• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2003-2012, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 
22 #include "mei_dev.h"
23 #include "hbm.h"
24 
25 #include "hw-me.h"
26 #include "hw-me-regs.h"
27 
28 /**
29  * mei_me_reg_read - Reads 32bit data from the mei device
30  *
31  * @hw: the me hardware structure
32  * @offset: offset from which to read the data
33  *
34  * Return: register value (u32)
35  */
mei_me_reg_read(const struct mei_me_hw * hw,unsigned long offset)36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 			       unsigned long offset)
38 {
39 	return ioread32(hw->mem_addr + offset);
40 }
41 
42 
43 /**
44  * mei_me_reg_write - Writes 32bit data to the mei device
45  *
46  * @hw: the me hardware structure
47  * @offset: offset from which to write the data
48  * @value: register value to write (u32)
49  */
mei_me_reg_write(const struct mei_me_hw * hw,unsigned long offset,u32 value)50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 				 unsigned long offset, u32 value)
52 {
53 	iowrite32(value, hw->mem_addr + offset);
54 }
55 
56 /**
57  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58  *  read window register
59  *
60  * @dev: the device structure
61  *
62  * Return: ME_CB_RW register value (u32)
63  */
mei_me_mecbrw_read(const struct mei_device * dev)64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70  *
71  * @hw: the me hardware structure
72  *
73  * Return: ME_CSR_HA register value (u32)
74  */
mei_me_mecsr_read(const struct mei_me_hw * hw)75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 	return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79 
80 /**
81  * mei_hcsr_read - Reads 32bit data from the host CSR
82  *
83  * @hw: the me hardware structure
84  *
85  * Return: H_CSR register value (u32)
86  */
mei_hcsr_read(const struct mei_me_hw * hw)87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 	return mei_me_reg_read(hw, H_CSR);
90 }
91 
92 /**
93  * mei_hcsr_set - writes H_CSR register to the mei device,
94  * and ignores the H_IS bit for it is write-one-to-zero.
95  *
96  * @hw: the me hardware structure
97  * @hcsr: new register value
98  */
mei_hcsr_set(struct mei_me_hw * hw,u32 hcsr)99 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
100 {
101 	hcsr &= ~H_IS;
102 	mei_me_reg_write(hw, H_CSR, hcsr);
103 }
104 
105 /**
106  * mei_me_fw_status - read fw status register from pci config space
107  *
108  * @dev: mei device
109  * @fw_status: fw status register values
110  *
111  * Return: 0 on success, error otherwise
112  */
mei_me_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)113 static int mei_me_fw_status(struct mei_device *dev,
114 			    struct mei_fw_status *fw_status)
115 {
116 	struct pci_dev *pdev = to_pci_dev(dev->dev);
117 	struct mei_me_hw *hw = to_me_hw(dev);
118 	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
119 	int ret;
120 	int i;
121 
122 	if (!fw_status)
123 		return -EINVAL;
124 
125 	fw_status->count = fw_src->count;
126 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
127 		ret = pci_read_config_dword(pdev,
128 			fw_src->status[i], &fw_status->status[i]);
129 		if (ret)
130 			return ret;
131 	}
132 
133 	return 0;
134 }
135 
136 /**
137  * mei_me_hw_config - configure hw dependent settings
138  *
139  * @dev: mei device
140  */
mei_me_hw_config(struct mei_device * dev)141 static void mei_me_hw_config(struct mei_device *dev)
142 {
143 	struct mei_me_hw *hw = to_me_hw(dev);
144 	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
145 	/* Doesn't change in runtime */
146 	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
147 
148 	hw->pg_state = MEI_PG_OFF;
149 }
150 
151 /**
152  * mei_me_pg_state  - translate internal pg state
153  *   to the mei power gating state
154  *
155  * @dev:  mei device
156  *
157  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
158  */
mei_me_pg_state(struct mei_device * dev)159 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
160 {
161 	struct mei_me_hw *hw = to_me_hw(dev);
162 
163 	return hw->pg_state;
164 }
165 
166 /**
167  * mei_me_intr_clear - clear and stop interrupts
168  *
169  * @dev: the device structure
170  */
mei_me_intr_clear(struct mei_device * dev)171 static void mei_me_intr_clear(struct mei_device *dev)
172 {
173 	struct mei_me_hw *hw = to_me_hw(dev);
174 	u32 hcsr = mei_hcsr_read(hw);
175 
176 	if ((hcsr & H_IS) == H_IS)
177 		mei_me_reg_write(hw, H_CSR, hcsr);
178 }
179 /**
180  * mei_me_intr_enable - enables mei device interrupts
181  *
182  * @dev: the device structure
183  */
mei_me_intr_enable(struct mei_device * dev)184 static void mei_me_intr_enable(struct mei_device *dev)
185 {
186 	struct mei_me_hw *hw = to_me_hw(dev);
187 	u32 hcsr = mei_hcsr_read(hw);
188 
189 	hcsr |= H_IE;
190 	mei_hcsr_set(hw, hcsr);
191 }
192 
193 /**
194  * mei_me_intr_disable - disables mei device interrupts
195  *
196  * @dev: the device structure
197  */
mei_me_intr_disable(struct mei_device * dev)198 static void mei_me_intr_disable(struct mei_device *dev)
199 {
200 	struct mei_me_hw *hw = to_me_hw(dev);
201 	u32 hcsr = mei_hcsr_read(hw);
202 
203 	hcsr  &= ~H_IE;
204 	mei_hcsr_set(hw, hcsr);
205 }
206 
207 /**
208  * mei_me_hw_reset_release - release device from the reset
209  *
210  * @dev: the device structure
211  */
mei_me_hw_reset_release(struct mei_device * dev)212 static void mei_me_hw_reset_release(struct mei_device *dev)
213 {
214 	struct mei_me_hw *hw = to_me_hw(dev);
215 	u32 hcsr = mei_hcsr_read(hw);
216 
217 	hcsr |= H_IG;
218 	hcsr &= ~H_RST;
219 	mei_hcsr_set(hw, hcsr);
220 
221 	/* complete this write before we set host ready on another CPU */
222 	mmiowb();
223 }
224 /**
225  * mei_me_hw_reset - resets fw via mei csr register.
226  *
227  * @dev: the device structure
228  * @intr_enable: if interrupt should be enabled after reset.
229  *
230  * Return: always 0
231  */
mei_me_hw_reset(struct mei_device * dev,bool intr_enable)232 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
233 {
234 	struct mei_me_hw *hw = to_me_hw(dev);
235 	u32 hcsr = mei_hcsr_read(hw);
236 
237 	/* H_RST may be found lit before reset is started,
238 	 * for example if preceding reset flow hasn't completed.
239 	 * In that case asserting H_RST will be ignored, therefore
240 	 * we need to clean H_RST bit to start a successful reset sequence.
241 	 */
242 	if ((hcsr & H_RST) == H_RST) {
243 		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
244 		hcsr &= ~H_RST;
245 		mei_hcsr_set(hw, hcsr);
246 		hcsr = mei_hcsr_read(hw);
247 	}
248 
249 	hcsr |= H_RST | H_IG | H_IS;
250 
251 	if (intr_enable)
252 		hcsr |= H_IE;
253 	else
254 		hcsr &= ~H_IE;
255 
256 	dev->recvd_hw_ready = false;
257 	mei_me_reg_write(hw, H_CSR, hcsr);
258 
259 	/*
260 	 * Host reads the H_CSR once to ensure that the
261 	 * posted write to H_CSR completes.
262 	 */
263 	hcsr = mei_hcsr_read(hw);
264 
265 	if ((hcsr & H_RST) == 0)
266 		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
267 
268 	if ((hcsr & H_RDY) == H_RDY)
269 		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
270 
271 	if (intr_enable == false)
272 		mei_me_hw_reset_release(dev);
273 
274 	return 0;
275 }
276 
277 /**
278  * mei_me_host_set_ready - enable device
279  *
280  * @dev: mei device
281  */
mei_me_host_set_ready(struct mei_device * dev)282 static void mei_me_host_set_ready(struct mei_device *dev)
283 {
284 	struct mei_me_hw *hw = to_me_hw(dev);
285 
286 	hw->host_hw_state = mei_hcsr_read(hw);
287 	hw->host_hw_state |= H_IE | H_IG | H_RDY;
288 	mei_hcsr_set(hw, hw->host_hw_state);
289 }
290 
291 /**
292  * mei_me_host_is_ready - check whether the host has turned ready
293  *
294  * @dev: mei device
295  * Return: bool
296  */
mei_me_host_is_ready(struct mei_device * dev)297 static bool mei_me_host_is_ready(struct mei_device *dev)
298 {
299 	struct mei_me_hw *hw = to_me_hw(dev);
300 
301 	hw->host_hw_state = mei_hcsr_read(hw);
302 	return (hw->host_hw_state & H_RDY) == H_RDY;
303 }
304 
305 /**
306  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
307  *
308  * @dev: mei device
309  * Return: bool
310  */
mei_me_hw_is_ready(struct mei_device * dev)311 static bool mei_me_hw_is_ready(struct mei_device *dev)
312 {
313 	struct mei_me_hw *hw = to_me_hw(dev);
314 
315 	hw->me_hw_state = mei_me_mecsr_read(hw);
316 	return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
317 }
318 
319 /**
320  * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
321  *  or timeout is reached
322  *
323  * @dev: mei device
324  * Return: 0 on success, error otherwise
325  */
mei_me_hw_ready_wait(struct mei_device * dev)326 static int mei_me_hw_ready_wait(struct mei_device *dev)
327 {
328 	mutex_unlock(&dev->device_lock);
329 	wait_event_timeout(dev->wait_hw_ready,
330 			dev->recvd_hw_ready,
331 			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
332 	mutex_lock(&dev->device_lock);
333 	if (!dev->recvd_hw_ready) {
334 		dev_err(dev->dev, "wait hw ready failed\n");
335 		return -ETIME;
336 	}
337 
338 	mei_me_hw_reset_release(dev);
339 	dev->recvd_hw_ready = false;
340 	return 0;
341 }
342 
343 /**
344  * mei_me_hw_start - hw start routine
345  *
346  * @dev: mei device
347  * Return: 0 on success, error otherwise
348  */
mei_me_hw_start(struct mei_device * dev)349 static int mei_me_hw_start(struct mei_device *dev)
350 {
351 	int ret = mei_me_hw_ready_wait(dev);
352 
353 	if (ret)
354 		return ret;
355 	dev_dbg(dev->dev, "hw is ready\n");
356 
357 	mei_me_host_set_ready(dev);
358 	return ret;
359 }
360 
361 
362 /**
363  * mei_hbuf_filled_slots - gets number of device filled buffer slots
364  *
365  * @dev: the device structure
366  *
367  * Return: number of filled slots
368  */
mei_hbuf_filled_slots(struct mei_device * dev)369 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
370 {
371 	struct mei_me_hw *hw = to_me_hw(dev);
372 	char read_ptr, write_ptr;
373 
374 	hw->host_hw_state = mei_hcsr_read(hw);
375 
376 	read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
377 	write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
378 
379 	return (unsigned char) (write_ptr - read_ptr);
380 }
381 
382 /**
383  * mei_me_hbuf_is_empty - checks if host buffer is empty.
384  *
385  * @dev: the device structure
386  *
387  * Return: true if empty, false - otherwise.
388  */
mei_me_hbuf_is_empty(struct mei_device * dev)389 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
390 {
391 	return mei_hbuf_filled_slots(dev) == 0;
392 }
393 
394 /**
395  * mei_me_hbuf_empty_slots - counts write empty slots.
396  *
397  * @dev: the device structure
398  *
399  * Return: -EOVERFLOW if overflow, otherwise empty slots count
400  */
mei_me_hbuf_empty_slots(struct mei_device * dev)401 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
402 {
403 	unsigned char filled_slots, empty_slots;
404 
405 	filled_slots = mei_hbuf_filled_slots(dev);
406 	empty_slots = dev->hbuf_depth - filled_slots;
407 
408 	/* check for overflow */
409 	if (filled_slots > dev->hbuf_depth)
410 		return -EOVERFLOW;
411 
412 	return empty_slots;
413 }
414 
415 /**
416  * mei_me_hbuf_max_len - returns size of hw buffer.
417  *
418  * @dev: the device structure
419  *
420  * Return: size of hw buffer in bytes
421  */
mei_me_hbuf_max_len(const struct mei_device * dev)422 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
423 {
424 	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
425 }
426 
427 
428 /**
429  * mei_me_write_message - writes a message to mei device.
430  *
431  * @dev: the device structure
432  * @header: mei HECI header of message
433  * @buf: message payload will be written
434  *
435  * Return: -EIO if write has failed
436  */
mei_me_write_message(struct mei_device * dev,struct mei_msg_hdr * header,unsigned char * buf)437 static int mei_me_write_message(struct mei_device *dev,
438 			struct mei_msg_hdr *header,
439 			unsigned char *buf)
440 {
441 	struct mei_me_hw *hw = to_me_hw(dev);
442 	unsigned long rem;
443 	unsigned long length = header->length;
444 	u32 *reg_buf = (u32 *)buf;
445 	u32 hcsr;
446 	u32 dw_cnt;
447 	int i;
448 	int empty_slots;
449 
450 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
451 
452 	empty_slots = mei_hbuf_empty_slots(dev);
453 	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
454 
455 	dw_cnt = mei_data2slots(length);
456 	if (empty_slots < 0 || dw_cnt > empty_slots)
457 		return -EMSGSIZE;
458 
459 	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
460 
461 	for (i = 0; i < length / 4; i++)
462 		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
463 
464 	rem = length & 0x3;
465 	if (rem > 0) {
466 		u32 reg = 0;
467 
468 		memcpy(&reg, &buf[length - rem], rem);
469 		mei_me_reg_write(hw, H_CB_WW, reg);
470 	}
471 
472 	hcsr = mei_hcsr_read(hw) | H_IG;
473 	mei_hcsr_set(hw, hcsr);
474 	if (!mei_me_hw_is_ready(dev))
475 		return -EIO;
476 
477 	return 0;
478 }
479 
480 /**
481  * mei_me_count_full_read_slots - counts read full slots.
482  *
483  * @dev: the device structure
484  *
485  * Return: -EOVERFLOW if overflow, otherwise filled slots count
486  */
mei_me_count_full_read_slots(struct mei_device * dev)487 static int mei_me_count_full_read_slots(struct mei_device *dev)
488 {
489 	struct mei_me_hw *hw = to_me_hw(dev);
490 	char read_ptr, write_ptr;
491 	unsigned char buffer_depth, filled_slots;
492 
493 	hw->me_hw_state = mei_me_mecsr_read(hw);
494 	buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
495 	read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
496 	write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
497 	filled_slots = (unsigned char) (write_ptr - read_ptr);
498 
499 	/* check for overflow */
500 	if (filled_slots > buffer_depth)
501 		return -EOVERFLOW;
502 
503 	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
504 	return (int)filled_slots;
505 }
506 
507 /**
508  * mei_me_read_slots - reads a message from mei device.
509  *
510  * @dev: the device structure
511  * @buffer: message buffer will be written
512  * @buffer_length: message size will be read
513  *
514  * Return: always 0
515  */
mei_me_read_slots(struct mei_device * dev,unsigned char * buffer,unsigned long buffer_length)516 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
517 		    unsigned long buffer_length)
518 {
519 	struct mei_me_hw *hw = to_me_hw(dev);
520 	u32 *reg_buf = (u32 *)buffer;
521 	u32 hcsr;
522 
523 	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
524 		*reg_buf++ = mei_me_mecbrw_read(dev);
525 
526 	if (buffer_length > 0) {
527 		u32 reg = mei_me_mecbrw_read(dev);
528 
529 		memcpy(reg_buf, &reg, buffer_length);
530 	}
531 
532 	hcsr = mei_hcsr_read(hw) | H_IG;
533 	mei_hcsr_set(hw, hcsr);
534 	return 0;
535 }
536 
537 /**
538  * mei_me_pg_enter - write pg enter register
539  *
540  * @dev: the device structure
541  */
mei_me_pg_enter(struct mei_device * dev)542 static void mei_me_pg_enter(struct mei_device *dev)
543 {
544 	struct mei_me_hw *hw = to_me_hw(dev);
545 	u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
546 
547 	reg |= H_HPG_CSR_PGI;
548 	mei_me_reg_write(hw, H_HPG_CSR, reg);
549 }
550 
551 /**
552  * mei_me_pg_exit - write pg exit register
553  *
554  * @dev: the device structure
555  */
mei_me_pg_exit(struct mei_device * dev)556 static void mei_me_pg_exit(struct mei_device *dev)
557 {
558 	struct mei_me_hw *hw = to_me_hw(dev);
559 	u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
560 
561 	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
562 
563 	reg |= H_HPG_CSR_PGIHEXR;
564 	mei_me_reg_write(hw, H_HPG_CSR, reg);
565 }
566 
567 /**
568  * mei_me_pg_set_sync - perform pg entry procedure
569  *
570  * @dev: the device structure
571  *
572  * Return: 0 on success an error code otherwise
573  */
mei_me_pg_set_sync(struct mei_device * dev)574 int mei_me_pg_set_sync(struct mei_device *dev)
575 {
576 	struct mei_me_hw *hw = to_me_hw(dev);
577 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
578 	int ret;
579 
580 	dev->pg_event = MEI_PG_EVENT_WAIT;
581 
582 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
583 	if (ret)
584 		return ret;
585 
586 	mutex_unlock(&dev->device_lock);
587 	wait_event_timeout(dev->wait_pg,
588 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
589 	mutex_lock(&dev->device_lock);
590 
591 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
592 		mei_me_pg_enter(dev);
593 		ret = 0;
594 	} else {
595 		ret = -ETIME;
596 	}
597 
598 	dev->pg_event = MEI_PG_EVENT_IDLE;
599 	hw->pg_state = MEI_PG_ON;
600 
601 	return ret;
602 }
603 
604 /**
605  * mei_me_pg_unset_sync - perform pg exit procedure
606  *
607  * @dev: the device structure
608  *
609  * Return: 0 on success an error code otherwise
610  */
mei_me_pg_unset_sync(struct mei_device * dev)611 int mei_me_pg_unset_sync(struct mei_device *dev)
612 {
613 	struct mei_me_hw *hw = to_me_hw(dev);
614 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
615 	int ret;
616 
617 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
618 		goto reply;
619 
620 	dev->pg_event = MEI_PG_EVENT_WAIT;
621 
622 	mei_me_pg_exit(dev);
623 
624 	mutex_unlock(&dev->device_lock);
625 	wait_event_timeout(dev->wait_pg,
626 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
627 	mutex_lock(&dev->device_lock);
628 
629 reply:
630 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
631 		ret = -ETIME;
632 		goto out;
633 	}
634 
635 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
636 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
637 	if (ret)
638 		return ret;
639 
640 	mutex_unlock(&dev->device_lock);
641 	wait_event_timeout(dev->wait_pg,
642 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
643 	mutex_lock(&dev->device_lock);
644 
645 	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
646 		ret = 0;
647 	else
648 		ret = -ETIME;
649 
650 out:
651 	dev->pg_event = MEI_PG_EVENT_IDLE;
652 	hw->pg_state = MEI_PG_OFF;
653 
654 	return ret;
655 }
656 
657 /**
658  * mei_me_pg_in_transition - is device now in pg transition
659  *
660  * @dev: the device structure
661  *
662  * Return: true if in pg transition, false otherwise
663  */
mei_me_pg_in_transition(struct mei_device * dev)664 static bool mei_me_pg_in_transition(struct mei_device *dev)
665 {
666 	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
667 	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
668 }
669 
670 /**
671  * mei_me_pg_is_enabled - detect if PG is supported by HW
672  *
673  * @dev: the device structure
674  *
675  * Return: true is pg supported, false otherwise
676  */
mei_me_pg_is_enabled(struct mei_device * dev)677 static bool mei_me_pg_is_enabled(struct mei_device *dev)
678 {
679 	struct mei_me_hw *hw = to_me_hw(dev);
680 	u32 reg = mei_me_reg_read(hw, ME_CSR_HA);
681 
682 	if ((reg & ME_PGIC_HRA) == 0)
683 		goto notsupported;
684 
685 	if (!dev->hbm_f_pg_supported)
686 		goto notsupported;
687 
688 	return true;
689 
690 notsupported:
691 	dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
692 		!!(reg & ME_PGIC_HRA),
693 		dev->version.major_version,
694 		dev->version.minor_version,
695 		HBM_MAJOR_VERSION_PGI,
696 		HBM_MINOR_VERSION_PGI);
697 
698 	return false;
699 }
700 
701 /**
702  * mei_me_pg_intr - perform pg processing in interrupt thread handler
703  *
704  * @dev: the device structure
705  */
mei_me_pg_intr(struct mei_device * dev)706 static void mei_me_pg_intr(struct mei_device *dev)
707 {
708 	struct mei_me_hw *hw = to_me_hw(dev);
709 
710 	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
711 		return;
712 
713 	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
714 	hw->pg_state = MEI_PG_OFF;
715 	if (waitqueue_active(&dev->wait_pg))
716 		wake_up(&dev->wait_pg);
717 }
718 
719 /**
720  * mei_me_irq_quick_handler - The ISR of the MEI device
721  *
722  * @irq: The irq number
723  * @dev_id: pointer to the device structure
724  *
725  * Return: irqreturn_t
726  */
727 
mei_me_irq_quick_handler(int irq,void * dev_id)728 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
729 {
730 	struct mei_device *dev = (struct mei_device *) dev_id;
731 	struct mei_me_hw *hw = to_me_hw(dev);
732 	u32 csr_reg = mei_hcsr_read(hw);
733 
734 	if ((csr_reg & H_IS) != H_IS)
735 		return IRQ_NONE;
736 
737 	/* clear H_IS bit in H_CSR */
738 	mei_me_reg_write(hw, H_CSR, csr_reg);
739 
740 	return IRQ_WAKE_THREAD;
741 }
742 
743 /**
744  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
745  * processing.
746  *
747  * @irq: The irq number
748  * @dev_id: pointer to the device structure
749  *
750  * Return: irqreturn_t
751  *
752  */
mei_me_irq_thread_handler(int irq,void * dev_id)753 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
754 {
755 	struct mei_device *dev = (struct mei_device *) dev_id;
756 	struct mei_cl_cb complete_list;
757 	s32 slots;
758 	int rets = 0;
759 
760 	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
761 	/* initialize our complete list */
762 	mutex_lock(&dev->device_lock);
763 	mei_io_list_init(&complete_list);
764 
765 	/* Ack the interrupt here
766 	 * In case of MSI we don't go through the quick handler */
767 	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
768 		mei_clear_interrupts(dev);
769 
770 	/* check if ME wants a reset */
771 	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
772 		dev_warn(dev->dev, "FW not ready: resetting.\n");
773 		schedule_work(&dev->reset_work);
774 		goto end;
775 	}
776 
777 	mei_me_pg_intr(dev);
778 
779 	/*  check if we need to start the dev */
780 	if (!mei_host_is_ready(dev)) {
781 		if (mei_hw_is_ready(dev)) {
782 			dev_dbg(dev->dev, "we need to start the dev.\n");
783 			dev->recvd_hw_ready = true;
784 			wake_up(&dev->wait_hw_ready);
785 		} else {
786 			dev_dbg(dev->dev, "Spurious Interrupt\n");
787 		}
788 		goto end;
789 	}
790 	/* check slots available for reading */
791 	slots = mei_count_full_read_slots(dev);
792 	while (slots > 0) {
793 		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
794 		rets = mei_irq_read_handler(dev, &complete_list, &slots);
795 		/* There is a race between ME write and interrupt delivery:
796 		 * Not all data is always available immediately after the
797 		 * interrupt, so try to read again on the next interrupt.
798 		 */
799 		if (rets == -ENODATA)
800 			break;
801 
802 		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
803 			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
804 						rets);
805 			schedule_work(&dev->reset_work);
806 			goto end;
807 		}
808 	}
809 
810 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
811 
812 	/*
813 	 * During PG handshake only allowed write is the replay to the
814 	 * PG exit message, so block calling write function
815 	 * if the pg event is in PG handshake
816 	 */
817 	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
818 	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
819 		rets = mei_irq_write_handler(dev, &complete_list);
820 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
821 	}
822 
823 	mei_irq_compl_handler(dev, &complete_list);
824 
825 end:
826 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
827 	mutex_unlock(&dev->device_lock);
828 	return IRQ_HANDLED;
829 }
830 
831 static const struct mei_hw_ops mei_me_hw_ops = {
832 
833 	.fw_status = mei_me_fw_status,
834 	.pg_state  = mei_me_pg_state,
835 
836 	.host_is_ready = mei_me_host_is_ready,
837 
838 	.hw_is_ready = mei_me_hw_is_ready,
839 	.hw_reset = mei_me_hw_reset,
840 	.hw_config = mei_me_hw_config,
841 	.hw_start = mei_me_hw_start,
842 
843 	.pg_in_transition = mei_me_pg_in_transition,
844 	.pg_is_enabled = mei_me_pg_is_enabled,
845 
846 	.intr_clear = mei_me_intr_clear,
847 	.intr_enable = mei_me_intr_enable,
848 	.intr_disable = mei_me_intr_disable,
849 
850 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
851 	.hbuf_is_ready = mei_me_hbuf_is_empty,
852 	.hbuf_max_len = mei_me_hbuf_max_len,
853 
854 	.write = mei_me_write_message,
855 
856 	.rdbuf_full_slots = mei_me_count_full_read_slots,
857 	.read_hdr = mei_me_mecbrw_read,
858 	.read = mei_me_read_slots
859 };
860 
mei_me_fw_type_nm(struct pci_dev * pdev)861 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
862 {
863 	u32 reg;
864 
865 	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
866 	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
867 	return (reg & 0x600) == 0x200;
868 }
869 
870 #define MEI_CFG_FW_NM                           \
871 	.quirk_probe = mei_me_fw_type_nm
872 
mei_me_fw_type_sps(struct pci_dev * pdev)873 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
874 {
875 	u32 reg;
876 	/* Read ME FW Status check for SPS Firmware */
877 	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
878 	/* if bits [19:16] = 15, running SPS Firmware */
879 	return (reg & 0xf0000) == 0xf0000;
880 }
881 
882 #define MEI_CFG_FW_SPS                           \
883 	.quirk_probe = mei_me_fw_type_sps
884 
885 
886 #define MEI_CFG_LEGACY_HFS                      \
887 	.fw_status.count = 0
888 
889 #define MEI_CFG_ICH_HFS                        \
890 	.fw_status.count = 1,                   \
891 	.fw_status.status[0] = PCI_CFG_HFS_1
892 
893 #define MEI_CFG_PCH_HFS                         \
894 	.fw_status.count = 2,                   \
895 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
896 	.fw_status.status[1] = PCI_CFG_HFS_2
897 
898 
899 /* ICH Legacy devices */
900 const struct mei_cfg mei_me_legacy_cfg = {
901 	MEI_CFG_LEGACY_HFS,
902 };
903 
904 /* ICH devices */
905 const struct mei_cfg mei_me_ich_cfg = {
906 	MEI_CFG_ICH_HFS,
907 };
908 
909 /* PCH devices */
910 const struct mei_cfg mei_me_pch_cfg = {
911 	MEI_CFG_PCH_HFS,
912 };
913 
914 
915 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
916 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
917 	MEI_CFG_PCH_HFS,
918 	MEI_CFG_FW_NM,
919 };
920 
921 /* PCH Lynx Point with quirk for SPS Firmware exclusion */
922 const struct mei_cfg mei_me_lpt_cfg = {
923 	MEI_CFG_PCH_HFS,
924 	MEI_CFG_FW_SPS,
925 };
926 
927 /**
928  * mei_me_dev_init - allocates and initializes the mei device structure
929  *
930  * @pdev: The pci device structure
931  * @cfg: per device generation config
932  *
933  * Return: The mei_device_device pointer on success, NULL on failure.
934  */
mei_me_dev_init(struct pci_dev * pdev,const struct mei_cfg * cfg)935 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
936 				   const struct mei_cfg *cfg)
937 {
938 	struct mei_device *dev;
939 	struct mei_me_hw *hw;
940 
941 	dev = kzalloc(sizeof(struct mei_device) +
942 			 sizeof(struct mei_me_hw), GFP_KERNEL);
943 	if (!dev)
944 		return NULL;
945 	hw = to_me_hw(dev);
946 
947 	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
948 	hw->cfg = cfg;
949 	return dev;
950 }
951 
952