)3982 static int raid10_check_reshape(struct mddev *mddev)
3983 {
3984 /* Called when there is a request to change
3985 * - layout (to ->new_layout)
3986 * - chunk size (to ->new_chunk_sectors)
3987 * - raid_disks (by delta_disks)
3988 * or when trying to restart a reshape that was ongoing.
3989 *
3990 * We need to validate the request and possibly allocate
3991 * space if that might be an issue later.
3992 *
3993 * Currently we reject any reshape of a 'far' mode array,
3994 * allow chunk size to change if new is generally acceptable,
3995 * allow raid_disks to increase, and allow
3996 * a switch between 'near' mode and 'offset' mode.
3997 */
3998 struct r10conf *conf = mddev->private;
3999 struct geom geo;
4000
4001 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4002 return -EINVAL;
4003
4004 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4005 /* mustn't change number of copies */
4006 return -EINVAL;
4007 if (geo.far_copies > 1 && !geo.far_offset)
4008 /* Cannot switch to 'far' mode */
4009 return -EINVAL;
4010
4011 if (mddev->array_sectors & geo.chunk_mask)
4012 /* not factor of array size */
4013 return -EINVAL;
4014
4015 if (!enough(conf, -1))
4016 return -EINVAL;
4017
4018 kfree(conf->mirrors_new);
4019 conf->mirrors_new = NULL;
4020 if (mddev->delta_disks > 0) {
4021 /* allocate new 'mirrors' list */
4022 conf->mirrors_new = kzalloc(
4023 sizeof(struct raid10_info)
4024 *(mddev->raid_disks +
4025 mddev->delta_disks),
4026 GFP_KERNEL);
4027 if (!conf->mirrors_new)
4028 return -ENOMEM;
4029 }
4030 return 0;
4031 }
4032
4033 /*
4034 * Need to check if array has failed when deciding whether to:
4035 * - start an array
4036 * - remove non-faulty devices
4037 * - add a spare
4038 * - allow a reshape
4039 * This determination is simple when no reshape is happening.
4040 * However if there is a reshape, we need to carefully check
4041 * both the before and after sections.
4042 * This is because some failed devices may only affect one
4043 * of the two sections, and some non-in_sync devices may
4044 * be insync in the section most affected by failed devices.
4045 */
calc_degraded(struct r10conf * conf)4046 static int calc_degraded(struct r10conf *conf)
4047 {
4048 int degraded, degraded2;
4049 int i;
4050
4051 rcu_read_lock();
4052 degraded = 0;
4053 /* 'prev' section first */
4054 for (i = 0; i < conf->prev.raid_disks; i++) {
4055 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4056 if (!rdev || test_bit(Faulty, &rdev->flags))
4057 degraded++;
4058 else if (!test_bit(In_sync, &rdev->flags))
4059 /* When we can reduce the number of devices in
4060 * an array, this might not contribute to
4061 * 'degraded'. It does now.
4062 */
4063 degraded++;
4064 }
4065 rcu_read_unlock();
4066 if (conf->geo.raid_disks == conf->prev.raid_disks)
4067 return degraded;
4068 rcu_read_lock();
4069 degraded2 = 0;
4070 for (i = 0; i < conf->geo.raid_disks; i++) {
4071 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4072 if (!rdev || test_bit(Faulty, &rdev->flags))
4073 degraded2++;
4074 else if (!test_bit(In_sync, &rdev->flags)) {
4075 /* If reshape is increasing the number of devices,
4076 * this section has already been recovered, so
4077 * it doesn't contribute to degraded.
4078 * else it does.
4079 */
4080 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4081 degraded2++;
4082 }
4083 }
4084 rcu_read_unlock();
4085 if (degraded2 > degraded)
4086 return degraded2;
4087 return degraded;
4088 }
4089
raid10_start_reshape(struct mddev * mddev)4090 static int raid10_start_reshape(struct mddev *mddev)
4091 {
4092 /* A 'reshape' has been requested. This commits
4093 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4094 * This also checks if there are enough spares and adds them
4095 * to the array.
4096 * We currently require enough spares to make the final
4097 * array non-degraded. We also require that the difference
4098 * between old and new data_offset - on each device - is
4099 * enough that we never risk over-writing.
4100 */
4101
4102 unsigned long before_length, after_length;
4103 sector_t min_offset_diff = 0;
4104 int first = 1;
4105 struct geom new;
4106 struct r10conf *conf = mddev->private;
4107 struct md_rdev *rdev;
4108 int spares = 0;
4109 int ret;
4110
4111 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4112 return -EBUSY;
4113
4114 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4115 return -EINVAL;
4116
4117 before_length = ((1 << conf->prev.chunk_shift) *
4118 conf->prev.far_copies);
4119 after_length = ((1 << conf->geo.chunk_shift) *
4120 conf->geo.far_copies);
4121
4122 rdev_for_each(rdev, mddev) {
4123 if (!test_bit(In_sync, &rdev->flags)
4124 && !test_bit(Faulty, &rdev->flags))
4125 spares++;
4126 if (rdev->raid_disk >= 0) {
4127 long long diff = (rdev->new_data_offset
4128 - rdev->data_offset);
4129 if (!mddev->reshape_backwards)
4130 diff = -diff;
4131 if (diff < 0)
4132 diff = 0;
4133 if (first || diff < min_offset_diff)
4134 min_offset_diff = diff;
4135 }
4136 }
4137
4138 if (max(before_length, after_length) > min_offset_diff)
4139 return -EINVAL;
4140
4141 if (spares < mddev->delta_disks)
4142 return -EINVAL;
4143
4144 conf->offset_diff = min_offset_diff;
4145 spin_lock_irq(&conf->device_lock);
4146 if (conf->mirrors_new) {
4147 memcpy(conf->mirrors_new, conf->mirrors,
4148 sizeof(struct raid10_info)*conf->prev.raid_disks);
4149 smp_mb();
4150 kfree(conf->mirrors_old);
4151 conf->mirrors_old = conf->mirrors;
4152 conf->mirrors = conf->mirrors_new;
4153 conf->mirrors_new = NULL;
4154 }
4155 setup_geo(&conf->geo, mddev, geo_start);
4156 smp_mb();
4157 if (mddev->reshape_backwards) {
4158 sector_t size = raid10_size(mddev, 0, 0);
4159 if (size < mddev->array_sectors) {
4160 spin_unlock_irq(&conf->device_lock);
4161 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4162 mdname(mddev));
4163 return -EINVAL;
4164 }
4165 mddev->resync_max_sectors = size;
4166 conf->reshape_progress = size;
4167 } else
4168 conf->reshape_progress = 0;
4169 conf->reshape_safe = conf->reshape_progress;
4170 spin_unlock_irq(&conf->device_lock);
4171
4172 if (mddev->delta_disks && mddev->bitmap) {
4173 ret = bitmap_resize(mddev->bitmap,
4174 raid10_size(mddev, 0,
4175 conf->geo.raid_disks),
4176 0, 0);
4177 if (ret)
4178 goto abort;
4179 }
4180 if (mddev->delta_disks > 0) {
4181 rdev_for_each(rdev, mddev)
4182 if (rdev->raid_disk < 0 &&
4183 !test_bit(Faulty, &rdev->flags)) {
4184 if (raid10_add_disk(mddev, rdev) == 0) {
4185 if (rdev->raid_disk >=
4186 conf->prev.raid_disks)
4187 set_bit(In_sync, &rdev->flags);
4188 else
4189 rdev->recovery_offset = 0;
4190
4191 if (sysfs_link_rdev(mddev, rdev))
4192 /* Failure here is OK */;
4193 }
4194 } else if (rdev->raid_disk >= conf->prev.raid_disks
4195 && !test_bit(Faulty, &rdev->flags)) {
4196 /* This is a spare that was manually added */
4197 set_bit(In_sync, &rdev->flags);
4198 }
4199 }
4200 /* When a reshape changes the number of devices,
4201 * ->degraded is measured against the larger of the
4202 * pre and post numbers.
4203 */
4204 spin_lock_irq(&conf->device_lock);
4205 mddev->degraded = calc_degraded(conf);
4206 spin_unlock_irq(&conf->device_lock);
4207 mddev->raid_disks = conf->geo.raid_disks;
4208 mddev->reshape_position = conf->reshape_progress;
4209 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4210
4211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4213 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4214 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4215
4216 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4217 "reshape");
4218 if (!mddev->sync_thread) {
4219 ret = -EAGAIN;
4220 goto abort;
4221 }
4222 conf->reshape_checkpoint = jiffies;
4223 md_wakeup_thread(mddev->sync_thread);
4224 md_new_event(mddev);
4225 return 0;
4226
4227 abort:
4228 mddev->recovery = 0;
4229 spin_lock_irq(&conf->device_lock);
4230 conf->geo = conf->prev;
4231 mddev->raid_disks = conf->geo.raid_disks;
4232 rdev_for_each(rdev, mddev)
4233 rdev->new_data_offset = rdev->data_offset;
4234 smp_wmb();
4235 conf->reshape_progress = MaxSector;
4236 conf->reshape_safe = MaxSector;
4237 mddev->reshape_position = MaxSector;
4238 spin_unlock_irq(&conf->device_lock);
4239 return ret;
4240 }
4241
4242 /* Calculate the last device-address that could contain
4243 * any block from the chunk that includes the array-address 's'
4244 * and report the next address.
4245 * i.e. the address returned will be chunk-aligned and after
4246 * any data that is in the chunk containing 's'.
4247 */
last_dev_address(sector_t s,struct geom * geo)4248 static sector_t last_dev_address(sector_t s, struct geom *geo)
4249 {
4250 s = (s | geo->chunk_mask) + 1;
4251 s >>= geo->chunk_shift;
4252 s *= geo->near_copies;
4253 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4254 s *= geo->far_copies;
4255 s <<= geo->chunk_shift;
4256 return s;
4257 }
4258
4259 /* Calculate the first device-address that could contain
4260 * any block from the chunk that includes the array-address 's'.
4261 * This too will be the start of a chunk
4262 */
first_dev_address(sector_t s,struct geom * geo)4263 static sector_t first_dev_address(sector_t s, struct geom *geo)
4264 {
4265 s >>= geo->chunk_shift;
4266 s *= geo->near_copies;
4267 sector_div(s, geo->raid_disks);
4268 s *= geo->far_copies;
4269 s <<= geo->chunk_shift;
4270 return s;
4271 }
4272
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4273 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4274 int *skipped)
4275 {
4276 /* We simply copy at most one chunk (smallest of old and new)
4277 * at a time, possibly less if that exceeds RESYNC_PAGES,
4278 * or we hit a bad block or something.
4279 * This might mean we pause for normal IO in the middle of
4280 * a chunk, but that is not a problem was mddev->reshape_position
4281 * can record any location.
4282 *
4283 * If we will want to write to a location that isn't
4284 * yet recorded as 'safe' (i.e. in metadata on disk) then
4285 * we need to flush all reshape requests and update the metadata.
4286 *
4287 * When reshaping forwards (e.g. to more devices), we interpret
4288 * 'safe' as the earliest block which might not have been copied
4289 * down yet. We divide this by previous stripe size and multiply
4290 * by previous stripe length to get lowest device offset that we
4291 * cannot write to yet.
4292 * We interpret 'sector_nr' as an address that we want to write to.
4293 * From this we use last_device_address() to find where we might
4294 * write to, and first_device_address on the 'safe' position.
4295 * If this 'next' write position is after the 'safe' position,
4296 * we must update the metadata to increase the 'safe' position.
4297 *
4298 * When reshaping backwards, we round in the opposite direction
4299 * and perform the reverse test: next write position must not be
4300 * less than current safe position.
4301 *
4302 * In all this the minimum difference in data offsets
4303 * (conf->offset_diff - always positive) allows a bit of slack,
4304 * so next can be after 'safe', but not by more than offset_disk
4305 *
4306 * We need to prepare all the bios here before we start any IO
4307 * to ensure the size we choose is acceptable to all devices.
4308 * The means one for each copy for write-out and an extra one for
4309 * read-in.
4310 * We store the read-in bio in ->master_bio and the others in
4311 * ->devs[x].bio and ->devs[x].repl_bio.
4312 */
4313 struct r10conf *conf = mddev->private;
4314 struct r10bio *r10_bio;
4315 sector_t next, safe, last;
4316 int max_sectors;
4317 int nr_sectors;
4318 int s;
4319 struct md_rdev *rdev;
4320 int need_flush = 0;
4321 struct bio *blist;
4322 struct bio *bio, *read_bio;
4323 int sectors_done = 0;
4324
4325 if (sector_nr == 0) {
4326 /* If restarting in the middle, skip the initial sectors */
4327 if (mddev->reshape_backwards &&
4328 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4329 sector_nr = (raid10_size(mddev, 0, 0)
4330 - conf->reshape_progress);
4331 } else if (!mddev->reshape_backwards &&
4332 conf->reshape_progress > 0)
4333 sector_nr = conf->reshape_progress;
4334 if (sector_nr) {
4335 mddev->curr_resync_completed = sector_nr;
4336 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4337 *skipped = 1;
4338 return sector_nr;
4339 }
4340 }
4341
4342 /* We don't use sector_nr to track where we are up to
4343 * as that doesn't work well for ->reshape_backwards.
4344 * So just use ->reshape_progress.
4345 */
4346 if (mddev->reshape_backwards) {
4347 /* 'next' is the earliest device address that we might
4348 * write to for this chunk in the new layout
4349 */
4350 next = first_dev_address(conf->reshape_progress - 1,
4351 &conf->geo);
4352
4353 /* 'safe' is the last device address that we might read from
4354 * in the old layout after a restart
4355 */
4356 safe = last_dev_address(conf->reshape_safe - 1,
4357 &conf->prev);
4358
4359 if (next + conf->offset_diff < safe)
4360 need_flush = 1;
4361
4362 last = conf->reshape_progress - 1;
4363 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4364 & conf->prev.chunk_mask);
4365 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4366 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4367 } else {
4368 /* 'next' is after the last device address that we
4369 * might write to for this chunk in the new layout
4370 */
4371 next = last_dev_address(conf->reshape_progress, &conf->geo);
4372
4373 /* 'safe' is the earliest device address that we might
4374 * read from in the old layout after a restart
4375 */
4376 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4377
4378 /* Need to update metadata if 'next' might be beyond 'safe'
4379 * as that would possibly corrupt data
4380 */
4381 if (next > safe + conf->offset_diff)
4382 need_flush = 1;
4383
4384 sector_nr = conf->reshape_progress;
4385 last = sector_nr | (conf->geo.chunk_mask
4386 & conf->prev.chunk_mask);
4387
4388 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4389 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4390 }
4391
4392 if (need_flush ||
4393 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4394 /* Need to update reshape_position in metadata */
4395 wait_barrier(conf);
4396 mddev->reshape_position = conf->reshape_progress;
4397 if (mddev->reshape_backwards)
4398 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4399 - conf->reshape_progress;
4400 else
4401 mddev->curr_resync_completed = conf->reshape_progress;
4402 conf->reshape_checkpoint = jiffies;
4403 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4404 md_wakeup_thread(mddev->thread);
4405 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4406 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4407 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4408 allow_barrier(conf);
4409 return sectors_done;
4410 }
4411 conf->reshape_safe = mddev->reshape_position;
4412 allow_barrier(conf);
4413 }
4414
4415 read_more:
4416 /* Now schedule reads for blocks from sector_nr to last */
4417 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4418 r10_bio->state = 0;
4419 raise_barrier(conf, sectors_done != 0);
4420 atomic_set(&r10_bio->remaining, 0);
4421 r10_bio->mddev = mddev;
4422 r10_bio->sector = sector_nr;
4423 set_bit(R10BIO_IsReshape, &r10_bio->state);
4424 r10_bio->sectors = last - sector_nr + 1;
4425 rdev = read_balance(conf, r10_bio, &max_sectors);
4426 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4427
4428 if (!rdev) {
4429 /* Cannot read from here, so need to record bad blocks
4430 * on all the target devices.
4431 */
4432 // FIXME
4433 mempool_free(r10_bio, conf->r10buf_pool);
4434 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4435 return sectors_done;
4436 }
4437
4438 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4439
4440 read_bio->bi_bdev = rdev->bdev;
4441 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4442 + rdev->data_offset);
4443 read_bio->bi_private = r10_bio;
4444 read_bio->bi_end_io = end_sync_read;
4445 read_bio->bi_rw = READ;
4446 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4447 __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4448 read_bio->bi_vcnt = 0;
4449 read_bio->bi_iter.bi_size = 0;
4450 r10_bio->master_bio = read_bio;
4451 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4452
4453 /* Now find the locations in the new layout */
4454 __raid10_find_phys(&conf->geo, r10_bio);
4455
4456 blist = read_bio;
4457 read_bio->bi_next = NULL;
4458
4459 for (s = 0; s < conf->copies*2; s++) {
4460 struct bio *b;
4461 int d = r10_bio->devs[s/2].devnum;
4462 struct md_rdev *rdev2;
4463 if (s&1) {
4464 rdev2 = conf->mirrors[d].replacement;
4465 b = r10_bio->devs[s/2].repl_bio;
4466 } else {
4467 rdev2 = conf->mirrors[d].rdev;
4468 b = r10_bio->devs[s/2].bio;
4469 }
4470 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4471 continue;
4472
4473 bio_reset(b);
4474 b->bi_bdev = rdev2->bdev;
4475 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4476 rdev2->new_data_offset;
4477 b->bi_private = r10_bio;
4478 b->bi_end_io = end_reshape_write;
4479 b->bi_rw = WRITE;
4480 b->bi_next = blist;
4481 blist = b;
4482 }
4483
4484 /* Now add as many pages as possible to all of these bios. */
4485
4486 nr_sectors = 0;
4487 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4488 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4489 int len = (max_sectors - s) << 9;
4490 if (len > PAGE_SIZE)
4491 len = PAGE_SIZE;
4492 for (bio = blist; bio ; bio = bio->bi_next) {
4493 struct bio *bio2;
4494 if (bio_add_page(bio, page, len, 0))
4495 continue;
4496
4497 /* Didn't fit, must stop */
4498 for (bio2 = blist;
4499 bio2 && bio2 != bio;
4500 bio2 = bio2->bi_next) {
4501 /* Remove last page from this bio */
4502 bio2->bi_vcnt--;
4503 bio2->bi_iter.bi_size -= len;
4504 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4505 }
4506 goto bio_full;
4507 }
4508 sector_nr += len >> 9;
4509 nr_sectors += len >> 9;
4510 }
4511 bio_full:
4512 r10_bio->sectors = nr_sectors;
4513
4514 /* Now submit the read */
4515 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4516 atomic_inc(&r10_bio->remaining);
4517 read_bio->bi_next = NULL;
4518 generic_make_request(read_bio);
4519 sector_nr += nr_sectors;
4520 sectors_done += nr_sectors;
4521 if (sector_nr <= last)
4522 goto read_more;
4523
4524 /* Now that we have done the whole section we can
4525 * update reshape_progress
4526 */
4527 if (mddev->reshape_backwards)
4528 conf->reshape_progress -= sectors_done;
4529 else
4530 conf->reshape_progress += sectors_done;
4531
4532 return sectors_done;
4533 }
4534
4535 static void end_reshape_request(struct r10bio *r10_bio);
4536 static int handle_reshape_read_error(struct mddev *mddev,
4537 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4538 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4539 {
4540 /* Reshape read completed. Hopefully we have a block
4541 * to write out.
4542 * If we got a read error then we do sync 1-page reads from
4543 * elsewhere until we find the data - or give up.
4544 */
4545 struct r10conf *conf = mddev->private;
4546 int s;
4547
4548 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4549 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4550 /* Reshape has been aborted */
4551 md_done_sync(mddev, r10_bio->sectors, 0);
4552 return;
4553 }
4554
4555 /* We definitely have the data in the pages, schedule the
4556 * writes.
4557 */
4558 atomic_set(&r10_bio->remaining, 1);
4559 for (s = 0; s < conf->copies*2; s++) {
4560 struct bio *b;
4561 int d = r10_bio->devs[s/2].devnum;
4562 struct md_rdev *rdev;
4563 if (s&1) {
4564 rdev = conf->mirrors[d].replacement;
4565 b = r10_bio->devs[s/2].repl_bio;
4566 } else {
4567 rdev = conf->mirrors[d].rdev;
4568 b = r10_bio->devs[s/2].bio;
4569 }
4570 if (!rdev || test_bit(Faulty, &rdev->flags))
4571 continue;
4572 atomic_inc(&rdev->nr_pending);
4573 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4574 atomic_inc(&r10_bio->remaining);
4575 b->bi_next = NULL;
4576 generic_make_request(b);
4577 }
4578 end_reshape_request(r10_bio);
4579 }
4580
end_reshape(struct r10conf * conf)4581 static void end_reshape(struct r10conf *conf)
4582 {
4583 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4584 return;
4585
4586 spin_lock_irq(&conf->device_lock);
4587 conf->prev = conf->geo;
4588 md_finish_reshape(conf->mddev);
4589 smp_wmb();
4590 conf->reshape_progress = MaxSector;
4591 conf->reshape_safe = MaxSector;
4592 spin_unlock_irq(&conf->device_lock);
4593
4594 /* read-ahead size must cover two whole stripes, which is
4595 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4596 */
4597 if (conf->mddev->queue) {
4598 int stripe = conf->geo.raid_disks *
4599 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4600 stripe /= conf->geo.near_copies;
4601 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4602 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4603 }
4604 conf->fullsync = 0;
4605 }
4606
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4607 static int handle_reshape_read_error(struct mddev *mddev,
4608 struct r10bio *r10_bio)
4609 {
4610 /* Use sync reads to get the blocks from somewhere else */
4611 int sectors = r10_bio->sectors;
4612 struct r10conf *conf = mddev->private;
4613 struct {
4614 struct r10bio r10_bio;
4615 struct r10dev devs[conf->copies];
4616 } on_stack;
4617 struct r10bio *r10b = &on_stack.r10_bio;
4618 int slot = 0;
4619 int idx = 0;
4620 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4621
4622 r10b->sector = r10_bio->sector;
4623 __raid10_find_phys(&conf->prev, r10b);
4624
4625 while (sectors) {
4626 int s = sectors;
4627 int success = 0;
4628 int first_slot = slot;
4629
4630 if (s > (PAGE_SIZE >> 9))
4631 s = PAGE_SIZE >> 9;
4632
4633 while (!success) {
4634 int d = r10b->devs[slot].devnum;
4635 struct md_rdev *rdev = conf->mirrors[d].rdev;
4636 sector_t addr;
4637 if (rdev == NULL ||
4638 test_bit(Faulty, &rdev->flags) ||
4639 !test_bit(In_sync, &rdev->flags))
4640 goto failed;
4641
4642 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4643 success = sync_page_io(rdev,
4644 addr,
4645 s << 9,
4646 bvec[idx].bv_page,
4647 READ, false);
4648 if (success)
4649 break;
4650 failed:
4651 slot++;
4652 if (slot >= conf->copies)
4653 slot = 0;
4654 if (slot == first_slot)
4655 break;
4656 }
4657 if (!success) {
4658 /* couldn't read this block, must give up */
4659 set_bit(MD_RECOVERY_INTR,
4660 &mddev->recovery);
4661 return -EIO;
4662 }
4663 sectors -= s;
4664 idx++;
4665 }
4666 return 0;
4667 }
4668
end_reshape_write(struct bio * bio,int error)4669 static void end_reshape_write(struct bio *bio, int error)
4670 {
4671 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4672 struct r10bio *r10_bio = bio->bi_private;
4673 struct mddev *mddev = r10_bio->mddev;
4674 struct r10conf *conf = mddev->private;
4675 int d;
4676 int slot;
4677 int repl;
4678 struct md_rdev *rdev = NULL;
4679
4680 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4681 if (repl)
4682 rdev = conf->mirrors[d].replacement;
4683 if (!rdev) {
4684 smp_mb();
4685 rdev = conf->mirrors[d].rdev;
4686 }
4687
4688 if (!uptodate) {
4689 /* FIXME should record badblock */
4690 md_error(mddev, rdev);
4691 }
4692
4693 rdev_dec_pending(rdev, mddev);
4694 end_reshape_request(r10_bio);
4695 }
4696
end_reshape_request(struct r10bio * r10_bio)4697 static void end_reshape_request(struct r10bio *r10_bio)
4698 {
4699 if (!atomic_dec_and_test(&r10_bio->remaining))
4700 return;
4701 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4702 bio_put(r10_bio->master_bio);
4703 put_buf(r10_bio);
4704 }
4705
raid10_finish_reshape(struct mddev * mddev)4706 static void raid10_finish_reshape(struct mddev *mddev)
4707 {
4708 struct r10conf *conf = mddev->private;
4709
4710 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4711 return;
4712
4713 if (mddev->delta_disks > 0) {
4714 sector_t size = raid10_size(mddev, 0, 0);
4715 md_set_array_sectors(mddev, size);
4716 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4717 mddev->recovery_cp = mddev->resync_max_sectors;
4718 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4719 }
4720 mddev->resync_max_sectors = size;
4721 set_capacity(mddev->gendisk, mddev->array_sectors);
4722 revalidate_disk(mddev->gendisk);
4723 } else {
4724 int d;
4725 for (d = conf->geo.raid_disks ;
4726 d < conf->geo.raid_disks - mddev->delta_disks;
4727 d++) {
4728 struct md_rdev *rdev = conf->mirrors[d].rdev;
4729 if (rdev)
4730 clear_bit(In_sync, &rdev->flags);
4731 rdev = conf->mirrors[d].replacement;
4732 if (rdev)
4733 clear_bit(In_sync, &rdev->flags);
4734 }
4735 }
4736 mddev->layout = mddev->new_layout;
4737 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4738 mddev->reshape_position = MaxSector;
4739 mddev->delta_disks = 0;
4740 mddev->reshape_backwards = 0;
4741 }
4742
4743 static struct md_personality raid10_personality =
4744 {
4745 .name = "raid10",
4746 .level = 10,
4747 .owner = THIS_MODULE,
4748 .make_request = make_request,
4749 .run = run,
4750 .stop = stop,
4751 .status = status,
4752 .error_handler = error,
4753 .hot_add_disk = raid10_add_disk,
4754 .hot_remove_disk= raid10_remove_disk,
4755 .spare_active = raid10_spare_active,
4756 .sync_request = sync_request,
4757 .quiesce = raid10_quiesce,
4758 .size = raid10_size,
4759 .resize = raid10_resize,
4760 .takeover = raid10_takeover,
4761 .check_reshape = raid10_check_reshape,
4762 .start_reshape = raid10_start_reshape,
4763 .finish_reshape = raid10_finish_reshape,
4764 };
4765
raid_init(void)4766 static int __init raid_init(void)
4767 {
4768 return register_md_personality(&raid10_personality);
4769 }
4770
raid_exit(void)4771 static void raid_exit(void)
4772 {
4773 unregister_md_personality(&raid10_personality);
4774 }
4775
4776 module_init(raid_init);
4777 module_exit(raid_exit);
4778 MODULE_LICENSE("GPL");
4779 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4780 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4781 MODULE_ALIAS("md-raid10");
4782 MODULE_ALIAS("md-level-10");
4783
4784 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4785