1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73 * Stripe cache
74 */
75
76 #define NR_STRIPES 256
77 #define STRIPE_SIZE PAGE_SIZE
78 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD 1
81 #define BYPASS_THRESHOLD 1
82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH 8
85
stripe_hash(struct r5conf * conf,sector_t sect)86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 return &conf->stripe_hashtbl[hash];
90 }
91
stripe_hash_locks_hash(sector_t sect)92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
lock_device_hash_lock(struct r5conf * conf,int hash)97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_lock_irq(conf->hash_locks + hash);
100 spin_lock(&conf->device_lock);
101 }
102
unlock_device_hash_lock(struct r5conf * conf,int hash)103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105 spin_unlock(&conf->device_lock);
106 spin_unlock_irq(conf->hash_locks + hash);
107 }
108
lock_all_device_hash_locks_irq(struct r5conf * conf)109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 int i;
112 local_irq_disable();
113 spin_lock(conf->hash_locks);
114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 spin_lock(&conf->device_lock);
117 }
118
unlock_all_device_hash_locks_irq(struct r5conf * conf)119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 int i;
122 spin_unlock(&conf->device_lock);
123 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 spin_unlock(conf->hash_locks + i - 1);
125 local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap. There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
133 * be valid.
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
136 */
r5_next_bio(struct bio * bio,sector_t sector)137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 int sectors = bio_sectors(bio);
140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 return bio->bi_next;
142 else
143 return NULL;
144 }
145
146 /*
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149 */
raid5_bi_processed_stripes(struct bio * bio)150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
raid5_dec_bi_active_stripes(struct bio * bio)156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 return atomic_sub_return(1, segments) & 0xffff;
160 }
161
raid5_inc_bi_active_stripes(struct bio * bio)162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 atomic_inc(segments);
166 }
167
raid5_set_bi_processed_stripes(struct bio * bio,unsigned int cnt)168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 unsigned int cnt)
170 {
171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 int old, new;
173
174 do {
175 old = atomic_read(segments);
176 new = (old & 0xffff) | (cnt << 16);
177 } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
raid5_set_bi_stripes(struct bio * bio,unsigned int cnt)180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 if (sh->ddf_layout)
190 /* ddf always start from first device */
191 return 0;
192 /* md starts just after Q block */
193 if (sh->qd_idx == sh->disks - 1)
194 return 0;
195 else
196 return sh->qd_idx + 1;
197 }
raid6_next_disk(int disk,int raid_disks)198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 disk++;
201 return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1. This help does that mapping.
208 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 int *count, int syndrome_disks)
211 {
212 int slot = *count;
213
214 if (sh->ddf_layout)
215 (*count)++;
216 if (idx == sh->pd_idx)
217 return syndrome_disks;
218 if (idx == sh->qd_idx)
219 return syndrome_disks + 1;
220 if (!sh->ddf_layout)
221 (*count)++;
222 return slot;
223 }
224
return_io(struct bio * return_bi)225 static void return_io(struct bio *return_bi)
226 {
227 struct bio *bi = return_bi;
228 while (bi) {
229
230 return_bi = bi->bi_next;
231 bi->bi_next = NULL;
232 bi->bi_iter.bi_size = 0;
233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234 bi, 0);
235 bio_endio(bi, 0);
236 bi = return_bi;
237 }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
stripe_operations_active(struct stripe_head * sh)242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244 return sh->check_state || sh->reconstruct_state ||
245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
raid5_wakeup_stripe_thread(struct stripe_head * sh)249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251 struct r5conf *conf = sh->raid_conf;
252 struct r5worker_group *group;
253 int thread_cnt;
254 int i, cpu = sh->cpu;
255
256 if (!cpu_online(cpu)) {
257 cpu = cpumask_any(cpu_online_mask);
258 sh->cpu = cpu;
259 }
260
261 if (list_empty(&sh->lru)) {
262 struct r5worker_group *group;
263 group = conf->worker_groups + cpu_to_group(cpu);
264 list_add_tail(&sh->lru, &group->handle_list);
265 group->stripes_cnt++;
266 sh->group = group;
267 }
268
269 if (conf->worker_cnt_per_group == 0) {
270 md_wakeup_thread(conf->mddev->thread);
271 return;
272 }
273
274 group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276 group->workers[0].working = true;
277 /* at least one worker should run to avoid race */
278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 /* wakeup more workers */
282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 if (group->workers[i].working == false) {
284 group->workers[i].working = true;
285 queue_work_on(sh->cpu, raid5_wq,
286 &group->workers[i].work);
287 thread_cnt--;
288 }
289 }
290 }
291
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 struct list_head *temp_inactive_list)
294 {
295 BUG_ON(!list_empty(&sh->lru));
296 BUG_ON(atomic_read(&conf->active_stripes)==0);
297 if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300 list_add_tail(&sh->lru, &conf->delayed_list);
301 if (atomic_read(&conf->preread_active_stripes)
302 < IO_THRESHOLD)
303 md_wakeup_thread(conf->mddev->thread);
304 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305 sh->bm_seq - conf->seq_write > 0)
306 list_add_tail(&sh->lru, &conf->bitmap_list);
307 else {
308 clear_bit(STRIPE_DELAYED, &sh->state);
309 clear_bit(STRIPE_BIT_DELAY, &sh->state);
310 if (conf->worker_cnt_per_group == 0) {
311 list_add_tail(&sh->lru, &conf->handle_list);
312 } else {
313 raid5_wakeup_stripe_thread(sh);
314 return;
315 }
316 }
317 md_wakeup_thread(conf->mddev->thread);
318 } else {
319 BUG_ON(stripe_operations_active(sh));
320 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321 if (atomic_dec_return(&conf->preread_active_stripes)
322 < IO_THRESHOLD)
323 md_wakeup_thread(conf->mddev->thread);
324 atomic_dec(&conf->active_stripes);
325 if (!test_bit(STRIPE_EXPANDING, &sh->state))
326 list_add_tail(&sh->lru, temp_inactive_list);
327 }
328 }
329
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331 struct list_head *temp_inactive_list)
332 {
333 if (atomic_dec_and_test(&sh->count))
334 do_release_stripe(conf, sh, temp_inactive_list);
335 }
336
337 /*
338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
339 *
340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341 * given time. Adding stripes only takes device lock, while deleting stripes
342 * only takes hash lock.
343 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)344 static void release_inactive_stripe_list(struct r5conf *conf,
345 struct list_head *temp_inactive_list,
346 int hash)
347 {
348 int size;
349 bool do_wakeup = false;
350 unsigned long flags;
351
352 if (hash == NR_STRIPE_HASH_LOCKS) {
353 size = NR_STRIPE_HASH_LOCKS;
354 hash = NR_STRIPE_HASH_LOCKS - 1;
355 } else
356 size = 1;
357 while (size) {
358 struct list_head *list = &temp_inactive_list[size - 1];
359
360 /*
361 * We don't hold any lock here yet, get_active_stripe() might
362 * remove stripes from the list
363 */
364 if (!list_empty_careful(list)) {
365 spin_lock_irqsave(conf->hash_locks + hash, flags);
366 if (list_empty(conf->inactive_list + hash) &&
367 !list_empty(list))
368 atomic_dec(&conf->empty_inactive_list_nr);
369 list_splice_tail_init(list, conf->inactive_list + hash);
370 do_wakeup = true;
371 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
372 }
373 size--;
374 hash--;
375 }
376
377 if (do_wakeup) {
378 wake_up(&conf->wait_for_stripe);
379 if (conf->retry_read_aligned)
380 md_wakeup_thread(conf->mddev->thread);
381 }
382 }
383
384 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)385 static int release_stripe_list(struct r5conf *conf,
386 struct list_head *temp_inactive_list)
387 {
388 struct stripe_head *sh;
389 int count = 0;
390 struct llist_node *head;
391
392 head = llist_del_all(&conf->released_stripes);
393 head = llist_reverse_order(head);
394 while (head) {
395 int hash;
396
397 sh = llist_entry(head, struct stripe_head, release_list);
398 head = llist_next(head);
399 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400 smp_mb();
401 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402 /*
403 * Don't worry the bit is set here, because if the bit is set
404 * again, the count is always > 1. This is true for
405 * STRIPE_ON_UNPLUG_LIST bit too.
406 */
407 hash = sh->hash_lock_index;
408 __release_stripe(conf, sh, &temp_inactive_list[hash]);
409 count++;
410 }
411
412 return count;
413 }
414
release_stripe(struct stripe_head * sh)415 static void release_stripe(struct stripe_head *sh)
416 {
417 struct r5conf *conf = sh->raid_conf;
418 unsigned long flags;
419 struct list_head list;
420 int hash;
421 bool wakeup;
422
423 /* Avoid release_list until the last reference.
424 */
425 if (atomic_add_unless(&sh->count, -1, 1))
426 return;
427
428 if (unlikely(!conf->mddev->thread) ||
429 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
430 goto slow_path;
431 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432 if (wakeup)
433 md_wakeup_thread(conf->mddev->thread);
434 return;
435 slow_path:
436 local_irq_save(flags);
437 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439 INIT_LIST_HEAD(&list);
440 hash = sh->hash_lock_index;
441 do_release_stripe(conf, sh, &list);
442 spin_unlock(&conf->device_lock);
443 release_inactive_stripe_list(conf, &list, hash);
444 }
445 local_irq_restore(flags);
446 }
447
remove_hash(struct stripe_head * sh)448 static inline void remove_hash(struct stripe_head *sh)
449 {
450 pr_debug("remove_hash(), stripe %llu\n",
451 (unsigned long long)sh->sector);
452
453 hlist_del_init(&sh->hash);
454 }
455
insert_hash(struct r5conf * conf,struct stripe_head * sh)456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
457 {
458 struct hlist_head *hp = stripe_hash(conf, sh->sector);
459
460 pr_debug("insert_hash(), stripe %llu\n",
461 (unsigned long long)sh->sector);
462
463 hlist_add_head(&sh->hash, hp);
464 }
465
466 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
468 {
469 struct stripe_head *sh = NULL;
470 struct list_head *first;
471
472 if (list_empty(conf->inactive_list + hash))
473 goto out;
474 first = (conf->inactive_list + hash)->next;
475 sh = list_entry(first, struct stripe_head, lru);
476 list_del_init(first);
477 remove_hash(sh);
478 atomic_inc(&conf->active_stripes);
479 BUG_ON(hash != sh->hash_lock_index);
480 if (list_empty(conf->inactive_list + hash))
481 atomic_inc(&conf->empty_inactive_list_nr);
482 out:
483 return sh;
484 }
485
shrink_buffers(struct stripe_head * sh)486 static void shrink_buffers(struct stripe_head *sh)
487 {
488 struct page *p;
489 int i;
490 int num = sh->raid_conf->pool_size;
491
492 for (i = 0; i < num ; i++) {
493 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
494 p = sh->dev[i].page;
495 if (!p)
496 continue;
497 sh->dev[i].page = NULL;
498 put_page(p);
499 }
500 }
501
grow_buffers(struct stripe_head * sh)502 static int grow_buffers(struct stripe_head *sh)
503 {
504 int i;
505 int num = sh->raid_conf->pool_size;
506
507 for (i = 0; i < num; i++) {
508 struct page *page;
509
510 if (!(page = alloc_page(GFP_KERNEL))) {
511 return 1;
512 }
513 sh->dev[i].page = page;
514 sh->dev[i].orig_page = page;
515 }
516 return 0;
517 }
518
519 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
521 struct stripe_head *sh);
522
init_stripe(struct stripe_head * sh,sector_t sector,int previous)523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
524 {
525 struct r5conf *conf = sh->raid_conf;
526 int i, seq;
527
528 BUG_ON(atomic_read(&sh->count) != 0);
529 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
530 BUG_ON(stripe_operations_active(sh));
531
532 pr_debug("init_stripe called, stripe %llu\n",
533 (unsigned long long)sector);
534 retry:
535 seq = read_seqcount_begin(&conf->gen_lock);
536 sh->generation = conf->generation - previous;
537 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
538 sh->sector = sector;
539 stripe_set_idx(sector, conf, previous, sh);
540 sh->state = 0;
541
542 for (i = sh->disks; i--; ) {
543 struct r5dev *dev = &sh->dev[i];
544
545 if (dev->toread || dev->read || dev->towrite || dev->written ||
546 test_bit(R5_LOCKED, &dev->flags)) {
547 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 (unsigned long long)sh->sector, i, dev->toread,
549 dev->read, dev->towrite, dev->written,
550 test_bit(R5_LOCKED, &dev->flags));
551 WARN_ON(1);
552 }
553 dev->flags = 0;
554 raid5_build_block(sh, i, previous);
555 }
556 if (read_seqcount_retry(&conf->gen_lock, seq))
557 goto retry;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 }
561
__find_stripe(struct r5conf * conf,sector_t sector,short generation)562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563 short generation)
564 {
565 struct stripe_head *sh;
566
567 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 if (sh->sector == sector && sh->generation == generation)
570 return sh;
571 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572 return NULL;
573 }
574
575 /*
576 * Need to check if array has failed when deciding whether to:
577 * - start an array
578 * - remove non-faulty devices
579 * - add a spare
580 * - allow a reshape
581 * This determination is simple when no reshape is happening.
582 * However if there is a reshape, we need to carefully check
583 * both the before and after sections.
584 * This is because some failed devices may only affect one
585 * of the two sections, and some non-in_sync devices may
586 * be insync in the section most affected by failed devices.
587 */
calc_degraded(struct r5conf * conf)588 static int calc_degraded(struct r5conf *conf)
589 {
590 int degraded, degraded2;
591 int i;
592
593 rcu_read_lock();
594 degraded = 0;
595 for (i = 0; i < conf->previous_raid_disks; i++) {
596 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 if (rdev && test_bit(Faulty, &rdev->flags))
598 rdev = rcu_dereference(conf->disks[i].replacement);
599 if (!rdev || test_bit(Faulty, &rdev->flags))
600 degraded++;
601 else if (test_bit(In_sync, &rdev->flags))
602 ;
603 else
604 /* not in-sync or faulty.
605 * If the reshape increases the number of devices,
606 * this is being recovered by the reshape, so
607 * this 'previous' section is not in_sync.
608 * If the number of devices is being reduced however,
609 * the device can only be part of the array if
610 * we are reverting a reshape, so this section will
611 * be in-sync.
612 */
613 if (conf->raid_disks >= conf->previous_raid_disks)
614 degraded++;
615 }
616 rcu_read_unlock();
617 if (conf->raid_disks == conf->previous_raid_disks)
618 return degraded;
619 rcu_read_lock();
620 degraded2 = 0;
621 for (i = 0; i < conf->raid_disks; i++) {
622 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 if (rdev && test_bit(Faulty, &rdev->flags))
624 rdev = rcu_dereference(conf->disks[i].replacement);
625 if (!rdev || test_bit(Faulty, &rdev->flags))
626 degraded2++;
627 else if (test_bit(In_sync, &rdev->flags))
628 ;
629 else
630 /* not in-sync or faulty.
631 * If reshape increases the number of devices, this
632 * section has already been recovered, else it
633 * almost certainly hasn't.
634 */
635 if (conf->raid_disks <= conf->previous_raid_disks)
636 degraded2++;
637 }
638 rcu_read_unlock();
639 if (degraded2 > degraded)
640 return degraded2;
641 return degraded;
642 }
643
has_failed(struct r5conf * conf)644 static int has_failed(struct r5conf *conf)
645 {
646 int degraded;
647
648 if (conf->mddev->reshape_position == MaxSector)
649 return conf->mddev->degraded > conf->max_degraded;
650
651 degraded = calc_degraded(conf);
652 if (degraded > conf->max_degraded)
653 return 1;
654 return 0;
655 }
656
657 static struct stripe_head *
get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 int previous, int noblock, int noquiesce)
660 {
661 struct stripe_head *sh;
662 int hash = stripe_hash_locks_hash(sector);
663
664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666 spin_lock_irq(conf->hash_locks + hash);
667
668 do {
669 wait_event_lock_irq(conf->wait_for_stripe,
670 conf->quiesce == 0 || noquiesce,
671 *(conf->hash_locks + hash));
672 sh = __find_stripe(conf, sector, conf->generation - previous);
673 if (!sh) {
674 if (!conf->inactive_blocked)
675 sh = get_free_stripe(conf, hash);
676 if (noblock && sh == NULL)
677 break;
678 if (!sh) {
679 conf->inactive_blocked = 1;
680 wait_event_lock_irq(
681 conf->wait_for_stripe,
682 !list_empty(conf->inactive_list + hash) &&
683 (atomic_read(&conf->active_stripes)
684 < (conf->max_nr_stripes * 3 / 4)
685 || !conf->inactive_blocked),
686 *(conf->hash_locks + hash));
687 conf->inactive_blocked = 0;
688 } else {
689 init_stripe(sh, sector, previous);
690 atomic_inc(&sh->count);
691 }
692 } else if (!atomic_inc_not_zero(&sh->count)) {
693 spin_lock(&conf->device_lock);
694 if (!atomic_read(&sh->count)) {
695 if (!test_bit(STRIPE_HANDLE, &sh->state))
696 atomic_inc(&conf->active_stripes);
697 BUG_ON(list_empty(&sh->lru) &&
698 !test_bit(STRIPE_EXPANDING, &sh->state));
699 list_del_init(&sh->lru);
700 if (sh->group) {
701 sh->group->stripes_cnt--;
702 sh->group = NULL;
703 }
704 }
705 atomic_inc(&sh->count);
706 spin_unlock(&conf->device_lock);
707 }
708 } while (sh == NULL);
709
710 spin_unlock_irq(conf->hash_locks + hash);
711 return sh;
712 }
713
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715 * in this stripe_head.
716 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719 sector_t progress = conf->reshape_progress;
720 /* Need a memory barrier to make sure we see the value
721 * of conf->generation, or ->data_offset that was set before
722 * reshape_progress was updated.
723 */
724 smp_rmb();
725 if (progress == MaxSector)
726 return 0;
727 if (sh->generation == conf->generation - 1)
728 return 0;
729 /* We are in a reshape, and this is a new-generation stripe,
730 * so use new_data_offset.
731 */
732 return 1;
733 }
734
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742 struct r5conf *conf = sh->raid_conf;
743 int i, disks = sh->disks;
744
745 might_sleep();
746
747 for (i = disks; i--; ) {
748 int rw;
749 int replace_only = 0;
750 struct bio *bi, *rbi;
751 struct md_rdev *rdev, *rrdev = NULL;
752 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754 rw = WRITE_FUA;
755 else
756 rw = WRITE;
757 if (test_bit(R5_Discard, &sh->dev[i].flags))
758 rw |= REQ_DISCARD;
759 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760 rw = READ;
761 else if (test_and_clear_bit(R5_WantReplace,
762 &sh->dev[i].flags)) {
763 rw = WRITE;
764 replace_only = 1;
765 } else
766 continue;
767 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768 rw |= REQ_SYNC;
769
770 bi = &sh->dev[i].req;
771 rbi = &sh->dev[i].rreq; /* For writing to replacement */
772
773 rcu_read_lock();
774 rrdev = rcu_dereference(conf->disks[i].replacement);
775 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 rdev = rcu_dereference(conf->disks[i].rdev);
777 if (!rdev) {
778 rdev = rrdev;
779 rrdev = NULL;
780 }
781 if (rw & WRITE) {
782 if (replace_only)
783 rdev = NULL;
784 if (rdev == rrdev)
785 /* We raced and saw duplicates */
786 rrdev = NULL;
787 } else {
788 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789 rdev = rrdev;
790 rrdev = NULL;
791 }
792
793 if (rdev && test_bit(Faulty, &rdev->flags))
794 rdev = NULL;
795 if (rdev)
796 atomic_inc(&rdev->nr_pending);
797 if (rrdev && test_bit(Faulty, &rrdev->flags))
798 rrdev = NULL;
799 if (rrdev)
800 atomic_inc(&rrdev->nr_pending);
801 rcu_read_unlock();
802
803 /* We have already checked bad blocks for reads. Now
804 * need to check for writes. We never accept write errors
805 * on the replacement, so we don't to check rrdev.
806 */
807 while ((rw & WRITE) && rdev &&
808 test_bit(WriteErrorSeen, &rdev->flags)) {
809 sector_t first_bad;
810 int bad_sectors;
811 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 &first_bad, &bad_sectors);
813 if (!bad)
814 break;
815
816 if (bad < 0) {
817 set_bit(BlockedBadBlocks, &rdev->flags);
818 if (!conf->mddev->external &&
819 conf->mddev->flags) {
820 /* It is very unlikely, but we might
821 * still need to write out the
822 * bad block log - better give it
823 * a chance*/
824 md_check_recovery(conf->mddev);
825 }
826 /*
827 * Because md_wait_for_blocked_rdev
828 * will dec nr_pending, we must
829 * increment it first.
830 */
831 atomic_inc(&rdev->nr_pending);
832 md_wait_for_blocked_rdev(rdev, conf->mddev);
833 } else {
834 /* Acknowledged bad block - skip the write */
835 rdev_dec_pending(rdev, conf->mddev);
836 rdev = NULL;
837 }
838 }
839
840 if (rdev) {
841 if (s->syncing || s->expanding || s->expanded
842 || s->replacing)
843 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844
845 set_bit(STRIPE_IO_STARTED, &sh->state);
846
847 bio_reset(bi);
848 bi->bi_bdev = rdev->bdev;
849 bi->bi_rw = rw;
850 bi->bi_end_io = (rw & WRITE)
851 ? raid5_end_write_request
852 : raid5_end_read_request;
853 bi->bi_private = sh;
854
855 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 __func__, (unsigned long long)sh->sector,
857 bi->bi_rw, i);
858 atomic_inc(&sh->count);
859 if (use_new_offset(conf, sh))
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->new_data_offset);
862 else
863 bi->bi_iter.bi_sector = (sh->sector
864 + rdev->data_offset);
865 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 bi->bi_rw |= REQ_NOMERGE;
867
868 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 sh->dev[i].vec.bv_page = sh->dev[i].page;
871 bi->bi_vcnt = 1;
872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 bi->bi_io_vec[0].bv_offset = 0;
874 bi->bi_iter.bi_size = STRIPE_SIZE;
875 /*
876 * If this is discard request, set bi_vcnt 0. We don't
877 * want to confuse SCSI because SCSI will replace payload
878 */
879 if (rw & REQ_DISCARD)
880 bi->bi_vcnt = 0;
881 if (rrdev)
882 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883
884 if (conf->mddev->gendisk)
885 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 bi, disk_devt(conf->mddev->gendisk),
887 sh->dev[i].sector);
888 generic_make_request(bi);
889 }
890 if (rrdev) {
891 if (s->syncing || s->expanding || s->expanded
892 || s->replacing)
893 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894
895 set_bit(STRIPE_IO_STARTED, &sh->state);
896
897 bio_reset(rbi);
898 rbi->bi_bdev = rrdev->bdev;
899 rbi->bi_rw = rw;
900 BUG_ON(!(rw & WRITE));
901 rbi->bi_end_io = raid5_end_write_request;
902 rbi->bi_private = sh;
903
904 pr_debug("%s: for %llu schedule op %ld on "
905 "replacement disc %d\n",
906 __func__, (unsigned long long)sh->sector,
907 rbi->bi_rw, i);
908 atomic_inc(&sh->count);
909 if (use_new_offset(conf, sh))
910 rbi->bi_iter.bi_sector = (sh->sector
911 + rrdev->new_data_offset);
912 else
913 rbi->bi_iter.bi_sector = (sh->sector
914 + rrdev->data_offset);
915 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 sh->dev[i].rvec.bv_page = sh->dev[i].page;
918 rbi->bi_vcnt = 1;
919 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 rbi->bi_io_vec[0].bv_offset = 0;
921 rbi->bi_iter.bi_size = STRIPE_SIZE;
922 /*
923 * If this is discard request, set bi_vcnt 0. We don't
924 * want to confuse SCSI because SCSI will replace payload
925 */
926 if (rw & REQ_DISCARD)
927 rbi->bi_vcnt = 0;
928 if (conf->mddev->gendisk)
929 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 rbi, disk_devt(conf->mddev->gendisk),
931 sh->dev[i].sector);
932 generic_make_request(rbi);
933 }
934 if (!rdev && !rrdev) {
935 if (rw & WRITE)
936 set_bit(STRIPE_DEGRADED, &sh->state);
937 pr_debug("skip op %ld on disc %d for sector %llu\n",
938 bi->bi_rw, i, (unsigned long long)sh->sector);
939 clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 set_bit(STRIPE_HANDLE, &sh->state);
941 }
942 }
943 }
944
945 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh)946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 sector_t sector, struct dma_async_tx_descriptor *tx,
948 struct stripe_head *sh)
949 {
950 struct bio_vec bvl;
951 struct bvec_iter iter;
952 struct page *bio_page;
953 int page_offset;
954 struct async_submit_ctl submit;
955 enum async_tx_flags flags = 0;
956
957 if (bio->bi_iter.bi_sector >= sector)
958 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959 else
960 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961
962 if (frombio)
963 flags |= ASYNC_TX_FENCE;
964 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965
966 bio_for_each_segment(bvl, bio, iter) {
967 int len = bvl.bv_len;
968 int clen;
969 int b_offset = 0;
970
971 if (page_offset < 0) {
972 b_offset = -page_offset;
973 page_offset += b_offset;
974 len -= b_offset;
975 }
976
977 if (len > 0 && page_offset + len > STRIPE_SIZE)
978 clen = STRIPE_SIZE - page_offset;
979 else
980 clen = len;
981
982 if (clen > 0) {
983 b_offset += bvl.bv_offset;
984 bio_page = bvl.bv_page;
985 if (frombio) {
986 if (sh->raid_conf->skip_copy &&
987 b_offset == 0 && page_offset == 0 &&
988 clen == STRIPE_SIZE)
989 *page = bio_page;
990 else
991 tx = async_memcpy(*page, bio_page, page_offset,
992 b_offset, clen, &submit);
993 } else
994 tx = async_memcpy(bio_page, *page, b_offset,
995 page_offset, clen, &submit);
996 }
997 /* chain the operations */
998 submit.depend_tx = tx;
999
1000 if (clen < len) /* hit end of page */
1001 break;
1002 page_offset += len;
1003 }
1004
1005 return tx;
1006 }
1007
ops_complete_biofill(void * stripe_head_ref)1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010 struct stripe_head *sh = stripe_head_ref;
1011 struct bio *return_bi = NULL;
1012 int i;
1013
1014 pr_debug("%s: stripe %llu\n", __func__,
1015 (unsigned long long)sh->sector);
1016
1017 /* clear completed biofills */
1018 for (i = sh->disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020
1021 /* acknowledge completion of a biofill operation */
1022 /* and check if we need to reply to a read request,
1023 * new R5_Wantfill requests are held off until
1024 * !STRIPE_BIOFILL_RUN
1025 */
1026 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 struct bio *rbi, *rbi2;
1028
1029 BUG_ON(!dev->read);
1030 rbi = dev->read;
1031 dev->read = NULL;
1032 while (rbi && rbi->bi_iter.bi_sector <
1033 dev->sector + STRIPE_SECTORS) {
1034 rbi2 = r5_next_bio(rbi, dev->sector);
1035 if (!raid5_dec_bi_active_stripes(rbi)) {
1036 rbi->bi_next = return_bi;
1037 return_bi = rbi;
1038 }
1039 rbi = rbi2;
1040 }
1041 }
1042 }
1043 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044
1045 return_io(return_bi);
1046
1047 set_bit(STRIPE_HANDLE, &sh->state);
1048 release_stripe(sh);
1049 }
1050
ops_run_biofill(struct stripe_head * sh)1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053 struct dma_async_tx_descriptor *tx = NULL;
1054 struct async_submit_ctl submit;
1055 int i;
1056
1057 pr_debug("%s: stripe %llu\n", __func__,
1058 (unsigned long long)sh->sector);
1059
1060 for (i = sh->disks; i--; ) {
1061 struct r5dev *dev = &sh->dev[i];
1062 if (test_bit(R5_Wantfill, &dev->flags)) {
1063 struct bio *rbi;
1064 spin_lock_irq(&sh->stripe_lock);
1065 dev->read = rbi = dev->toread;
1066 dev->toread = NULL;
1067 spin_unlock_irq(&sh->stripe_lock);
1068 while (rbi && rbi->bi_iter.bi_sector <
1069 dev->sector + STRIPE_SECTORS) {
1070 tx = async_copy_data(0, rbi, &dev->page,
1071 dev->sector, tx, sh);
1072 rbi = r5_next_bio(rbi, dev->sector);
1073 }
1074 }
1075 }
1076
1077 atomic_inc(&sh->count);
1078 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 async_trigger_callback(&submit);
1080 }
1081
mark_target_uptodate(struct stripe_head * sh,int target)1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084 struct r5dev *tgt;
1085
1086 if (target < 0)
1087 return;
1088
1089 tgt = &sh->dev[target];
1090 set_bit(R5_UPTODATE, &tgt->flags);
1091 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094
ops_complete_compute(void * stripe_head_ref)1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097 struct stripe_head *sh = stripe_head_ref;
1098
1099 pr_debug("%s: stripe %llu\n", __func__,
1100 (unsigned long long)sh->sector);
1101
1102 /* mark the computed target(s) as uptodate */
1103 mark_target_uptodate(sh, sh->ops.target);
1104 mark_target_uptodate(sh, sh->ops.target2);
1105
1106 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 if (sh->check_state == check_state_compute_run)
1108 sh->check_state = check_state_compute_result;
1109 set_bit(STRIPE_HANDLE, &sh->state);
1110 release_stripe(sh);
1111 }
1112
1113 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu)1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 struct raid5_percpu *percpu)
1116 {
1117 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119
1120 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123 int disks = sh->disks;
1124 struct page **xor_srcs = percpu->scribble;
1125 int target = sh->ops.target;
1126 struct r5dev *tgt = &sh->dev[target];
1127 struct page *xor_dest = tgt->page;
1128 int count = 0;
1129 struct dma_async_tx_descriptor *tx;
1130 struct async_submit_ctl submit;
1131 int i;
1132
1133 pr_debug("%s: stripe %llu block: %d\n",
1134 __func__, (unsigned long long)sh->sector, target);
1135 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136
1137 for (i = disks; i--; )
1138 if (i != target)
1139 xor_srcs[count++] = sh->dev[i].page;
1140
1141 atomic_inc(&sh->count);
1142
1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 if (unlikely(count == 1))
1146 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147 else
1148 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149
1150 return tx;
1151 }
1152
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154 * @srcs - (struct page *) array of size sh->disks
1155 * @sh - stripe_head to parse
1156 *
1157 * Populates srcs in proper layout order for the stripe and returns the
1158 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1159 * destination buffer is recorded in srcs[count] and the Q destination
1160 * is recorded in srcs[count+1]].
1161 */
set_syndrome_sources(struct page ** srcs,struct stripe_head * sh)1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164 int disks = sh->disks;
1165 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 int d0_idx = raid6_d0(sh);
1167 int count;
1168 int i;
1169
1170 for (i = 0; i < disks; i++)
1171 srcs[i] = NULL;
1172
1173 count = 0;
1174 i = d0_idx;
1175 do {
1176 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177
1178 srcs[slot] = sh->dev[i].page;
1179 i = raid6_next_disk(i, disks);
1180 } while (i != d0_idx);
1181
1182 return syndrome_disks;
1183 }
1184
1185 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188 int disks = sh->disks;
1189 struct page **blocks = percpu->scribble;
1190 int target;
1191 int qd_idx = sh->qd_idx;
1192 struct dma_async_tx_descriptor *tx;
1193 struct async_submit_ctl submit;
1194 struct r5dev *tgt;
1195 struct page *dest;
1196 int i;
1197 int count;
1198
1199 if (sh->ops.target < 0)
1200 target = sh->ops.target2;
1201 else if (sh->ops.target2 < 0)
1202 target = sh->ops.target;
1203 else
1204 /* we should only have one valid target */
1205 BUG();
1206 BUG_ON(target < 0);
1207 pr_debug("%s: stripe %llu block: %d\n",
1208 __func__, (unsigned long long)sh->sector, target);
1209
1210 tgt = &sh->dev[target];
1211 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212 dest = tgt->page;
1213
1214 atomic_inc(&sh->count);
1215
1216 if (target == qd_idx) {
1217 count = set_syndrome_sources(blocks, sh);
1218 blocks[count] = NULL; /* regenerating p is not necessary */
1219 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 ops_complete_compute, sh,
1222 to_addr_conv(sh, percpu));
1223 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224 } else {
1225 /* Compute any data- or p-drive using XOR */
1226 count = 0;
1227 for (i = disks; i-- ; ) {
1228 if (i == target || i == qd_idx)
1229 continue;
1230 blocks[count++] = sh->dev[i].page;
1231 }
1232
1233 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 NULL, ops_complete_compute, sh,
1235 to_addr_conv(sh, percpu));
1236 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237 }
1238
1239 return tx;
1240 }
1241
1242 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245 int i, count, disks = sh->disks;
1246 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 int d0_idx = raid6_d0(sh);
1248 int faila = -1, failb = -1;
1249 int target = sh->ops.target;
1250 int target2 = sh->ops.target2;
1251 struct r5dev *tgt = &sh->dev[target];
1252 struct r5dev *tgt2 = &sh->dev[target2];
1253 struct dma_async_tx_descriptor *tx;
1254 struct page **blocks = percpu->scribble;
1255 struct async_submit_ctl submit;
1256
1257 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 __func__, (unsigned long long)sh->sector, target, target2);
1259 BUG_ON(target < 0 || target2 < 0);
1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262
1263 /* we need to open-code set_syndrome_sources to handle the
1264 * slot number conversion for 'faila' and 'failb'
1265 */
1266 for (i = 0; i < disks ; i++)
1267 blocks[i] = NULL;
1268 count = 0;
1269 i = d0_idx;
1270 do {
1271 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272
1273 blocks[slot] = sh->dev[i].page;
1274
1275 if (i == target)
1276 faila = slot;
1277 if (i == target2)
1278 failb = slot;
1279 i = raid6_next_disk(i, disks);
1280 } while (i != d0_idx);
1281
1282 BUG_ON(faila == failb);
1283 if (failb < faila)
1284 swap(faila, failb);
1285 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 __func__, (unsigned long long)sh->sector, faila, failb);
1287
1288 atomic_inc(&sh->count);
1289
1290 if (failb == syndrome_disks+1) {
1291 /* Q disk is one of the missing disks */
1292 if (faila == syndrome_disks) {
1293 /* Missing P+Q, just recompute */
1294 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 ops_complete_compute, sh,
1296 to_addr_conv(sh, percpu));
1297 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 STRIPE_SIZE, &submit);
1299 } else {
1300 struct page *dest;
1301 int data_target;
1302 int qd_idx = sh->qd_idx;
1303
1304 /* Missing D+Q: recompute D from P, then recompute Q */
1305 if (target == qd_idx)
1306 data_target = target2;
1307 else
1308 data_target = target;
1309
1310 count = 0;
1311 for (i = disks; i-- ; ) {
1312 if (i == data_target || i == qd_idx)
1313 continue;
1314 blocks[count++] = sh->dev[i].page;
1315 }
1316 dest = sh->dev[data_target].page;
1317 init_async_submit(&submit,
1318 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319 NULL, NULL, NULL,
1320 to_addr_conv(sh, percpu));
1321 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322 &submit);
1323
1324 count = set_syndrome_sources(blocks, sh);
1325 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 ops_complete_compute, sh,
1327 to_addr_conv(sh, percpu));
1328 return async_gen_syndrome(blocks, 0, count+2,
1329 STRIPE_SIZE, &submit);
1330 }
1331 } else {
1332 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 ops_complete_compute, sh,
1334 to_addr_conv(sh, percpu));
1335 if (failb == syndrome_disks) {
1336 /* We're missing D+P. */
1337 return async_raid6_datap_recov(syndrome_disks+2,
1338 STRIPE_SIZE, faila,
1339 blocks, &submit);
1340 } else {
1341 /* We're missing D+D. */
1342 return async_raid6_2data_recov(syndrome_disks+2,
1343 STRIPE_SIZE, faila, failb,
1344 blocks, &submit);
1345 }
1346 }
1347 }
1348
ops_complete_prexor(void * stripe_head_ref)1349 static void ops_complete_prexor(void *stripe_head_ref)
1350 {
1351 struct stripe_head *sh = stripe_head_ref;
1352
1353 pr_debug("%s: stripe %llu\n", __func__,
1354 (unsigned long long)sh->sector);
1355 }
1356
1357 static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359 struct dma_async_tx_descriptor *tx)
1360 {
1361 int disks = sh->disks;
1362 struct page **xor_srcs = percpu->scribble;
1363 int count = 0, pd_idx = sh->pd_idx, i;
1364 struct async_submit_ctl submit;
1365
1366 /* existing parity data subtracted */
1367 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368
1369 pr_debug("%s: stripe %llu\n", __func__,
1370 (unsigned long long)sh->sector);
1371
1372 for (i = disks; i--; ) {
1373 struct r5dev *dev = &sh->dev[i];
1374 /* Only process blocks that are known to be uptodate */
1375 if (test_bit(R5_Wantdrain, &dev->flags))
1376 xor_srcs[count++] = dev->page;
1377 }
1378
1379 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382
1383 return tx;
1384 }
1385
1386 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388 {
1389 int disks = sh->disks;
1390 int i;
1391
1392 pr_debug("%s: stripe %llu\n", __func__,
1393 (unsigned long long)sh->sector);
1394
1395 for (i = disks; i--; ) {
1396 struct r5dev *dev = &sh->dev[i];
1397 struct bio *chosen;
1398
1399 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400 struct bio *wbi;
1401
1402 spin_lock_irq(&sh->stripe_lock);
1403 chosen = dev->towrite;
1404 dev->towrite = NULL;
1405 BUG_ON(dev->written);
1406 wbi = dev->written = chosen;
1407 spin_unlock_irq(&sh->stripe_lock);
1408 WARN_ON(dev->page != dev->orig_page);
1409
1410 while (wbi && wbi->bi_iter.bi_sector <
1411 dev->sector + STRIPE_SECTORS) {
1412 if (wbi->bi_rw & REQ_FUA)
1413 set_bit(R5_WantFUA, &dev->flags);
1414 if (wbi->bi_rw & REQ_SYNC)
1415 set_bit(R5_SyncIO, &dev->flags);
1416 if (wbi->bi_rw & REQ_DISCARD)
1417 set_bit(R5_Discard, &dev->flags);
1418 else {
1419 tx = async_copy_data(1, wbi, &dev->page,
1420 dev->sector, tx, sh);
1421 if (dev->page != dev->orig_page) {
1422 set_bit(R5_SkipCopy, &dev->flags);
1423 clear_bit(R5_UPTODATE, &dev->flags);
1424 clear_bit(R5_OVERWRITE, &dev->flags);
1425 }
1426 }
1427 wbi = r5_next_bio(wbi, dev->sector);
1428 }
1429 }
1430 }
1431
1432 return tx;
1433 }
1434
ops_complete_reconstruct(void * stripe_head_ref)1435 static void ops_complete_reconstruct(void *stripe_head_ref)
1436 {
1437 struct stripe_head *sh = stripe_head_ref;
1438 int disks = sh->disks;
1439 int pd_idx = sh->pd_idx;
1440 int qd_idx = sh->qd_idx;
1441 int i;
1442 bool fua = false, sync = false, discard = false;
1443
1444 pr_debug("%s: stripe %llu\n", __func__,
1445 (unsigned long long)sh->sector);
1446
1447 for (i = disks; i--; ) {
1448 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1451 }
1452
1453 for (i = disks; i--; ) {
1454 struct r5dev *dev = &sh->dev[i];
1455
1456 if (dev->written || i == pd_idx || i == qd_idx) {
1457 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1458 set_bit(R5_UPTODATE, &dev->flags);
1459 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1460 set_bit(R5_Expanded, &dev->flags);
1461 }
1462 if (fua)
1463 set_bit(R5_WantFUA, &dev->flags);
1464 if (sync)
1465 set_bit(R5_SyncIO, &dev->flags);
1466 }
1467 }
1468
1469 if (sh->reconstruct_state == reconstruct_state_drain_run)
1470 sh->reconstruct_state = reconstruct_state_drain_result;
1471 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1472 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1473 else {
1474 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1475 sh->reconstruct_state = reconstruct_state_result;
1476 }
1477
1478 set_bit(STRIPE_HANDLE, &sh->state);
1479 release_stripe(sh);
1480 }
1481
1482 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1483 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1484 struct dma_async_tx_descriptor *tx)
1485 {
1486 int disks = sh->disks;
1487 struct page **xor_srcs = percpu->scribble;
1488 struct async_submit_ctl submit;
1489 int count = 0, pd_idx = sh->pd_idx, i;
1490 struct page *xor_dest;
1491 int prexor = 0;
1492 unsigned long flags;
1493
1494 pr_debug("%s: stripe %llu\n", __func__,
1495 (unsigned long long)sh->sector);
1496
1497 for (i = 0; i < sh->disks; i++) {
1498 if (pd_idx == i)
1499 continue;
1500 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1501 break;
1502 }
1503 if (i >= sh->disks) {
1504 atomic_inc(&sh->count);
1505 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1506 ops_complete_reconstruct(sh);
1507 return;
1508 }
1509 /* check if prexor is active which means only process blocks
1510 * that are part of a read-modify-write (written)
1511 */
1512 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1513 prexor = 1;
1514 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1515 for (i = disks; i--; ) {
1516 struct r5dev *dev = &sh->dev[i];
1517 if (dev->written)
1518 xor_srcs[count++] = dev->page;
1519 }
1520 } else {
1521 xor_dest = sh->dev[pd_idx].page;
1522 for (i = disks; i--; ) {
1523 struct r5dev *dev = &sh->dev[i];
1524 if (i != pd_idx)
1525 xor_srcs[count++] = dev->page;
1526 }
1527 }
1528
1529 /* 1/ if we prexor'd then the dest is reused as a source
1530 * 2/ if we did not prexor then we are redoing the parity
1531 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1532 * for the synchronous xor case
1533 */
1534 flags = ASYNC_TX_ACK |
1535 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1536
1537 atomic_inc(&sh->count);
1538
1539 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1540 to_addr_conv(sh, percpu));
1541 if (unlikely(count == 1))
1542 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1543 else
1544 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1545 }
1546
1547 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1548 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1549 struct dma_async_tx_descriptor *tx)
1550 {
1551 struct async_submit_ctl submit;
1552 struct page **blocks = percpu->scribble;
1553 int count, i;
1554
1555 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1556
1557 for (i = 0; i < sh->disks; i++) {
1558 if (sh->pd_idx == i || sh->qd_idx == i)
1559 continue;
1560 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1561 break;
1562 }
1563 if (i >= sh->disks) {
1564 atomic_inc(&sh->count);
1565 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1566 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1567 ops_complete_reconstruct(sh);
1568 return;
1569 }
1570
1571 count = set_syndrome_sources(blocks, sh);
1572
1573 atomic_inc(&sh->count);
1574
1575 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1576 sh, to_addr_conv(sh, percpu));
1577 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1578 }
1579
ops_complete_check(void * stripe_head_ref)1580 static void ops_complete_check(void *stripe_head_ref)
1581 {
1582 struct stripe_head *sh = stripe_head_ref;
1583
1584 pr_debug("%s: stripe %llu\n", __func__,
1585 (unsigned long long)sh->sector);
1586
1587 sh->check_state = check_state_check_result;
1588 set_bit(STRIPE_HANDLE, &sh->state);
1589 release_stripe(sh);
1590 }
1591
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)1592 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1593 {
1594 int disks = sh->disks;
1595 int pd_idx = sh->pd_idx;
1596 int qd_idx = sh->qd_idx;
1597 struct page *xor_dest;
1598 struct page **xor_srcs = percpu->scribble;
1599 struct dma_async_tx_descriptor *tx;
1600 struct async_submit_ctl submit;
1601 int count;
1602 int i;
1603
1604 pr_debug("%s: stripe %llu\n", __func__,
1605 (unsigned long long)sh->sector);
1606
1607 count = 0;
1608 xor_dest = sh->dev[pd_idx].page;
1609 xor_srcs[count++] = xor_dest;
1610 for (i = disks; i--; ) {
1611 if (i == pd_idx || i == qd_idx)
1612 continue;
1613 xor_srcs[count++] = sh->dev[i].page;
1614 }
1615
1616 init_async_submit(&submit, 0, NULL, NULL, NULL,
1617 to_addr_conv(sh, percpu));
1618 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1619 &sh->ops.zero_sum_result, &submit);
1620
1621 atomic_inc(&sh->count);
1622 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1623 tx = async_trigger_callback(&submit);
1624 }
1625
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)1626 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1627 {
1628 struct page **srcs = percpu->scribble;
1629 struct async_submit_ctl submit;
1630 int count;
1631
1632 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1633 (unsigned long long)sh->sector, checkp);
1634
1635 count = set_syndrome_sources(srcs, sh);
1636 if (!checkp)
1637 srcs[count] = NULL;
1638
1639 atomic_inc(&sh->count);
1640 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1641 sh, to_addr_conv(sh, percpu));
1642 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1643 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1644 }
1645
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)1646 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1647 {
1648 int overlap_clear = 0, i, disks = sh->disks;
1649 struct dma_async_tx_descriptor *tx = NULL;
1650 struct r5conf *conf = sh->raid_conf;
1651 int level = conf->level;
1652 struct raid5_percpu *percpu;
1653 unsigned long cpu;
1654
1655 cpu = get_cpu();
1656 percpu = per_cpu_ptr(conf->percpu, cpu);
1657 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1658 ops_run_biofill(sh);
1659 overlap_clear++;
1660 }
1661
1662 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1663 if (level < 6)
1664 tx = ops_run_compute5(sh, percpu);
1665 else {
1666 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1667 tx = ops_run_compute6_1(sh, percpu);
1668 else
1669 tx = ops_run_compute6_2(sh, percpu);
1670 }
1671 /* terminate the chain if reconstruct is not set to be run */
1672 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1673 async_tx_ack(tx);
1674 }
1675
1676 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1677 tx = ops_run_prexor(sh, percpu, tx);
1678
1679 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1680 tx = ops_run_biodrain(sh, tx);
1681 overlap_clear++;
1682 }
1683
1684 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1685 if (level < 6)
1686 ops_run_reconstruct5(sh, percpu, tx);
1687 else
1688 ops_run_reconstruct6(sh, percpu, tx);
1689 }
1690
1691 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1692 if (sh->check_state == check_state_run)
1693 ops_run_check_p(sh, percpu);
1694 else if (sh->check_state == check_state_run_q)
1695 ops_run_check_pq(sh, percpu, 0);
1696 else if (sh->check_state == check_state_run_pq)
1697 ops_run_check_pq(sh, percpu, 1);
1698 else
1699 BUG();
1700 }
1701
1702 if (overlap_clear)
1703 for (i = disks; i--; ) {
1704 struct r5dev *dev = &sh->dev[i];
1705 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1706 wake_up(&sh->raid_conf->wait_for_overlap);
1707 }
1708 put_cpu();
1709 }
1710
grow_one_stripe(struct r5conf * conf,int hash)1711 static int grow_one_stripe(struct r5conf *conf, int hash)
1712 {
1713 struct stripe_head *sh;
1714 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1715 if (!sh)
1716 return 0;
1717
1718 sh->raid_conf = conf;
1719
1720 spin_lock_init(&sh->stripe_lock);
1721
1722 if (grow_buffers(sh)) {
1723 shrink_buffers(sh);
1724 kmem_cache_free(conf->slab_cache, sh);
1725 return 0;
1726 }
1727 sh->hash_lock_index = hash;
1728 /* we just created an active stripe so... */
1729 atomic_set(&sh->count, 1);
1730 atomic_inc(&conf->active_stripes);
1731 INIT_LIST_HEAD(&sh->lru);
1732 release_stripe(sh);
1733 return 1;
1734 }
1735
grow_stripes(struct r5conf * conf,int num)1736 static int grow_stripes(struct r5conf *conf, int num)
1737 {
1738 struct kmem_cache *sc;
1739 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1740 int hash;
1741
1742 if (conf->mddev->gendisk)
1743 sprintf(conf->cache_name[0],
1744 "raid%d-%s", conf->level, mdname(conf->mddev));
1745 else
1746 sprintf(conf->cache_name[0],
1747 "raid%d-%p", conf->level, conf->mddev);
1748 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1749
1750 conf->active_name = 0;
1751 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1752 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1753 0, 0, NULL);
1754 if (!sc)
1755 return 1;
1756 conf->slab_cache = sc;
1757 conf->pool_size = devs;
1758 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1759 while (num--) {
1760 if (!grow_one_stripe(conf, hash))
1761 return 1;
1762 conf->max_nr_stripes++;
1763 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1764 }
1765 return 0;
1766 }
1767
1768 /**
1769 * scribble_len - return the required size of the scribble region
1770 * @num - total number of disks in the array
1771 *
1772 * The size must be enough to contain:
1773 * 1/ a struct page pointer for each device in the array +2
1774 * 2/ room to convert each entry in (1) to its corresponding dma
1775 * (dma_map_page()) or page (page_address()) address.
1776 *
1777 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1778 * calculate over all devices (not just the data blocks), using zeros in place
1779 * of the P and Q blocks.
1780 */
scribble_len(int num)1781 static size_t scribble_len(int num)
1782 {
1783 size_t len;
1784
1785 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1786
1787 return len;
1788 }
1789
resize_stripes(struct r5conf * conf,int newsize)1790 static int resize_stripes(struct r5conf *conf, int newsize)
1791 {
1792 /* Make all the stripes able to hold 'newsize' devices.
1793 * New slots in each stripe get 'page' set to a new page.
1794 *
1795 * This happens in stages:
1796 * 1/ create a new kmem_cache and allocate the required number of
1797 * stripe_heads.
1798 * 2/ gather all the old stripe_heads and transfer the pages across
1799 * to the new stripe_heads. This will have the side effect of
1800 * freezing the array as once all stripe_heads have been collected,
1801 * no IO will be possible. Old stripe heads are freed once their
1802 * pages have been transferred over, and the old kmem_cache is
1803 * freed when all stripes are done.
1804 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1805 * we simple return a failre status - no need to clean anything up.
1806 * 4/ allocate new pages for the new slots in the new stripe_heads.
1807 * If this fails, we don't bother trying the shrink the
1808 * stripe_heads down again, we just leave them as they are.
1809 * As each stripe_head is processed the new one is released into
1810 * active service.
1811 *
1812 * Once step2 is started, we cannot afford to wait for a write,
1813 * so we use GFP_NOIO allocations.
1814 */
1815 struct stripe_head *osh, *nsh;
1816 LIST_HEAD(newstripes);
1817 struct disk_info *ndisks;
1818 unsigned long cpu;
1819 int err;
1820 struct kmem_cache *sc;
1821 int i;
1822 int hash, cnt;
1823
1824 if (newsize <= conf->pool_size)
1825 return 0; /* never bother to shrink */
1826
1827 err = md_allow_write(conf->mddev);
1828 if (err)
1829 return err;
1830
1831 /* Step 1 */
1832 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1833 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1834 0, 0, NULL);
1835 if (!sc)
1836 return -ENOMEM;
1837
1838 for (i = conf->max_nr_stripes; i; i--) {
1839 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1840 if (!nsh)
1841 break;
1842
1843 nsh->raid_conf = conf;
1844 spin_lock_init(&nsh->stripe_lock);
1845
1846 list_add(&nsh->lru, &newstripes);
1847 }
1848 if (i) {
1849 /* didn't get enough, give up */
1850 while (!list_empty(&newstripes)) {
1851 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1852 list_del(&nsh->lru);
1853 kmem_cache_free(sc, nsh);
1854 }
1855 kmem_cache_destroy(sc);
1856 return -ENOMEM;
1857 }
1858 /* Step 2 - Must use GFP_NOIO now.
1859 * OK, we have enough stripes, start collecting inactive
1860 * stripes and copying them over
1861 */
1862 hash = 0;
1863 cnt = 0;
1864 list_for_each_entry(nsh, &newstripes, lru) {
1865 lock_device_hash_lock(conf, hash);
1866 wait_event_cmd(conf->wait_for_stripe,
1867 !list_empty(conf->inactive_list + hash),
1868 unlock_device_hash_lock(conf, hash),
1869 lock_device_hash_lock(conf, hash));
1870 osh = get_free_stripe(conf, hash);
1871 unlock_device_hash_lock(conf, hash);
1872 atomic_set(&nsh->count, 1);
1873 for(i=0; i<conf->pool_size; i++) {
1874 nsh->dev[i].page = osh->dev[i].page;
1875 nsh->dev[i].orig_page = osh->dev[i].page;
1876 }
1877 for( ; i<newsize; i++)
1878 nsh->dev[i].page = NULL;
1879 nsh->hash_lock_index = hash;
1880 kmem_cache_free(conf->slab_cache, osh);
1881 cnt++;
1882 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1883 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1884 hash++;
1885 cnt = 0;
1886 }
1887 }
1888 kmem_cache_destroy(conf->slab_cache);
1889
1890 /* Step 3.
1891 * At this point, we are holding all the stripes so the array
1892 * is completely stalled, so now is a good time to resize
1893 * conf->disks and the scribble region
1894 */
1895 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1896 if (ndisks) {
1897 for (i=0; i<conf->raid_disks; i++)
1898 ndisks[i] = conf->disks[i];
1899 kfree(conf->disks);
1900 conf->disks = ndisks;
1901 } else
1902 err = -ENOMEM;
1903
1904 get_online_cpus();
1905 conf->scribble_len = scribble_len(newsize);
1906 for_each_present_cpu(cpu) {
1907 struct raid5_percpu *percpu;
1908 void *scribble;
1909
1910 percpu = per_cpu_ptr(conf->percpu, cpu);
1911 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1912
1913 if (scribble) {
1914 kfree(percpu->scribble);
1915 percpu->scribble = scribble;
1916 } else {
1917 err = -ENOMEM;
1918 break;
1919 }
1920 }
1921 put_online_cpus();
1922
1923 /* Step 4, return new stripes to service */
1924 while(!list_empty(&newstripes)) {
1925 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1926 list_del_init(&nsh->lru);
1927
1928 for (i=conf->raid_disks; i < newsize; i++)
1929 if (nsh->dev[i].page == NULL) {
1930 struct page *p = alloc_page(GFP_NOIO);
1931 nsh->dev[i].page = p;
1932 nsh->dev[i].orig_page = p;
1933 if (!p)
1934 err = -ENOMEM;
1935 }
1936 release_stripe(nsh);
1937 }
1938 /* critical section pass, GFP_NOIO no longer needed */
1939
1940 conf->slab_cache = sc;
1941 conf->active_name = 1-conf->active_name;
1942 if (!err)
1943 conf->pool_size = newsize;
1944 return err;
1945 }
1946
drop_one_stripe(struct r5conf * conf,int hash)1947 static int drop_one_stripe(struct r5conf *conf, int hash)
1948 {
1949 struct stripe_head *sh;
1950
1951 spin_lock_irq(conf->hash_locks + hash);
1952 sh = get_free_stripe(conf, hash);
1953 spin_unlock_irq(conf->hash_locks + hash);
1954 if (!sh)
1955 return 0;
1956 BUG_ON(atomic_read(&sh->count));
1957 shrink_buffers(sh);
1958 kmem_cache_free(conf->slab_cache, sh);
1959 atomic_dec(&conf->active_stripes);
1960 return 1;
1961 }
1962
shrink_stripes(struct r5conf * conf)1963 static void shrink_stripes(struct r5conf *conf)
1964 {
1965 int hash;
1966 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1967 while (drop_one_stripe(conf, hash))
1968 ;
1969
1970 if (conf->slab_cache)
1971 kmem_cache_destroy(conf->slab_cache);
1972 conf->slab_cache = NULL;
1973 }
1974
raid5_end_read_request(struct bio * bi,int error)1975 static void raid5_end_read_request(struct bio * bi, int error)
1976 {
1977 struct stripe_head *sh = bi->bi_private;
1978 struct r5conf *conf = sh->raid_conf;
1979 int disks = sh->disks, i;
1980 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1981 char b[BDEVNAME_SIZE];
1982 struct md_rdev *rdev = NULL;
1983 sector_t s;
1984
1985 for (i=0 ; i<disks; i++)
1986 if (bi == &sh->dev[i].req)
1987 break;
1988
1989 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1990 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1991 uptodate);
1992 if (i == disks) {
1993 BUG();
1994 return;
1995 }
1996 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1997 /* If replacement finished while this request was outstanding,
1998 * 'replacement' might be NULL already.
1999 * In that case it moved down to 'rdev'.
2000 * rdev is not removed until all requests are finished.
2001 */
2002 rdev = conf->disks[i].replacement;
2003 if (!rdev)
2004 rdev = conf->disks[i].rdev;
2005
2006 if (use_new_offset(conf, sh))
2007 s = sh->sector + rdev->new_data_offset;
2008 else
2009 s = sh->sector + rdev->data_offset;
2010 if (uptodate) {
2011 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2012 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2013 /* Note that this cannot happen on a
2014 * replacement device. We just fail those on
2015 * any error
2016 */
2017 printk_ratelimited(
2018 KERN_INFO
2019 "md/raid:%s: read error corrected"
2020 " (%lu sectors at %llu on %s)\n",
2021 mdname(conf->mddev), STRIPE_SECTORS,
2022 (unsigned long long)s,
2023 bdevname(rdev->bdev, b));
2024 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2025 clear_bit(R5_ReadError, &sh->dev[i].flags);
2026 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2027 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2028 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2029
2030 if (atomic_read(&rdev->read_errors))
2031 atomic_set(&rdev->read_errors, 0);
2032 } else {
2033 const char *bdn = bdevname(rdev->bdev, b);
2034 int retry = 0;
2035 int set_bad = 0;
2036
2037 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2038 atomic_inc(&rdev->read_errors);
2039 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2040 printk_ratelimited(
2041 KERN_WARNING
2042 "md/raid:%s: read error on replacement device "
2043 "(sector %llu on %s).\n",
2044 mdname(conf->mddev),
2045 (unsigned long long)s,
2046 bdn);
2047 else if (conf->mddev->degraded >= conf->max_degraded) {
2048 set_bad = 1;
2049 printk_ratelimited(
2050 KERN_WARNING
2051 "md/raid:%s: read error not correctable "
2052 "(sector %llu on %s).\n",
2053 mdname(conf->mddev),
2054 (unsigned long long)s,
2055 bdn);
2056 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2057 /* Oh, no!!! */
2058 set_bad = 1;
2059 printk_ratelimited(
2060 KERN_WARNING
2061 "md/raid:%s: read error NOT corrected!! "
2062 "(sector %llu on %s).\n",
2063 mdname(conf->mddev),
2064 (unsigned long long)s,
2065 bdn);
2066 } else if (atomic_read(&rdev->read_errors)
2067 > conf->max_nr_stripes)
2068 printk(KERN_WARNING
2069 "md/raid:%s: Too many read errors, failing device %s.\n",
2070 mdname(conf->mddev), bdn);
2071 else
2072 retry = 1;
2073 if (set_bad && test_bit(In_sync, &rdev->flags)
2074 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2075 retry = 1;
2076 if (retry)
2077 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2078 set_bit(R5_ReadError, &sh->dev[i].flags);
2079 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2080 } else
2081 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2082 else {
2083 clear_bit(R5_ReadError, &sh->dev[i].flags);
2084 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2085 if (!(set_bad
2086 && test_bit(In_sync, &rdev->flags)
2087 && rdev_set_badblocks(
2088 rdev, sh->sector, STRIPE_SECTORS, 0)))
2089 md_error(conf->mddev, rdev);
2090 }
2091 }
2092 rdev_dec_pending(rdev, conf->mddev);
2093 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2094 set_bit(STRIPE_HANDLE, &sh->state);
2095 release_stripe(sh);
2096 }
2097
raid5_end_write_request(struct bio * bi,int error)2098 static void raid5_end_write_request(struct bio *bi, int error)
2099 {
2100 struct stripe_head *sh = bi->bi_private;
2101 struct r5conf *conf = sh->raid_conf;
2102 int disks = sh->disks, i;
2103 struct md_rdev *uninitialized_var(rdev);
2104 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2105 sector_t first_bad;
2106 int bad_sectors;
2107 int replacement = 0;
2108
2109 for (i = 0 ; i < disks; i++) {
2110 if (bi == &sh->dev[i].req) {
2111 rdev = conf->disks[i].rdev;
2112 break;
2113 }
2114 if (bi == &sh->dev[i].rreq) {
2115 rdev = conf->disks[i].replacement;
2116 if (rdev)
2117 replacement = 1;
2118 else
2119 /* rdev was removed and 'replacement'
2120 * replaced it. rdev is not removed
2121 * until all requests are finished.
2122 */
2123 rdev = conf->disks[i].rdev;
2124 break;
2125 }
2126 }
2127 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2128 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2129 uptodate);
2130 if (i == disks) {
2131 BUG();
2132 return;
2133 }
2134
2135 if (replacement) {
2136 if (!uptodate)
2137 md_error(conf->mddev, rdev);
2138 else if (is_badblock(rdev, sh->sector,
2139 STRIPE_SECTORS,
2140 &first_bad, &bad_sectors))
2141 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2142 } else {
2143 if (!uptodate) {
2144 set_bit(STRIPE_DEGRADED, &sh->state);
2145 set_bit(WriteErrorSeen, &rdev->flags);
2146 set_bit(R5_WriteError, &sh->dev[i].flags);
2147 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2148 set_bit(MD_RECOVERY_NEEDED,
2149 &rdev->mddev->recovery);
2150 } else if (is_badblock(rdev, sh->sector,
2151 STRIPE_SECTORS,
2152 &first_bad, &bad_sectors)) {
2153 set_bit(R5_MadeGood, &sh->dev[i].flags);
2154 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2155 /* That was a successful write so make
2156 * sure it looks like we already did
2157 * a re-write.
2158 */
2159 set_bit(R5_ReWrite, &sh->dev[i].flags);
2160 }
2161 }
2162 rdev_dec_pending(rdev, conf->mddev);
2163
2164 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2165 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2166 set_bit(STRIPE_HANDLE, &sh->state);
2167 release_stripe(sh);
2168 }
2169
2170 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2171
raid5_build_block(struct stripe_head * sh,int i,int previous)2172 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2173 {
2174 struct r5dev *dev = &sh->dev[i];
2175
2176 bio_init(&dev->req);
2177 dev->req.bi_io_vec = &dev->vec;
2178 dev->req.bi_max_vecs = 1;
2179 dev->req.bi_private = sh;
2180
2181 bio_init(&dev->rreq);
2182 dev->rreq.bi_io_vec = &dev->rvec;
2183 dev->rreq.bi_max_vecs = 1;
2184 dev->rreq.bi_private = sh;
2185
2186 dev->flags = 0;
2187 dev->sector = compute_blocknr(sh, i, previous);
2188 }
2189
error(struct mddev * mddev,struct md_rdev * rdev)2190 static void error(struct mddev *mddev, struct md_rdev *rdev)
2191 {
2192 char b[BDEVNAME_SIZE];
2193 struct r5conf *conf = mddev->private;
2194 unsigned long flags;
2195 pr_debug("raid456: error called\n");
2196
2197 spin_lock_irqsave(&conf->device_lock, flags);
2198 clear_bit(In_sync, &rdev->flags);
2199 mddev->degraded = calc_degraded(conf);
2200 spin_unlock_irqrestore(&conf->device_lock, flags);
2201 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2202
2203 set_bit(Blocked, &rdev->flags);
2204 set_bit(Faulty, &rdev->flags);
2205 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2206 printk(KERN_ALERT
2207 "md/raid:%s: Disk failure on %s, disabling device.\n"
2208 "md/raid:%s: Operation continuing on %d devices.\n",
2209 mdname(mddev),
2210 bdevname(rdev->bdev, b),
2211 mdname(mddev),
2212 conf->raid_disks - mddev->degraded);
2213 }
2214
2215 /*
2216 * Input: a 'big' sector number,
2217 * Output: index of the data and parity disk, and the sector # in them.
2218 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2219 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2220 int previous, int *dd_idx,
2221 struct stripe_head *sh)
2222 {
2223 sector_t stripe, stripe2;
2224 sector_t chunk_number;
2225 unsigned int chunk_offset;
2226 int pd_idx, qd_idx;
2227 int ddf_layout = 0;
2228 sector_t new_sector;
2229 int algorithm = previous ? conf->prev_algo
2230 : conf->algorithm;
2231 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2232 : conf->chunk_sectors;
2233 int raid_disks = previous ? conf->previous_raid_disks
2234 : conf->raid_disks;
2235 int data_disks = raid_disks - conf->max_degraded;
2236
2237 /* First compute the information on this sector */
2238
2239 /*
2240 * Compute the chunk number and the sector offset inside the chunk
2241 */
2242 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2243 chunk_number = r_sector;
2244
2245 /*
2246 * Compute the stripe number
2247 */
2248 stripe = chunk_number;
2249 *dd_idx = sector_div(stripe, data_disks);
2250 stripe2 = stripe;
2251 /*
2252 * Select the parity disk based on the user selected algorithm.
2253 */
2254 pd_idx = qd_idx = -1;
2255 switch(conf->level) {
2256 case 4:
2257 pd_idx = data_disks;
2258 break;
2259 case 5:
2260 switch (algorithm) {
2261 case ALGORITHM_LEFT_ASYMMETRIC:
2262 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2263 if (*dd_idx >= pd_idx)
2264 (*dd_idx)++;
2265 break;
2266 case ALGORITHM_RIGHT_ASYMMETRIC:
2267 pd_idx = sector_div(stripe2, raid_disks);
2268 if (*dd_idx >= pd_idx)
2269 (*dd_idx)++;
2270 break;
2271 case ALGORITHM_LEFT_SYMMETRIC:
2272 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2273 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2274 break;
2275 case ALGORITHM_RIGHT_SYMMETRIC:
2276 pd_idx = sector_div(stripe2, raid_disks);
2277 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2278 break;
2279 case ALGORITHM_PARITY_0:
2280 pd_idx = 0;
2281 (*dd_idx)++;
2282 break;
2283 case ALGORITHM_PARITY_N:
2284 pd_idx = data_disks;
2285 break;
2286 default:
2287 BUG();
2288 }
2289 break;
2290 case 6:
2291
2292 switch (algorithm) {
2293 case ALGORITHM_LEFT_ASYMMETRIC:
2294 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2295 qd_idx = pd_idx + 1;
2296 if (pd_idx == raid_disks-1) {
2297 (*dd_idx)++; /* Q D D D P */
2298 qd_idx = 0;
2299 } else if (*dd_idx >= pd_idx)
2300 (*dd_idx) += 2; /* D D P Q D */
2301 break;
2302 case ALGORITHM_RIGHT_ASYMMETRIC:
2303 pd_idx = sector_div(stripe2, raid_disks);
2304 qd_idx = pd_idx + 1;
2305 if (pd_idx == raid_disks-1) {
2306 (*dd_idx)++; /* Q D D D P */
2307 qd_idx = 0;
2308 } else if (*dd_idx >= pd_idx)
2309 (*dd_idx) += 2; /* D D P Q D */
2310 break;
2311 case ALGORITHM_LEFT_SYMMETRIC:
2312 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2313 qd_idx = (pd_idx + 1) % raid_disks;
2314 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2315 break;
2316 case ALGORITHM_RIGHT_SYMMETRIC:
2317 pd_idx = sector_div(stripe2, raid_disks);
2318 qd_idx = (pd_idx + 1) % raid_disks;
2319 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2320 break;
2321
2322 case ALGORITHM_PARITY_0:
2323 pd_idx = 0;
2324 qd_idx = 1;
2325 (*dd_idx) += 2;
2326 break;
2327 case ALGORITHM_PARITY_N:
2328 pd_idx = data_disks;
2329 qd_idx = data_disks + 1;
2330 break;
2331
2332 case ALGORITHM_ROTATING_ZERO_RESTART:
2333 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2334 * of blocks for computing Q is different.
2335 */
2336 pd_idx = sector_div(stripe2, raid_disks);
2337 qd_idx = pd_idx + 1;
2338 if (pd_idx == raid_disks-1) {
2339 (*dd_idx)++; /* Q D D D P */
2340 qd_idx = 0;
2341 } else if (*dd_idx >= pd_idx)
2342 (*dd_idx) += 2; /* D D P Q D */
2343 ddf_layout = 1;
2344 break;
2345
2346 case ALGORITHM_ROTATING_N_RESTART:
2347 /* Same a left_asymmetric, by first stripe is
2348 * D D D P Q rather than
2349 * Q D D D P
2350 */
2351 stripe2 += 1;
2352 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2353 qd_idx = pd_idx + 1;
2354 if (pd_idx == raid_disks-1) {
2355 (*dd_idx)++; /* Q D D D P */
2356 qd_idx = 0;
2357 } else if (*dd_idx >= pd_idx)
2358 (*dd_idx) += 2; /* D D P Q D */
2359 ddf_layout = 1;
2360 break;
2361
2362 case ALGORITHM_ROTATING_N_CONTINUE:
2363 /* Same as left_symmetric but Q is before P */
2364 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2365 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2366 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2367 ddf_layout = 1;
2368 break;
2369
2370 case ALGORITHM_LEFT_ASYMMETRIC_6:
2371 /* RAID5 left_asymmetric, with Q on last device */
2372 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2373 if (*dd_idx >= pd_idx)
2374 (*dd_idx)++;
2375 qd_idx = raid_disks - 1;
2376 break;
2377
2378 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2379 pd_idx = sector_div(stripe2, raid_disks-1);
2380 if (*dd_idx >= pd_idx)
2381 (*dd_idx)++;
2382 qd_idx = raid_disks - 1;
2383 break;
2384
2385 case ALGORITHM_LEFT_SYMMETRIC_6:
2386 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2387 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2388 qd_idx = raid_disks - 1;
2389 break;
2390
2391 case ALGORITHM_RIGHT_SYMMETRIC_6:
2392 pd_idx = sector_div(stripe2, raid_disks-1);
2393 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2394 qd_idx = raid_disks - 1;
2395 break;
2396
2397 case ALGORITHM_PARITY_0_6:
2398 pd_idx = 0;
2399 (*dd_idx)++;
2400 qd_idx = raid_disks - 1;
2401 break;
2402
2403 default:
2404 BUG();
2405 }
2406 break;
2407 }
2408
2409 if (sh) {
2410 sh->pd_idx = pd_idx;
2411 sh->qd_idx = qd_idx;
2412 sh->ddf_layout = ddf_layout;
2413 }
2414 /*
2415 * Finally, compute the new sector number
2416 */
2417 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2418 return new_sector;
2419 }
2420
compute_blocknr(struct stripe_head * sh,int i,int previous)2421 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2422 {
2423 struct r5conf *conf = sh->raid_conf;
2424 int raid_disks = sh->disks;
2425 int data_disks = raid_disks - conf->max_degraded;
2426 sector_t new_sector = sh->sector, check;
2427 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2428 : conf->chunk_sectors;
2429 int algorithm = previous ? conf->prev_algo
2430 : conf->algorithm;
2431 sector_t stripe;
2432 int chunk_offset;
2433 sector_t chunk_number;
2434 int dummy1, dd_idx = i;
2435 sector_t r_sector;
2436 struct stripe_head sh2;
2437
2438 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2439 stripe = new_sector;
2440
2441 if (i == sh->pd_idx)
2442 return 0;
2443 switch(conf->level) {
2444 case 4: break;
2445 case 5:
2446 switch (algorithm) {
2447 case ALGORITHM_LEFT_ASYMMETRIC:
2448 case ALGORITHM_RIGHT_ASYMMETRIC:
2449 if (i > sh->pd_idx)
2450 i--;
2451 break;
2452 case ALGORITHM_LEFT_SYMMETRIC:
2453 case ALGORITHM_RIGHT_SYMMETRIC:
2454 if (i < sh->pd_idx)
2455 i += raid_disks;
2456 i -= (sh->pd_idx + 1);
2457 break;
2458 case ALGORITHM_PARITY_0:
2459 i -= 1;
2460 break;
2461 case ALGORITHM_PARITY_N:
2462 break;
2463 default:
2464 BUG();
2465 }
2466 break;
2467 case 6:
2468 if (i == sh->qd_idx)
2469 return 0; /* It is the Q disk */
2470 switch (algorithm) {
2471 case ALGORITHM_LEFT_ASYMMETRIC:
2472 case ALGORITHM_RIGHT_ASYMMETRIC:
2473 case ALGORITHM_ROTATING_ZERO_RESTART:
2474 case ALGORITHM_ROTATING_N_RESTART:
2475 if (sh->pd_idx == raid_disks-1)
2476 i--; /* Q D D D P */
2477 else if (i > sh->pd_idx)
2478 i -= 2; /* D D P Q D */
2479 break;
2480 case ALGORITHM_LEFT_SYMMETRIC:
2481 case ALGORITHM_RIGHT_SYMMETRIC:
2482 if (sh->pd_idx == raid_disks-1)
2483 i--; /* Q D D D P */
2484 else {
2485 /* D D P Q D */
2486 if (i < sh->pd_idx)
2487 i += raid_disks;
2488 i -= (sh->pd_idx + 2);
2489 }
2490 break;
2491 case ALGORITHM_PARITY_0:
2492 i -= 2;
2493 break;
2494 case ALGORITHM_PARITY_N:
2495 break;
2496 case ALGORITHM_ROTATING_N_CONTINUE:
2497 /* Like left_symmetric, but P is before Q */
2498 if (sh->pd_idx == 0)
2499 i--; /* P D D D Q */
2500 else {
2501 /* D D Q P D */
2502 if (i < sh->pd_idx)
2503 i += raid_disks;
2504 i -= (sh->pd_idx + 1);
2505 }
2506 break;
2507 case ALGORITHM_LEFT_ASYMMETRIC_6:
2508 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2509 if (i > sh->pd_idx)
2510 i--;
2511 break;
2512 case ALGORITHM_LEFT_SYMMETRIC_6:
2513 case ALGORITHM_RIGHT_SYMMETRIC_6:
2514 if (i < sh->pd_idx)
2515 i += data_disks + 1;
2516 i -= (sh->pd_idx + 1);
2517 break;
2518 case ALGORITHM_PARITY_0_6:
2519 i -= 1;
2520 break;
2521 default:
2522 BUG();
2523 }
2524 break;
2525 }
2526
2527 chunk_number = stripe * data_disks + i;
2528 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2529
2530 check = raid5_compute_sector(conf, r_sector,
2531 previous, &dummy1, &sh2);
2532 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2533 || sh2.qd_idx != sh->qd_idx) {
2534 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2535 mdname(conf->mddev));
2536 return 0;
2537 }
2538 return r_sector;
2539 }
2540
2541 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)2542 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2543 int rcw, int expand)
2544 {
2545 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2546 struct r5conf *conf = sh->raid_conf;
2547 int level = conf->level;
2548
2549 if (rcw) {
2550
2551 for (i = disks; i--; ) {
2552 struct r5dev *dev = &sh->dev[i];
2553
2554 if (dev->towrite) {
2555 set_bit(R5_LOCKED, &dev->flags);
2556 set_bit(R5_Wantdrain, &dev->flags);
2557 if (!expand)
2558 clear_bit(R5_UPTODATE, &dev->flags);
2559 s->locked++;
2560 }
2561 }
2562 /* if we are not expanding this is a proper write request, and
2563 * there will be bios with new data to be drained into the
2564 * stripe cache
2565 */
2566 if (!expand) {
2567 if (!s->locked)
2568 /* False alarm, nothing to do */
2569 return;
2570 sh->reconstruct_state = reconstruct_state_drain_run;
2571 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2572 } else
2573 sh->reconstruct_state = reconstruct_state_run;
2574
2575 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2576
2577 if (s->locked + conf->max_degraded == disks)
2578 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2579 atomic_inc(&conf->pending_full_writes);
2580 } else {
2581 BUG_ON(level == 6);
2582 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2583 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2584
2585 for (i = disks; i--; ) {
2586 struct r5dev *dev = &sh->dev[i];
2587 if (i == pd_idx)
2588 continue;
2589
2590 if (dev->towrite &&
2591 (test_bit(R5_UPTODATE, &dev->flags) ||
2592 test_bit(R5_Wantcompute, &dev->flags))) {
2593 set_bit(R5_Wantdrain, &dev->flags);
2594 set_bit(R5_LOCKED, &dev->flags);
2595 clear_bit(R5_UPTODATE, &dev->flags);
2596 s->locked++;
2597 }
2598 }
2599 if (!s->locked)
2600 /* False alarm - nothing to do */
2601 return;
2602 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2603 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2604 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2605 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2606 }
2607
2608 /* keep the parity disk(s) locked while asynchronous operations
2609 * are in flight
2610 */
2611 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2612 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2613 s->locked++;
2614
2615 if (level == 6) {
2616 int qd_idx = sh->qd_idx;
2617 struct r5dev *dev = &sh->dev[qd_idx];
2618
2619 set_bit(R5_LOCKED, &dev->flags);
2620 clear_bit(R5_UPTODATE, &dev->flags);
2621 s->locked++;
2622 }
2623
2624 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2625 __func__, (unsigned long long)sh->sector,
2626 s->locked, s->ops_request);
2627 }
2628
2629 /*
2630 * Each stripe/dev can have one or more bion attached.
2631 * toread/towrite point to the first in a chain.
2632 * The bi_next chain must be in order.
2633 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)2634 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2635 {
2636 struct bio **bip;
2637 struct r5conf *conf = sh->raid_conf;
2638 int firstwrite=0;
2639
2640 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2641 (unsigned long long)bi->bi_iter.bi_sector,
2642 (unsigned long long)sh->sector);
2643
2644 /*
2645 * If several bio share a stripe. The bio bi_phys_segments acts as a
2646 * reference count to avoid race. The reference count should already be
2647 * increased before this function is called (for example, in
2648 * make_request()), so other bio sharing this stripe will not free the
2649 * stripe. If a stripe is owned by one stripe, the stripe lock will
2650 * protect it.
2651 */
2652 spin_lock_irq(&sh->stripe_lock);
2653 if (forwrite) {
2654 bip = &sh->dev[dd_idx].towrite;
2655 if (*bip == NULL)
2656 firstwrite = 1;
2657 } else
2658 bip = &sh->dev[dd_idx].toread;
2659 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2660 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2661 goto overlap;
2662 bip = & (*bip)->bi_next;
2663 }
2664 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2665 goto overlap;
2666
2667 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2668 if (*bip)
2669 bi->bi_next = *bip;
2670 *bip = bi;
2671 raid5_inc_bi_active_stripes(bi);
2672
2673 if (forwrite) {
2674 /* check if page is covered */
2675 sector_t sector = sh->dev[dd_idx].sector;
2676 for (bi=sh->dev[dd_idx].towrite;
2677 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2678 bi && bi->bi_iter.bi_sector <= sector;
2679 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2680 if (bio_end_sector(bi) >= sector)
2681 sector = bio_end_sector(bi);
2682 }
2683 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2684 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2685 }
2686
2687 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2688 (unsigned long long)(*bip)->bi_iter.bi_sector,
2689 (unsigned long long)sh->sector, dd_idx);
2690 spin_unlock_irq(&sh->stripe_lock);
2691
2692 if (conf->mddev->bitmap && firstwrite) {
2693 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2694 STRIPE_SECTORS, 0);
2695 sh->bm_seq = conf->seq_flush+1;
2696 set_bit(STRIPE_BIT_DELAY, &sh->state);
2697 }
2698 return 1;
2699
2700 overlap:
2701 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2702 spin_unlock_irq(&sh->stripe_lock);
2703 return 0;
2704 }
2705
2706 static void end_reshape(struct r5conf *conf);
2707
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)2708 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2709 struct stripe_head *sh)
2710 {
2711 int sectors_per_chunk =
2712 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2713 int dd_idx;
2714 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2715 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2716
2717 raid5_compute_sector(conf,
2718 stripe * (disks - conf->max_degraded)
2719 *sectors_per_chunk + chunk_offset,
2720 previous,
2721 &dd_idx, sh);
2722 }
2723
2724 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks,struct bio ** return_bi)2725 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2726 struct stripe_head_state *s, int disks,
2727 struct bio **return_bi)
2728 {
2729 int i;
2730 for (i = disks; i--; ) {
2731 struct bio *bi;
2732 int bitmap_end = 0;
2733
2734 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2735 struct md_rdev *rdev;
2736 rcu_read_lock();
2737 rdev = rcu_dereference(conf->disks[i].rdev);
2738 if (rdev && test_bit(In_sync, &rdev->flags))
2739 atomic_inc(&rdev->nr_pending);
2740 else
2741 rdev = NULL;
2742 rcu_read_unlock();
2743 if (rdev) {
2744 if (!rdev_set_badblocks(
2745 rdev,
2746 sh->sector,
2747 STRIPE_SECTORS, 0))
2748 md_error(conf->mddev, rdev);
2749 rdev_dec_pending(rdev, conf->mddev);
2750 }
2751 }
2752 spin_lock_irq(&sh->stripe_lock);
2753 /* fail all writes first */
2754 bi = sh->dev[i].towrite;
2755 sh->dev[i].towrite = NULL;
2756 spin_unlock_irq(&sh->stripe_lock);
2757 if (bi)
2758 bitmap_end = 1;
2759
2760 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2761 wake_up(&conf->wait_for_overlap);
2762
2763 while (bi && bi->bi_iter.bi_sector <
2764 sh->dev[i].sector + STRIPE_SECTORS) {
2765 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2766 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2767 if (!raid5_dec_bi_active_stripes(bi)) {
2768 md_write_end(conf->mddev);
2769 bi->bi_next = *return_bi;
2770 *return_bi = bi;
2771 }
2772 bi = nextbi;
2773 }
2774 if (bitmap_end)
2775 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2776 STRIPE_SECTORS, 0, 0);
2777 bitmap_end = 0;
2778 /* and fail all 'written' */
2779 bi = sh->dev[i].written;
2780 sh->dev[i].written = NULL;
2781 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2782 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2783 sh->dev[i].page = sh->dev[i].orig_page;
2784 }
2785
2786 if (bi) bitmap_end = 1;
2787 while (bi && bi->bi_iter.bi_sector <
2788 sh->dev[i].sector + STRIPE_SECTORS) {
2789 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2790 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2791 if (!raid5_dec_bi_active_stripes(bi)) {
2792 md_write_end(conf->mddev);
2793 bi->bi_next = *return_bi;
2794 *return_bi = bi;
2795 }
2796 bi = bi2;
2797 }
2798
2799 /* fail any reads if this device is non-operational and
2800 * the data has not reached the cache yet.
2801 */
2802 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2803 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2804 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2805 spin_lock_irq(&sh->stripe_lock);
2806 bi = sh->dev[i].toread;
2807 sh->dev[i].toread = NULL;
2808 spin_unlock_irq(&sh->stripe_lock);
2809 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2810 wake_up(&conf->wait_for_overlap);
2811 while (bi && bi->bi_iter.bi_sector <
2812 sh->dev[i].sector + STRIPE_SECTORS) {
2813 struct bio *nextbi =
2814 r5_next_bio(bi, sh->dev[i].sector);
2815 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2816 if (!raid5_dec_bi_active_stripes(bi)) {
2817 bi->bi_next = *return_bi;
2818 *return_bi = bi;
2819 }
2820 bi = nextbi;
2821 }
2822 }
2823 if (bitmap_end)
2824 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2825 STRIPE_SECTORS, 0, 0);
2826 /* If we were in the middle of a write the parity block might
2827 * still be locked - so just clear all R5_LOCKED flags
2828 */
2829 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 }
2831
2832 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833 if (atomic_dec_and_test(&conf->pending_full_writes))
2834 md_wakeup_thread(conf->mddev->thread);
2835 }
2836
2837 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)2838 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2839 struct stripe_head_state *s)
2840 {
2841 int abort = 0;
2842 int i;
2843
2844 clear_bit(STRIPE_SYNCING, &sh->state);
2845 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2846 wake_up(&conf->wait_for_overlap);
2847 s->syncing = 0;
2848 s->replacing = 0;
2849 /* There is nothing more to do for sync/check/repair.
2850 * Don't even need to abort as that is handled elsewhere
2851 * if needed, and not always wanted e.g. if there is a known
2852 * bad block here.
2853 * For recover/replace we need to record a bad block on all
2854 * non-sync devices, or abort the recovery
2855 */
2856 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2857 /* During recovery devices cannot be removed, so
2858 * locking and refcounting of rdevs is not needed
2859 */
2860 for (i = 0; i < conf->raid_disks; i++) {
2861 struct md_rdev *rdev = conf->disks[i].rdev;
2862 if (rdev
2863 && !test_bit(Faulty, &rdev->flags)
2864 && !test_bit(In_sync, &rdev->flags)
2865 && !rdev_set_badblocks(rdev, sh->sector,
2866 STRIPE_SECTORS, 0))
2867 abort = 1;
2868 rdev = conf->disks[i].replacement;
2869 if (rdev
2870 && !test_bit(Faulty, &rdev->flags)
2871 && !test_bit(In_sync, &rdev->flags)
2872 && !rdev_set_badblocks(rdev, sh->sector,
2873 STRIPE_SECTORS, 0))
2874 abort = 1;
2875 }
2876 if (abort)
2877 conf->recovery_disabled =
2878 conf->mddev->recovery_disabled;
2879 }
2880 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2881 }
2882
want_replace(struct stripe_head * sh,int disk_idx)2883 static int want_replace(struct stripe_head *sh, int disk_idx)
2884 {
2885 struct md_rdev *rdev;
2886 int rv = 0;
2887 /* Doing recovery so rcu locking not required */
2888 rdev = sh->raid_conf->disks[disk_idx].replacement;
2889 if (rdev
2890 && !test_bit(Faulty, &rdev->flags)
2891 && !test_bit(In_sync, &rdev->flags)
2892 && (rdev->recovery_offset <= sh->sector
2893 || rdev->mddev->recovery_cp <= sh->sector))
2894 rv = 1;
2895
2896 return rv;
2897 }
2898
2899 /* fetch_block - checks the given member device to see if its data needs
2900 * to be read or computed to satisfy a request.
2901 *
2902 * Returns 1 when no more member devices need to be checked, otherwise returns
2903 * 0 to tell the loop in handle_stripe_fill to continue
2904 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)2905 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2906 int disk_idx, int disks)
2907 {
2908 struct r5dev *dev = &sh->dev[disk_idx];
2909 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2910 &sh->dev[s->failed_num[1]] };
2911
2912 /* is the data in this block needed, and can we get it? */
2913 if (!test_bit(R5_LOCKED, &dev->flags) &&
2914 !test_bit(R5_UPTODATE, &dev->flags) &&
2915 (dev->toread ||
2916 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2917 s->syncing || s->expanding ||
2918 (s->replacing && want_replace(sh, disk_idx)) ||
2919 (s->failed >= 1 && fdev[0]->toread) ||
2920 (s->failed >= 2 && fdev[1]->toread) ||
2921 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2922 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2923 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2924 ((sh->raid_conf->level == 6 ||
2925 sh->sector >= sh->raid_conf->mddev->recovery_cp)
2926 && s->failed && s->to_write &&
2927 (s->to_write - s->non_overwrite <
2928 sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) &&
2929 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2930 /* we would like to get this block, possibly by computing it,
2931 * otherwise read it if the backing disk is insync
2932 */
2933 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2934 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2935 if ((s->uptodate == disks - 1) &&
2936 (s->failed && (disk_idx == s->failed_num[0] ||
2937 disk_idx == s->failed_num[1]))) {
2938 /* have disk failed, and we're requested to fetch it;
2939 * do compute it
2940 */
2941 pr_debug("Computing stripe %llu block %d\n",
2942 (unsigned long long)sh->sector, disk_idx);
2943 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2944 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2945 set_bit(R5_Wantcompute, &dev->flags);
2946 sh->ops.target = disk_idx;
2947 sh->ops.target2 = -1; /* no 2nd target */
2948 s->req_compute = 1;
2949 /* Careful: from this point on 'uptodate' is in the eye
2950 * of raid_run_ops which services 'compute' operations
2951 * before writes. R5_Wantcompute flags a block that will
2952 * be R5_UPTODATE by the time it is needed for a
2953 * subsequent operation.
2954 */
2955 s->uptodate++;
2956 return 1;
2957 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2958 /* Computing 2-failure is *very* expensive; only
2959 * do it if failed >= 2
2960 */
2961 int other;
2962 for (other = disks; other--; ) {
2963 if (other == disk_idx)
2964 continue;
2965 if (!test_bit(R5_UPTODATE,
2966 &sh->dev[other].flags))
2967 break;
2968 }
2969 BUG_ON(other < 0);
2970 pr_debug("Computing stripe %llu blocks %d,%d\n",
2971 (unsigned long long)sh->sector,
2972 disk_idx, other);
2973 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2974 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2975 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2976 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2977 sh->ops.target = disk_idx;
2978 sh->ops.target2 = other;
2979 s->uptodate += 2;
2980 s->req_compute = 1;
2981 return 1;
2982 } else if (test_bit(R5_Insync, &dev->flags)) {
2983 set_bit(R5_LOCKED, &dev->flags);
2984 set_bit(R5_Wantread, &dev->flags);
2985 s->locked++;
2986 pr_debug("Reading block %d (sync=%d)\n",
2987 disk_idx, s->syncing);
2988 }
2989 }
2990
2991 return 0;
2992 }
2993
2994 /**
2995 * handle_stripe_fill - read or compute data to satisfy pending requests.
2996 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)2997 static void handle_stripe_fill(struct stripe_head *sh,
2998 struct stripe_head_state *s,
2999 int disks)
3000 {
3001 int i;
3002
3003 /* look for blocks to read/compute, skip this if a compute
3004 * is already in flight, or if the stripe contents are in the
3005 * midst of changing due to a write
3006 */
3007 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3008 !sh->reconstruct_state)
3009 for (i = disks; i--; )
3010 if (fetch_block(sh, s, i, disks))
3011 break;
3012 set_bit(STRIPE_HANDLE, &sh->state);
3013 }
3014
3015 /* handle_stripe_clean_event
3016 * any written block on an uptodate or failed drive can be returned.
3017 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3018 * never LOCKED, so we don't need to test 'failed' directly.
3019 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks,struct bio ** return_bi)3020 static void handle_stripe_clean_event(struct r5conf *conf,
3021 struct stripe_head *sh, int disks, struct bio **return_bi)
3022 {
3023 int i;
3024 struct r5dev *dev;
3025 int discard_pending = 0;
3026
3027 for (i = disks; i--; )
3028 if (sh->dev[i].written) {
3029 dev = &sh->dev[i];
3030 if (!test_bit(R5_LOCKED, &dev->flags) &&
3031 (test_bit(R5_UPTODATE, &dev->flags) ||
3032 test_bit(R5_Discard, &dev->flags) ||
3033 test_bit(R5_SkipCopy, &dev->flags))) {
3034 /* We can return any write requests */
3035 struct bio *wbi, *wbi2;
3036 pr_debug("Return write for disc %d\n", i);
3037 if (test_and_clear_bit(R5_Discard, &dev->flags))
3038 clear_bit(R5_UPTODATE, &dev->flags);
3039 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3040 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3041 dev->page = dev->orig_page;
3042 }
3043 wbi = dev->written;
3044 dev->written = NULL;
3045 while (wbi && wbi->bi_iter.bi_sector <
3046 dev->sector + STRIPE_SECTORS) {
3047 wbi2 = r5_next_bio(wbi, dev->sector);
3048 if (!raid5_dec_bi_active_stripes(wbi)) {
3049 md_write_end(conf->mddev);
3050 wbi->bi_next = *return_bi;
3051 *return_bi = wbi;
3052 }
3053 wbi = wbi2;
3054 }
3055 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3056 STRIPE_SECTORS,
3057 !test_bit(STRIPE_DEGRADED, &sh->state),
3058 0);
3059 } else if (test_bit(R5_Discard, &dev->flags))
3060 discard_pending = 1;
3061 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3062 WARN_ON(dev->page != dev->orig_page);
3063 }
3064 if (!discard_pending &&
3065 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3066 int hash = sh->hash_lock_index;
3067
3068 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3069 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3070 if (sh->qd_idx >= 0) {
3071 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3072 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3073 }
3074 /* now that discard is done we can proceed with any sync */
3075 clear_bit(STRIPE_DISCARD, &sh->state);
3076 /*
3077 * SCSI discard will change some bio fields and the stripe has
3078 * no updated data, so remove it from hash list and the stripe
3079 * will be reinitialized
3080 */
3081 spin_lock_irq(conf->hash_locks + hash);
3082 remove_hash(sh);
3083 spin_unlock_irq(conf->hash_locks + hash);
3084 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3085 set_bit(STRIPE_HANDLE, &sh->state);
3086
3087 }
3088
3089 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3090 if (atomic_dec_and_test(&conf->pending_full_writes))
3091 md_wakeup_thread(conf->mddev->thread);
3092 }
3093
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3094 static void handle_stripe_dirtying(struct r5conf *conf,
3095 struct stripe_head *sh,
3096 struct stripe_head_state *s,
3097 int disks)
3098 {
3099 int rmw = 0, rcw = 0, i;
3100 sector_t recovery_cp = conf->mddev->recovery_cp;
3101
3102 /* RAID6 requires 'rcw' in current implementation.
3103 * Otherwise, check whether resync is now happening or should start.
3104 * If yes, then the array is dirty (after unclean shutdown or
3105 * initial creation), so parity in some stripes might be inconsistent.
3106 * In this case, we need to always do reconstruct-write, to ensure
3107 * that in case of drive failure or read-error correction, we
3108 * generate correct data from the parity.
3109 */
3110 if (conf->max_degraded == 2 ||
3111 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3112 s->failed == 0)) {
3113 /* Calculate the real rcw later - for now make it
3114 * look like rcw is cheaper
3115 */
3116 rcw = 1; rmw = 2;
3117 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3118 conf->max_degraded, (unsigned long long)recovery_cp,
3119 (unsigned long long)sh->sector);
3120 } else for (i = disks; i--; ) {
3121 /* would I have to read this buffer for read_modify_write */
3122 struct r5dev *dev = &sh->dev[i];
3123 if ((dev->towrite || i == sh->pd_idx) &&
3124 !test_bit(R5_LOCKED, &dev->flags) &&
3125 !(test_bit(R5_UPTODATE, &dev->flags) ||
3126 test_bit(R5_Wantcompute, &dev->flags))) {
3127 if (test_bit(R5_Insync, &dev->flags))
3128 rmw++;
3129 else
3130 rmw += 2*disks; /* cannot read it */
3131 }
3132 /* Would I have to read this buffer for reconstruct_write */
3133 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3134 !test_bit(R5_LOCKED, &dev->flags) &&
3135 !(test_bit(R5_UPTODATE, &dev->flags) ||
3136 test_bit(R5_Wantcompute, &dev->flags))) {
3137 if (test_bit(R5_Insync, &dev->flags))
3138 rcw++;
3139 else
3140 rcw += 2*disks;
3141 }
3142 }
3143 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3144 (unsigned long long)sh->sector, rmw, rcw);
3145 set_bit(STRIPE_HANDLE, &sh->state);
3146 if (rmw < rcw && rmw > 0) {
3147 /* prefer read-modify-write, but need to get some data */
3148 if (conf->mddev->queue)
3149 blk_add_trace_msg(conf->mddev->queue,
3150 "raid5 rmw %llu %d",
3151 (unsigned long long)sh->sector, rmw);
3152 for (i = disks; i--; ) {
3153 struct r5dev *dev = &sh->dev[i];
3154 if ((dev->towrite || i == sh->pd_idx) &&
3155 !test_bit(R5_LOCKED, &dev->flags) &&
3156 !(test_bit(R5_UPTODATE, &dev->flags) ||
3157 test_bit(R5_Wantcompute, &dev->flags)) &&
3158 test_bit(R5_Insync, &dev->flags)) {
3159 if (test_bit(STRIPE_PREREAD_ACTIVE,
3160 &sh->state)) {
3161 pr_debug("Read_old block %d for r-m-w\n",
3162 i);
3163 set_bit(R5_LOCKED, &dev->flags);
3164 set_bit(R5_Wantread, &dev->flags);
3165 s->locked++;
3166 } else {
3167 set_bit(STRIPE_DELAYED, &sh->state);
3168 set_bit(STRIPE_HANDLE, &sh->state);
3169 }
3170 }
3171 }
3172 }
3173 if (rcw <= rmw && rcw > 0) {
3174 /* want reconstruct write, but need to get some data */
3175 int qread =0;
3176 rcw = 0;
3177 for (i = disks; i--; ) {
3178 struct r5dev *dev = &sh->dev[i];
3179 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3180 i != sh->pd_idx && i != sh->qd_idx &&
3181 !test_bit(R5_LOCKED, &dev->flags) &&
3182 !(test_bit(R5_UPTODATE, &dev->flags) ||
3183 test_bit(R5_Wantcompute, &dev->flags))) {
3184 rcw++;
3185 if (test_bit(R5_Insync, &dev->flags) &&
3186 test_bit(STRIPE_PREREAD_ACTIVE,
3187 &sh->state)) {
3188 pr_debug("Read_old block "
3189 "%d for Reconstruct\n", i);
3190 set_bit(R5_LOCKED, &dev->flags);
3191 set_bit(R5_Wantread, &dev->flags);
3192 s->locked++;
3193 qread++;
3194 } else {
3195 set_bit(STRIPE_DELAYED, &sh->state);
3196 set_bit(STRIPE_HANDLE, &sh->state);
3197 }
3198 }
3199 }
3200 if (rcw && conf->mddev->queue)
3201 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3202 (unsigned long long)sh->sector,
3203 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3204 }
3205
3206 if (rcw > disks && rmw > disks &&
3207 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3208 set_bit(STRIPE_DELAYED, &sh->state);
3209
3210 /* now if nothing is locked, and if we have enough data,
3211 * we can start a write request
3212 */
3213 /* since handle_stripe can be called at any time we need to handle the
3214 * case where a compute block operation has been submitted and then a
3215 * subsequent call wants to start a write request. raid_run_ops only
3216 * handles the case where compute block and reconstruct are requested
3217 * simultaneously. If this is not the case then new writes need to be
3218 * held off until the compute completes.
3219 */
3220 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3221 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3222 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3223 schedule_reconstruction(sh, s, rcw == 0, 0);
3224 }
3225
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3226 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3227 struct stripe_head_state *s, int disks)
3228 {
3229 struct r5dev *dev = NULL;
3230
3231 set_bit(STRIPE_HANDLE, &sh->state);
3232
3233 switch (sh->check_state) {
3234 case check_state_idle:
3235 /* start a new check operation if there are no failures */
3236 if (s->failed == 0) {
3237 BUG_ON(s->uptodate != disks);
3238 sh->check_state = check_state_run;
3239 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3240 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3241 s->uptodate--;
3242 break;
3243 }
3244 dev = &sh->dev[s->failed_num[0]];
3245 /* fall through */
3246 case check_state_compute_result:
3247 sh->check_state = check_state_idle;
3248 if (!dev)
3249 dev = &sh->dev[sh->pd_idx];
3250
3251 /* check that a write has not made the stripe insync */
3252 if (test_bit(STRIPE_INSYNC, &sh->state))
3253 break;
3254
3255 /* either failed parity check, or recovery is happening */
3256 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3257 BUG_ON(s->uptodate != disks);
3258
3259 set_bit(R5_LOCKED, &dev->flags);
3260 s->locked++;
3261 set_bit(R5_Wantwrite, &dev->flags);
3262
3263 clear_bit(STRIPE_DEGRADED, &sh->state);
3264 set_bit(STRIPE_INSYNC, &sh->state);
3265 break;
3266 case check_state_run:
3267 break; /* we will be called again upon completion */
3268 case check_state_check_result:
3269 sh->check_state = check_state_idle;
3270
3271 /* if a failure occurred during the check operation, leave
3272 * STRIPE_INSYNC not set and let the stripe be handled again
3273 */
3274 if (s->failed)
3275 break;
3276
3277 /* handle a successful check operation, if parity is correct
3278 * we are done. Otherwise update the mismatch count and repair
3279 * parity if !MD_RECOVERY_CHECK
3280 */
3281 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3282 /* parity is correct (on disc,
3283 * not in buffer any more)
3284 */
3285 set_bit(STRIPE_INSYNC, &sh->state);
3286 else {
3287 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3288 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3289 /* don't try to repair!! */
3290 set_bit(STRIPE_INSYNC, &sh->state);
3291 else {
3292 sh->check_state = check_state_compute_run;
3293 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3294 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3295 set_bit(R5_Wantcompute,
3296 &sh->dev[sh->pd_idx].flags);
3297 sh->ops.target = sh->pd_idx;
3298 sh->ops.target2 = -1;
3299 s->uptodate++;
3300 }
3301 }
3302 break;
3303 case check_state_compute_run:
3304 break;
3305 default:
3306 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3307 __func__, sh->check_state,
3308 (unsigned long long) sh->sector);
3309 BUG();
3310 }
3311 }
3312
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3313 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3314 struct stripe_head_state *s,
3315 int disks)
3316 {
3317 int pd_idx = sh->pd_idx;
3318 int qd_idx = sh->qd_idx;
3319 struct r5dev *dev;
3320
3321 set_bit(STRIPE_HANDLE, &sh->state);
3322
3323 BUG_ON(s->failed > 2);
3324
3325 /* Want to check and possibly repair P and Q.
3326 * However there could be one 'failed' device, in which
3327 * case we can only check one of them, possibly using the
3328 * other to generate missing data
3329 */
3330
3331 switch (sh->check_state) {
3332 case check_state_idle:
3333 /* start a new check operation if there are < 2 failures */
3334 if (s->failed == s->q_failed) {
3335 /* The only possible failed device holds Q, so it
3336 * makes sense to check P (If anything else were failed,
3337 * we would have used P to recreate it).
3338 */
3339 sh->check_state = check_state_run;
3340 }
3341 if (!s->q_failed && s->failed < 2) {
3342 /* Q is not failed, and we didn't use it to generate
3343 * anything, so it makes sense to check it
3344 */
3345 if (sh->check_state == check_state_run)
3346 sh->check_state = check_state_run_pq;
3347 else
3348 sh->check_state = check_state_run_q;
3349 }
3350
3351 /* discard potentially stale zero_sum_result */
3352 sh->ops.zero_sum_result = 0;
3353
3354 if (sh->check_state == check_state_run) {
3355 /* async_xor_zero_sum destroys the contents of P */
3356 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3357 s->uptodate--;
3358 }
3359 if (sh->check_state >= check_state_run &&
3360 sh->check_state <= check_state_run_pq) {
3361 /* async_syndrome_zero_sum preserves P and Q, so
3362 * no need to mark them !uptodate here
3363 */
3364 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3365 break;
3366 }
3367
3368 /* we have 2-disk failure */
3369 BUG_ON(s->failed != 2);
3370 /* fall through */
3371 case check_state_compute_result:
3372 sh->check_state = check_state_idle;
3373
3374 /* check that a write has not made the stripe insync */
3375 if (test_bit(STRIPE_INSYNC, &sh->state))
3376 break;
3377
3378 /* now write out any block on a failed drive,
3379 * or P or Q if they were recomputed
3380 */
3381 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3382 if (s->failed == 2) {
3383 dev = &sh->dev[s->failed_num[1]];
3384 s->locked++;
3385 set_bit(R5_LOCKED, &dev->flags);
3386 set_bit(R5_Wantwrite, &dev->flags);
3387 }
3388 if (s->failed >= 1) {
3389 dev = &sh->dev[s->failed_num[0]];
3390 s->locked++;
3391 set_bit(R5_LOCKED, &dev->flags);
3392 set_bit(R5_Wantwrite, &dev->flags);
3393 }
3394 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3395 dev = &sh->dev[pd_idx];
3396 s->locked++;
3397 set_bit(R5_LOCKED, &dev->flags);
3398 set_bit(R5_Wantwrite, &dev->flags);
3399 }
3400 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3401 dev = &sh->dev[qd_idx];
3402 s->locked++;
3403 set_bit(R5_LOCKED, &dev->flags);
3404 set_bit(R5_Wantwrite, &dev->flags);
3405 }
3406 clear_bit(STRIPE_DEGRADED, &sh->state);
3407
3408 set_bit(STRIPE_INSYNC, &sh->state);
3409 break;
3410 case check_state_run:
3411 case check_state_run_q:
3412 case check_state_run_pq:
3413 break; /* we will be called again upon completion */
3414 case check_state_check_result:
3415 sh->check_state = check_state_idle;
3416
3417 /* handle a successful check operation, if parity is correct
3418 * we are done. Otherwise update the mismatch count and repair
3419 * parity if !MD_RECOVERY_CHECK
3420 */
3421 if (sh->ops.zero_sum_result == 0) {
3422 /* both parities are correct */
3423 if (!s->failed)
3424 set_bit(STRIPE_INSYNC, &sh->state);
3425 else {
3426 /* in contrast to the raid5 case we can validate
3427 * parity, but still have a failure to write
3428 * back
3429 */
3430 sh->check_state = check_state_compute_result;
3431 /* Returning at this point means that we may go
3432 * off and bring p and/or q uptodate again so
3433 * we make sure to check zero_sum_result again
3434 * to verify if p or q need writeback
3435 */
3436 }
3437 } else {
3438 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3439 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3440 /* don't try to repair!! */
3441 set_bit(STRIPE_INSYNC, &sh->state);
3442 else {
3443 int *target = &sh->ops.target;
3444
3445 sh->ops.target = -1;
3446 sh->ops.target2 = -1;
3447 sh->check_state = check_state_compute_run;
3448 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3449 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3450 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3451 set_bit(R5_Wantcompute,
3452 &sh->dev[pd_idx].flags);
3453 *target = pd_idx;
3454 target = &sh->ops.target2;
3455 s->uptodate++;
3456 }
3457 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3458 set_bit(R5_Wantcompute,
3459 &sh->dev[qd_idx].flags);
3460 *target = qd_idx;
3461 s->uptodate++;
3462 }
3463 }
3464 }
3465 break;
3466 case check_state_compute_run:
3467 break;
3468 default:
3469 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3470 __func__, sh->check_state,
3471 (unsigned long long) sh->sector);
3472 BUG();
3473 }
3474 }
3475
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)3476 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3477 {
3478 int i;
3479
3480 /* We have read all the blocks in this stripe and now we need to
3481 * copy some of them into a target stripe for expand.
3482 */
3483 struct dma_async_tx_descriptor *tx = NULL;
3484 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3485 for (i = 0; i < sh->disks; i++)
3486 if (i != sh->pd_idx && i != sh->qd_idx) {
3487 int dd_idx, j;
3488 struct stripe_head *sh2;
3489 struct async_submit_ctl submit;
3490
3491 sector_t bn = compute_blocknr(sh, i, 1);
3492 sector_t s = raid5_compute_sector(conf, bn, 0,
3493 &dd_idx, NULL);
3494 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3495 if (sh2 == NULL)
3496 /* so far only the early blocks of this stripe
3497 * have been requested. When later blocks
3498 * get requested, we will try again
3499 */
3500 continue;
3501 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3502 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3503 /* must have already done this block */
3504 release_stripe(sh2);
3505 continue;
3506 }
3507
3508 /* place all the copies on one channel */
3509 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3510 tx = async_memcpy(sh2->dev[dd_idx].page,
3511 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3512 &submit);
3513
3514 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3515 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3516 for (j = 0; j < conf->raid_disks; j++)
3517 if (j != sh2->pd_idx &&
3518 j != sh2->qd_idx &&
3519 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3520 break;
3521 if (j == conf->raid_disks) {
3522 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3523 set_bit(STRIPE_HANDLE, &sh2->state);
3524 }
3525 release_stripe(sh2);
3526
3527 }
3528 /* done submitting copies, wait for them to complete */
3529 async_tx_quiesce(&tx);
3530 }
3531
3532 /*
3533 * handle_stripe - do things to a stripe.
3534 *
3535 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3536 * state of various bits to see what needs to be done.
3537 * Possible results:
3538 * return some read requests which now have data
3539 * return some write requests which are safely on storage
3540 * schedule a read on some buffers
3541 * schedule a write of some buffers
3542 * return confirmation of parity correctness
3543 *
3544 */
3545
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)3546 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3547 {
3548 struct r5conf *conf = sh->raid_conf;
3549 int disks = sh->disks;
3550 struct r5dev *dev;
3551 int i;
3552 int do_recovery = 0;
3553
3554 memset(s, 0, sizeof(*s));
3555
3556 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3557 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3558 s->failed_num[0] = -1;
3559 s->failed_num[1] = -1;
3560
3561 /* Now to look around and see what can be done */
3562 rcu_read_lock();
3563 for (i=disks; i--; ) {
3564 struct md_rdev *rdev;
3565 sector_t first_bad;
3566 int bad_sectors;
3567 int is_bad = 0;
3568
3569 dev = &sh->dev[i];
3570
3571 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3572 i, dev->flags,
3573 dev->toread, dev->towrite, dev->written);
3574 /* maybe we can reply to a read
3575 *
3576 * new wantfill requests are only permitted while
3577 * ops_complete_biofill is guaranteed to be inactive
3578 */
3579 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3580 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3581 set_bit(R5_Wantfill, &dev->flags);
3582
3583 /* now count some things */
3584 if (test_bit(R5_LOCKED, &dev->flags))
3585 s->locked++;
3586 if (test_bit(R5_UPTODATE, &dev->flags))
3587 s->uptodate++;
3588 if (test_bit(R5_Wantcompute, &dev->flags)) {
3589 s->compute++;
3590 BUG_ON(s->compute > 2);
3591 }
3592
3593 if (test_bit(R5_Wantfill, &dev->flags))
3594 s->to_fill++;
3595 else if (dev->toread)
3596 s->to_read++;
3597 if (dev->towrite) {
3598 s->to_write++;
3599 if (!test_bit(R5_OVERWRITE, &dev->flags))
3600 s->non_overwrite++;
3601 }
3602 if (dev->written)
3603 s->written++;
3604 /* Prefer to use the replacement for reads, but only
3605 * if it is recovered enough and has no bad blocks.
3606 */
3607 rdev = rcu_dereference(conf->disks[i].replacement);
3608 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3609 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3610 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3611 &first_bad, &bad_sectors))
3612 set_bit(R5_ReadRepl, &dev->flags);
3613 else {
3614 if (rdev)
3615 set_bit(R5_NeedReplace, &dev->flags);
3616 rdev = rcu_dereference(conf->disks[i].rdev);
3617 clear_bit(R5_ReadRepl, &dev->flags);
3618 }
3619 if (rdev && test_bit(Faulty, &rdev->flags))
3620 rdev = NULL;
3621 if (rdev) {
3622 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3623 &first_bad, &bad_sectors);
3624 if (s->blocked_rdev == NULL
3625 && (test_bit(Blocked, &rdev->flags)
3626 || is_bad < 0)) {
3627 if (is_bad < 0)
3628 set_bit(BlockedBadBlocks,
3629 &rdev->flags);
3630 s->blocked_rdev = rdev;
3631 atomic_inc(&rdev->nr_pending);
3632 }
3633 }
3634 clear_bit(R5_Insync, &dev->flags);
3635 if (!rdev)
3636 /* Not in-sync */;
3637 else if (is_bad) {
3638 /* also not in-sync */
3639 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3640 test_bit(R5_UPTODATE, &dev->flags)) {
3641 /* treat as in-sync, but with a read error
3642 * which we can now try to correct
3643 */
3644 set_bit(R5_Insync, &dev->flags);
3645 set_bit(R5_ReadError, &dev->flags);
3646 }
3647 } else if (test_bit(In_sync, &rdev->flags))
3648 set_bit(R5_Insync, &dev->flags);
3649 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3650 /* in sync if before recovery_offset */
3651 set_bit(R5_Insync, &dev->flags);
3652 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3653 test_bit(R5_Expanded, &dev->flags))
3654 /* If we've reshaped into here, we assume it is Insync.
3655 * We will shortly update recovery_offset to make
3656 * it official.
3657 */
3658 set_bit(R5_Insync, &dev->flags);
3659
3660 if (test_bit(R5_WriteError, &dev->flags)) {
3661 /* This flag does not apply to '.replacement'
3662 * only to .rdev, so make sure to check that*/
3663 struct md_rdev *rdev2 = rcu_dereference(
3664 conf->disks[i].rdev);
3665 if (rdev2 == rdev)
3666 clear_bit(R5_Insync, &dev->flags);
3667 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3668 s->handle_bad_blocks = 1;
3669 atomic_inc(&rdev2->nr_pending);
3670 } else
3671 clear_bit(R5_WriteError, &dev->flags);
3672 }
3673 if (test_bit(R5_MadeGood, &dev->flags)) {
3674 /* This flag does not apply to '.replacement'
3675 * only to .rdev, so make sure to check that*/
3676 struct md_rdev *rdev2 = rcu_dereference(
3677 conf->disks[i].rdev);
3678 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3679 s->handle_bad_blocks = 1;
3680 atomic_inc(&rdev2->nr_pending);
3681 } else
3682 clear_bit(R5_MadeGood, &dev->flags);
3683 }
3684 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3685 struct md_rdev *rdev2 = rcu_dereference(
3686 conf->disks[i].replacement);
3687 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3688 s->handle_bad_blocks = 1;
3689 atomic_inc(&rdev2->nr_pending);
3690 } else
3691 clear_bit(R5_MadeGoodRepl, &dev->flags);
3692 }
3693 if (!test_bit(R5_Insync, &dev->flags)) {
3694 /* The ReadError flag will just be confusing now */
3695 clear_bit(R5_ReadError, &dev->flags);
3696 clear_bit(R5_ReWrite, &dev->flags);
3697 }
3698 if (test_bit(R5_ReadError, &dev->flags))
3699 clear_bit(R5_Insync, &dev->flags);
3700 if (!test_bit(R5_Insync, &dev->flags)) {
3701 if (s->failed < 2)
3702 s->failed_num[s->failed] = i;
3703 s->failed++;
3704 if (rdev && !test_bit(Faulty, &rdev->flags))
3705 do_recovery = 1;
3706 }
3707 }
3708 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3709 /* If there is a failed device being replaced,
3710 * we must be recovering.
3711 * else if we are after recovery_cp, we must be syncing
3712 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3713 * else we can only be replacing
3714 * sync and recovery both need to read all devices, and so
3715 * use the same flag.
3716 */
3717 if (do_recovery ||
3718 sh->sector >= conf->mddev->recovery_cp ||
3719 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3720 s->syncing = 1;
3721 else
3722 s->replacing = 1;
3723 }
3724 rcu_read_unlock();
3725 }
3726
handle_stripe(struct stripe_head * sh)3727 static void handle_stripe(struct stripe_head *sh)
3728 {
3729 struct stripe_head_state s;
3730 struct r5conf *conf = sh->raid_conf;
3731 int i;
3732 int prexor;
3733 int disks = sh->disks;
3734 struct r5dev *pdev, *qdev;
3735
3736 clear_bit(STRIPE_HANDLE, &sh->state);
3737 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3738 /* already being handled, ensure it gets handled
3739 * again when current action finishes */
3740 set_bit(STRIPE_HANDLE, &sh->state);
3741 return;
3742 }
3743
3744 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3745 spin_lock(&sh->stripe_lock);
3746 /* Cannot process 'sync' concurrently with 'discard' */
3747 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3748 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3749 set_bit(STRIPE_SYNCING, &sh->state);
3750 clear_bit(STRIPE_INSYNC, &sh->state);
3751 clear_bit(STRIPE_REPLACED, &sh->state);
3752 }
3753 spin_unlock(&sh->stripe_lock);
3754 }
3755 clear_bit(STRIPE_DELAYED, &sh->state);
3756
3757 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3758 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3759 (unsigned long long)sh->sector, sh->state,
3760 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3761 sh->check_state, sh->reconstruct_state);
3762
3763 analyse_stripe(sh, &s);
3764
3765 if (s.handle_bad_blocks) {
3766 set_bit(STRIPE_HANDLE, &sh->state);
3767 goto finish;
3768 }
3769
3770 if (unlikely(s.blocked_rdev)) {
3771 if (s.syncing || s.expanding || s.expanded ||
3772 s.replacing || s.to_write || s.written) {
3773 set_bit(STRIPE_HANDLE, &sh->state);
3774 goto finish;
3775 }
3776 /* There is nothing for the blocked_rdev to block */
3777 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3778 s.blocked_rdev = NULL;
3779 }
3780
3781 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3782 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3783 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3784 }
3785
3786 pr_debug("locked=%d uptodate=%d to_read=%d"
3787 " to_write=%d failed=%d failed_num=%d,%d\n",
3788 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3789 s.failed_num[0], s.failed_num[1]);
3790 /* check if the array has lost more than max_degraded devices and,
3791 * if so, some requests might need to be failed.
3792 */
3793 if (s.failed > conf->max_degraded) {
3794 sh->check_state = 0;
3795 sh->reconstruct_state = 0;
3796 if (s.to_read+s.to_write+s.written)
3797 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3798 if (s.syncing + s.replacing)
3799 handle_failed_sync(conf, sh, &s);
3800 }
3801
3802 /* Now we check to see if any write operations have recently
3803 * completed
3804 */
3805 prexor = 0;
3806 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3807 prexor = 1;
3808 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3809 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3810 sh->reconstruct_state = reconstruct_state_idle;
3811
3812 /* All the 'written' buffers and the parity block are ready to
3813 * be written back to disk
3814 */
3815 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3816 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3817 BUG_ON(sh->qd_idx >= 0 &&
3818 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3819 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3820 for (i = disks; i--; ) {
3821 struct r5dev *dev = &sh->dev[i];
3822 if (test_bit(R5_LOCKED, &dev->flags) &&
3823 (i == sh->pd_idx || i == sh->qd_idx ||
3824 dev->written)) {
3825 pr_debug("Writing block %d\n", i);
3826 set_bit(R5_Wantwrite, &dev->flags);
3827 if (prexor)
3828 continue;
3829 if (s.failed > 1)
3830 continue;
3831 if (!test_bit(R5_Insync, &dev->flags) ||
3832 ((i == sh->pd_idx || i == sh->qd_idx) &&
3833 s.failed == 0))
3834 set_bit(STRIPE_INSYNC, &sh->state);
3835 }
3836 }
3837 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3838 s.dec_preread_active = 1;
3839 }
3840
3841 /*
3842 * might be able to return some write requests if the parity blocks
3843 * are safe, or on a failed drive
3844 */
3845 pdev = &sh->dev[sh->pd_idx];
3846 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3847 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3848 qdev = &sh->dev[sh->qd_idx];
3849 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3850 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3851 || conf->level < 6;
3852
3853 if (s.written &&
3854 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3855 && !test_bit(R5_LOCKED, &pdev->flags)
3856 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3857 test_bit(R5_Discard, &pdev->flags))))) &&
3858 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3859 && !test_bit(R5_LOCKED, &qdev->flags)
3860 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3861 test_bit(R5_Discard, &qdev->flags))))))
3862 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3863
3864 /* Now we might consider reading some blocks, either to check/generate
3865 * parity, or to satisfy requests
3866 * or to load a block that is being partially written.
3867 */
3868 if (s.to_read || s.non_overwrite
3869 || (conf->level == 6 && s.to_write && s.failed)
3870 || (s.syncing && (s.uptodate + s.compute < disks))
3871 || s.replacing
3872 || s.expanding)
3873 handle_stripe_fill(sh, &s, disks);
3874
3875 /* Now to consider new write requests and what else, if anything
3876 * should be read. We do not handle new writes when:
3877 * 1/ A 'write' operation (copy+xor) is already in flight.
3878 * 2/ A 'check' operation is in flight, as it may clobber the parity
3879 * block.
3880 */
3881 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3882 handle_stripe_dirtying(conf, sh, &s, disks);
3883
3884 /* maybe we need to check and possibly fix the parity for this stripe
3885 * Any reads will already have been scheduled, so we just see if enough
3886 * data is available. The parity check is held off while parity
3887 * dependent operations are in flight.
3888 */
3889 if (sh->check_state ||
3890 (s.syncing && s.locked == 0 &&
3891 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3892 !test_bit(STRIPE_INSYNC, &sh->state))) {
3893 if (conf->level == 6)
3894 handle_parity_checks6(conf, sh, &s, disks);
3895 else
3896 handle_parity_checks5(conf, sh, &s, disks);
3897 }
3898
3899 if ((s.replacing || s.syncing) && s.locked == 0
3900 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3901 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3902 /* Write out to replacement devices where possible */
3903 for (i = 0; i < conf->raid_disks; i++)
3904 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3905 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3906 set_bit(R5_WantReplace, &sh->dev[i].flags);
3907 set_bit(R5_LOCKED, &sh->dev[i].flags);
3908 s.locked++;
3909 }
3910 if (s.replacing)
3911 set_bit(STRIPE_INSYNC, &sh->state);
3912 set_bit(STRIPE_REPLACED, &sh->state);
3913 }
3914 if ((s.syncing || s.replacing) && s.locked == 0 &&
3915 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3916 test_bit(STRIPE_INSYNC, &sh->state)) {
3917 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3918 clear_bit(STRIPE_SYNCING, &sh->state);
3919 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3920 wake_up(&conf->wait_for_overlap);
3921 }
3922
3923 /* If the failed drives are just a ReadError, then we might need
3924 * to progress the repair/check process
3925 */
3926 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3927 for (i = 0; i < s.failed; i++) {
3928 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3929 if (test_bit(R5_ReadError, &dev->flags)
3930 && !test_bit(R5_LOCKED, &dev->flags)
3931 && test_bit(R5_UPTODATE, &dev->flags)
3932 ) {
3933 if (!test_bit(R5_ReWrite, &dev->flags)) {
3934 set_bit(R5_Wantwrite, &dev->flags);
3935 set_bit(R5_ReWrite, &dev->flags);
3936 set_bit(R5_LOCKED, &dev->flags);
3937 s.locked++;
3938 } else {
3939 /* let's read it back */
3940 set_bit(R5_Wantread, &dev->flags);
3941 set_bit(R5_LOCKED, &dev->flags);
3942 s.locked++;
3943 }
3944 }
3945 }
3946
3947 /* Finish reconstruct operations initiated by the expansion process */
3948 if (sh->reconstruct_state == reconstruct_state_result) {
3949 struct stripe_head *sh_src
3950 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3951 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3952 /* sh cannot be written until sh_src has been read.
3953 * so arrange for sh to be delayed a little
3954 */
3955 set_bit(STRIPE_DELAYED, &sh->state);
3956 set_bit(STRIPE_HANDLE, &sh->state);
3957 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3958 &sh_src->state))
3959 atomic_inc(&conf->preread_active_stripes);
3960 release_stripe(sh_src);
3961 goto finish;
3962 }
3963 if (sh_src)
3964 release_stripe(sh_src);
3965
3966 sh->reconstruct_state = reconstruct_state_idle;
3967 clear_bit(STRIPE_EXPANDING, &sh->state);
3968 for (i = conf->raid_disks; i--; ) {
3969 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3970 set_bit(R5_LOCKED, &sh->dev[i].flags);
3971 s.locked++;
3972 }
3973 }
3974
3975 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3976 !sh->reconstruct_state) {
3977 /* Need to write out all blocks after computing parity */
3978 sh->disks = conf->raid_disks;
3979 stripe_set_idx(sh->sector, conf, 0, sh);
3980 schedule_reconstruction(sh, &s, 1, 1);
3981 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3982 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3983 atomic_dec(&conf->reshape_stripes);
3984 wake_up(&conf->wait_for_overlap);
3985 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3986 }
3987
3988 if (s.expanding && s.locked == 0 &&
3989 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3990 handle_stripe_expansion(conf, sh);
3991
3992 finish:
3993 /* wait for this device to become unblocked */
3994 if (unlikely(s.blocked_rdev)) {
3995 if (conf->mddev->external)
3996 md_wait_for_blocked_rdev(s.blocked_rdev,
3997 conf->mddev);
3998 else
3999 /* Internal metadata will immediately
4000 * be written by raid5d, so we don't
4001 * need to wait here.
4002 */
4003 rdev_dec_pending(s.blocked_rdev,
4004 conf->mddev);
4005 }
4006
4007 if (s.handle_bad_blocks)
4008 for (i = disks; i--; ) {
4009 struct md_rdev *rdev;
4010 struct r5dev *dev = &sh->dev[i];
4011 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4012 /* We own a safe reference to the rdev */
4013 rdev = conf->disks[i].rdev;
4014 if (!rdev_set_badblocks(rdev, sh->sector,
4015 STRIPE_SECTORS, 0))
4016 md_error(conf->mddev, rdev);
4017 rdev_dec_pending(rdev, conf->mddev);
4018 }
4019 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4020 rdev = conf->disks[i].rdev;
4021 rdev_clear_badblocks(rdev, sh->sector,
4022 STRIPE_SECTORS, 0);
4023 rdev_dec_pending(rdev, conf->mddev);
4024 }
4025 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4026 rdev = conf->disks[i].replacement;
4027 if (!rdev)
4028 /* rdev have been moved down */
4029 rdev = conf->disks[i].rdev;
4030 rdev_clear_badblocks(rdev, sh->sector,
4031 STRIPE_SECTORS, 0);
4032 rdev_dec_pending(rdev, conf->mddev);
4033 }
4034 }
4035
4036 if (s.ops_request)
4037 raid_run_ops(sh, s.ops_request);
4038
4039 ops_run_io(sh, &s);
4040
4041 if (s.dec_preread_active) {
4042 /* We delay this until after ops_run_io so that if make_request
4043 * is waiting on a flush, it won't continue until the writes
4044 * have actually been submitted.
4045 */
4046 atomic_dec(&conf->preread_active_stripes);
4047 if (atomic_read(&conf->preread_active_stripes) <
4048 IO_THRESHOLD)
4049 md_wakeup_thread(conf->mddev->thread);
4050 }
4051
4052 return_io(s.return_bi);
4053
4054 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4055 }
4056
raid5_activate_delayed(struct r5conf * conf)4057 static void raid5_activate_delayed(struct r5conf *conf)
4058 {
4059 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4060 while (!list_empty(&conf->delayed_list)) {
4061 struct list_head *l = conf->delayed_list.next;
4062 struct stripe_head *sh;
4063 sh = list_entry(l, struct stripe_head, lru);
4064 list_del_init(l);
4065 clear_bit(STRIPE_DELAYED, &sh->state);
4066 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4067 atomic_inc(&conf->preread_active_stripes);
4068 list_add_tail(&sh->lru, &conf->hold_list);
4069 raid5_wakeup_stripe_thread(sh);
4070 }
4071 }
4072 }
4073
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)4074 static void activate_bit_delay(struct r5conf *conf,
4075 struct list_head *temp_inactive_list)
4076 {
4077 /* device_lock is held */
4078 struct list_head head;
4079 list_add(&head, &conf->bitmap_list);
4080 list_del_init(&conf->bitmap_list);
4081 while (!list_empty(&head)) {
4082 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4083 int hash;
4084 list_del_init(&sh->lru);
4085 atomic_inc(&sh->count);
4086 hash = sh->hash_lock_index;
4087 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4088 }
4089 }
4090
md_raid5_congested(struct mddev * mddev,int bits)4091 int md_raid5_congested(struct mddev *mddev, int bits)
4092 {
4093 struct r5conf *conf = mddev->private;
4094
4095 /* No difference between reads and writes. Just check
4096 * how busy the stripe_cache is
4097 */
4098
4099 if (conf->inactive_blocked)
4100 return 1;
4101 if (conf->quiesce)
4102 return 1;
4103 if (atomic_read(&conf->empty_inactive_list_nr))
4104 return 1;
4105
4106 return 0;
4107 }
4108 EXPORT_SYMBOL_GPL(md_raid5_congested);
4109
raid5_congested(void * data,int bits)4110 static int raid5_congested(void *data, int bits)
4111 {
4112 struct mddev *mddev = data;
4113
4114 return mddev_congested(mddev, bits) ||
4115 md_raid5_congested(mddev, bits);
4116 }
4117
4118 /* We want read requests to align with chunks where possible,
4119 * but write requests don't need to.
4120 */
raid5_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)4121 static int raid5_mergeable_bvec(struct request_queue *q,
4122 struct bvec_merge_data *bvm,
4123 struct bio_vec *biovec)
4124 {
4125 struct mddev *mddev = q->queuedata;
4126 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4127 int max;
4128 unsigned int chunk_sectors = mddev->chunk_sectors;
4129 unsigned int bio_sectors = bvm->bi_size >> 9;
4130
4131 if ((bvm->bi_rw & 1) == WRITE)
4132 return biovec->bv_len; /* always allow writes to be mergeable */
4133
4134 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4135 chunk_sectors = mddev->new_chunk_sectors;
4136 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4137 if (max < 0) max = 0;
4138 if (max <= biovec->bv_len && bio_sectors == 0)
4139 return biovec->bv_len;
4140 else
4141 return max;
4142 }
4143
in_chunk_boundary(struct mddev * mddev,struct bio * bio)4144 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4145 {
4146 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4147 unsigned int chunk_sectors = mddev->chunk_sectors;
4148 unsigned int bio_sectors = bio_sectors(bio);
4149
4150 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4151 chunk_sectors = mddev->new_chunk_sectors;
4152 return chunk_sectors >=
4153 ((sector & (chunk_sectors - 1)) + bio_sectors);
4154 }
4155
4156 /*
4157 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4158 * later sampled by raid5d.
4159 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)4160 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4161 {
4162 unsigned long flags;
4163
4164 spin_lock_irqsave(&conf->device_lock, flags);
4165
4166 bi->bi_next = conf->retry_read_aligned_list;
4167 conf->retry_read_aligned_list = bi;
4168
4169 spin_unlock_irqrestore(&conf->device_lock, flags);
4170 md_wakeup_thread(conf->mddev->thread);
4171 }
4172
remove_bio_from_retry(struct r5conf * conf)4173 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4174 {
4175 struct bio *bi;
4176
4177 bi = conf->retry_read_aligned;
4178 if (bi) {
4179 conf->retry_read_aligned = NULL;
4180 return bi;
4181 }
4182 bi = conf->retry_read_aligned_list;
4183 if(bi) {
4184 conf->retry_read_aligned_list = bi->bi_next;
4185 bi->bi_next = NULL;
4186 /*
4187 * this sets the active strip count to 1 and the processed
4188 * strip count to zero (upper 8 bits)
4189 */
4190 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4191 }
4192
4193 return bi;
4194 }
4195
4196 /*
4197 * The "raid5_align_endio" should check if the read succeeded and if it
4198 * did, call bio_endio on the original bio (having bio_put the new bio
4199 * first).
4200 * If the read failed..
4201 */
raid5_align_endio(struct bio * bi,int error)4202 static void raid5_align_endio(struct bio *bi, int error)
4203 {
4204 struct bio* raid_bi = bi->bi_private;
4205 struct mddev *mddev;
4206 struct r5conf *conf;
4207 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4208 struct md_rdev *rdev;
4209
4210 bio_put(bi);
4211
4212 rdev = (void*)raid_bi->bi_next;
4213 raid_bi->bi_next = NULL;
4214 mddev = rdev->mddev;
4215 conf = mddev->private;
4216
4217 rdev_dec_pending(rdev, conf->mddev);
4218
4219 if (!error && uptodate) {
4220 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4221 raid_bi, 0);
4222 bio_endio(raid_bi, 0);
4223 if (atomic_dec_and_test(&conf->active_aligned_reads))
4224 wake_up(&conf->wait_for_stripe);
4225 return;
4226 }
4227
4228 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4229
4230 add_bio_to_retry(raid_bi, conf);
4231 }
4232
bio_fits_rdev(struct bio * bi)4233 static int bio_fits_rdev(struct bio *bi)
4234 {
4235 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4236
4237 if (bio_sectors(bi) > queue_max_sectors(q))
4238 return 0;
4239 blk_recount_segments(q, bi);
4240 if (bi->bi_phys_segments > queue_max_segments(q))
4241 return 0;
4242
4243 if (q->merge_bvec_fn)
4244 /* it's too hard to apply the merge_bvec_fn at this stage,
4245 * just just give up
4246 */
4247 return 0;
4248
4249 return 1;
4250 }
4251
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)4252 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4253 {
4254 struct r5conf *conf = mddev->private;
4255 int dd_idx;
4256 struct bio* align_bi;
4257 struct md_rdev *rdev;
4258 sector_t end_sector;
4259
4260 if (!in_chunk_boundary(mddev, raid_bio)) {
4261 pr_debug("chunk_aligned_read : non aligned\n");
4262 return 0;
4263 }
4264 /*
4265 * use bio_clone_mddev to make a copy of the bio
4266 */
4267 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4268 if (!align_bi)
4269 return 0;
4270 /*
4271 * set bi_end_io to a new function, and set bi_private to the
4272 * original bio.
4273 */
4274 align_bi->bi_end_io = raid5_align_endio;
4275 align_bi->bi_private = raid_bio;
4276 /*
4277 * compute position
4278 */
4279 align_bi->bi_iter.bi_sector =
4280 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4281 0, &dd_idx, NULL);
4282
4283 end_sector = bio_end_sector(align_bi);
4284 rcu_read_lock();
4285 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4286 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4287 rdev->recovery_offset < end_sector) {
4288 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4289 if (rdev &&
4290 (test_bit(Faulty, &rdev->flags) ||
4291 !(test_bit(In_sync, &rdev->flags) ||
4292 rdev->recovery_offset >= end_sector)))
4293 rdev = NULL;
4294 }
4295 if (rdev) {
4296 sector_t first_bad;
4297 int bad_sectors;
4298
4299 atomic_inc(&rdev->nr_pending);
4300 rcu_read_unlock();
4301 raid_bio->bi_next = (void*)rdev;
4302 align_bi->bi_bdev = rdev->bdev;
4303 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4304
4305 if (!bio_fits_rdev(align_bi) ||
4306 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4307 bio_sectors(align_bi),
4308 &first_bad, &bad_sectors)) {
4309 /* too big in some way, or has a known bad block */
4310 bio_put(align_bi);
4311 rdev_dec_pending(rdev, mddev);
4312 return 0;
4313 }
4314
4315 /* No reshape active, so we can trust rdev->data_offset */
4316 align_bi->bi_iter.bi_sector += rdev->data_offset;
4317
4318 spin_lock_irq(&conf->device_lock);
4319 wait_event_lock_irq(conf->wait_for_stripe,
4320 conf->quiesce == 0,
4321 conf->device_lock);
4322 atomic_inc(&conf->active_aligned_reads);
4323 spin_unlock_irq(&conf->device_lock);
4324
4325 if (mddev->gendisk)
4326 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4327 align_bi, disk_devt(mddev->gendisk),
4328 raid_bio->bi_iter.bi_sector);
4329 generic_make_request(align_bi);
4330 return 1;
4331 } else {
4332 rcu_read_unlock();
4333 bio_put(align_bi);
4334 return 0;
4335 }
4336 }
4337
4338 /* __get_priority_stripe - get the next stripe to process
4339 *
4340 * Full stripe writes are allowed to pass preread active stripes up until
4341 * the bypass_threshold is exceeded. In general the bypass_count
4342 * increments when the handle_list is handled before the hold_list; however, it
4343 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4344 * stripe with in flight i/o. The bypass_count will be reset when the
4345 * head of the hold_list has changed, i.e. the head was promoted to the
4346 * handle_list.
4347 */
__get_priority_stripe(struct r5conf * conf,int group)4348 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4349 {
4350 struct stripe_head *sh = NULL, *tmp;
4351 struct list_head *handle_list = NULL;
4352 struct r5worker_group *wg = NULL;
4353
4354 if (conf->worker_cnt_per_group == 0) {
4355 handle_list = &conf->handle_list;
4356 } else if (group != ANY_GROUP) {
4357 handle_list = &conf->worker_groups[group].handle_list;
4358 wg = &conf->worker_groups[group];
4359 } else {
4360 int i;
4361 for (i = 0; i < conf->group_cnt; i++) {
4362 handle_list = &conf->worker_groups[i].handle_list;
4363 wg = &conf->worker_groups[i];
4364 if (!list_empty(handle_list))
4365 break;
4366 }
4367 }
4368
4369 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4370 __func__,
4371 list_empty(handle_list) ? "empty" : "busy",
4372 list_empty(&conf->hold_list) ? "empty" : "busy",
4373 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4374
4375 if (!list_empty(handle_list)) {
4376 sh = list_entry(handle_list->next, typeof(*sh), lru);
4377
4378 if (list_empty(&conf->hold_list))
4379 conf->bypass_count = 0;
4380 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4381 if (conf->hold_list.next == conf->last_hold)
4382 conf->bypass_count++;
4383 else {
4384 conf->last_hold = conf->hold_list.next;
4385 conf->bypass_count -= conf->bypass_threshold;
4386 if (conf->bypass_count < 0)
4387 conf->bypass_count = 0;
4388 }
4389 }
4390 } else if (!list_empty(&conf->hold_list) &&
4391 ((conf->bypass_threshold &&
4392 conf->bypass_count > conf->bypass_threshold) ||
4393 atomic_read(&conf->pending_full_writes) == 0)) {
4394
4395 list_for_each_entry(tmp, &conf->hold_list, lru) {
4396 if (conf->worker_cnt_per_group == 0 ||
4397 group == ANY_GROUP ||
4398 !cpu_online(tmp->cpu) ||
4399 cpu_to_group(tmp->cpu) == group) {
4400 sh = tmp;
4401 break;
4402 }
4403 }
4404
4405 if (sh) {
4406 conf->bypass_count -= conf->bypass_threshold;
4407 if (conf->bypass_count < 0)
4408 conf->bypass_count = 0;
4409 }
4410 wg = NULL;
4411 }
4412
4413 if (!sh)
4414 return NULL;
4415
4416 if (wg) {
4417 wg->stripes_cnt--;
4418 sh->group = NULL;
4419 }
4420 list_del_init(&sh->lru);
4421 BUG_ON(atomic_inc_return(&sh->count) != 1);
4422 return sh;
4423 }
4424
4425 struct raid5_plug_cb {
4426 struct blk_plug_cb cb;
4427 struct list_head list;
4428 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4429 };
4430
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)4431 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4432 {
4433 struct raid5_plug_cb *cb = container_of(
4434 blk_cb, struct raid5_plug_cb, cb);
4435 struct stripe_head *sh;
4436 struct mddev *mddev = cb->cb.data;
4437 struct r5conf *conf = mddev->private;
4438 int cnt = 0;
4439 int hash;
4440
4441 if (cb->list.next && !list_empty(&cb->list)) {
4442 spin_lock_irq(&conf->device_lock);
4443 while (!list_empty(&cb->list)) {
4444 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4445 list_del_init(&sh->lru);
4446 /*
4447 * avoid race release_stripe_plug() sees
4448 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4449 * is still in our list
4450 */
4451 smp_mb__before_atomic();
4452 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4453 /*
4454 * STRIPE_ON_RELEASE_LIST could be set here. In that
4455 * case, the count is always > 1 here
4456 */
4457 hash = sh->hash_lock_index;
4458 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4459 cnt++;
4460 }
4461 spin_unlock_irq(&conf->device_lock);
4462 }
4463 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4464 NR_STRIPE_HASH_LOCKS);
4465 if (mddev->queue)
4466 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4467 kfree(cb);
4468 }
4469
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)4470 static void release_stripe_plug(struct mddev *mddev,
4471 struct stripe_head *sh)
4472 {
4473 struct blk_plug_cb *blk_cb = blk_check_plugged(
4474 raid5_unplug, mddev,
4475 sizeof(struct raid5_plug_cb));
4476 struct raid5_plug_cb *cb;
4477
4478 if (!blk_cb) {
4479 release_stripe(sh);
4480 return;
4481 }
4482
4483 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4484
4485 if (cb->list.next == NULL) {
4486 int i;
4487 INIT_LIST_HEAD(&cb->list);
4488 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4489 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4490 }
4491
4492 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4493 list_add_tail(&sh->lru, &cb->list);
4494 else
4495 release_stripe(sh);
4496 }
4497
make_discard_request(struct mddev * mddev,struct bio * bi)4498 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4499 {
4500 struct r5conf *conf = mddev->private;
4501 sector_t logical_sector, last_sector;
4502 struct stripe_head *sh;
4503 int remaining;
4504 int stripe_sectors;
4505
4506 if (mddev->reshape_position != MaxSector)
4507 /* Skip discard while reshape is happening */
4508 return;
4509
4510 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4511 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4512
4513 bi->bi_next = NULL;
4514 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4515
4516 stripe_sectors = conf->chunk_sectors *
4517 (conf->raid_disks - conf->max_degraded);
4518 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4519 stripe_sectors);
4520 sector_div(last_sector, stripe_sectors);
4521
4522 logical_sector *= conf->chunk_sectors;
4523 last_sector *= conf->chunk_sectors;
4524
4525 for (; logical_sector < last_sector;
4526 logical_sector += STRIPE_SECTORS) {
4527 DEFINE_WAIT(w);
4528 int d;
4529 again:
4530 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4531 prepare_to_wait(&conf->wait_for_overlap, &w,
4532 TASK_UNINTERRUPTIBLE);
4533 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4534 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4535 release_stripe(sh);
4536 schedule();
4537 goto again;
4538 }
4539 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4540 spin_lock_irq(&sh->stripe_lock);
4541 for (d = 0; d < conf->raid_disks; d++) {
4542 if (d == sh->pd_idx || d == sh->qd_idx)
4543 continue;
4544 if (sh->dev[d].towrite || sh->dev[d].toread) {
4545 set_bit(R5_Overlap, &sh->dev[d].flags);
4546 spin_unlock_irq(&sh->stripe_lock);
4547 release_stripe(sh);
4548 schedule();
4549 goto again;
4550 }
4551 }
4552 set_bit(STRIPE_DISCARD, &sh->state);
4553 finish_wait(&conf->wait_for_overlap, &w);
4554 for (d = 0; d < conf->raid_disks; d++) {
4555 if (d == sh->pd_idx || d == sh->qd_idx)
4556 continue;
4557 sh->dev[d].towrite = bi;
4558 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4559 raid5_inc_bi_active_stripes(bi);
4560 }
4561 spin_unlock_irq(&sh->stripe_lock);
4562 if (conf->mddev->bitmap) {
4563 for (d = 0;
4564 d < conf->raid_disks - conf->max_degraded;
4565 d++)
4566 bitmap_startwrite(mddev->bitmap,
4567 sh->sector,
4568 STRIPE_SECTORS,
4569 0);
4570 sh->bm_seq = conf->seq_flush + 1;
4571 set_bit(STRIPE_BIT_DELAY, &sh->state);
4572 }
4573
4574 set_bit(STRIPE_HANDLE, &sh->state);
4575 clear_bit(STRIPE_DELAYED, &sh->state);
4576 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4577 atomic_inc(&conf->preread_active_stripes);
4578 release_stripe_plug(mddev, sh);
4579 }
4580
4581 remaining = raid5_dec_bi_active_stripes(bi);
4582 if (remaining == 0) {
4583 md_write_end(mddev);
4584 bio_endio(bi, 0);
4585 }
4586 }
4587
make_request(struct mddev * mddev,struct bio * bi)4588 static void make_request(struct mddev *mddev, struct bio * bi)
4589 {
4590 struct r5conf *conf = mddev->private;
4591 int dd_idx;
4592 sector_t new_sector;
4593 sector_t logical_sector, last_sector;
4594 struct stripe_head *sh;
4595 const int rw = bio_data_dir(bi);
4596 int remaining;
4597 DEFINE_WAIT(w);
4598 bool do_prepare;
4599
4600 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4601 md_flush_request(mddev, bi);
4602 return;
4603 }
4604
4605 md_write_start(mddev, bi);
4606
4607 if (rw == READ &&
4608 mddev->reshape_position == MaxSector &&
4609 chunk_aligned_read(mddev,bi))
4610 return;
4611
4612 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4613 make_discard_request(mddev, bi);
4614 return;
4615 }
4616
4617 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4618 last_sector = bio_end_sector(bi);
4619 bi->bi_next = NULL;
4620 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4621
4622 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4623 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4624 int previous;
4625 int seq;
4626
4627 do_prepare = false;
4628 retry:
4629 seq = read_seqcount_begin(&conf->gen_lock);
4630 previous = 0;
4631 if (do_prepare)
4632 prepare_to_wait(&conf->wait_for_overlap, &w,
4633 TASK_UNINTERRUPTIBLE);
4634 if (unlikely(conf->reshape_progress != MaxSector)) {
4635 /* spinlock is needed as reshape_progress may be
4636 * 64bit on a 32bit platform, and so it might be
4637 * possible to see a half-updated value
4638 * Of course reshape_progress could change after
4639 * the lock is dropped, so once we get a reference
4640 * to the stripe that we think it is, we will have
4641 * to check again.
4642 */
4643 spin_lock_irq(&conf->device_lock);
4644 if (mddev->reshape_backwards
4645 ? logical_sector < conf->reshape_progress
4646 : logical_sector >= conf->reshape_progress) {
4647 previous = 1;
4648 } else {
4649 if (mddev->reshape_backwards
4650 ? logical_sector < conf->reshape_safe
4651 : logical_sector >= conf->reshape_safe) {
4652 spin_unlock_irq(&conf->device_lock);
4653 schedule();
4654 do_prepare = true;
4655 goto retry;
4656 }
4657 }
4658 spin_unlock_irq(&conf->device_lock);
4659 }
4660
4661 new_sector = raid5_compute_sector(conf, logical_sector,
4662 previous,
4663 &dd_idx, NULL);
4664 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4665 (unsigned long long)new_sector,
4666 (unsigned long long)logical_sector);
4667
4668 sh = get_active_stripe(conf, new_sector, previous,
4669 (bi->bi_rw&RWA_MASK), 0);
4670 if (sh) {
4671 if (unlikely(previous)) {
4672 /* expansion might have moved on while waiting for a
4673 * stripe, so we must do the range check again.
4674 * Expansion could still move past after this
4675 * test, but as we are holding a reference to
4676 * 'sh', we know that if that happens,
4677 * STRIPE_EXPANDING will get set and the expansion
4678 * won't proceed until we finish with the stripe.
4679 */
4680 int must_retry = 0;
4681 spin_lock_irq(&conf->device_lock);
4682 if (mddev->reshape_backwards
4683 ? logical_sector >= conf->reshape_progress
4684 : logical_sector < conf->reshape_progress)
4685 /* mismatch, need to try again */
4686 must_retry = 1;
4687 spin_unlock_irq(&conf->device_lock);
4688 if (must_retry) {
4689 release_stripe(sh);
4690 schedule();
4691 do_prepare = true;
4692 goto retry;
4693 }
4694 }
4695 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4696 /* Might have got the wrong stripe_head
4697 * by accident
4698 */
4699 release_stripe(sh);
4700 goto retry;
4701 }
4702
4703 if (rw == WRITE &&
4704 logical_sector >= mddev->suspend_lo &&
4705 logical_sector < mddev->suspend_hi) {
4706 release_stripe(sh);
4707 /* As the suspend_* range is controlled by
4708 * userspace, we want an interruptible
4709 * wait.
4710 */
4711 prepare_to_wait(&conf->wait_for_overlap,
4712 &w, TASK_INTERRUPTIBLE);
4713 if (logical_sector >= mddev->suspend_lo &&
4714 logical_sector < mddev->suspend_hi) {
4715 sigset_t full, old;
4716 sigfillset(&full);
4717 sigprocmask(SIG_BLOCK, &full, &old);
4718 schedule();
4719 sigprocmask(SIG_SETMASK, &old, NULL);
4720 do_prepare = true;
4721 }
4722 goto retry;
4723 }
4724
4725 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4726 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4727 /* Stripe is busy expanding or
4728 * add failed due to overlap. Flush everything
4729 * and wait a while
4730 */
4731 md_wakeup_thread(mddev->thread);
4732 release_stripe(sh);
4733 schedule();
4734 do_prepare = true;
4735 goto retry;
4736 }
4737 set_bit(STRIPE_HANDLE, &sh->state);
4738 clear_bit(STRIPE_DELAYED, &sh->state);
4739 if ((bi->bi_rw & REQ_SYNC) &&
4740 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4741 atomic_inc(&conf->preread_active_stripes);
4742 release_stripe_plug(mddev, sh);
4743 } else {
4744 /* cannot get stripe for read-ahead, just give-up */
4745 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4746 break;
4747 }
4748 }
4749 finish_wait(&conf->wait_for_overlap, &w);
4750
4751 remaining = raid5_dec_bi_active_stripes(bi);
4752 if (remaining == 0) {
4753
4754 if ( rw == WRITE )
4755 md_write_end(mddev);
4756
4757 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4758 bi, 0);
4759 bio_endio(bi, 0);
4760 }
4761 }
4762
4763 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4764
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4765 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4766 {
4767 /* reshaping is quite different to recovery/resync so it is
4768 * handled quite separately ... here.
4769 *
4770 * On each call to sync_request, we gather one chunk worth of
4771 * destination stripes and flag them as expanding.
4772 * Then we find all the source stripes and request reads.
4773 * As the reads complete, handle_stripe will copy the data
4774 * into the destination stripe and release that stripe.
4775 */
4776 struct r5conf *conf = mddev->private;
4777 struct stripe_head *sh;
4778 sector_t first_sector, last_sector;
4779 int raid_disks = conf->previous_raid_disks;
4780 int data_disks = raid_disks - conf->max_degraded;
4781 int new_data_disks = conf->raid_disks - conf->max_degraded;
4782 int i;
4783 int dd_idx;
4784 sector_t writepos, readpos, safepos;
4785 sector_t stripe_addr;
4786 int reshape_sectors;
4787 struct list_head stripes;
4788
4789 if (sector_nr == 0) {
4790 /* If restarting in the middle, skip the initial sectors */
4791 if (mddev->reshape_backwards &&
4792 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4793 sector_nr = raid5_size(mddev, 0, 0)
4794 - conf->reshape_progress;
4795 } else if (!mddev->reshape_backwards &&
4796 conf->reshape_progress > 0)
4797 sector_nr = conf->reshape_progress;
4798 sector_div(sector_nr, new_data_disks);
4799 if (sector_nr) {
4800 mddev->curr_resync_completed = sector_nr;
4801 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4802 *skipped = 1;
4803 return sector_nr;
4804 }
4805 }
4806
4807 /* We need to process a full chunk at a time.
4808 * If old and new chunk sizes differ, we need to process the
4809 * largest of these
4810 */
4811 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4812 reshape_sectors = mddev->new_chunk_sectors;
4813 else
4814 reshape_sectors = mddev->chunk_sectors;
4815
4816 /* We update the metadata at least every 10 seconds, or when
4817 * the data about to be copied would over-write the source of
4818 * the data at the front of the range. i.e. one new_stripe
4819 * along from reshape_progress new_maps to after where
4820 * reshape_safe old_maps to
4821 */
4822 writepos = conf->reshape_progress;
4823 sector_div(writepos, new_data_disks);
4824 readpos = conf->reshape_progress;
4825 sector_div(readpos, data_disks);
4826 safepos = conf->reshape_safe;
4827 sector_div(safepos, data_disks);
4828 if (mddev->reshape_backwards) {
4829 writepos -= min_t(sector_t, reshape_sectors, writepos);
4830 readpos += reshape_sectors;
4831 safepos += reshape_sectors;
4832 } else {
4833 writepos += reshape_sectors;
4834 readpos -= min_t(sector_t, reshape_sectors, readpos);
4835 safepos -= min_t(sector_t, reshape_sectors, safepos);
4836 }
4837
4838 /* Having calculated the 'writepos' possibly use it
4839 * to set 'stripe_addr' which is where we will write to.
4840 */
4841 if (mddev->reshape_backwards) {
4842 BUG_ON(conf->reshape_progress == 0);
4843 stripe_addr = writepos;
4844 BUG_ON((mddev->dev_sectors &
4845 ~((sector_t)reshape_sectors - 1))
4846 - reshape_sectors - stripe_addr
4847 != sector_nr);
4848 } else {
4849 BUG_ON(writepos != sector_nr + reshape_sectors);
4850 stripe_addr = sector_nr;
4851 }
4852
4853 /* 'writepos' is the most advanced device address we might write.
4854 * 'readpos' is the least advanced device address we might read.
4855 * 'safepos' is the least address recorded in the metadata as having
4856 * been reshaped.
4857 * If there is a min_offset_diff, these are adjusted either by
4858 * increasing the safepos/readpos if diff is negative, or
4859 * increasing writepos if diff is positive.
4860 * If 'readpos' is then behind 'writepos', there is no way that we can
4861 * ensure safety in the face of a crash - that must be done by userspace
4862 * making a backup of the data. So in that case there is no particular
4863 * rush to update metadata.
4864 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4865 * update the metadata to advance 'safepos' to match 'readpos' so that
4866 * we can be safe in the event of a crash.
4867 * So we insist on updating metadata if safepos is behind writepos and
4868 * readpos is beyond writepos.
4869 * In any case, update the metadata every 10 seconds.
4870 * Maybe that number should be configurable, but I'm not sure it is
4871 * worth it.... maybe it could be a multiple of safemode_delay???
4872 */
4873 if (conf->min_offset_diff < 0) {
4874 safepos += -conf->min_offset_diff;
4875 readpos += -conf->min_offset_diff;
4876 } else
4877 writepos += conf->min_offset_diff;
4878
4879 if ((mddev->reshape_backwards
4880 ? (safepos > writepos && readpos < writepos)
4881 : (safepos < writepos && readpos > writepos)) ||
4882 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4883 /* Cannot proceed until we've updated the superblock... */
4884 wait_event(conf->wait_for_overlap,
4885 atomic_read(&conf->reshape_stripes)==0
4886 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4887 if (atomic_read(&conf->reshape_stripes) != 0)
4888 return 0;
4889 mddev->reshape_position = conf->reshape_progress;
4890 mddev->curr_resync_completed = sector_nr;
4891 conf->reshape_checkpoint = jiffies;
4892 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4893 md_wakeup_thread(mddev->thread);
4894 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4895 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4896 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4897 return 0;
4898 spin_lock_irq(&conf->device_lock);
4899 conf->reshape_safe = mddev->reshape_position;
4900 spin_unlock_irq(&conf->device_lock);
4901 wake_up(&conf->wait_for_overlap);
4902 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4903 }
4904
4905 INIT_LIST_HEAD(&stripes);
4906 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4907 int j;
4908 int skipped_disk = 0;
4909 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4910 set_bit(STRIPE_EXPANDING, &sh->state);
4911 atomic_inc(&conf->reshape_stripes);
4912 /* If any of this stripe is beyond the end of the old
4913 * array, then we need to zero those blocks
4914 */
4915 for (j=sh->disks; j--;) {
4916 sector_t s;
4917 if (j == sh->pd_idx)
4918 continue;
4919 if (conf->level == 6 &&
4920 j == sh->qd_idx)
4921 continue;
4922 s = compute_blocknr(sh, j, 0);
4923 if (s < raid5_size(mddev, 0, 0)) {
4924 skipped_disk = 1;
4925 continue;
4926 }
4927 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4928 set_bit(R5_Expanded, &sh->dev[j].flags);
4929 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4930 }
4931 if (!skipped_disk) {
4932 set_bit(STRIPE_EXPAND_READY, &sh->state);
4933 set_bit(STRIPE_HANDLE, &sh->state);
4934 }
4935 list_add(&sh->lru, &stripes);
4936 }
4937 spin_lock_irq(&conf->device_lock);
4938 if (mddev->reshape_backwards)
4939 conf->reshape_progress -= reshape_sectors * new_data_disks;
4940 else
4941 conf->reshape_progress += reshape_sectors * new_data_disks;
4942 spin_unlock_irq(&conf->device_lock);
4943 /* Ok, those stripe are ready. We can start scheduling
4944 * reads on the source stripes.
4945 * The source stripes are determined by mapping the first and last
4946 * block on the destination stripes.
4947 */
4948 first_sector =
4949 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4950 1, &dd_idx, NULL);
4951 last_sector =
4952 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4953 * new_data_disks - 1),
4954 1, &dd_idx, NULL);
4955 if (last_sector >= mddev->dev_sectors)
4956 last_sector = mddev->dev_sectors - 1;
4957 while (first_sector <= last_sector) {
4958 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4959 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4960 set_bit(STRIPE_HANDLE, &sh->state);
4961 release_stripe(sh);
4962 first_sector += STRIPE_SECTORS;
4963 }
4964 /* Now that the sources are clearly marked, we can release
4965 * the destination stripes
4966 */
4967 while (!list_empty(&stripes)) {
4968 sh = list_entry(stripes.next, struct stripe_head, lru);
4969 list_del_init(&sh->lru);
4970 release_stripe(sh);
4971 }
4972 /* If this takes us to the resync_max point where we have to pause,
4973 * then we need to write out the superblock.
4974 */
4975 sector_nr += reshape_sectors;
4976 if ((sector_nr - mddev->curr_resync_completed) * 2
4977 >= mddev->resync_max - mddev->curr_resync_completed) {
4978 /* Cannot proceed until we've updated the superblock... */
4979 wait_event(conf->wait_for_overlap,
4980 atomic_read(&conf->reshape_stripes) == 0
4981 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4982 if (atomic_read(&conf->reshape_stripes) != 0)
4983 goto ret;
4984 mddev->reshape_position = conf->reshape_progress;
4985 mddev->curr_resync_completed = sector_nr;
4986 conf->reshape_checkpoint = jiffies;
4987 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4988 md_wakeup_thread(mddev->thread);
4989 wait_event(mddev->sb_wait,
4990 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4991 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4992 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4993 goto ret;
4994 spin_lock_irq(&conf->device_lock);
4995 conf->reshape_safe = mddev->reshape_position;
4996 spin_unlock_irq(&conf->device_lock);
4997 wake_up(&conf->wait_for_overlap);
4998 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4999 }
5000 ret:
5001 return reshape_sectors;
5002 }
5003
5004 /* FIXME go_faster isn't used */
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)5005 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5006 {
5007 struct r5conf *conf = mddev->private;
5008 struct stripe_head *sh;
5009 sector_t max_sector = mddev->dev_sectors;
5010 sector_t sync_blocks;
5011 int still_degraded = 0;
5012 int i;
5013
5014 if (sector_nr >= max_sector) {
5015 /* just being told to finish up .. nothing much to do */
5016
5017 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5018 end_reshape(conf);
5019 return 0;
5020 }
5021
5022 if (mddev->curr_resync < max_sector) /* aborted */
5023 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5024 &sync_blocks, 1);
5025 else /* completed sync */
5026 conf->fullsync = 0;
5027 bitmap_close_sync(mddev->bitmap);
5028
5029 return 0;
5030 }
5031
5032 /* Allow raid5_quiesce to complete */
5033 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5034
5035 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5036 return reshape_request(mddev, sector_nr, skipped);
5037
5038 /* No need to check resync_max as we never do more than one
5039 * stripe, and as resync_max will always be on a chunk boundary,
5040 * if the check in md_do_sync didn't fire, there is no chance
5041 * of overstepping resync_max here
5042 */
5043
5044 /* if there is too many failed drives and we are trying
5045 * to resync, then assert that we are finished, because there is
5046 * nothing we can do.
5047 */
5048 if (mddev->degraded >= conf->max_degraded &&
5049 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5050 sector_t rv = mddev->dev_sectors - sector_nr;
5051 *skipped = 1;
5052 return rv;
5053 }
5054 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5055 !conf->fullsync &&
5056 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5057 sync_blocks >= STRIPE_SECTORS) {
5058 /* we can skip this block, and probably more */
5059 sync_blocks /= STRIPE_SECTORS;
5060 *skipped = 1;
5061 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5062 }
5063
5064 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5065
5066 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5067 if (sh == NULL) {
5068 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5069 /* make sure we don't swamp the stripe cache if someone else
5070 * is trying to get access
5071 */
5072 schedule_timeout_uninterruptible(1);
5073 }
5074 /* Need to check if array will still be degraded after recovery/resync
5075 * We don't need to check the 'failed' flag as when that gets set,
5076 * recovery aborts.
5077 */
5078 for (i = 0; i < conf->raid_disks; i++)
5079 if (conf->disks[i].rdev == NULL)
5080 still_degraded = 1;
5081
5082 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5083
5084 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5085 set_bit(STRIPE_HANDLE, &sh->state);
5086
5087 release_stripe(sh);
5088
5089 return STRIPE_SECTORS;
5090 }
5091
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio)5092 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5093 {
5094 /* We may not be able to submit a whole bio at once as there
5095 * may not be enough stripe_heads available.
5096 * We cannot pre-allocate enough stripe_heads as we may need
5097 * more than exist in the cache (if we allow ever large chunks).
5098 * So we do one stripe head at a time and record in
5099 * ->bi_hw_segments how many have been done.
5100 *
5101 * We *know* that this entire raid_bio is in one chunk, so
5102 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5103 */
5104 struct stripe_head *sh;
5105 int dd_idx;
5106 sector_t sector, logical_sector, last_sector;
5107 int scnt = 0;
5108 int remaining;
5109 int handled = 0;
5110
5111 logical_sector = raid_bio->bi_iter.bi_sector &
5112 ~((sector_t)STRIPE_SECTORS-1);
5113 sector = raid5_compute_sector(conf, logical_sector,
5114 0, &dd_idx, NULL);
5115 last_sector = bio_end_sector(raid_bio);
5116
5117 for (; logical_sector < last_sector;
5118 logical_sector += STRIPE_SECTORS,
5119 sector += STRIPE_SECTORS,
5120 scnt++) {
5121
5122 if (scnt < raid5_bi_processed_stripes(raid_bio))
5123 /* already done this stripe */
5124 continue;
5125
5126 sh = get_active_stripe(conf, sector, 0, 1, 1);
5127
5128 if (!sh) {
5129 /* failed to get a stripe - must wait */
5130 raid5_set_bi_processed_stripes(raid_bio, scnt);
5131 conf->retry_read_aligned = raid_bio;
5132 return handled;
5133 }
5134
5135 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5136 release_stripe(sh);
5137 raid5_set_bi_processed_stripes(raid_bio, scnt);
5138 conf->retry_read_aligned = raid_bio;
5139 return handled;
5140 }
5141
5142 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5143 handle_stripe(sh);
5144 release_stripe(sh);
5145 handled++;
5146 }
5147 remaining = raid5_dec_bi_active_stripes(raid_bio);
5148 if (remaining == 0) {
5149 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5150 raid_bio, 0);
5151 bio_endio(raid_bio, 0);
5152 }
5153 if (atomic_dec_and_test(&conf->active_aligned_reads))
5154 wake_up(&conf->wait_for_stripe);
5155 return handled;
5156 }
5157
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)5158 static int handle_active_stripes(struct r5conf *conf, int group,
5159 struct r5worker *worker,
5160 struct list_head *temp_inactive_list)
5161 {
5162 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5163 int i, batch_size = 0, hash;
5164 bool release_inactive = false;
5165
5166 while (batch_size < MAX_STRIPE_BATCH &&
5167 (sh = __get_priority_stripe(conf, group)) != NULL)
5168 batch[batch_size++] = sh;
5169
5170 if (batch_size == 0) {
5171 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5172 if (!list_empty(temp_inactive_list + i))
5173 break;
5174 if (i == NR_STRIPE_HASH_LOCKS)
5175 return batch_size;
5176 release_inactive = true;
5177 }
5178 spin_unlock_irq(&conf->device_lock);
5179
5180 release_inactive_stripe_list(conf, temp_inactive_list,
5181 NR_STRIPE_HASH_LOCKS);
5182
5183 if (release_inactive) {
5184 spin_lock_irq(&conf->device_lock);
5185 return 0;
5186 }
5187
5188 for (i = 0; i < batch_size; i++)
5189 handle_stripe(batch[i]);
5190
5191 cond_resched();
5192
5193 spin_lock_irq(&conf->device_lock);
5194 for (i = 0; i < batch_size; i++) {
5195 hash = batch[i]->hash_lock_index;
5196 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5197 }
5198 return batch_size;
5199 }
5200
raid5_do_work(struct work_struct * work)5201 static void raid5_do_work(struct work_struct *work)
5202 {
5203 struct r5worker *worker = container_of(work, struct r5worker, work);
5204 struct r5worker_group *group = worker->group;
5205 struct r5conf *conf = group->conf;
5206 int group_id = group - conf->worker_groups;
5207 int handled;
5208 struct blk_plug plug;
5209
5210 pr_debug("+++ raid5worker active\n");
5211
5212 blk_start_plug(&plug);
5213 handled = 0;
5214 spin_lock_irq(&conf->device_lock);
5215 while (1) {
5216 int batch_size, released;
5217
5218 released = release_stripe_list(conf, worker->temp_inactive_list);
5219
5220 batch_size = handle_active_stripes(conf, group_id, worker,
5221 worker->temp_inactive_list);
5222 worker->working = false;
5223 if (!batch_size && !released)
5224 break;
5225 handled += batch_size;
5226 }
5227 pr_debug("%d stripes handled\n", handled);
5228
5229 spin_unlock_irq(&conf->device_lock);
5230
5231 async_tx_issue_pending_all();
5232 blk_finish_plug(&plug);
5233
5234 pr_debug("--- raid5worker inactive\n");
5235 }
5236
5237 /*
5238 * This is our raid5 kernel thread.
5239 *
5240 * We scan the hash table for stripes which can be handled now.
5241 * During the scan, completed stripes are saved for us by the interrupt
5242 * handler, so that they will not have to wait for our next wakeup.
5243 */
raid5d(struct md_thread * thread)5244 static void raid5d(struct md_thread *thread)
5245 {
5246 struct mddev *mddev = thread->mddev;
5247 struct r5conf *conf = mddev->private;
5248 int handled;
5249 struct blk_plug plug;
5250
5251 pr_debug("+++ raid5d active\n");
5252
5253 md_check_recovery(mddev);
5254
5255 blk_start_plug(&plug);
5256 handled = 0;
5257 spin_lock_irq(&conf->device_lock);
5258 while (1) {
5259 struct bio *bio;
5260 int batch_size, released;
5261
5262 released = release_stripe_list(conf, conf->temp_inactive_list);
5263
5264 if (
5265 !list_empty(&conf->bitmap_list)) {
5266 /* Now is a good time to flush some bitmap updates */
5267 conf->seq_flush++;
5268 spin_unlock_irq(&conf->device_lock);
5269 bitmap_unplug(mddev->bitmap);
5270 spin_lock_irq(&conf->device_lock);
5271 conf->seq_write = conf->seq_flush;
5272 activate_bit_delay(conf, conf->temp_inactive_list);
5273 }
5274 raid5_activate_delayed(conf);
5275
5276 while ((bio = remove_bio_from_retry(conf))) {
5277 int ok;
5278 spin_unlock_irq(&conf->device_lock);
5279 ok = retry_aligned_read(conf, bio);
5280 spin_lock_irq(&conf->device_lock);
5281 if (!ok)
5282 break;
5283 handled++;
5284 }
5285
5286 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5287 conf->temp_inactive_list);
5288 if (!batch_size && !released)
5289 break;
5290 handled += batch_size;
5291
5292 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5293 spin_unlock_irq(&conf->device_lock);
5294 md_check_recovery(mddev);
5295 spin_lock_irq(&conf->device_lock);
5296 }
5297 }
5298 pr_debug("%d stripes handled\n", handled);
5299
5300 spin_unlock_irq(&conf->device_lock);
5301
5302 async_tx_issue_pending_all();
5303 blk_finish_plug(&plug);
5304
5305 pr_debug("--- raid5d inactive\n");
5306 }
5307
5308 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)5309 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5310 {
5311 struct r5conf *conf = mddev->private;
5312 if (conf)
5313 return sprintf(page, "%d\n", conf->max_nr_stripes);
5314 else
5315 return 0;
5316 }
5317
5318 int
raid5_set_cache_size(struct mddev * mddev,int size)5319 raid5_set_cache_size(struct mddev *mddev, int size)
5320 {
5321 struct r5conf *conf = mddev->private;
5322 int err;
5323 int hash;
5324
5325 if (size <= 16 || size > 32768)
5326 return -EINVAL;
5327 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5328 while (size < conf->max_nr_stripes) {
5329 if (drop_one_stripe(conf, hash))
5330 conf->max_nr_stripes--;
5331 else
5332 break;
5333 hash--;
5334 if (hash < 0)
5335 hash = NR_STRIPE_HASH_LOCKS - 1;
5336 }
5337 err = md_allow_write(mddev);
5338 if (err)
5339 return err;
5340 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5341 while (size > conf->max_nr_stripes) {
5342 if (grow_one_stripe(conf, hash))
5343 conf->max_nr_stripes++;
5344 else break;
5345 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5346 }
5347 return 0;
5348 }
5349 EXPORT_SYMBOL(raid5_set_cache_size);
5350
5351 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)5352 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5353 {
5354 struct r5conf *conf = mddev->private;
5355 unsigned long new;
5356 int err;
5357
5358 if (len >= PAGE_SIZE)
5359 return -EINVAL;
5360 if (!conf)
5361 return -ENODEV;
5362
5363 if (kstrtoul(page, 10, &new))
5364 return -EINVAL;
5365 err = raid5_set_cache_size(mddev, new);
5366 if (err)
5367 return err;
5368 return len;
5369 }
5370
5371 static struct md_sysfs_entry
5372 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5373 raid5_show_stripe_cache_size,
5374 raid5_store_stripe_cache_size);
5375
5376 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)5377 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5378 {
5379 struct r5conf *conf = mddev->private;
5380 if (conf)
5381 return sprintf(page, "%d\n", conf->bypass_threshold);
5382 else
5383 return 0;
5384 }
5385
5386 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)5387 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5388 {
5389 struct r5conf *conf = mddev->private;
5390 unsigned long new;
5391 if (len >= PAGE_SIZE)
5392 return -EINVAL;
5393 if (!conf)
5394 return -ENODEV;
5395
5396 if (kstrtoul(page, 10, &new))
5397 return -EINVAL;
5398 if (new > conf->max_nr_stripes)
5399 return -EINVAL;
5400 conf->bypass_threshold = new;
5401 return len;
5402 }
5403
5404 static struct md_sysfs_entry
5405 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5406 S_IRUGO | S_IWUSR,
5407 raid5_show_preread_threshold,
5408 raid5_store_preread_threshold);
5409
5410 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)5411 raid5_show_skip_copy(struct mddev *mddev, char *page)
5412 {
5413 struct r5conf *conf = mddev->private;
5414 if (conf)
5415 return sprintf(page, "%d\n", conf->skip_copy);
5416 else
5417 return 0;
5418 }
5419
5420 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)5421 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5422 {
5423 struct r5conf *conf = mddev->private;
5424 unsigned long new;
5425 if (len >= PAGE_SIZE)
5426 return -EINVAL;
5427 if (!conf)
5428 return -ENODEV;
5429
5430 if (kstrtoul(page, 10, &new))
5431 return -EINVAL;
5432 new = !!new;
5433 if (new == conf->skip_copy)
5434 return len;
5435
5436 mddev_suspend(mddev);
5437 conf->skip_copy = new;
5438 if (new)
5439 mddev->queue->backing_dev_info.capabilities |=
5440 BDI_CAP_STABLE_WRITES;
5441 else
5442 mddev->queue->backing_dev_info.capabilities &=
5443 ~BDI_CAP_STABLE_WRITES;
5444 mddev_resume(mddev);
5445 return len;
5446 }
5447
5448 static struct md_sysfs_entry
5449 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5450 raid5_show_skip_copy,
5451 raid5_store_skip_copy);
5452
5453 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)5454 stripe_cache_active_show(struct mddev *mddev, char *page)
5455 {
5456 struct r5conf *conf = mddev->private;
5457 if (conf)
5458 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5459 else
5460 return 0;
5461 }
5462
5463 static struct md_sysfs_entry
5464 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5465
5466 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)5467 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5468 {
5469 struct r5conf *conf = mddev->private;
5470 if (conf)
5471 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5472 else
5473 return 0;
5474 }
5475
5476 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5477 int *group_cnt,
5478 int *worker_cnt_per_group,
5479 struct r5worker_group **worker_groups);
5480 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)5481 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5482 {
5483 struct r5conf *conf = mddev->private;
5484 unsigned long new;
5485 int err;
5486 struct r5worker_group *new_groups, *old_groups;
5487 int group_cnt, worker_cnt_per_group;
5488
5489 if (len >= PAGE_SIZE)
5490 return -EINVAL;
5491 if (!conf)
5492 return -ENODEV;
5493
5494 if (kstrtoul(page, 10, &new))
5495 return -EINVAL;
5496
5497 if (new == conf->worker_cnt_per_group)
5498 return len;
5499
5500 mddev_suspend(mddev);
5501
5502 old_groups = conf->worker_groups;
5503 if (old_groups)
5504 flush_workqueue(raid5_wq);
5505
5506 err = alloc_thread_groups(conf, new,
5507 &group_cnt, &worker_cnt_per_group,
5508 &new_groups);
5509 if (!err) {
5510 spin_lock_irq(&conf->device_lock);
5511 conf->group_cnt = group_cnt;
5512 conf->worker_cnt_per_group = worker_cnt_per_group;
5513 conf->worker_groups = new_groups;
5514 spin_unlock_irq(&conf->device_lock);
5515
5516 if (old_groups)
5517 kfree(old_groups[0].workers);
5518 kfree(old_groups);
5519 }
5520
5521 mddev_resume(mddev);
5522
5523 if (err)
5524 return err;
5525 return len;
5526 }
5527
5528 static struct md_sysfs_entry
5529 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5530 raid5_show_group_thread_cnt,
5531 raid5_store_group_thread_cnt);
5532
5533 static struct attribute *raid5_attrs[] = {
5534 &raid5_stripecache_size.attr,
5535 &raid5_stripecache_active.attr,
5536 &raid5_preread_bypass_threshold.attr,
5537 &raid5_group_thread_cnt.attr,
5538 &raid5_skip_copy.attr,
5539 NULL,
5540 };
5541 static struct attribute_group raid5_attrs_group = {
5542 .name = NULL,
5543 .attrs = raid5_attrs,
5544 };
5545
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,int * worker_cnt_per_group,struct r5worker_group ** worker_groups)5546 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5547 int *group_cnt,
5548 int *worker_cnt_per_group,
5549 struct r5worker_group **worker_groups)
5550 {
5551 int i, j, k;
5552 ssize_t size;
5553 struct r5worker *workers;
5554
5555 *worker_cnt_per_group = cnt;
5556 if (cnt == 0) {
5557 *group_cnt = 0;
5558 *worker_groups = NULL;
5559 return 0;
5560 }
5561 *group_cnt = num_possible_nodes();
5562 size = sizeof(struct r5worker) * cnt;
5563 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5564 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5565 *group_cnt, GFP_NOIO);
5566 if (!*worker_groups || !workers) {
5567 kfree(workers);
5568 kfree(*worker_groups);
5569 return -ENOMEM;
5570 }
5571
5572 for (i = 0; i < *group_cnt; i++) {
5573 struct r5worker_group *group;
5574
5575 group = &(*worker_groups)[i];
5576 INIT_LIST_HEAD(&group->handle_list);
5577 group->conf = conf;
5578 group->workers = workers + i * cnt;
5579
5580 for (j = 0; j < cnt; j++) {
5581 struct r5worker *worker = group->workers + j;
5582 worker->group = group;
5583 INIT_WORK(&worker->work, raid5_do_work);
5584
5585 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5586 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5587 }
5588 }
5589
5590 return 0;
5591 }
5592
free_thread_groups(struct r5conf * conf)5593 static void free_thread_groups(struct r5conf *conf)
5594 {
5595 if (conf->worker_groups)
5596 kfree(conf->worker_groups[0].workers);
5597 kfree(conf->worker_groups);
5598 conf->worker_groups = NULL;
5599 }
5600
5601 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)5602 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5603 {
5604 struct r5conf *conf = mddev->private;
5605
5606 if (!sectors)
5607 sectors = mddev->dev_sectors;
5608 if (!raid_disks)
5609 /* size is defined by the smallest of previous and new size */
5610 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5611
5612 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5613 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5614 return sectors * (raid_disks - conf->max_degraded);
5615 }
5616
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)5617 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5618 {
5619 safe_put_page(percpu->spare_page);
5620 kfree(percpu->scribble);
5621 percpu->spare_page = NULL;
5622 percpu->scribble = NULL;
5623 }
5624
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)5625 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5626 {
5627 if (conf->level == 6 && !percpu->spare_page)
5628 percpu->spare_page = alloc_page(GFP_KERNEL);
5629 if (!percpu->scribble)
5630 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5631
5632 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5633 free_scratch_buffer(conf, percpu);
5634 return -ENOMEM;
5635 }
5636
5637 return 0;
5638 }
5639
raid5_free_percpu(struct r5conf * conf)5640 static void raid5_free_percpu(struct r5conf *conf)
5641 {
5642 unsigned long cpu;
5643
5644 if (!conf->percpu)
5645 return;
5646
5647 #ifdef CONFIG_HOTPLUG_CPU
5648 unregister_cpu_notifier(&conf->cpu_notify);
5649 #endif
5650
5651 get_online_cpus();
5652 for_each_possible_cpu(cpu)
5653 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5654 put_online_cpus();
5655
5656 free_percpu(conf->percpu);
5657 }
5658
free_conf(struct r5conf * conf)5659 static void free_conf(struct r5conf *conf)
5660 {
5661 free_thread_groups(conf);
5662 shrink_stripes(conf);
5663 raid5_free_percpu(conf);
5664 kfree(conf->disks);
5665 kfree(conf->stripe_hashtbl);
5666 kfree(conf);
5667 }
5668
5669 #ifdef CONFIG_HOTPLUG_CPU
raid456_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)5670 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5671 void *hcpu)
5672 {
5673 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5674 long cpu = (long)hcpu;
5675 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5676
5677 switch (action) {
5678 case CPU_UP_PREPARE:
5679 case CPU_UP_PREPARE_FROZEN:
5680 if (alloc_scratch_buffer(conf, percpu)) {
5681 pr_err("%s: failed memory allocation for cpu%ld\n",
5682 __func__, cpu);
5683 return notifier_from_errno(-ENOMEM);
5684 }
5685 break;
5686 case CPU_DEAD:
5687 case CPU_DEAD_FROZEN:
5688 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5689 break;
5690 default:
5691 break;
5692 }
5693 return NOTIFY_OK;
5694 }
5695 #endif
5696
raid5_alloc_percpu(struct r5conf * conf)5697 static int raid5_alloc_percpu(struct r5conf *conf)
5698 {
5699 unsigned long cpu;
5700 int err = 0;
5701
5702 conf->percpu = alloc_percpu(struct raid5_percpu);
5703 if (!conf->percpu)
5704 return -ENOMEM;
5705
5706 #ifdef CONFIG_HOTPLUG_CPU
5707 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5708 conf->cpu_notify.priority = 0;
5709 err = register_cpu_notifier(&conf->cpu_notify);
5710 if (err)
5711 return err;
5712 #endif
5713
5714 get_online_cpus();
5715 for_each_present_cpu(cpu) {
5716 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5717 if (err) {
5718 pr_err("%s: failed memory allocation for cpu%ld\n",
5719 __func__, cpu);
5720 break;
5721 }
5722 }
5723 put_online_cpus();
5724
5725 return err;
5726 }
5727
setup_conf(struct mddev * mddev)5728 static struct r5conf *setup_conf(struct mddev *mddev)
5729 {
5730 struct r5conf *conf;
5731 int raid_disk, memory, max_disks;
5732 struct md_rdev *rdev;
5733 struct disk_info *disk;
5734 char pers_name[6];
5735 int i;
5736 int group_cnt, worker_cnt_per_group;
5737 struct r5worker_group *new_group;
5738
5739 if (mddev->new_level != 5
5740 && mddev->new_level != 4
5741 && mddev->new_level != 6) {
5742 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5743 mdname(mddev), mddev->new_level);
5744 return ERR_PTR(-EIO);
5745 }
5746 if ((mddev->new_level == 5
5747 && !algorithm_valid_raid5(mddev->new_layout)) ||
5748 (mddev->new_level == 6
5749 && !algorithm_valid_raid6(mddev->new_layout))) {
5750 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5751 mdname(mddev), mddev->new_layout);
5752 return ERR_PTR(-EIO);
5753 }
5754 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5755 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5756 mdname(mddev), mddev->raid_disks);
5757 return ERR_PTR(-EINVAL);
5758 }
5759
5760 if (!mddev->new_chunk_sectors ||
5761 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5762 !is_power_of_2(mddev->new_chunk_sectors)) {
5763 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5764 mdname(mddev), mddev->new_chunk_sectors << 9);
5765 return ERR_PTR(-EINVAL);
5766 }
5767
5768 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5769 if (conf == NULL)
5770 goto abort;
5771 /* Don't enable multi-threading by default*/
5772 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5773 &new_group)) {
5774 conf->group_cnt = group_cnt;
5775 conf->worker_cnt_per_group = worker_cnt_per_group;
5776 conf->worker_groups = new_group;
5777 } else
5778 goto abort;
5779 spin_lock_init(&conf->device_lock);
5780 seqcount_init(&conf->gen_lock);
5781 init_waitqueue_head(&conf->wait_for_stripe);
5782 init_waitqueue_head(&conf->wait_for_overlap);
5783 INIT_LIST_HEAD(&conf->handle_list);
5784 INIT_LIST_HEAD(&conf->hold_list);
5785 INIT_LIST_HEAD(&conf->delayed_list);
5786 INIT_LIST_HEAD(&conf->bitmap_list);
5787 init_llist_head(&conf->released_stripes);
5788 atomic_set(&conf->active_stripes, 0);
5789 atomic_set(&conf->preread_active_stripes, 0);
5790 atomic_set(&conf->active_aligned_reads, 0);
5791 conf->bypass_threshold = BYPASS_THRESHOLD;
5792 conf->recovery_disabled = mddev->recovery_disabled - 1;
5793
5794 conf->raid_disks = mddev->raid_disks;
5795 if (mddev->reshape_position == MaxSector)
5796 conf->previous_raid_disks = mddev->raid_disks;
5797 else
5798 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5799 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5800 conf->scribble_len = scribble_len(max_disks);
5801
5802 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5803 GFP_KERNEL);
5804 if (!conf->disks)
5805 goto abort;
5806
5807 conf->mddev = mddev;
5808
5809 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5810 goto abort;
5811
5812 /* We init hash_locks[0] separately to that it can be used
5813 * as the reference lock in the spin_lock_nest_lock() call
5814 * in lock_all_device_hash_locks_irq in order to convince
5815 * lockdep that we know what we are doing.
5816 */
5817 spin_lock_init(conf->hash_locks);
5818 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5819 spin_lock_init(conf->hash_locks + i);
5820
5821 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5822 INIT_LIST_HEAD(conf->inactive_list + i);
5823
5824 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5825 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5826
5827 conf->level = mddev->new_level;
5828 if (raid5_alloc_percpu(conf) != 0)
5829 goto abort;
5830
5831 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5832
5833 rdev_for_each(rdev, mddev) {
5834 raid_disk = rdev->raid_disk;
5835 if (raid_disk >= max_disks
5836 || raid_disk < 0)
5837 continue;
5838 disk = conf->disks + raid_disk;
5839
5840 if (test_bit(Replacement, &rdev->flags)) {
5841 if (disk->replacement)
5842 goto abort;
5843 disk->replacement = rdev;
5844 } else {
5845 if (disk->rdev)
5846 goto abort;
5847 disk->rdev = rdev;
5848 }
5849
5850 if (test_bit(In_sync, &rdev->flags)) {
5851 char b[BDEVNAME_SIZE];
5852 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5853 " disk %d\n",
5854 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5855 } else if (rdev->saved_raid_disk != raid_disk)
5856 /* Cannot rely on bitmap to complete recovery */
5857 conf->fullsync = 1;
5858 }
5859
5860 conf->chunk_sectors = mddev->new_chunk_sectors;
5861 conf->level = mddev->new_level;
5862 if (conf->level == 6)
5863 conf->max_degraded = 2;
5864 else
5865 conf->max_degraded = 1;
5866 conf->algorithm = mddev->new_layout;
5867 conf->reshape_progress = mddev->reshape_position;
5868 if (conf->reshape_progress != MaxSector) {
5869 conf->prev_chunk_sectors = mddev->chunk_sectors;
5870 conf->prev_algo = mddev->layout;
5871 }
5872
5873 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5874 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5875 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5876 if (grow_stripes(conf, NR_STRIPES)) {
5877 printk(KERN_ERR
5878 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5879 mdname(mddev), memory);
5880 goto abort;
5881 } else
5882 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5883 mdname(mddev), memory);
5884
5885 sprintf(pers_name, "raid%d", mddev->new_level);
5886 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5887 if (!conf->thread) {
5888 printk(KERN_ERR
5889 "md/raid:%s: couldn't allocate thread.\n",
5890 mdname(mddev));
5891 goto abort;
5892 }
5893
5894 return conf;
5895
5896 abort:
5897 if (conf) {
5898 free_conf(conf);
5899 return ERR_PTR(-EIO);
5900 } else
5901 return ERR_PTR(-ENOMEM);
5902 }
5903
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)5904 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5905 {
5906 switch (algo) {
5907 case ALGORITHM_PARITY_0:
5908 if (raid_disk < max_degraded)
5909 return 1;
5910 break;
5911 case ALGORITHM_PARITY_N:
5912 if (raid_disk >= raid_disks - max_degraded)
5913 return 1;
5914 break;
5915 case ALGORITHM_PARITY_0_6:
5916 if (raid_disk == 0 ||
5917 raid_disk == raid_disks - 1)
5918 return 1;
5919 break;
5920 case ALGORITHM_LEFT_ASYMMETRIC_6:
5921 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5922 case ALGORITHM_LEFT_SYMMETRIC_6:
5923 case ALGORITHM_RIGHT_SYMMETRIC_6:
5924 if (raid_disk == raid_disks - 1)
5925 return 1;
5926 }
5927 return 0;
5928 }
5929
run(struct mddev * mddev)5930 static int run(struct mddev *mddev)
5931 {
5932 struct r5conf *conf;
5933 int working_disks = 0;
5934 int dirty_parity_disks = 0;
5935 struct md_rdev *rdev;
5936 sector_t reshape_offset = 0;
5937 int i;
5938 long long min_offset_diff = 0;
5939 int first = 1;
5940
5941 if (mddev->recovery_cp != MaxSector)
5942 printk(KERN_NOTICE "md/raid:%s: not clean"
5943 " -- starting background reconstruction\n",
5944 mdname(mddev));
5945
5946 rdev_for_each(rdev, mddev) {
5947 long long diff;
5948 if (rdev->raid_disk < 0)
5949 continue;
5950 diff = (rdev->new_data_offset - rdev->data_offset);
5951 if (first) {
5952 min_offset_diff = diff;
5953 first = 0;
5954 } else if (mddev->reshape_backwards &&
5955 diff < min_offset_diff)
5956 min_offset_diff = diff;
5957 else if (!mddev->reshape_backwards &&
5958 diff > min_offset_diff)
5959 min_offset_diff = diff;
5960 }
5961
5962 if (mddev->reshape_position != MaxSector) {
5963 /* Check that we can continue the reshape.
5964 * Difficulties arise if the stripe we would write to
5965 * next is at or after the stripe we would read from next.
5966 * For a reshape that changes the number of devices, this
5967 * is only possible for a very short time, and mdadm makes
5968 * sure that time appears to have past before assembling
5969 * the array. So we fail if that time hasn't passed.
5970 * For a reshape that keeps the number of devices the same
5971 * mdadm must be monitoring the reshape can keeping the
5972 * critical areas read-only and backed up. It will start
5973 * the array in read-only mode, so we check for that.
5974 */
5975 sector_t here_new, here_old;
5976 int old_disks;
5977 int max_degraded = (mddev->level == 6 ? 2 : 1);
5978
5979 if (mddev->new_level != mddev->level) {
5980 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5981 "required - aborting.\n",
5982 mdname(mddev));
5983 return -EINVAL;
5984 }
5985 old_disks = mddev->raid_disks - mddev->delta_disks;
5986 /* reshape_position must be on a new-stripe boundary, and one
5987 * further up in new geometry must map after here in old
5988 * geometry.
5989 */
5990 here_new = mddev->reshape_position;
5991 if (sector_div(here_new, mddev->new_chunk_sectors *
5992 (mddev->raid_disks - max_degraded))) {
5993 printk(KERN_ERR "md/raid:%s: reshape_position not "
5994 "on a stripe boundary\n", mdname(mddev));
5995 return -EINVAL;
5996 }
5997 reshape_offset = here_new * mddev->new_chunk_sectors;
5998 /* here_new is the stripe we will write to */
5999 here_old = mddev->reshape_position;
6000 sector_div(here_old, mddev->chunk_sectors *
6001 (old_disks-max_degraded));
6002 /* here_old is the first stripe that we might need to read
6003 * from */
6004 if (mddev->delta_disks == 0) {
6005 if ((here_new * mddev->new_chunk_sectors !=
6006 here_old * mddev->chunk_sectors)) {
6007 printk(KERN_ERR "md/raid:%s: reshape position is"
6008 " confused - aborting\n", mdname(mddev));
6009 return -EINVAL;
6010 }
6011 /* We cannot be sure it is safe to start an in-place
6012 * reshape. It is only safe if user-space is monitoring
6013 * and taking constant backups.
6014 * mdadm always starts a situation like this in
6015 * readonly mode so it can take control before
6016 * allowing any writes. So just check for that.
6017 */
6018 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6019 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6020 /* not really in-place - so OK */;
6021 else if (mddev->ro == 0) {
6022 printk(KERN_ERR "md/raid:%s: in-place reshape "
6023 "must be started in read-only mode "
6024 "- aborting\n",
6025 mdname(mddev));
6026 return -EINVAL;
6027 }
6028 } else if (mddev->reshape_backwards
6029 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6030 here_old * mddev->chunk_sectors)
6031 : (here_new * mddev->new_chunk_sectors >=
6032 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6033 /* Reading from the same stripe as writing to - bad */
6034 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6035 "auto-recovery - aborting.\n",
6036 mdname(mddev));
6037 return -EINVAL;
6038 }
6039 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6040 mdname(mddev));
6041 /* OK, we should be able to continue; */
6042 } else {
6043 BUG_ON(mddev->level != mddev->new_level);
6044 BUG_ON(mddev->layout != mddev->new_layout);
6045 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6046 BUG_ON(mddev->delta_disks != 0);
6047 }
6048
6049 if (mddev->private == NULL)
6050 conf = setup_conf(mddev);
6051 else
6052 conf = mddev->private;
6053
6054 if (IS_ERR(conf))
6055 return PTR_ERR(conf);
6056
6057 conf->min_offset_diff = min_offset_diff;
6058 mddev->thread = conf->thread;
6059 conf->thread = NULL;
6060 mddev->private = conf;
6061
6062 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6063 i++) {
6064 rdev = conf->disks[i].rdev;
6065 if (!rdev && conf->disks[i].replacement) {
6066 /* The replacement is all we have yet */
6067 rdev = conf->disks[i].replacement;
6068 conf->disks[i].replacement = NULL;
6069 clear_bit(Replacement, &rdev->flags);
6070 conf->disks[i].rdev = rdev;
6071 }
6072 if (!rdev)
6073 continue;
6074 if (conf->disks[i].replacement &&
6075 conf->reshape_progress != MaxSector) {
6076 /* replacements and reshape simply do not mix. */
6077 printk(KERN_ERR "md: cannot handle concurrent "
6078 "replacement and reshape.\n");
6079 goto abort;
6080 }
6081 if (test_bit(In_sync, &rdev->flags)) {
6082 working_disks++;
6083 continue;
6084 }
6085 /* This disc is not fully in-sync. However if it
6086 * just stored parity (beyond the recovery_offset),
6087 * when we don't need to be concerned about the
6088 * array being dirty.
6089 * When reshape goes 'backwards', we never have
6090 * partially completed devices, so we only need
6091 * to worry about reshape going forwards.
6092 */
6093 /* Hack because v0.91 doesn't store recovery_offset properly. */
6094 if (mddev->major_version == 0 &&
6095 mddev->minor_version > 90)
6096 rdev->recovery_offset = reshape_offset;
6097
6098 if (rdev->recovery_offset < reshape_offset) {
6099 /* We need to check old and new layout */
6100 if (!only_parity(rdev->raid_disk,
6101 conf->algorithm,
6102 conf->raid_disks,
6103 conf->max_degraded))
6104 continue;
6105 }
6106 if (!only_parity(rdev->raid_disk,
6107 conf->prev_algo,
6108 conf->previous_raid_disks,
6109 conf->max_degraded))
6110 continue;
6111 dirty_parity_disks++;
6112 }
6113
6114 /*
6115 * 0 for a fully functional array, 1 or 2 for a degraded array.
6116 */
6117 mddev->degraded = calc_degraded(conf);
6118
6119 if (has_failed(conf)) {
6120 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6121 " (%d/%d failed)\n",
6122 mdname(mddev), mddev->degraded, conf->raid_disks);
6123 goto abort;
6124 }
6125
6126 /* device size must be a multiple of chunk size */
6127 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6128 mddev->resync_max_sectors = mddev->dev_sectors;
6129
6130 if (mddev->degraded > dirty_parity_disks &&
6131 mddev->recovery_cp != MaxSector) {
6132 if (mddev->ok_start_degraded)
6133 printk(KERN_WARNING
6134 "md/raid:%s: starting dirty degraded array"
6135 " - data corruption possible.\n",
6136 mdname(mddev));
6137 else {
6138 printk(KERN_ERR
6139 "md/raid:%s: cannot start dirty degraded array.\n",
6140 mdname(mddev));
6141 goto abort;
6142 }
6143 }
6144
6145 if (mddev->degraded == 0)
6146 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6147 " devices, algorithm %d\n", mdname(mddev), conf->level,
6148 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6149 mddev->new_layout);
6150 else
6151 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6152 " out of %d devices, algorithm %d\n",
6153 mdname(mddev), conf->level,
6154 mddev->raid_disks - mddev->degraded,
6155 mddev->raid_disks, mddev->new_layout);
6156
6157 print_raid5_conf(conf);
6158
6159 if (conf->reshape_progress != MaxSector) {
6160 conf->reshape_safe = conf->reshape_progress;
6161 atomic_set(&conf->reshape_stripes, 0);
6162 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6163 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6164 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6165 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6166 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6167 "reshape");
6168 }
6169
6170 /* Ok, everything is just fine now */
6171 if (mddev->to_remove == &raid5_attrs_group)
6172 mddev->to_remove = NULL;
6173 else if (mddev->kobj.sd &&
6174 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6175 printk(KERN_WARNING
6176 "raid5: failed to create sysfs attributes for %s\n",
6177 mdname(mddev));
6178 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6179
6180 if (mddev->queue) {
6181 int chunk_size;
6182 bool discard_supported = true;
6183 /* read-ahead size must cover two whole stripes, which
6184 * is 2 * (datadisks) * chunksize where 'n' is the
6185 * number of raid devices
6186 */
6187 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6188 int stripe = data_disks *
6189 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6190 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6191 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6192
6193 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6194
6195 mddev->queue->backing_dev_info.congested_data = mddev;
6196 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6197
6198 chunk_size = mddev->chunk_sectors << 9;
6199 blk_queue_io_min(mddev->queue, chunk_size);
6200 blk_queue_io_opt(mddev->queue, chunk_size *
6201 (conf->raid_disks - conf->max_degraded));
6202 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6203 /*
6204 * We can only discard a whole stripe. It doesn't make sense to
6205 * discard data disk but write parity disk
6206 */
6207 stripe = stripe * PAGE_SIZE;
6208 /* Round up to power of 2, as discard handling
6209 * currently assumes that */
6210 while ((stripe-1) & stripe)
6211 stripe = (stripe | (stripe-1)) + 1;
6212 mddev->queue->limits.discard_alignment = stripe;
6213 mddev->queue->limits.discard_granularity = stripe;
6214
6215 /*
6216 * We use 16-bit counter of active stripes in bi_phys_segments
6217 * (minus one for over-loaded initialization)
6218 */
6219 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
6220 blk_queue_max_discard_sectors(mddev->queue,
6221 0xfffe * STRIPE_SECTORS);
6222
6223 /*
6224 * unaligned part of discard request will be ignored, so can't
6225 * guarantee discard_zeroes_data
6226 */
6227 mddev->queue->limits.discard_zeroes_data = 0;
6228
6229 blk_queue_max_write_same_sectors(mddev->queue, 0);
6230
6231 rdev_for_each(rdev, mddev) {
6232 disk_stack_limits(mddev->gendisk, rdev->bdev,
6233 rdev->data_offset << 9);
6234 disk_stack_limits(mddev->gendisk, rdev->bdev,
6235 rdev->new_data_offset << 9);
6236 /*
6237 * discard_zeroes_data is required, otherwise data
6238 * could be lost. Consider a scenario: discard a stripe
6239 * (the stripe could be inconsistent if
6240 * discard_zeroes_data is 0); write one disk of the
6241 * stripe (the stripe could be inconsistent again
6242 * depending on which disks are used to calculate
6243 * parity); the disk is broken; The stripe data of this
6244 * disk is lost.
6245 */
6246 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6247 !bdev_get_queue(rdev->bdev)->
6248 limits.discard_zeroes_data)
6249 discard_supported = false;
6250 /* Unfortunately, discard_zeroes_data is not currently
6251 * a guarantee - just a hint. So we only allow DISCARD
6252 * if the sysadmin has confirmed that only safe devices
6253 * are in use by setting a module parameter.
6254 */
6255 if (!devices_handle_discard_safely) {
6256 if (discard_supported) {
6257 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6258 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6259 }
6260 discard_supported = false;
6261 }
6262 }
6263
6264 if (discard_supported &&
6265 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
6266 mddev->queue->limits.discard_granularity >= stripe)
6267 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6268 mddev->queue);
6269 else
6270 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6271 mddev->queue);
6272 }
6273
6274 return 0;
6275 abort:
6276 md_unregister_thread(&mddev->thread);
6277 print_raid5_conf(conf);
6278 free_conf(conf);
6279 mddev->private = NULL;
6280 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6281 return -EIO;
6282 }
6283
stop(struct mddev * mddev)6284 static int stop(struct mddev *mddev)
6285 {
6286 struct r5conf *conf = mddev->private;
6287
6288 md_unregister_thread(&mddev->thread);
6289 if (mddev->queue)
6290 mddev->queue->backing_dev_info.congested_fn = NULL;
6291 free_conf(conf);
6292 mddev->private = NULL;
6293 mddev->to_remove = &raid5_attrs_group;
6294 return 0;
6295 }
6296
status(struct seq_file * seq,struct mddev * mddev)6297 static void status(struct seq_file *seq, struct mddev *mddev)
6298 {
6299 struct r5conf *conf = mddev->private;
6300 int i;
6301
6302 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6303 mddev->chunk_sectors / 2, mddev->layout);
6304 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6305 for (i = 0; i < conf->raid_disks; i++)
6306 seq_printf (seq, "%s",
6307 conf->disks[i].rdev &&
6308 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6309 seq_printf (seq, "]");
6310 }
6311
print_raid5_conf(struct r5conf * conf)6312 static void print_raid5_conf (struct r5conf *conf)
6313 {
6314 int i;
6315 struct disk_info *tmp;
6316
6317 printk(KERN_DEBUG "RAID conf printout:\n");
6318 if (!conf) {
6319 printk("(conf==NULL)\n");
6320 return;
6321 }
6322 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6323 conf->raid_disks,
6324 conf->raid_disks - conf->mddev->degraded);
6325
6326 for (i = 0; i < conf->raid_disks; i++) {
6327 char b[BDEVNAME_SIZE];
6328 tmp = conf->disks + i;
6329 if (tmp->rdev)
6330 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6331 i, !test_bit(Faulty, &tmp->rdev->flags),
6332 bdevname(tmp->rdev->bdev, b));
6333 }
6334 }
6335
raid5_spare_active(struct mddev * mddev)6336 static int raid5_spare_active(struct mddev *mddev)
6337 {
6338 int i;
6339 struct r5conf *conf = mddev->private;
6340 struct disk_info *tmp;
6341 int count = 0;
6342 unsigned long flags;
6343
6344 for (i = 0; i < conf->raid_disks; i++) {
6345 tmp = conf->disks + i;
6346 if (tmp->replacement
6347 && tmp->replacement->recovery_offset == MaxSector
6348 && !test_bit(Faulty, &tmp->replacement->flags)
6349 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6350 /* Replacement has just become active. */
6351 if (!tmp->rdev
6352 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6353 count++;
6354 if (tmp->rdev) {
6355 /* Replaced device not technically faulty,
6356 * but we need to be sure it gets removed
6357 * and never re-added.
6358 */
6359 set_bit(Faulty, &tmp->rdev->flags);
6360 sysfs_notify_dirent_safe(
6361 tmp->rdev->sysfs_state);
6362 }
6363 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6364 } else if (tmp->rdev
6365 && tmp->rdev->recovery_offset == MaxSector
6366 && !test_bit(Faulty, &tmp->rdev->flags)
6367 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6368 count++;
6369 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6370 }
6371 }
6372 spin_lock_irqsave(&conf->device_lock, flags);
6373 mddev->degraded = calc_degraded(conf);
6374 spin_unlock_irqrestore(&conf->device_lock, flags);
6375 print_raid5_conf(conf);
6376 return count;
6377 }
6378
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)6379 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6380 {
6381 struct r5conf *conf = mddev->private;
6382 int err = 0;
6383 int number = rdev->raid_disk;
6384 struct md_rdev **rdevp;
6385 struct disk_info *p = conf->disks + number;
6386
6387 print_raid5_conf(conf);
6388 if (rdev == p->rdev)
6389 rdevp = &p->rdev;
6390 else if (rdev == p->replacement)
6391 rdevp = &p->replacement;
6392 else
6393 return 0;
6394
6395 if (number >= conf->raid_disks &&
6396 conf->reshape_progress == MaxSector)
6397 clear_bit(In_sync, &rdev->flags);
6398
6399 if (test_bit(In_sync, &rdev->flags) ||
6400 atomic_read(&rdev->nr_pending)) {
6401 err = -EBUSY;
6402 goto abort;
6403 }
6404 /* Only remove non-faulty devices if recovery
6405 * isn't possible.
6406 */
6407 if (!test_bit(Faulty, &rdev->flags) &&
6408 mddev->recovery_disabled != conf->recovery_disabled &&
6409 !has_failed(conf) &&
6410 (!p->replacement || p->replacement == rdev) &&
6411 number < conf->raid_disks) {
6412 err = -EBUSY;
6413 goto abort;
6414 }
6415 *rdevp = NULL;
6416 synchronize_rcu();
6417 if (atomic_read(&rdev->nr_pending)) {
6418 /* lost the race, try later */
6419 err = -EBUSY;
6420 *rdevp = rdev;
6421 } else if (p->replacement) {
6422 /* We must have just cleared 'rdev' */
6423 p->rdev = p->replacement;
6424 clear_bit(Replacement, &p->replacement->flags);
6425 smp_mb(); /* Make sure other CPUs may see both as identical
6426 * but will never see neither - if they are careful
6427 */
6428 p->replacement = NULL;
6429 clear_bit(WantReplacement, &rdev->flags);
6430 } else
6431 /* We might have just removed the Replacement as faulty-
6432 * clear the bit just in case
6433 */
6434 clear_bit(WantReplacement, &rdev->flags);
6435 abort:
6436
6437 print_raid5_conf(conf);
6438 return err;
6439 }
6440
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)6441 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6442 {
6443 struct r5conf *conf = mddev->private;
6444 int err = -EEXIST;
6445 int disk;
6446 struct disk_info *p;
6447 int first = 0;
6448 int last = conf->raid_disks - 1;
6449
6450 if (mddev->recovery_disabled == conf->recovery_disabled)
6451 return -EBUSY;
6452
6453 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6454 /* no point adding a device */
6455 return -EINVAL;
6456
6457 if (rdev->raid_disk >= 0)
6458 first = last = rdev->raid_disk;
6459
6460 /*
6461 * find the disk ... but prefer rdev->saved_raid_disk
6462 * if possible.
6463 */
6464 if (rdev->saved_raid_disk >= 0 &&
6465 rdev->saved_raid_disk >= first &&
6466 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6467 first = rdev->saved_raid_disk;
6468
6469 for (disk = first; disk <= last; disk++) {
6470 p = conf->disks + disk;
6471 if (p->rdev == NULL) {
6472 clear_bit(In_sync, &rdev->flags);
6473 rdev->raid_disk = disk;
6474 err = 0;
6475 if (rdev->saved_raid_disk != disk)
6476 conf->fullsync = 1;
6477 rcu_assign_pointer(p->rdev, rdev);
6478 goto out;
6479 }
6480 }
6481 for (disk = first; disk <= last; disk++) {
6482 p = conf->disks + disk;
6483 if (test_bit(WantReplacement, &p->rdev->flags) &&
6484 p->replacement == NULL) {
6485 clear_bit(In_sync, &rdev->flags);
6486 set_bit(Replacement, &rdev->flags);
6487 rdev->raid_disk = disk;
6488 err = 0;
6489 conf->fullsync = 1;
6490 rcu_assign_pointer(p->replacement, rdev);
6491 break;
6492 }
6493 }
6494 out:
6495 print_raid5_conf(conf);
6496 return err;
6497 }
6498
raid5_resize(struct mddev * mddev,sector_t sectors)6499 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6500 {
6501 /* no resync is happening, and there is enough space
6502 * on all devices, so we can resize.
6503 * We need to make sure resync covers any new space.
6504 * If the array is shrinking we should possibly wait until
6505 * any io in the removed space completes, but it hardly seems
6506 * worth it.
6507 */
6508 sector_t newsize;
6509 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6510 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6511 if (mddev->external_size &&
6512 mddev->array_sectors > newsize)
6513 return -EINVAL;
6514 if (mddev->bitmap) {
6515 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6516 if (ret)
6517 return ret;
6518 }
6519 md_set_array_sectors(mddev, newsize);
6520 set_capacity(mddev->gendisk, mddev->array_sectors);
6521 revalidate_disk(mddev->gendisk);
6522 if (sectors > mddev->dev_sectors &&
6523 mddev->recovery_cp > mddev->dev_sectors) {
6524 mddev->recovery_cp = mddev->dev_sectors;
6525 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6526 }
6527 mddev->dev_sectors = sectors;
6528 mddev->resync_max_sectors = sectors;
6529 return 0;
6530 }
6531
check_stripe_cache(struct mddev * mddev)6532 static int check_stripe_cache(struct mddev *mddev)
6533 {
6534 /* Can only proceed if there are plenty of stripe_heads.
6535 * We need a minimum of one full stripe,, and for sensible progress
6536 * it is best to have about 4 times that.
6537 * If we require 4 times, then the default 256 4K stripe_heads will
6538 * allow for chunk sizes up to 256K, which is probably OK.
6539 * If the chunk size is greater, user-space should request more
6540 * stripe_heads first.
6541 */
6542 struct r5conf *conf = mddev->private;
6543 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6544 > conf->max_nr_stripes ||
6545 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6546 > conf->max_nr_stripes) {
6547 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6548 mdname(mddev),
6549 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6550 / STRIPE_SIZE)*4);
6551 return 0;
6552 }
6553 return 1;
6554 }
6555
check_reshape(struct mddev * mddev)6556 static int check_reshape(struct mddev *mddev)
6557 {
6558 struct r5conf *conf = mddev->private;
6559
6560 if (mddev->delta_disks == 0 &&
6561 mddev->new_layout == mddev->layout &&
6562 mddev->new_chunk_sectors == mddev->chunk_sectors)
6563 return 0; /* nothing to do */
6564 if (has_failed(conf))
6565 return -EINVAL;
6566 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6567 /* We might be able to shrink, but the devices must
6568 * be made bigger first.
6569 * For raid6, 4 is the minimum size.
6570 * Otherwise 2 is the minimum
6571 */
6572 int min = 2;
6573 if (mddev->level == 6)
6574 min = 4;
6575 if (mddev->raid_disks + mddev->delta_disks < min)
6576 return -EINVAL;
6577 }
6578
6579 if (!check_stripe_cache(mddev))
6580 return -ENOSPC;
6581
6582 return resize_stripes(conf, (conf->previous_raid_disks
6583 + mddev->delta_disks));
6584 }
6585
raid5_start_reshape(struct mddev * mddev)6586 static int raid5_start_reshape(struct mddev *mddev)
6587 {
6588 struct r5conf *conf = mddev->private;
6589 struct md_rdev *rdev;
6590 int spares = 0;
6591 unsigned long flags;
6592
6593 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6594 return -EBUSY;
6595
6596 if (!check_stripe_cache(mddev))
6597 return -ENOSPC;
6598
6599 if (has_failed(conf))
6600 return -EINVAL;
6601
6602 rdev_for_each(rdev, mddev) {
6603 if (!test_bit(In_sync, &rdev->flags)
6604 && !test_bit(Faulty, &rdev->flags))
6605 spares++;
6606 }
6607
6608 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6609 /* Not enough devices even to make a degraded array
6610 * of that size
6611 */
6612 return -EINVAL;
6613
6614 /* Refuse to reduce size of the array. Any reductions in
6615 * array size must be through explicit setting of array_size
6616 * attribute.
6617 */
6618 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6619 < mddev->array_sectors) {
6620 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6621 "before number of disks\n", mdname(mddev));
6622 return -EINVAL;
6623 }
6624
6625 atomic_set(&conf->reshape_stripes, 0);
6626 spin_lock_irq(&conf->device_lock);
6627 write_seqcount_begin(&conf->gen_lock);
6628 conf->previous_raid_disks = conf->raid_disks;
6629 conf->raid_disks += mddev->delta_disks;
6630 conf->prev_chunk_sectors = conf->chunk_sectors;
6631 conf->chunk_sectors = mddev->new_chunk_sectors;
6632 conf->prev_algo = conf->algorithm;
6633 conf->algorithm = mddev->new_layout;
6634 conf->generation++;
6635 /* Code that selects data_offset needs to see the generation update
6636 * if reshape_progress has been set - so a memory barrier needed.
6637 */
6638 smp_mb();
6639 if (mddev->reshape_backwards)
6640 conf->reshape_progress = raid5_size(mddev, 0, 0);
6641 else
6642 conf->reshape_progress = 0;
6643 conf->reshape_safe = conf->reshape_progress;
6644 write_seqcount_end(&conf->gen_lock);
6645 spin_unlock_irq(&conf->device_lock);
6646
6647 /* Now make sure any requests that proceeded on the assumption
6648 * the reshape wasn't running - like Discard or Read - have
6649 * completed.
6650 */
6651 mddev_suspend(mddev);
6652 mddev_resume(mddev);
6653
6654 /* Add some new drives, as many as will fit.
6655 * We know there are enough to make the newly sized array work.
6656 * Don't add devices if we are reducing the number of
6657 * devices in the array. This is because it is not possible
6658 * to correctly record the "partially reconstructed" state of
6659 * such devices during the reshape and confusion could result.
6660 */
6661 if (mddev->delta_disks >= 0) {
6662 rdev_for_each(rdev, mddev)
6663 if (rdev->raid_disk < 0 &&
6664 !test_bit(Faulty, &rdev->flags)) {
6665 if (raid5_add_disk(mddev, rdev) == 0) {
6666 if (rdev->raid_disk
6667 >= conf->previous_raid_disks)
6668 set_bit(In_sync, &rdev->flags);
6669 else
6670 rdev->recovery_offset = 0;
6671
6672 if (sysfs_link_rdev(mddev, rdev))
6673 /* Failure here is OK */;
6674 }
6675 } else if (rdev->raid_disk >= conf->previous_raid_disks
6676 && !test_bit(Faulty, &rdev->flags)) {
6677 /* This is a spare that was manually added */
6678 set_bit(In_sync, &rdev->flags);
6679 }
6680
6681 /* When a reshape changes the number of devices,
6682 * ->degraded is measured against the larger of the
6683 * pre and post number of devices.
6684 */
6685 spin_lock_irqsave(&conf->device_lock, flags);
6686 mddev->degraded = calc_degraded(conf);
6687 spin_unlock_irqrestore(&conf->device_lock, flags);
6688 }
6689 mddev->raid_disks = conf->raid_disks;
6690 mddev->reshape_position = conf->reshape_progress;
6691 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6692
6693 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6694 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6695 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6696 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6697 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6698 "reshape");
6699 if (!mddev->sync_thread) {
6700 mddev->recovery = 0;
6701 spin_lock_irq(&conf->device_lock);
6702 write_seqcount_begin(&conf->gen_lock);
6703 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6704 mddev->new_chunk_sectors =
6705 conf->chunk_sectors = conf->prev_chunk_sectors;
6706 mddev->new_layout = conf->algorithm = conf->prev_algo;
6707 rdev_for_each(rdev, mddev)
6708 rdev->new_data_offset = rdev->data_offset;
6709 smp_wmb();
6710 conf->generation --;
6711 conf->reshape_progress = MaxSector;
6712 mddev->reshape_position = MaxSector;
6713 write_seqcount_end(&conf->gen_lock);
6714 spin_unlock_irq(&conf->device_lock);
6715 return -EAGAIN;
6716 }
6717 conf->reshape_checkpoint = jiffies;
6718 md_wakeup_thread(mddev->sync_thread);
6719 md_new_event(mddev);
6720 return 0;
6721 }
6722
6723 /* This is called from the reshape thread and should make any
6724 * changes needed in 'conf'
6725 */
end_reshape(struct r5conf * conf)6726 static void end_reshape(struct r5conf *conf)
6727 {
6728
6729 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6730
6731 spin_lock_irq(&conf->device_lock);
6732 conf->previous_raid_disks = conf->raid_disks;
6733 md_finish_reshape(conf->mddev);
6734 smp_wmb();
6735 conf->reshape_progress = MaxSector;
6736 spin_unlock_irq(&conf->device_lock);
6737 wake_up(&conf->wait_for_overlap);
6738
6739 /* read-ahead size must cover two whole stripes, which is
6740 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6741 */
6742 if (conf->mddev->queue) {
6743 int data_disks = conf->raid_disks - conf->max_degraded;
6744 int stripe = data_disks * ((conf->chunk_sectors << 9)
6745 / PAGE_SIZE);
6746 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6747 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6748 }
6749 }
6750 }
6751
6752 /* This is called from the raid5d thread with mddev_lock held.
6753 * It makes config changes to the device.
6754 */
raid5_finish_reshape(struct mddev * mddev)6755 static void raid5_finish_reshape(struct mddev *mddev)
6756 {
6757 struct r5conf *conf = mddev->private;
6758
6759 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6760
6761 if (mddev->delta_disks > 0) {
6762 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6763 set_capacity(mddev->gendisk, mddev->array_sectors);
6764 revalidate_disk(mddev->gendisk);
6765 } else {
6766 int d;
6767 spin_lock_irq(&conf->device_lock);
6768 mddev->degraded = calc_degraded(conf);
6769 spin_unlock_irq(&conf->device_lock);
6770 for (d = conf->raid_disks ;
6771 d < conf->raid_disks - mddev->delta_disks;
6772 d++) {
6773 struct md_rdev *rdev = conf->disks[d].rdev;
6774 if (rdev)
6775 clear_bit(In_sync, &rdev->flags);
6776 rdev = conf->disks[d].replacement;
6777 if (rdev)
6778 clear_bit(In_sync, &rdev->flags);
6779 }
6780 }
6781 mddev->layout = conf->algorithm;
6782 mddev->chunk_sectors = conf->chunk_sectors;
6783 mddev->reshape_position = MaxSector;
6784 mddev->delta_disks = 0;
6785 mddev->reshape_backwards = 0;
6786 }
6787 }
6788
raid5_quiesce(struct mddev * mddev,int state)6789 static void raid5_quiesce(struct mddev *mddev, int state)
6790 {
6791 struct r5conf *conf = mddev->private;
6792
6793 switch(state) {
6794 case 2: /* resume for a suspend */
6795 wake_up(&conf->wait_for_overlap);
6796 break;
6797
6798 case 1: /* stop all writes */
6799 lock_all_device_hash_locks_irq(conf);
6800 /* '2' tells resync/reshape to pause so that all
6801 * active stripes can drain
6802 */
6803 conf->quiesce = 2;
6804 wait_event_cmd(conf->wait_for_stripe,
6805 atomic_read(&conf->active_stripes) == 0 &&
6806 atomic_read(&conf->active_aligned_reads) == 0,
6807 unlock_all_device_hash_locks_irq(conf),
6808 lock_all_device_hash_locks_irq(conf));
6809 conf->quiesce = 1;
6810 unlock_all_device_hash_locks_irq(conf);
6811 /* allow reshape to continue */
6812 wake_up(&conf->wait_for_overlap);
6813 break;
6814
6815 case 0: /* re-enable writes */
6816 lock_all_device_hash_locks_irq(conf);
6817 conf->quiesce = 0;
6818 wake_up(&conf->wait_for_stripe);
6819 wake_up(&conf->wait_for_overlap);
6820 unlock_all_device_hash_locks_irq(conf);
6821 break;
6822 }
6823 }
6824
raid45_takeover_raid0(struct mddev * mddev,int level)6825 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6826 {
6827 struct r0conf *raid0_conf = mddev->private;
6828 sector_t sectors;
6829
6830 /* for raid0 takeover only one zone is supported */
6831 if (raid0_conf->nr_strip_zones > 1) {
6832 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6833 mdname(mddev));
6834 return ERR_PTR(-EINVAL);
6835 }
6836
6837 sectors = raid0_conf->strip_zone[0].zone_end;
6838 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6839 mddev->dev_sectors = sectors;
6840 mddev->new_level = level;
6841 mddev->new_layout = ALGORITHM_PARITY_N;
6842 mddev->new_chunk_sectors = mddev->chunk_sectors;
6843 mddev->raid_disks += 1;
6844 mddev->delta_disks = 1;
6845 /* make sure it will be not marked as dirty */
6846 mddev->recovery_cp = MaxSector;
6847
6848 return setup_conf(mddev);
6849 }
6850
raid5_takeover_raid1(struct mddev * mddev)6851 static void *raid5_takeover_raid1(struct mddev *mddev)
6852 {
6853 int chunksect;
6854
6855 if (mddev->raid_disks != 2 ||
6856 mddev->degraded > 1)
6857 return ERR_PTR(-EINVAL);
6858
6859 /* Should check if there are write-behind devices? */
6860
6861 chunksect = 64*2; /* 64K by default */
6862
6863 /* The array must be an exact multiple of chunksize */
6864 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6865 chunksect >>= 1;
6866
6867 if ((chunksect<<9) < STRIPE_SIZE)
6868 /* array size does not allow a suitable chunk size */
6869 return ERR_PTR(-EINVAL);
6870
6871 mddev->new_level = 5;
6872 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6873 mddev->new_chunk_sectors = chunksect;
6874
6875 return setup_conf(mddev);
6876 }
6877
raid5_takeover_raid6(struct mddev * mddev)6878 static void *raid5_takeover_raid6(struct mddev *mddev)
6879 {
6880 int new_layout;
6881
6882 switch (mddev->layout) {
6883 case ALGORITHM_LEFT_ASYMMETRIC_6:
6884 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6885 break;
6886 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6887 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6888 break;
6889 case ALGORITHM_LEFT_SYMMETRIC_6:
6890 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6891 break;
6892 case ALGORITHM_RIGHT_SYMMETRIC_6:
6893 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6894 break;
6895 case ALGORITHM_PARITY_0_6:
6896 new_layout = ALGORITHM_PARITY_0;
6897 break;
6898 case ALGORITHM_PARITY_N:
6899 new_layout = ALGORITHM_PARITY_N;
6900 break;
6901 default:
6902 return ERR_PTR(-EINVAL);
6903 }
6904 mddev->new_level = 5;
6905 mddev->new_layout = new_layout;
6906 mddev->delta_disks = -1;
6907 mddev->raid_disks -= 1;
6908 return setup_conf(mddev);
6909 }
6910
raid5_check_reshape(struct mddev * mddev)6911 static int raid5_check_reshape(struct mddev *mddev)
6912 {
6913 /* For a 2-drive array, the layout and chunk size can be changed
6914 * immediately as not restriping is needed.
6915 * For larger arrays we record the new value - after validation
6916 * to be used by a reshape pass.
6917 */
6918 struct r5conf *conf = mddev->private;
6919 int new_chunk = mddev->new_chunk_sectors;
6920
6921 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6922 return -EINVAL;
6923 if (new_chunk > 0) {
6924 if (!is_power_of_2(new_chunk))
6925 return -EINVAL;
6926 if (new_chunk < (PAGE_SIZE>>9))
6927 return -EINVAL;
6928 if (mddev->array_sectors & (new_chunk-1))
6929 /* not factor of array size */
6930 return -EINVAL;
6931 }
6932
6933 /* They look valid */
6934
6935 if (mddev->raid_disks == 2) {
6936 /* can make the change immediately */
6937 if (mddev->new_layout >= 0) {
6938 conf->algorithm = mddev->new_layout;
6939 mddev->layout = mddev->new_layout;
6940 }
6941 if (new_chunk > 0) {
6942 conf->chunk_sectors = new_chunk ;
6943 mddev->chunk_sectors = new_chunk;
6944 }
6945 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6946 md_wakeup_thread(mddev->thread);
6947 }
6948 return check_reshape(mddev);
6949 }
6950
raid6_check_reshape(struct mddev * mddev)6951 static int raid6_check_reshape(struct mddev *mddev)
6952 {
6953 int new_chunk = mddev->new_chunk_sectors;
6954
6955 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6956 return -EINVAL;
6957 if (new_chunk > 0) {
6958 if (!is_power_of_2(new_chunk))
6959 return -EINVAL;
6960 if (new_chunk < (PAGE_SIZE >> 9))
6961 return -EINVAL;
6962 if (mddev->array_sectors & (new_chunk-1))
6963 /* not factor of array size */
6964 return -EINVAL;
6965 }
6966
6967 /* They look valid */
6968 return check_reshape(mddev);
6969 }
6970
raid5_takeover(struct mddev * mddev)6971 static void *raid5_takeover(struct mddev *mddev)
6972 {
6973 /* raid5 can take over:
6974 * raid0 - if there is only one strip zone - make it a raid4 layout
6975 * raid1 - if there are two drives. We need to know the chunk size
6976 * raid4 - trivial - just use a raid4 layout.
6977 * raid6 - Providing it is a *_6 layout
6978 */
6979 if (mddev->level == 0)
6980 return raid45_takeover_raid0(mddev, 5);
6981 if (mddev->level == 1)
6982 return raid5_takeover_raid1(mddev);
6983 if (mddev->level == 4) {
6984 mddev->new_layout = ALGORITHM_PARITY_N;
6985 mddev->new_level = 5;
6986 return setup_conf(mddev);
6987 }
6988 if (mddev->level == 6)
6989 return raid5_takeover_raid6(mddev);
6990
6991 return ERR_PTR(-EINVAL);
6992 }
6993
raid4_takeover(struct mddev * mddev)6994 static void *raid4_takeover(struct mddev *mddev)
6995 {
6996 /* raid4 can take over:
6997 * raid0 - if there is only one strip zone
6998 * raid5 - if layout is right
6999 */
7000 if (mddev->level == 0)
7001 return raid45_takeover_raid0(mddev, 4);
7002 if (mddev->level == 5 &&
7003 mddev->layout == ALGORITHM_PARITY_N) {
7004 mddev->new_layout = 0;
7005 mddev->new_level = 4;
7006 return setup_conf(mddev);
7007 }
7008 return ERR_PTR(-EINVAL);
7009 }
7010
7011 static struct md_personality raid5_personality;
7012
raid6_takeover(struct mddev * mddev)7013 static void *raid6_takeover(struct mddev *mddev)
7014 {
7015 /* Currently can only take over a raid5. We map the
7016 * personality to an equivalent raid6 personality
7017 * with the Q block at the end.
7018 */
7019 int new_layout;
7020
7021 if (mddev->pers != &raid5_personality)
7022 return ERR_PTR(-EINVAL);
7023 if (mddev->degraded > 1)
7024 return ERR_PTR(-EINVAL);
7025 if (mddev->raid_disks > 253)
7026 return ERR_PTR(-EINVAL);
7027 if (mddev->raid_disks < 3)
7028 return ERR_PTR(-EINVAL);
7029
7030 switch (mddev->layout) {
7031 case ALGORITHM_LEFT_ASYMMETRIC:
7032 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7033 break;
7034 case ALGORITHM_RIGHT_ASYMMETRIC:
7035 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7036 break;
7037 case ALGORITHM_LEFT_SYMMETRIC:
7038 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7039 break;
7040 case ALGORITHM_RIGHT_SYMMETRIC:
7041 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7042 break;
7043 case ALGORITHM_PARITY_0:
7044 new_layout = ALGORITHM_PARITY_0_6;
7045 break;
7046 case ALGORITHM_PARITY_N:
7047 new_layout = ALGORITHM_PARITY_N;
7048 break;
7049 default:
7050 return ERR_PTR(-EINVAL);
7051 }
7052 mddev->new_level = 6;
7053 mddev->new_layout = new_layout;
7054 mddev->delta_disks = 1;
7055 mddev->raid_disks += 1;
7056 return setup_conf(mddev);
7057 }
7058
7059 static struct md_personality raid6_personality =
7060 {
7061 .name = "raid6",
7062 .level = 6,
7063 .owner = THIS_MODULE,
7064 .make_request = make_request,
7065 .run = run,
7066 .stop = stop,
7067 .status = status,
7068 .error_handler = error,
7069 .hot_add_disk = raid5_add_disk,
7070 .hot_remove_disk= raid5_remove_disk,
7071 .spare_active = raid5_spare_active,
7072 .sync_request = sync_request,
7073 .resize = raid5_resize,
7074 .size = raid5_size,
7075 .check_reshape = raid6_check_reshape,
7076 .start_reshape = raid5_start_reshape,
7077 .finish_reshape = raid5_finish_reshape,
7078 .quiesce = raid5_quiesce,
7079 .takeover = raid6_takeover,
7080 };
7081 static struct md_personality raid5_personality =
7082 {
7083 .name = "raid5",
7084 .level = 5,
7085 .owner = THIS_MODULE,
7086 .make_request = make_request,
7087 .run = run,
7088 .stop = stop,
7089 .status = status,
7090 .error_handler = error,
7091 .hot_add_disk = raid5_add_disk,
7092 .hot_remove_disk= raid5_remove_disk,
7093 .spare_active = raid5_spare_active,
7094 .sync_request = sync_request,
7095 .resize = raid5_resize,
7096 .size = raid5_size,
7097 .check_reshape = raid5_check_reshape,
7098 .start_reshape = raid5_start_reshape,
7099 .finish_reshape = raid5_finish_reshape,
7100 .quiesce = raid5_quiesce,
7101 .takeover = raid5_takeover,
7102 };
7103
7104 static struct md_personality raid4_personality =
7105 {
7106 .name = "raid4",
7107 .level = 4,
7108 .owner = THIS_MODULE,
7109 .make_request = make_request,
7110 .run = run,
7111 .stop = stop,
7112 .status = status,
7113 .error_handler = error,
7114 .hot_add_disk = raid5_add_disk,
7115 .hot_remove_disk= raid5_remove_disk,
7116 .spare_active = raid5_spare_active,
7117 .sync_request = sync_request,
7118 .resize = raid5_resize,
7119 .size = raid5_size,
7120 .check_reshape = raid5_check_reshape,
7121 .start_reshape = raid5_start_reshape,
7122 .finish_reshape = raid5_finish_reshape,
7123 .quiesce = raid5_quiesce,
7124 .takeover = raid4_takeover,
7125 };
7126
raid5_init(void)7127 static int __init raid5_init(void)
7128 {
7129 raid5_wq = alloc_workqueue("raid5wq",
7130 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7131 if (!raid5_wq)
7132 return -ENOMEM;
7133 register_md_personality(&raid6_personality);
7134 register_md_personality(&raid5_personality);
7135 register_md_personality(&raid4_personality);
7136 return 0;
7137 }
7138
raid5_exit(void)7139 static void raid5_exit(void)
7140 {
7141 unregister_md_personality(&raid6_personality);
7142 unregister_md_personality(&raid5_personality);
7143 unregister_md_personality(&raid4_personality);
7144 destroy_workqueue(raid5_wq);
7145 }
7146
7147 module_init(raid5_init);
7148 module_exit(raid5_exit);
7149 MODULE_LICENSE("GPL");
7150 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7151 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7152 MODULE_ALIAS("md-raid5");
7153 MODULE_ALIAS("md-raid4");
7154 MODULE_ALIAS("md-level-5");
7155 MODULE_ALIAS("md-level-4");
7156 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7157 MODULE_ALIAS("md-raid6");
7158 MODULE_ALIAS("md-level-6");
7159
7160 /* This used to be two separate modules, they were: */
7161 MODULE_ALIAS("raid5");
7162 MODULE_ALIAS("raid6");
7163