• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/slab.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/mspec.h>
20 #include <asm/sn/sn_sal.h>
21 #include "xpc.h"
22 
23 /*
24  * Define the number of u64s required to represent all the C-brick nasids
25  * as a bitmap.  The cross-partition kernel modules deal only with
26  * C-brick nasids, thus the need for bitmaps which don't account for
27  * odd-numbered (non C-brick) nasids.
28  */
29 #define XPC_MAX_PHYSNODES_SN2	(MAX_NUMALINK_NODES / 2)
30 #define XP_NASID_MASK_BYTES_SN2	((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
31 #define XP_NASID_MASK_WORDS_SN2	((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
32 
33 /*
34  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
35  * pages are located in the lowest granule. The lowest granule uses 4k pages
36  * for cached references and an alternate TLB handler to never provide a
37  * cacheable mapping for the entire region. This will prevent speculative
38  * reading of cached copies of our lines from being issued which will cause
39  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
40  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
41  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
42  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
43  * partitions (i.e., XPCs) consider themselves currently engaged with the
44  * local XPC and 1 amo variable to request partition deactivation.
45  */
46 #define XPC_NOTIFY_IRQ_AMOS_SN2		0
47 #define XPC_ACTIVATE_IRQ_AMOS_SN2	(XPC_NOTIFY_IRQ_AMOS_SN2 + \
48 					 XP_MAX_NPARTITIONS_SN2)
49 #define XPC_ENGAGED_PARTITIONS_AMO_SN2	(XPC_ACTIVATE_IRQ_AMOS_SN2 + \
50 					 XP_NASID_MASK_WORDS_SN2)
51 #define XPC_DEACTIVATE_REQUEST_AMO_SN2	(XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
52 
53 /*
54  * Buffer used to store a local copy of portions of a remote partition's
55  * reserved page (either its header and part_nasids mask, or its vars).
56  */
57 static void *xpc_remote_copy_buffer_base_sn2;
58 static char *xpc_remote_copy_buffer_sn2;
59 
60 static struct xpc_vars_sn2 *xpc_vars_sn2;
61 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 
63 static int
xpc_setup_partitions_sn2(void)64 xpc_setup_partitions_sn2(void)
65 {
66 	/* nothing needs to be done */
67 	return 0;
68 }
69 
70 static void
xpc_teardown_partitions_sn2(void)71 xpc_teardown_partitions_sn2(void)
72 {
73 	/* nothing needs to be done */
74 }
75 
76 /* SH_IPI_ACCESS shub register value on startup */
77 static u64 xpc_sh1_IPI_access_sn2;
78 static u64 xpc_sh2_IPI_access0_sn2;
79 static u64 xpc_sh2_IPI_access1_sn2;
80 static u64 xpc_sh2_IPI_access2_sn2;
81 static u64 xpc_sh2_IPI_access3_sn2;
82 
83 /*
84  * Change protections to allow IPI operations.
85  */
86 static void
xpc_allow_IPI_ops_sn2(void)87 xpc_allow_IPI_ops_sn2(void)
88 {
89 	int node;
90 	int nasid;
91 
92 	/* !!! The following should get moved into SAL. */
93 	if (is_shub2()) {
94 		xpc_sh2_IPI_access0_sn2 =
95 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
96 		xpc_sh2_IPI_access1_sn2 =
97 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
98 		xpc_sh2_IPI_access2_sn2 =
99 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
100 		xpc_sh2_IPI_access3_sn2 =
101 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102 
103 		for_each_online_node(node) {
104 			nasid = cnodeid_to_nasid(node);
105 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
106 			      -1UL);
107 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
108 			      -1UL);
109 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
110 			      -1UL);
111 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
112 			      -1UL);
113 		}
114 	} else {
115 		xpc_sh1_IPI_access_sn2 =
116 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117 
118 		for_each_online_node(node) {
119 			nasid = cnodeid_to_nasid(node);
120 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
121 			      -1UL);
122 		}
123 	}
124 }
125 
126 /*
127  * Restrict protections to disallow IPI operations.
128  */
129 static void
xpc_disallow_IPI_ops_sn2(void)130 xpc_disallow_IPI_ops_sn2(void)
131 {
132 	int node;
133 	int nasid;
134 
135 	/* !!! The following should get moved into SAL. */
136 	if (is_shub2()) {
137 		for_each_online_node(node) {
138 			nasid = cnodeid_to_nasid(node);
139 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
140 			      xpc_sh2_IPI_access0_sn2);
141 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
142 			      xpc_sh2_IPI_access1_sn2);
143 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
144 			      xpc_sh2_IPI_access2_sn2);
145 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
146 			      xpc_sh2_IPI_access3_sn2);
147 		}
148 	} else {
149 		for_each_online_node(node) {
150 			nasid = cnodeid_to_nasid(node);
151 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
152 			      xpc_sh1_IPI_access_sn2);
153 		}
154 	}
155 }
156 
157 /*
158  * The following set of functions are used for the sending and receiving of
159  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
160  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
161  * is associated with channel activity (SGI_XPC_NOTIFY).
162  */
163 
164 static u64
xpc_receive_IRQ_amo_sn2(struct amo * amo)165 xpc_receive_IRQ_amo_sn2(struct amo *amo)
166 {
167 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
168 }
169 
170 static enum xp_retval
xpc_send_IRQ_sn2(struct amo * amo,u64 flag,int nasid,int phys_cpuid,int vector)171 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
172 		 int vector)
173 {
174 	int ret = 0;
175 	unsigned long irq_flags;
176 
177 	local_irq_save(irq_flags);
178 
179 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
180 	sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
181 
182 	/*
183 	 * We must always use the nofault function regardless of whether we
184 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
185 	 * didn't, we'd never know that the other partition is down and would
186 	 * keep sending IRQs and amos to it until the heartbeat times out.
187 	 */
188 	ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
189 						     xp_nofault_PIOR_target));
190 
191 	local_irq_restore(irq_flags);
192 
193 	return (ret == 0) ? xpSuccess : xpPioReadError;
194 }
195 
196 static struct amo *
xpc_init_IRQ_amo_sn2(int index)197 xpc_init_IRQ_amo_sn2(int index)
198 {
199 	struct amo *amo = xpc_vars_sn2->amos_page + index;
200 
201 	(void)xpc_receive_IRQ_amo_sn2(amo);	/* clear amo variable */
202 	return amo;
203 }
204 
205 /*
206  * Functions associated with SGI_XPC_ACTIVATE IRQ.
207  */
208 
209 /*
210  * Notify the heartbeat check thread that an activate IRQ has been received.
211  */
212 static irqreturn_t
xpc_handle_activate_IRQ_sn2(int irq,void * dev_id)213 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214 {
215 	unsigned long irq_flags;
216 
217 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
218 	xpc_activate_IRQ_rcvd++;
219 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220 
221 	wake_up_interruptible(&xpc_activate_IRQ_wq);
222 	return IRQ_HANDLED;
223 }
224 
225 /*
226  * Flag the appropriate amo variable and send an IRQ to the specified node.
227  */
228 static void
xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa,int from_nasid,int to_nasid,int to_phys_cpuid)229 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
230 			  int to_nasid, int to_phys_cpuid)
231 {
232 	struct amo *amos = (struct amo *)__va(amos_page_pa +
233 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
234 					      sizeof(struct amo)));
235 
236 	(void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
237 			       BIT_MASK(from_nasid / 2), to_nasid,
238 			       to_phys_cpuid, SGI_XPC_ACTIVATE);
239 }
240 
241 static void
xpc_send_local_activate_IRQ_sn2(int from_nasid)242 xpc_send_local_activate_IRQ_sn2(int from_nasid)
243 {
244 	unsigned long irq_flags;
245 	struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
246 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
247 					      sizeof(struct amo)));
248 
249 	/* fake the sending and receipt of an activate IRQ from remote nasid */
250 	FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
251 			 FETCHOP_OR, BIT_MASK(from_nasid / 2));
252 
253 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
254 	xpc_activate_IRQ_rcvd++;
255 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256 
257 	wake_up_interruptible(&xpc_activate_IRQ_wq);
258 }
259 
260 /*
261  * Functions associated with SGI_XPC_NOTIFY IRQ.
262  */
263 
264 /*
265  * Check to see if any chctl flags were sent from the specified partition.
266  */
267 static void
xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition * part)268 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269 {
270 	union xpc_channel_ctl_flags chctl;
271 	unsigned long irq_flags;
272 
273 	chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
274 						  local_chctl_amo_va);
275 	if (chctl.all_flags == 0)
276 		return;
277 
278 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
279 	part->chctl.all_flags |= chctl.all_flags;
280 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281 
282 	dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
283 		"0x%llx\n", XPC_PARTID(part), chctl.all_flags);
284 
285 	xpc_wakeup_channel_mgr(part);
286 }
287 
288 /*
289  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
290  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
291  * than one partition, we use an amo structure per partition to indicate
292  * whether a partition has sent an IRQ or not.  If it has, then wake up the
293  * associated kthread to handle it.
294  *
295  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
296  * running on other partitions.
297  *
298  * Noteworthy Arguments:
299  *
300  *	irq - Interrupt ReQuest number. NOT USED.
301  *
302  *	dev_id - partid of IRQ's potential sender.
303  */
304 static irqreturn_t
xpc_handle_notify_IRQ_sn2(int irq,void * dev_id)305 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306 {
307 	short partid = (short)(u64)dev_id;
308 	struct xpc_partition *part = &xpc_partitions[partid];
309 
310 	DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311 
312 	if (xpc_part_ref(part)) {
313 		xpc_check_for_sent_chctl_flags_sn2(part);
314 
315 		xpc_part_deref(part);
316 	}
317 	return IRQ_HANDLED;
318 }
319 
320 /*
321  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
322  * because the write to their associated amo variable completed after the IRQ
323  * was received.
324  */
325 static void
xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition * part)326 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
327 {
328 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329 
330 	if (xpc_part_ref(part)) {
331 		xpc_check_for_sent_chctl_flags_sn2(part);
332 
333 		part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
334 		    XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
335 		add_timer(&part_sn2->dropped_notify_IRQ_timer);
336 		xpc_part_deref(part);
337 	}
338 }
339 
340 /*
341  * Send a notify IRQ to the remote partition that is associated with the
342  * specified channel.
343  */
344 static void
xpc_send_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string,unsigned long * irq_flags)345 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
346 			char *chctl_flag_string, unsigned long *irq_flags)
347 {
348 	struct xpc_partition *part = &xpc_partitions[ch->partid];
349 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
350 	union xpc_channel_ctl_flags chctl = { 0 };
351 	enum xp_retval ret;
352 
353 	if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
354 		chctl.flags[ch->number] = chctl_flag;
355 		ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
356 				       chctl.all_flags,
357 				       part_sn2->notify_IRQ_nasid,
358 				       part_sn2->notify_IRQ_phys_cpuid,
359 				       SGI_XPC_NOTIFY);
360 		dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
361 			chctl_flag_string, ch->partid, ch->number, ret);
362 		if (unlikely(ret != xpSuccess)) {
363 			if (irq_flags != NULL)
364 				spin_unlock_irqrestore(&ch->lock, *irq_flags);
365 			XPC_DEACTIVATE_PARTITION(part, ret);
366 			if (irq_flags != NULL)
367 				spin_lock_irqsave(&ch->lock, *irq_flags);
368 		}
369 	}
370 }
371 
372 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
373 		xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
374 
375 /*
376  * Make it look like the remote partition, which is associated with the
377  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
378  * by xpc_check_for_dropped_notify_IRQ_sn2().
379  */
380 static void
xpc_send_local_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string)381 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
382 			      char *chctl_flag_string)
383 {
384 	struct xpc_partition *part = &xpc_partitions[ch->partid];
385 	union xpc_channel_ctl_flags chctl = { 0 };
386 
387 	chctl.flags[ch->number] = chctl_flag;
388 	FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
389 				variable), FETCHOP_OR, chctl.all_flags);
390 	dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
391 		chctl_flag_string, ch->partid, ch->number);
392 }
393 
394 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
395 		xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396 
397 static void
xpc_send_chctl_closerequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)398 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
399 				unsigned long *irq_flags)
400 {
401 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402 
403 	args->reason = ch->reason;
404 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
405 }
406 
407 static void
xpc_send_chctl_closereply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)408 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 {
410 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
411 }
412 
413 static void
xpc_send_chctl_openrequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)414 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415 {
416 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417 
418 	args->entry_size = ch->entry_size;
419 	args->local_nentries = ch->local_nentries;
420 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
421 }
422 
423 static void
xpc_send_chctl_openreply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)424 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425 {
426 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427 
428 	args->remote_nentries = ch->remote_nentries;
429 	args->local_nentries = ch->local_nentries;
430 	args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
431 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
432 }
433 
434 static void
xpc_send_chctl_opencomplete_sn2(struct xpc_channel * ch,unsigned long * irq_flags)435 xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
436 				unsigned long *irq_flags)
437 {
438 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
439 }
440 
441 static void
xpc_send_chctl_msgrequest_sn2(struct xpc_channel * ch)442 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
443 {
444 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
445 }
446 
447 static void
xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel * ch)448 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
449 {
450 	XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
451 }
452 
453 static enum xp_retval
xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel * ch,unsigned long msgqueue_pa)454 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
455 				unsigned long msgqueue_pa)
456 {
457 	ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
458 	return xpSuccess;
459 }
460 
461 /*
462  * This next set of functions are used to keep track of when a partition is
463  * potentially engaged in accessing memory belonging to another partition.
464  */
465 
466 static void
xpc_indicate_partition_engaged_sn2(struct xpc_partition * part)467 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
468 {
469 	unsigned long irq_flags;
470 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
471 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
472 					     sizeof(struct amo)));
473 
474 	local_irq_save(irq_flags);
475 
476 	/* set bit corresponding to our partid in remote partition's amo */
477 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
478 			 BIT(sn_partition_id));
479 
480 	/*
481 	 * We must always use the nofault function regardless of whether we
482 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
483 	 * didn't, we'd never know that the other partition is down and would
484 	 * keep sending IRQs and amos to it until the heartbeat times out.
485 	 */
486 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
487 							       variable),
488 						     xp_nofault_PIOR_target));
489 
490 	local_irq_restore(irq_flags);
491 }
492 
493 static void
xpc_indicate_partition_disengaged_sn2(struct xpc_partition * part)494 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
495 {
496 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
497 	unsigned long irq_flags;
498 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
499 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
500 					     sizeof(struct amo)));
501 
502 	local_irq_save(irq_flags);
503 
504 	/* clear bit corresponding to our partid in remote partition's amo */
505 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
506 			 ~BIT(sn_partition_id));
507 
508 	/*
509 	 * We must always use the nofault function regardless of whether we
510 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
511 	 * didn't, we'd never know that the other partition is down and would
512 	 * keep sending IRQs and amos to it until the heartbeat times out.
513 	 */
514 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
515 							       variable),
516 						     xp_nofault_PIOR_target));
517 
518 	local_irq_restore(irq_flags);
519 
520 	/*
521 	 * Send activate IRQ to get other side to see that we've cleared our
522 	 * bit in their engaged partitions amo.
523 	 */
524 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
525 				  cnodeid_to_nasid(0),
526 				  part_sn2->activate_IRQ_nasid,
527 				  part_sn2->activate_IRQ_phys_cpuid);
528 }
529 
530 static void
xpc_assume_partition_disengaged_sn2(short partid)531 xpc_assume_partition_disengaged_sn2(short partid)
532 {
533 	struct amo *amo = xpc_vars_sn2->amos_page +
534 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
535 
536 	/* clear bit(s) based on partid mask in our partition's amo */
537 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
538 			 ~BIT(partid));
539 }
540 
541 static int
xpc_partition_engaged_sn2(short partid)542 xpc_partition_engaged_sn2(short partid)
543 {
544 	struct amo *amo = xpc_vars_sn2->amos_page +
545 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
546 
547 	/* our partition's amo variable ANDed with partid mask */
548 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
549 		BIT(partid)) != 0;
550 }
551 
552 static int
xpc_any_partition_engaged_sn2(void)553 xpc_any_partition_engaged_sn2(void)
554 {
555 	struct amo *amo = xpc_vars_sn2->amos_page +
556 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
557 
558 	/* our partition's amo variable */
559 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
560 }
561 
562 /* original protection values for each node */
563 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
564 
565 /*
566  * Change protections to allow amo operations on non-Shub 1.1 systems.
567  */
568 static enum xp_retval
xpc_allow_amo_ops_sn2(struct amo * amos_page)569 xpc_allow_amo_ops_sn2(struct amo *amos_page)
570 {
571 	enum xp_retval ret = xpSuccess;
572 
573 	/*
574 	 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
575 	 * collides with memory operations. On those systems we call
576 	 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
577 	 */
578 	if (!enable_shub_wars_1_1())
579 		ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
580 
581 	return ret;
582 }
583 
584 /*
585  * Change protections to allow amo operations on Shub 1.1 systems.
586  */
587 static void
xpc_allow_amo_ops_shub_wars_1_1_sn2(void)588 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
589 {
590 	int node;
591 	int nasid;
592 
593 	if (!enable_shub_wars_1_1())
594 		return;
595 
596 	for_each_online_node(node) {
597 		nasid = cnodeid_to_nasid(node);
598 		/* save current protection values */
599 		xpc_prot_vec_sn2[node] =
600 		    (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
601 						  SH1_MD_DQLP_MMR_DIR_PRIVEC0));
602 		/* open up everything */
603 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
604 					     SH1_MD_DQLP_MMR_DIR_PRIVEC0),
605 		      -1UL);
606 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
607 					     SH1_MD_DQRP_MMR_DIR_PRIVEC0),
608 		      -1UL);
609 	}
610 }
611 
612 static enum xp_retval
xpc_get_partition_rsvd_page_pa_sn2(void * buf,u64 * cookie,unsigned long * rp_pa,size_t * len)613 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
614 				   size_t *len)
615 {
616 	s64 status;
617 	enum xp_retval ret;
618 
619 	status = sn_partition_reserved_page_pa((u64)buf, cookie,
620 			(u64 *)rp_pa, (u64 *)len);
621 	if (status == SALRET_OK)
622 		ret = xpSuccess;
623 	else if (status == SALRET_MORE_PASSES)
624 		ret = xpNeedMoreInfo;
625 	else
626 		ret = xpSalError;
627 
628 	return ret;
629 }
630 
631 
632 static int
xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page * rp)633 xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
634 {
635 	struct amo *amos_page;
636 	int i;
637 	int ret;
638 
639 	xpc_vars_sn2 = XPC_RP_VARS(rp);
640 
641 	rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
642 
643 	/* vars_part array follows immediately after vars */
644 	xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
645 							 XPC_RP_VARS_SIZE);
646 
647 	/*
648 	 * Before clearing xpc_vars_sn2, see if a page of amos had been
649 	 * previously allocated. If not we'll need to allocate one and set
650 	 * permissions so that cross-partition amos are allowed.
651 	 *
652 	 * The allocated amo page needs MCA reporting to remain disabled after
653 	 * XPC has unloaded.  To make this work, we keep a copy of the pointer
654 	 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
655 	 * which is pointed to by the reserved page, and re-use that saved copy
656 	 * on subsequent loads of XPC. This amo page is never freed, and its
657 	 * memory protections are never restricted.
658 	 */
659 	amos_page = xpc_vars_sn2->amos_page;
660 	if (amos_page == NULL) {
661 		amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
662 		if (amos_page == NULL) {
663 			dev_err(xpc_part, "can't allocate page of amos\n");
664 			return -ENOMEM;
665 		}
666 
667 		/*
668 		 * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
669 		 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
670 		 */
671 		ret = xpc_allow_amo_ops_sn2(amos_page);
672 		if (ret != xpSuccess) {
673 			dev_err(xpc_part, "can't allow amo operations\n");
674 			uncached_free_page(__IA64_UNCACHED_OFFSET |
675 					   TO_PHYS((u64)amos_page), 1);
676 			return -EPERM;
677 		}
678 	}
679 
680 	/* clear xpc_vars_sn2 */
681 	memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
682 
683 	xpc_vars_sn2->version = XPC_V_VERSION;
684 	xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
685 	xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
686 	xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
687 	xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
688 	xpc_vars_sn2->amos_page = amos_page;	/* save for next load of XPC */
689 
690 	/* clear xpc_vars_part_sn2 */
691 	memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
692 	       XP_MAX_NPARTITIONS_SN2);
693 
694 	/* initialize the activate IRQ related amo variables */
695 	for (i = 0; i < xpc_nasid_mask_nlongs; i++)
696 		(void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
697 
698 	/* initialize the engaged remote partitions related amo variables */
699 	(void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
700 	(void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
701 
702 	return 0;
703 }
704 
705 static int
xpc_hb_allowed_sn2(short partid,void * heartbeating_to_mask)706 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
707 {
708 	return test_bit(partid, heartbeating_to_mask);
709 }
710 
711 static void
xpc_allow_hb_sn2(short partid)712 xpc_allow_hb_sn2(short partid)
713 {
714 	DBUG_ON(xpc_vars_sn2 == NULL);
715 	set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
716 }
717 
718 static void
xpc_disallow_hb_sn2(short partid)719 xpc_disallow_hb_sn2(short partid)
720 {
721 	DBUG_ON(xpc_vars_sn2 == NULL);
722 	clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
723 }
724 
725 static void
xpc_disallow_all_hbs_sn2(void)726 xpc_disallow_all_hbs_sn2(void)
727 {
728 	DBUG_ON(xpc_vars_sn2 == NULL);
729 	bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
730 }
731 
732 static void
xpc_increment_heartbeat_sn2(void)733 xpc_increment_heartbeat_sn2(void)
734 {
735 	xpc_vars_sn2->heartbeat++;
736 }
737 
738 static void
xpc_offline_heartbeat_sn2(void)739 xpc_offline_heartbeat_sn2(void)
740 {
741 	xpc_increment_heartbeat_sn2();
742 	xpc_vars_sn2->heartbeat_offline = 1;
743 }
744 
745 static void
xpc_online_heartbeat_sn2(void)746 xpc_online_heartbeat_sn2(void)
747 {
748 	xpc_increment_heartbeat_sn2();
749 	xpc_vars_sn2->heartbeat_offline = 0;
750 }
751 
752 static void
xpc_heartbeat_init_sn2(void)753 xpc_heartbeat_init_sn2(void)
754 {
755 	DBUG_ON(xpc_vars_sn2 == NULL);
756 
757 	bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
758 	xpc_online_heartbeat_sn2();
759 }
760 
761 static void
xpc_heartbeat_exit_sn2(void)762 xpc_heartbeat_exit_sn2(void)
763 {
764 	xpc_offline_heartbeat_sn2();
765 }
766 
767 static enum xp_retval
xpc_get_remote_heartbeat_sn2(struct xpc_partition * part)768 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
769 {
770 	struct xpc_vars_sn2 *remote_vars;
771 	enum xp_retval ret;
772 
773 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
774 
775 	/* pull the remote vars structure that contains the heartbeat */
776 	ret = xp_remote_memcpy(xp_pa(remote_vars),
777 			       part->sn.sn2.remote_vars_pa,
778 			       XPC_RP_VARS_SIZE);
779 	if (ret != xpSuccess)
780 		return ret;
781 
782 	dev_dbg(xpc_part, "partid=%d, heartbeat=%lld, last_heartbeat=%lld, "
783 		"heartbeat_offline=%lld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
784 		remote_vars->heartbeat, part->last_heartbeat,
785 		remote_vars->heartbeat_offline,
786 		remote_vars->heartbeating_to_mask[0]);
787 
788 	if ((remote_vars->heartbeat == part->last_heartbeat &&
789 	    !remote_vars->heartbeat_offline) ||
790 	    !xpc_hb_allowed_sn2(sn_partition_id,
791 				remote_vars->heartbeating_to_mask)) {
792 		ret = xpNoHeartbeat;
793 	} else {
794 		part->last_heartbeat = remote_vars->heartbeat;
795 	}
796 
797 	return ret;
798 }
799 
800 /*
801  * Get a copy of the remote partition's XPC variables from the reserved page.
802  *
803  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
804  * assumed to be of size XPC_RP_VARS_SIZE.
805  */
806 static enum xp_retval
xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)807 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
808 			struct xpc_vars_sn2 *remote_vars)
809 {
810 	enum xp_retval ret;
811 
812 	if (remote_vars_pa == 0)
813 		return xpVarsNotSet;
814 
815 	/* pull over the cross partition variables */
816 	ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
817 			       XPC_RP_VARS_SIZE);
818 	if (ret != xpSuccess)
819 		return ret;
820 
821 	if (XPC_VERSION_MAJOR(remote_vars->version) !=
822 	    XPC_VERSION_MAJOR(XPC_V_VERSION)) {
823 		return xpBadVersion;
824 	}
825 
826 	return xpSuccess;
827 }
828 
829 static void
xpc_request_partition_activation_sn2(struct xpc_rsvd_page * remote_rp,unsigned long remote_rp_pa,int nasid)830 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
831 				     unsigned long remote_rp_pa, int nasid)
832 {
833 	xpc_send_local_activate_IRQ_sn2(nasid);
834 }
835 
836 static void
xpc_request_partition_reactivation_sn2(struct xpc_partition * part)837 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
838 {
839 	xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
840 }
841 
842 static void
xpc_request_partition_deactivation_sn2(struct xpc_partition * part)843 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
844 {
845 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
846 	unsigned long irq_flags;
847 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
848 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
849 					     sizeof(struct amo)));
850 
851 	local_irq_save(irq_flags);
852 
853 	/* set bit corresponding to our partid in remote partition's amo */
854 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
855 			 BIT(sn_partition_id));
856 
857 	/*
858 	 * We must always use the nofault function regardless of whether we
859 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
860 	 * didn't, we'd never know that the other partition is down and would
861 	 * keep sending IRQs and amos to it until the heartbeat times out.
862 	 */
863 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
864 							       variable),
865 						     xp_nofault_PIOR_target));
866 
867 	local_irq_restore(irq_flags);
868 
869 	/*
870 	 * Send activate IRQ to get other side to see that we've set our
871 	 * bit in their deactivate request amo.
872 	 */
873 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
874 				  cnodeid_to_nasid(0),
875 				  part_sn2->activate_IRQ_nasid,
876 				  part_sn2->activate_IRQ_phys_cpuid);
877 }
878 
879 static void
xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition * part)880 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
881 {
882 	unsigned long irq_flags;
883 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
884 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
885 					     sizeof(struct amo)));
886 
887 	local_irq_save(irq_flags);
888 
889 	/* clear bit corresponding to our partid in remote partition's amo */
890 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
891 			 ~BIT(sn_partition_id));
892 
893 	/*
894 	 * We must always use the nofault function regardless of whether we
895 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
896 	 * didn't, we'd never know that the other partition is down and would
897 	 * keep sending IRQs and amos to it until the heartbeat times out.
898 	 */
899 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
900 							       variable),
901 						     xp_nofault_PIOR_target));
902 
903 	local_irq_restore(irq_flags);
904 }
905 
906 static int
xpc_partition_deactivation_requested_sn2(short partid)907 xpc_partition_deactivation_requested_sn2(short partid)
908 {
909 	struct amo *amo = xpc_vars_sn2->amos_page +
910 			  XPC_DEACTIVATE_REQUEST_AMO_SN2;
911 
912 	/* our partition's amo variable ANDed with partid mask */
913 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
914 		BIT(partid)) != 0;
915 }
916 
917 /*
918  * Update the remote partition's info.
919  */
920 static void
xpc_update_partition_info_sn2(struct xpc_partition * part,u8 remote_rp_version,unsigned long * remote_rp_ts_jiffies,unsigned long remote_rp_pa,unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)921 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
922 			      unsigned long *remote_rp_ts_jiffies,
923 			      unsigned long remote_rp_pa,
924 			      unsigned long remote_vars_pa,
925 			      struct xpc_vars_sn2 *remote_vars)
926 {
927 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
928 
929 	part->remote_rp_version = remote_rp_version;
930 	dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
931 		part->remote_rp_version);
932 
933 	part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
934 	dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
935 		part->remote_rp_ts_jiffies);
936 
937 	part->remote_rp_pa = remote_rp_pa;
938 	dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
939 
940 	part_sn2->remote_vars_pa = remote_vars_pa;
941 	dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
942 		part_sn2->remote_vars_pa);
943 
944 	part->last_heartbeat = remote_vars->heartbeat - 1;
945 	dev_dbg(xpc_part, "  last_heartbeat = 0x%016llx\n",
946 		part->last_heartbeat);
947 
948 	part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
949 	dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
950 		part_sn2->remote_vars_part_pa);
951 
952 	part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
953 	dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
954 		part_sn2->activate_IRQ_nasid);
955 
956 	part_sn2->activate_IRQ_phys_cpuid =
957 	    remote_vars->activate_IRQ_phys_cpuid;
958 	dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
959 		part_sn2->activate_IRQ_phys_cpuid);
960 
961 	part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
962 	dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
963 		part_sn2->remote_amos_page_pa);
964 
965 	part_sn2->remote_vars_version = remote_vars->version;
966 	dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
967 		part_sn2->remote_vars_version);
968 }
969 
970 /*
971  * Prior code has determined the nasid which generated a activate IRQ.
972  * Inspect that nasid to determine if its partition needs to be activated
973  * or deactivated.
974  *
975  * A partition is considered "awaiting activation" if our partition
976  * flags indicate it is not active and it has a heartbeat.  A
977  * partition is considered "awaiting deactivation" if our partition
978  * flags indicate it is active but it has no heartbeat or it is not
979  * sending its heartbeat to us.
980  *
981  * To determine the heartbeat, the remote nasid must have a properly
982  * initialized reserved page.
983  */
984 static void
xpc_identify_activate_IRQ_req_sn2(int nasid)985 xpc_identify_activate_IRQ_req_sn2(int nasid)
986 {
987 	struct xpc_rsvd_page *remote_rp;
988 	struct xpc_vars_sn2 *remote_vars;
989 	unsigned long remote_rp_pa;
990 	unsigned long remote_vars_pa;
991 	int remote_rp_version;
992 	int reactivate = 0;
993 	unsigned long remote_rp_ts_jiffies = 0;
994 	short partid;
995 	struct xpc_partition *part;
996 	struct xpc_partition_sn2 *part_sn2;
997 	enum xp_retval ret;
998 
999 	/* pull over the reserved page structure */
1000 
1001 	remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1002 
1003 	ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1004 	if (ret != xpSuccess) {
1005 		dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1006 			 "which sent interrupt, reason=%d\n", nasid, ret);
1007 		return;
1008 	}
1009 
1010 	remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1011 	remote_rp_version = remote_rp->version;
1012 	remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1013 
1014 	partid = remote_rp->SAL_partid;
1015 	part = &xpc_partitions[partid];
1016 	part_sn2 = &part->sn.sn2;
1017 
1018 	/* pull over the cross partition variables */
1019 
1020 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1021 
1022 	ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1023 	if (ret != xpSuccess) {
1024 		dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1025 			 "which sent interrupt, reason=%d\n", nasid, ret);
1026 
1027 		XPC_DEACTIVATE_PARTITION(part, ret);
1028 		return;
1029 	}
1030 
1031 	part->activate_IRQ_rcvd++;
1032 
1033 	dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1034 		"%lld:0x%lx\n", (int)nasid, (int)partid,
1035 		part->activate_IRQ_rcvd,
1036 		remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1037 
1038 	if (xpc_partition_disengaged(part) &&
1039 	    part->act_state == XPC_P_AS_INACTIVE) {
1040 
1041 		xpc_update_partition_info_sn2(part, remote_rp_version,
1042 					      &remote_rp_ts_jiffies,
1043 					      remote_rp_pa, remote_vars_pa,
1044 					      remote_vars);
1045 
1046 		if (xpc_partition_deactivation_requested_sn2(partid)) {
1047 			/*
1048 			 * Other side is waiting on us to deactivate even though
1049 			 * we already have.
1050 			 */
1051 			return;
1052 		}
1053 
1054 		xpc_activate_partition(part);
1055 		return;
1056 	}
1057 
1058 	DBUG_ON(part->remote_rp_version == 0);
1059 	DBUG_ON(part_sn2->remote_vars_version == 0);
1060 
1061 	if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1062 
1063 		/* the other side rebooted */
1064 
1065 		DBUG_ON(xpc_partition_engaged_sn2(partid));
1066 		DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1067 
1068 		xpc_update_partition_info_sn2(part, remote_rp_version,
1069 					      &remote_rp_ts_jiffies,
1070 					      remote_rp_pa, remote_vars_pa,
1071 					      remote_vars);
1072 		reactivate = 1;
1073 	}
1074 
1075 	if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1076 		/* still waiting on other side to disengage from us */
1077 		return;
1078 	}
1079 
1080 	if (reactivate)
1081 		XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1082 	else if (xpc_partition_deactivation_requested_sn2(partid))
1083 		XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1084 }
1085 
1086 /*
1087  * Loop through the activation amo variables and process any bits
1088  * which are set.  Each bit indicates a nasid sending a partition
1089  * activation or deactivation request.
1090  *
1091  * Return #of IRQs detected.
1092  */
1093 int
xpc_identify_activate_IRQ_sender_sn2(void)1094 xpc_identify_activate_IRQ_sender_sn2(void)
1095 {
1096 	int l;
1097 	int b;
1098 	unsigned long nasid_mask_long;
1099 	u64 nasid;		/* remote nasid */
1100 	int n_IRQs_detected = 0;
1101 	struct amo *act_amos;
1102 
1103 	act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1104 
1105 	/* scan through activate amo variables looking for non-zero entries */
1106 	for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1107 
1108 		if (xpc_exiting)
1109 			break;
1110 
1111 		nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1112 
1113 		b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1114 		if (b >= BITS_PER_LONG) {
1115 			/* no IRQs from nasids in this amo variable */
1116 			continue;
1117 		}
1118 
1119 		dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1120 			nasid_mask_long);
1121 
1122 		/*
1123 		 * If this nasid has been added to the machine since
1124 		 * our partition was reset, this will retain the
1125 		 * remote nasid in our reserved pages machine mask.
1126 		 * This is used in the event of module reload.
1127 		 */
1128 		xpc_mach_nasids[l] |= nasid_mask_long;
1129 
1130 		/* locate the nasid(s) which sent interrupts */
1131 
1132 		do {
1133 			n_IRQs_detected++;
1134 			nasid = (l * BITS_PER_LONG + b) * 2;
1135 			dev_dbg(xpc_part, "interrupt from nasid %lld\n", nasid);
1136 			xpc_identify_activate_IRQ_req_sn2(nasid);
1137 
1138 			b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1139 					  b + 1);
1140 		} while (b < BITS_PER_LONG);
1141 	}
1142 	return n_IRQs_detected;
1143 }
1144 
1145 static void
xpc_process_activate_IRQ_rcvd_sn2(void)1146 xpc_process_activate_IRQ_rcvd_sn2(void)
1147 {
1148 	unsigned long irq_flags;
1149 	int n_IRQs_expected;
1150 	int n_IRQs_detected;
1151 
1152 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1153 	n_IRQs_expected = xpc_activate_IRQ_rcvd;
1154 	xpc_activate_IRQ_rcvd = 0;
1155 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1156 
1157 	n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1158 	if (n_IRQs_detected < n_IRQs_expected) {
1159 		/* retry once to help avoid missing amo */
1160 		(void)xpc_identify_activate_IRQ_sender_sn2();
1161 	}
1162 }
1163 
1164 /*
1165  * Setup the channel structures that are sn2 specific.
1166  */
1167 static enum xp_retval
xpc_setup_ch_structures_sn2(struct xpc_partition * part)1168 xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1169 {
1170 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1171 	struct xpc_channel_sn2 *ch_sn2;
1172 	enum xp_retval retval;
1173 	int ret;
1174 	int cpuid;
1175 	int ch_number;
1176 	struct timer_list *timer;
1177 	short partid = XPC_PARTID(part);
1178 
1179 	/* allocate all the required GET/PUT values */
1180 
1181 	part_sn2->local_GPs =
1182 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1183 					  &part_sn2->local_GPs_base);
1184 	if (part_sn2->local_GPs == NULL) {
1185 		dev_err(xpc_chan, "can't get memory for local get/put "
1186 			"values\n");
1187 		return xpNoMemory;
1188 	}
1189 
1190 	part_sn2->remote_GPs =
1191 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1192 					  &part_sn2->remote_GPs_base);
1193 	if (part_sn2->remote_GPs == NULL) {
1194 		dev_err(xpc_chan, "can't get memory for remote get/put "
1195 			"values\n");
1196 		retval = xpNoMemory;
1197 		goto out_1;
1198 	}
1199 
1200 	part_sn2->remote_GPs_pa = 0;
1201 
1202 	/* allocate all the required open and close args */
1203 
1204 	part_sn2->local_openclose_args =
1205 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1206 					  GFP_KERNEL, &part_sn2->
1207 					  local_openclose_args_base);
1208 	if (part_sn2->local_openclose_args == NULL) {
1209 		dev_err(xpc_chan, "can't get memory for local connect args\n");
1210 		retval = xpNoMemory;
1211 		goto out_2;
1212 	}
1213 
1214 	part_sn2->remote_openclose_args_pa = 0;
1215 
1216 	part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1217 
1218 	part_sn2->notify_IRQ_nasid = 0;
1219 	part_sn2->notify_IRQ_phys_cpuid = 0;
1220 	part_sn2->remote_chctl_amo_va = NULL;
1221 
1222 	sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1223 	ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1224 			  IRQF_SHARED, part_sn2->notify_IRQ_owner,
1225 			  (void *)(u64)partid);
1226 	if (ret != 0) {
1227 		dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1228 			"errno=%d\n", -ret);
1229 		retval = xpLackOfResources;
1230 		goto out_3;
1231 	}
1232 
1233 	/* Setup a timer to check for dropped notify IRQs */
1234 	timer = &part_sn2->dropped_notify_IRQ_timer;
1235 	init_timer(timer);
1236 	timer->function =
1237 	    (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1238 	timer->data = (unsigned long)part;
1239 	timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1240 	add_timer(timer);
1241 
1242 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1243 		ch_sn2 = &part->channels[ch_number].sn.sn2;
1244 
1245 		ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1246 		ch_sn2->local_openclose_args =
1247 		    &part_sn2->local_openclose_args[ch_number];
1248 
1249 		mutex_init(&ch_sn2->msg_to_pull_mutex);
1250 	}
1251 
1252 	/*
1253 	 * Setup the per partition specific variables required by the
1254 	 * remote partition to establish channel connections with us.
1255 	 *
1256 	 * The setting of the magic # indicates that these per partition
1257 	 * specific variables are ready to be used.
1258 	 */
1259 	xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1260 	xpc_vars_part_sn2[partid].openclose_args_pa =
1261 	    xp_pa(part_sn2->local_openclose_args);
1262 	xpc_vars_part_sn2[partid].chctl_amo_pa =
1263 	    xp_pa(part_sn2->local_chctl_amo_va);
1264 	cpuid = raw_smp_processor_id();	/* any CPU in this partition will do */
1265 	xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1266 	xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1267 	    cpu_physical_id(cpuid);
1268 	xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1269 	xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1270 
1271 	return xpSuccess;
1272 
1273 	/* setup of ch structures failed */
1274 out_3:
1275 	kfree(part_sn2->local_openclose_args_base);
1276 	part_sn2->local_openclose_args = NULL;
1277 out_2:
1278 	kfree(part_sn2->remote_GPs_base);
1279 	part_sn2->remote_GPs = NULL;
1280 out_1:
1281 	kfree(part_sn2->local_GPs_base);
1282 	part_sn2->local_GPs = NULL;
1283 	return retval;
1284 }
1285 
1286 /*
1287  * Teardown the channel structures that are sn2 specific.
1288  */
1289 static void
xpc_teardown_ch_structures_sn2(struct xpc_partition * part)1290 xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1291 {
1292 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1293 	short partid = XPC_PARTID(part);
1294 
1295 	/*
1296 	 * Indicate that the variables specific to the remote partition are no
1297 	 * longer available for its use.
1298 	 */
1299 	xpc_vars_part_sn2[partid].magic = 0;
1300 
1301 	/* in case we've still got outstanding timers registered... */
1302 	del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1303 	free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1304 
1305 	kfree(part_sn2->local_openclose_args_base);
1306 	part_sn2->local_openclose_args = NULL;
1307 	kfree(part_sn2->remote_GPs_base);
1308 	part_sn2->remote_GPs = NULL;
1309 	kfree(part_sn2->local_GPs_base);
1310 	part_sn2->local_GPs = NULL;
1311 	part_sn2->local_chctl_amo_va = NULL;
1312 }
1313 
1314 /*
1315  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1316  * (or multiple cachelines) from a remote partition.
1317  *
1318  * src_pa must be a cacheline aligned physical address on the remote partition.
1319  * dst must be a cacheline aligned virtual address on this partition.
1320  * cnt must be cacheline sized
1321  */
1322 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1323 static enum xp_retval
xpc_pull_remote_cachelines_sn2(struct xpc_partition * part,void * dst,const unsigned long src_pa,size_t cnt)1324 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1325 			       const unsigned long src_pa, size_t cnt)
1326 {
1327 	enum xp_retval ret;
1328 
1329 	DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1330 	DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1331 	DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1332 
1333 	if (part->act_state == XPC_P_AS_DEACTIVATING)
1334 		return part->reason;
1335 
1336 	ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1337 	if (ret != xpSuccess) {
1338 		dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1339 			" ret=%d\n", XPC_PARTID(part), ret);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Pull the remote per partition specific variables from the specified
1346  * partition.
1347  */
1348 static enum xp_retval
xpc_pull_remote_vars_part_sn2(struct xpc_partition * part)1349 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1350 {
1351 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1352 	u8 buffer[L1_CACHE_BYTES * 2];
1353 	struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1354 	    (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1355 	struct xpc_vars_part_sn2 *pulled_entry;
1356 	unsigned long remote_entry_cacheline_pa;
1357 	unsigned long remote_entry_pa;
1358 	short partid = XPC_PARTID(part);
1359 	enum xp_retval ret;
1360 
1361 	/* pull the cacheline that contains the variables we're interested in */
1362 
1363 	DBUG_ON(part_sn2->remote_vars_part_pa !=
1364 		L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1365 	DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1366 
1367 	remote_entry_pa = part_sn2->remote_vars_part_pa +
1368 	    sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1369 
1370 	remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1371 
1372 	pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1373 						    + (remote_entry_pa &
1374 						    (L1_CACHE_BYTES - 1)));
1375 
1376 	ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1377 					     remote_entry_cacheline_pa,
1378 					     L1_CACHE_BYTES);
1379 	if (ret != xpSuccess) {
1380 		dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1381 			"partition %d, ret=%d\n", partid, ret);
1382 		return ret;
1383 	}
1384 
1385 	/* see if they've been set up yet */
1386 
1387 	if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1388 	    pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1389 
1390 		if (pulled_entry->magic != 0) {
1391 			dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1392 				"partition %d has bad magic value (=0x%llx)\n",
1393 				partid, sn_partition_id, pulled_entry->magic);
1394 			return xpBadMagic;
1395 		}
1396 
1397 		/* they've not been initialized yet */
1398 		return xpRetry;
1399 	}
1400 
1401 	if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1402 
1403 		/* validate the variables */
1404 
1405 		if (pulled_entry->GPs_pa == 0 ||
1406 		    pulled_entry->openclose_args_pa == 0 ||
1407 		    pulled_entry->chctl_amo_pa == 0) {
1408 
1409 			dev_err(xpc_chan, "partition %d's XPC vars_part for "
1410 				"partition %d are not valid\n", partid,
1411 				sn_partition_id);
1412 			return xpInvalidAddress;
1413 		}
1414 
1415 		/* the variables we imported look to be valid */
1416 
1417 		part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1418 		part_sn2->remote_openclose_args_pa =
1419 		    pulled_entry->openclose_args_pa;
1420 		part_sn2->remote_chctl_amo_va =
1421 		    (struct amo *)__va(pulled_entry->chctl_amo_pa);
1422 		part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1423 		part_sn2->notify_IRQ_phys_cpuid =
1424 		    pulled_entry->notify_IRQ_phys_cpuid;
1425 
1426 		if (part->nchannels > pulled_entry->nchannels)
1427 			part->nchannels = pulled_entry->nchannels;
1428 
1429 		/* let the other side know that we've pulled their variables */
1430 
1431 		xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1432 	}
1433 
1434 	if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1435 		return xpRetry;
1436 
1437 	return xpSuccess;
1438 }
1439 
1440 /*
1441  * Establish first contact with the remote partititon. This involves pulling
1442  * the XPC per partition variables from the remote partition and waiting for
1443  * the remote partition to pull ours.
1444  */
1445 static enum xp_retval
xpc_make_first_contact_sn2(struct xpc_partition * part)1446 xpc_make_first_contact_sn2(struct xpc_partition *part)
1447 {
1448 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1449 	enum xp_retval ret;
1450 
1451 	/*
1452 	 * Register the remote partition's amos with SAL so it can handle
1453 	 * and cleanup errors within that address range should the remote
1454 	 * partition go down. We don't unregister this range because it is
1455 	 * difficult to tell when outstanding writes to the remote partition
1456 	 * are finished and thus when it is safe to unregister. This should
1457 	 * not result in wasted space in the SAL xp_addr_region table because
1458 	 * we should get the same page for remote_amos_page_pa after module
1459 	 * reloads and system reboots.
1460 	 */
1461 	if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1462 				       PAGE_SIZE, 1) < 0) {
1463 		dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1464 			 "xp_addr region\n", XPC_PARTID(part));
1465 
1466 		ret = xpPhysAddrRegFailed;
1467 		XPC_DEACTIVATE_PARTITION(part, ret);
1468 		return ret;
1469 	}
1470 
1471 	/*
1472 	 * Send activate IRQ to get other side to activate if they've not
1473 	 * already begun to do so.
1474 	 */
1475 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1476 				  cnodeid_to_nasid(0),
1477 				  part_sn2->activate_IRQ_nasid,
1478 				  part_sn2->activate_IRQ_phys_cpuid);
1479 
1480 	while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1481 		if (ret != xpRetry) {
1482 			XPC_DEACTIVATE_PARTITION(part, ret);
1483 			return ret;
1484 		}
1485 
1486 		dev_dbg(xpc_part, "waiting to make first contact with "
1487 			"partition %d\n", XPC_PARTID(part));
1488 
1489 		/* wait a 1/4 of a second or so */
1490 		(void)msleep_interruptible(250);
1491 
1492 		if (part->act_state == XPC_P_AS_DEACTIVATING)
1493 			return part->reason;
1494 	}
1495 
1496 	return xpSuccess;
1497 }
1498 
1499 /*
1500  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1501  */
1502 static u64
xpc_get_chctl_all_flags_sn2(struct xpc_partition * part)1503 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1504 {
1505 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1506 	unsigned long irq_flags;
1507 	union xpc_channel_ctl_flags chctl;
1508 	enum xp_retval ret;
1509 
1510 	/*
1511 	 * See if there are any chctl flags to be handled.
1512 	 */
1513 
1514 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
1515 	chctl = part->chctl;
1516 	if (chctl.all_flags != 0)
1517 		part->chctl.all_flags = 0;
1518 
1519 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1520 
1521 	if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1522 		ret = xpc_pull_remote_cachelines_sn2(part, part->
1523 						     remote_openclose_args,
1524 						     part_sn2->
1525 						     remote_openclose_args_pa,
1526 						     XPC_OPENCLOSE_ARGS_SIZE);
1527 		if (ret != xpSuccess) {
1528 			XPC_DEACTIVATE_PARTITION(part, ret);
1529 
1530 			dev_dbg(xpc_chan, "failed to pull openclose args from "
1531 				"partition %d, ret=%d\n", XPC_PARTID(part),
1532 				ret);
1533 
1534 			/* don't bother processing chctl flags anymore */
1535 			chctl.all_flags = 0;
1536 		}
1537 	}
1538 
1539 	if (xpc_any_msg_chctl_flags_set(&chctl)) {
1540 		ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1541 						     part_sn2->remote_GPs_pa,
1542 						     XPC_GP_SIZE);
1543 		if (ret != xpSuccess) {
1544 			XPC_DEACTIVATE_PARTITION(part, ret);
1545 
1546 			dev_dbg(xpc_chan, "failed to pull GPs from partition "
1547 				"%d, ret=%d\n", XPC_PARTID(part), ret);
1548 
1549 			/* don't bother processing chctl flags anymore */
1550 			chctl.all_flags = 0;
1551 		}
1552 	}
1553 
1554 	return chctl.all_flags;
1555 }
1556 
1557 /*
1558  * Allocate the local message queue and the notify queue.
1559  */
1560 static enum xp_retval
xpc_allocate_local_msgqueue_sn2(struct xpc_channel * ch)1561 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1562 {
1563 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1564 	unsigned long irq_flags;
1565 	int nentries;
1566 	size_t nbytes;
1567 
1568 	for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1569 
1570 		nbytes = nentries * ch->entry_size;
1571 		ch_sn2->local_msgqueue =
1572 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1573 						  &ch_sn2->local_msgqueue_base);
1574 		if (ch_sn2->local_msgqueue == NULL)
1575 			continue;
1576 
1577 		nbytes = nentries * sizeof(struct xpc_notify_sn2);
1578 		ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1579 		if (ch_sn2->notify_queue == NULL) {
1580 			kfree(ch_sn2->local_msgqueue_base);
1581 			ch_sn2->local_msgqueue = NULL;
1582 			continue;
1583 		}
1584 
1585 		spin_lock_irqsave(&ch->lock, irq_flags);
1586 		if (nentries < ch->local_nentries) {
1587 			dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1588 				"partid=%d, channel=%d\n", nentries,
1589 				ch->local_nentries, ch->partid, ch->number);
1590 
1591 			ch->local_nentries = nentries;
1592 		}
1593 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1594 		return xpSuccess;
1595 	}
1596 
1597 	dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1598 		"queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1599 	return xpNoMemory;
1600 }
1601 
1602 /*
1603  * Allocate the cached remote message queue.
1604  */
1605 static enum xp_retval
xpc_allocate_remote_msgqueue_sn2(struct xpc_channel * ch)1606 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1607 {
1608 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1609 	unsigned long irq_flags;
1610 	int nentries;
1611 	size_t nbytes;
1612 
1613 	DBUG_ON(ch->remote_nentries <= 0);
1614 
1615 	for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1616 
1617 		nbytes = nentries * ch->entry_size;
1618 		ch_sn2->remote_msgqueue =
1619 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1620 						  remote_msgqueue_base);
1621 		if (ch_sn2->remote_msgqueue == NULL)
1622 			continue;
1623 
1624 		spin_lock_irqsave(&ch->lock, irq_flags);
1625 		if (nentries < ch->remote_nentries) {
1626 			dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1627 				"partid=%d, channel=%d\n", nentries,
1628 				ch->remote_nentries, ch->partid, ch->number);
1629 
1630 			ch->remote_nentries = nentries;
1631 		}
1632 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1633 		return xpSuccess;
1634 	}
1635 
1636 	dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1637 		"partid=%d, channel=%d\n", ch->partid, ch->number);
1638 	return xpNoMemory;
1639 }
1640 
1641 /*
1642  * Allocate message queues and other stuff associated with a channel.
1643  *
1644  * Note: Assumes all of the channel sizes are filled in.
1645  */
1646 static enum xp_retval
xpc_setup_msg_structures_sn2(struct xpc_channel * ch)1647 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1648 {
1649 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1650 	enum xp_retval ret;
1651 
1652 	DBUG_ON(ch->flags & XPC_C_SETUP);
1653 
1654 	ret = xpc_allocate_local_msgqueue_sn2(ch);
1655 	if (ret == xpSuccess) {
1656 
1657 		ret = xpc_allocate_remote_msgqueue_sn2(ch);
1658 		if (ret != xpSuccess) {
1659 			kfree(ch_sn2->local_msgqueue_base);
1660 			ch_sn2->local_msgqueue = NULL;
1661 			kfree(ch_sn2->notify_queue);
1662 			ch_sn2->notify_queue = NULL;
1663 		}
1664 	}
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Free up message queues and other stuff that were allocated for the specified
1670  * channel.
1671  */
1672 static void
xpc_teardown_msg_structures_sn2(struct xpc_channel * ch)1673 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1674 {
1675 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1676 
1677 	DBUG_ON(!spin_is_locked(&ch->lock));
1678 
1679 	ch_sn2->remote_msgqueue_pa = 0;
1680 
1681 	ch_sn2->local_GP->get = 0;
1682 	ch_sn2->local_GP->put = 0;
1683 	ch_sn2->remote_GP.get = 0;
1684 	ch_sn2->remote_GP.put = 0;
1685 	ch_sn2->w_local_GP.get = 0;
1686 	ch_sn2->w_local_GP.put = 0;
1687 	ch_sn2->w_remote_GP.get = 0;
1688 	ch_sn2->w_remote_GP.put = 0;
1689 	ch_sn2->next_msg_to_pull = 0;
1690 
1691 	if (ch->flags & XPC_C_SETUP) {
1692 		dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1693 			ch->flags, ch->partid, ch->number);
1694 
1695 		kfree(ch_sn2->local_msgqueue_base);
1696 		ch_sn2->local_msgqueue = NULL;
1697 		kfree(ch_sn2->remote_msgqueue_base);
1698 		ch_sn2->remote_msgqueue = NULL;
1699 		kfree(ch_sn2->notify_queue);
1700 		ch_sn2->notify_queue = NULL;
1701 	}
1702 }
1703 
1704 /*
1705  * Notify those who wanted to be notified upon delivery of their message.
1706  */
1707 static void
xpc_notify_senders_sn2(struct xpc_channel * ch,enum xp_retval reason,s64 put)1708 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1709 {
1710 	struct xpc_notify_sn2 *notify;
1711 	u8 notify_type;
1712 	s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1713 
1714 	while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1715 
1716 		notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1717 
1718 		/*
1719 		 * See if the notify entry indicates it was associated with
1720 		 * a message who's sender wants to be notified. It is possible
1721 		 * that it is, but someone else is doing or has done the
1722 		 * notification.
1723 		 */
1724 		notify_type = notify->type;
1725 		if (notify_type == 0 ||
1726 		    cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1727 			continue;
1728 		}
1729 
1730 		DBUG_ON(notify_type != XPC_N_CALL);
1731 
1732 		atomic_dec(&ch->n_to_notify);
1733 
1734 		if (notify->func != NULL) {
1735 			dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1736 				"msg_number=%lld partid=%d channel=%d\n",
1737 				(void *)notify, get, ch->partid, ch->number);
1738 
1739 			notify->func(reason, ch->partid, ch->number,
1740 				     notify->key);
1741 
1742 			dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1743 				" msg_number=%lld partid=%d channel=%d\n",
1744 				(void *)notify, get, ch->partid, ch->number);
1745 		}
1746 	}
1747 }
1748 
1749 static void
xpc_notify_senders_of_disconnect_sn2(struct xpc_channel * ch)1750 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1751 {
1752 	xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1753 }
1754 
1755 /*
1756  * Clear some of the msg flags in the local message queue.
1757  */
1758 static inline void
xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel * ch)1759 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1760 {
1761 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1762 	struct xpc_msg_sn2 *msg;
1763 	s64 get;
1764 
1765 	get = ch_sn2->w_remote_GP.get;
1766 	do {
1767 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1768 					     (get % ch->local_nentries) *
1769 					     ch->entry_size);
1770 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1771 		msg->flags = 0;
1772 	} while (++get < ch_sn2->remote_GP.get);
1773 }
1774 
1775 /*
1776  * Clear some of the msg flags in the remote message queue.
1777  */
1778 static inline void
xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel * ch)1779 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1780 {
1781 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1782 	struct xpc_msg_sn2 *msg;
1783 	s64 put, remote_nentries = ch->remote_nentries;
1784 
1785 	/* flags are zeroed when the buffer is allocated */
1786 	if (ch_sn2->remote_GP.put < remote_nentries)
1787 		return;
1788 
1789 	put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1790 	do {
1791 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1792 					     (put % remote_nentries) *
1793 					     ch->entry_size);
1794 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1795 		DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1796 		DBUG_ON(msg->number != put - remote_nentries);
1797 		msg->flags = 0;
1798 	} while (++put < ch_sn2->remote_GP.put);
1799 }
1800 
1801 static int
xpc_n_of_deliverable_payloads_sn2(struct xpc_channel * ch)1802 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1803 {
1804 	return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1805 }
1806 
1807 static void
xpc_process_msg_chctl_flags_sn2(struct xpc_partition * part,int ch_number)1808 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1809 {
1810 	struct xpc_channel *ch = &part->channels[ch_number];
1811 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1812 	int npayloads_sent;
1813 
1814 	ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1815 
1816 	/* See what, if anything, has changed for each connected channel */
1817 
1818 	xpc_msgqueue_ref(ch);
1819 
1820 	if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1821 	    ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1822 		/* nothing changed since GPs were last pulled */
1823 		xpc_msgqueue_deref(ch);
1824 		return;
1825 	}
1826 
1827 	if (!(ch->flags & XPC_C_CONNECTED)) {
1828 		xpc_msgqueue_deref(ch);
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * First check to see if messages recently sent by us have been
1834 	 * received by the other side. (The remote GET value will have
1835 	 * changed since we last looked at it.)
1836 	 */
1837 
1838 	if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1839 
1840 		/*
1841 		 * We need to notify any senders that want to be notified
1842 		 * that their sent messages have been received by their
1843 		 * intended recipients. We need to do this before updating
1844 		 * w_remote_GP.get so that we don't allocate the same message
1845 		 * queue entries prematurely (see xpc_allocate_msg()).
1846 		 */
1847 		if (atomic_read(&ch->n_to_notify) > 0) {
1848 			/*
1849 			 * Notify senders that messages sent have been
1850 			 * received and delivered by the other side.
1851 			 */
1852 			xpc_notify_senders_sn2(ch, xpMsgDelivered,
1853 					       ch_sn2->remote_GP.get);
1854 		}
1855 
1856 		/*
1857 		 * Clear msg->flags in previously sent messages, so that
1858 		 * they're ready for xpc_allocate_msg().
1859 		 */
1860 		xpc_clear_local_msgqueue_flags_sn2(ch);
1861 
1862 		ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1863 
1864 		dev_dbg(xpc_chan, "w_remote_GP.get changed to %lld, partid=%d, "
1865 			"channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1866 			ch->number);
1867 
1868 		/*
1869 		 * If anyone was waiting for message queue entries to become
1870 		 * available, wake them up.
1871 		 */
1872 		if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1873 			wake_up(&ch->msg_allocate_wq);
1874 	}
1875 
1876 	/*
1877 	 * Now check for newly sent messages by the other side. (The remote
1878 	 * PUT value will have changed since we last looked at it.)
1879 	 */
1880 
1881 	if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1882 		/*
1883 		 * Clear msg->flags in previously received messages, so that
1884 		 * they're ready for xpc_get_deliverable_payload_sn2().
1885 		 */
1886 		xpc_clear_remote_msgqueue_flags_sn2(ch);
1887 
1888 		smp_wmb(); /* ensure flags have been cleared before bte_copy */
1889 		ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1890 
1891 		dev_dbg(xpc_chan, "w_remote_GP.put changed to %lld, partid=%d, "
1892 			"channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1893 			ch->number);
1894 
1895 		npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1896 		if (npayloads_sent > 0) {
1897 			dev_dbg(xpc_chan, "msgs waiting to be copied and "
1898 				"delivered=%d, partid=%d, channel=%d\n",
1899 				npayloads_sent, ch->partid, ch->number);
1900 
1901 			if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1902 				xpc_activate_kthreads(ch, npayloads_sent);
1903 		}
1904 	}
1905 
1906 	xpc_msgqueue_deref(ch);
1907 }
1908 
1909 static struct xpc_msg_sn2 *
xpc_pull_remote_msg_sn2(struct xpc_channel * ch,s64 get)1910 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1911 {
1912 	struct xpc_partition *part = &xpc_partitions[ch->partid];
1913 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1914 	unsigned long remote_msg_pa;
1915 	struct xpc_msg_sn2 *msg;
1916 	u32 msg_index;
1917 	u32 nmsgs;
1918 	u64 msg_offset;
1919 	enum xp_retval ret;
1920 
1921 	if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1922 		/* we were interrupted by a signal */
1923 		return NULL;
1924 	}
1925 
1926 	while (get >= ch_sn2->next_msg_to_pull) {
1927 
1928 		/* pull as many messages as are ready and able to be pulled */
1929 
1930 		msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1931 
1932 		DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1933 		nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1934 		if (msg_index + nmsgs > ch->remote_nentries) {
1935 			/* ignore the ones that wrap the msg queue for now */
1936 			nmsgs = ch->remote_nentries - msg_index;
1937 		}
1938 
1939 		msg_offset = msg_index * ch->entry_size;
1940 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1941 		    msg_offset);
1942 		remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1943 
1944 		ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1945 						     nmsgs * ch->entry_size);
1946 		if (ret != xpSuccess) {
1947 
1948 			dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1949 				" msg %lld from partition %d, channel=%d, "
1950 				"ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1951 				ch->partid, ch->number, ret);
1952 
1953 			XPC_DEACTIVATE_PARTITION(part, ret);
1954 
1955 			mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1956 			return NULL;
1957 		}
1958 
1959 		ch_sn2->next_msg_to_pull += nmsgs;
1960 	}
1961 
1962 	mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1963 
1964 	/* return the message we were looking for */
1965 	msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1966 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1967 
1968 	return msg;
1969 }
1970 
1971 /*
1972  * Get the next deliverable message's payload.
1973  */
1974 static void *
xpc_get_deliverable_payload_sn2(struct xpc_channel * ch)1975 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1976 {
1977 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1978 	struct xpc_msg_sn2 *msg;
1979 	void *payload = NULL;
1980 	s64 get;
1981 
1982 	do {
1983 		if (ch->flags & XPC_C_DISCONNECTING)
1984 			break;
1985 
1986 		get = ch_sn2->w_local_GP.get;
1987 		smp_rmb();	/* guarantee that .get loads before .put */
1988 		if (get == ch_sn2->w_remote_GP.put)
1989 			break;
1990 
1991 		/* There are messages waiting to be pulled and delivered.
1992 		 * We need to try to secure one for ourselves. We'll do this
1993 		 * by trying to increment w_local_GP.get and hope that no one
1994 		 * else beats us to it. If they do, we'll we'll simply have
1995 		 * to try again for the next one.
1996 		 */
1997 
1998 		if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1999 			/* we got the entry referenced by get */
2000 
2001 			dev_dbg(xpc_chan, "w_local_GP.get changed to %lld, "
2002 				"partid=%d, channel=%d\n", get + 1,
2003 				ch->partid, ch->number);
2004 
2005 			/* pull the message from the remote partition */
2006 
2007 			msg = xpc_pull_remote_msg_sn2(ch, get);
2008 
2009 			if (msg != NULL) {
2010 				DBUG_ON(msg->number != get);
2011 				DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2012 				DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2013 
2014 				payload = &msg->payload;
2015 			}
2016 			break;
2017 		}
2018 
2019 	} while (1);
2020 
2021 	return payload;
2022 }
2023 
2024 /*
2025  * Now we actually send the messages that are ready to be sent by advancing
2026  * the local message queue's Put value and then send a chctl msgrequest to the
2027  * recipient partition.
2028  */
2029 static void
xpc_send_msgs_sn2(struct xpc_channel * ch,s64 initial_put)2030 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2031 {
2032 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2033 	struct xpc_msg_sn2 *msg;
2034 	s64 put = initial_put + 1;
2035 	int send_msgrequest = 0;
2036 
2037 	while (1) {
2038 
2039 		while (1) {
2040 			if (put == ch_sn2->w_local_GP.put)
2041 				break;
2042 
2043 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2044 						     local_msgqueue + (put %
2045 						     ch->local_nentries) *
2046 						     ch->entry_size);
2047 
2048 			if (!(msg->flags & XPC_M_SN2_READY))
2049 				break;
2050 
2051 			put++;
2052 		}
2053 
2054 		if (put == initial_put) {
2055 			/* nothing's changed */
2056 			break;
2057 		}
2058 
2059 		if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2060 		    initial_put) {
2061 			/* someone else beat us to it */
2062 			DBUG_ON(ch_sn2->local_GP->put < initial_put);
2063 			break;
2064 		}
2065 
2066 		/* we just set the new value of local_GP->put */
2067 
2068 		dev_dbg(xpc_chan, "local_GP->put changed to %lld, partid=%d, "
2069 			"channel=%d\n", put, ch->partid, ch->number);
2070 
2071 		send_msgrequest = 1;
2072 
2073 		/*
2074 		 * We need to ensure that the message referenced by
2075 		 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2076 		 * equals w_local_GP.put, so we'll go have a look.
2077 		 */
2078 		initial_put = put;
2079 	}
2080 
2081 	if (send_msgrequest)
2082 		xpc_send_chctl_msgrequest_sn2(ch);
2083 }
2084 
2085 /*
2086  * Allocate an entry for a message from the message queue associated with the
2087  * specified channel.
2088  */
2089 static enum xp_retval
xpc_allocate_msg_sn2(struct xpc_channel * ch,u32 flags,struct xpc_msg_sn2 ** address_of_msg)2090 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2091 		     struct xpc_msg_sn2 **address_of_msg)
2092 {
2093 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2094 	struct xpc_msg_sn2 *msg;
2095 	enum xp_retval ret;
2096 	s64 put;
2097 
2098 	/*
2099 	 * Get the next available message entry from the local message queue.
2100 	 * If none are available, we'll make sure that we grab the latest
2101 	 * GP values.
2102 	 */
2103 	ret = xpTimeout;
2104 
2105 	while (1) {
2106 
2107 		put = ch_sn2->w_local_GP.put;
2108 		smp_rmb();	/* guarantee that .put loads before .get */
2109 		if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2110 
2111 			/* There are available message entries. We need to try
2112 			 * to secure one for ourselves. We'll do this by trying
2113 			 * to increment w_local_GP.put as long as someone else
2114 			 * doesn't beat us to it. If they do, we'll have to
2115 			 * try again.
2116 			 */
2117 			if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2118 			    put) {
2119 				/* we got the entry referenced by put */
2120 				break;
2121 			}
2122 			continue;	/* try again */
2123 		}
2124 
2125 		/*
2126 		 * There aren't any available msg entries at this time.
2127 		 *
2128 		 * In waiting for a message entry to become available,
2129 		 * we set a timeout in case the other side is not sending
2130 		 * completion interrupts. This lets us fake a notify IRQ
2131 		 * that will cause the notify IRQ handler to fetch the latest
2132 		 * GP values as if an interrupt was sent by the other side.
2133 		 */
2134 		if (ret == xpTimeout)
2135 			xpc_send_chctl_local_msgrequest_sn2(ch);
2136 
2137 		if (flags & XPC_NOWAIT)
2138 			return xpNoWait;
2139 
2140 		ret = xpc_allocate_msg_wait(ch);
2141 		if (ret != xpInterrupted && ret != xpTimeout)
2142 			return ret;
2143 	}
2144 
2145 	/* get the message's address and initialize it */
2146 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2147 				     (put % ch->local_nentries) *
2148 				     ch->entry_size);
2149 
2150 	DBUG_ON(msg->flags != 0);
2151 	msg->number = put;
2152 
2153 	dev_dbg(xpc_chan, "w_local_GP.put changed to %lld; msg=0x%p, "
2154 		"msg_number=%lld, partid=%d, channel=%d\n", put + 1,
2155 		(void *)msg, msg->number, ch->partid, ch->number);
2156 
2157 	*address_of_msg = msg;
2158 	return xpSuccess;
2159 }
2160 
2161 /*
2162  * Common code that does the actual sending of the message by advancing the
2163  * local message queue's Put value and sends a chctl msgrequest to the
2164  * partition the message is being sent to.
2165  */
2166 static enum xp_retval
xpc_send_payload_sn2(struct xpc_channel * ch,u32 flags,void * payload,u16 payload_size,u8 notify_type,xpc_notify_func func,void * key)2167 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2168 		     u16 payload_size, u8 notify_type, xpc_notify_func func,
2169 		     void *key)
2170 {
2171 	enum xp_retval ret = xpSuccess;
2172 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2173 	struct xpc_msg_sn2 *msg = msg;
2174 	struct xpc_notify_sn2 *notify = notify;
2175 	s64 msg_number;
2176 	s64 put;
2177 
2178 	DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2179 
2180 	if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2181 		return xpPayloadTooBig;
2182 
2183 	xpc_msgqueue_ref(ch);
2184 
2185 	if (ch->flags & XPC_C_DISCONNECTING) {
2186 		ret = ch->reason;
2187 		goto out_1;
2188 	}
2189 	if (!(ch->flags & XPC_C_CONNECTED)) {
2190 		ret = xpNotConnected;
2191 		goto out_1;
2192 	}
2193 
2194 	ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2195 	if (ret != xpSuccess)
2196 		goto out_1;
2197 
2198 	msg_number = msg->number;
2199 
2200 	if (notify_type != 0) {
2201 		/*
2202 		 * Tell the remote side to send an ACK interrupt when the
2203 		 * message has been delivered.
2204 		 */
2205 		msg->flags |= XPC_M_SN2_INTERRUPT;
2206 
2207 		atomic_inc(&ch->n_to_notify);
2208 
2209 		notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2210 		notify->func = func;
2211 		notify->key = key;
2212 		notify->type = notify_type;
2213 
2214 		/* ??? Is a mb() needed here? */
2215 
2216 		if (ch->flags & XPC_C_DISCONNECTING) {
2217 			/*
2218 			 * An error occurred between our last error check and
2219 			 * this one. We will try to clear the type field from
2220 			 * the notify entry. If we succeed then
2221 			 * xpc_disconnect_channel() didn't already process
2222 			 * the notify entry.
2223 			 */
2224 			if (cmpxchg(&notify->type, notify_type, 0) ==
2225 			    notify_type) {
2226 				atomic_dec(&ch->n_to_notify);
2227 				ret = ch->reason;
2228 			}
2229 			goto out_1;
2230 		}
2231 	}
2232 
2233 	memcpy(&msg->payload, payload, payload_size);
2234 
2235 	msg->flags |= XPC_M_SN2_READY;
2236 
2237 	/*
2238 	 * The preceding store of msg->flags must occur before the following
2239 	 * load of local_GP->put.
2240 	 */
2241 	smp_mb();
2242 
2243 	/* see if the message is next in line to be sent, if so send it */
2244 
2245 	put = ch_sn2->local_GP->put;
2246 	if (put == msg_number)
2247 		xpc_send_msgs_sn2(ch, put);
2248 
2249 out_1:
2250 	xpc_msgqueue_deref(ch);
2251 	return ret;
2252 }
2253 
2254 /*
2255  * Now we actually acknowledge the messages that have been delivered and ack'd
2256  * by advancing the cached remote message queue's Get value and if requested
2257  * send a chctl msgrequest to the message sender's partition.
2258  *
2259  * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2260  * that sent the message.
2261  */
2262 static void
xpc_acknowledge_msgs_sn2(struct xpc_channel * ch,s64 initial_get,u8 msg_flags)2263 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2264 {
2265 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2266 	struct xpc_msg_sn2 *msg;
2267 	s64 get = initial_get + 1;
2268 	int send_msgrequest = 0;
2269 
2270 	while (1) {
2271 
2272 		while (1) {
2273 			if (get == ch_sn2->w_local_GP.get)
2274 				break;
2275 
2276 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2277 						     remote_msgqueue + (get %
2278 						     ch->remote_nentries) *
2279 						     ch->entry_size);
2280 
2281 			if (!(msg->flags & XPC_M_SN2_DONE))
2282 				break;
2283 
2284 			msg_flags |= msg->flags;
2285 			get++;
2286 		}
2287 
2288 		if (get == initial_get) {
2289 			/* nothing's changed */
2290 			break;
2291 		}
2292 
2293 		if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2294 		    initial_get) {
2295 			/* someone else beat us to it */
2296 			DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2297 			break;
2298 		}
2299 
2300 		/* we just set the new value of local_GP->get */
2301 
2302 		dev_dbg(xpc_chan, "local_GP->get changed to %lld, partid=%d, "
2303 			"channel=%d\n", get, ch->partid, ch->number);
2304 
2305 		send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2306 
2307 		/*
2308 		 * We need to ensure that the message referenced by
2309 		 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2310 		 * equals w_local_GP.get, so we'll go have a look.
2311 		 */
2312 		initial_get = get;
2313 	}
2314 
2315 	if (send_msgrequest)
2316 		xpc_send_chctl_msgrequest_sn2(ch);
2317 }
2318 
2319 static void
xpc_received_payload_sn2(struct xpc_channel * ch,void * payload)2320 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2321 {
2322 	struct xpc_msg_sn2 *msg;
2323 	s64 msg_number;
2324 	s64 get;
2325 
2326 	msg = container_of(payload, struct xpc_msg_sn2, payload);
2327 	msg_number = msg->number;
2328 
2329 	dev_dbg(xpc_chan, "msg=0x%p, msg_number=%lld, partid=%d, channel=%d\n",
2330 		(void *)msg, msg_number, ch->partid, ch->number);
2331 
2332 	DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2333 		msg_number % ch->remote_nentries);
2334 	DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2335 	DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2336 
2337 	msg->flags |= XPC_M_SN2_DONE;
2338 
2339 	/*
2340 	 * The preceding store of msg->flags must occur before the following
2341 	 * load of local_GP->get.
2342 	 */
2343 	smp_mb();
2344 
2345 	/*
2346 	 * See if this message is next in line to be acknowledged as having
2347 	 * been delivered.
2348 	 */
2349 	get = ch->sn.sn2.local_GP->get;
2350 	if (get == msg_number)
2351 		xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2352 }
2353 
2354 static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2355 	.setup_partitions = xpc_setup_partitions_sn2,
2356 	.teardown_partitions = xpc_teardown_partitions_sn2,
2357 	.process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2358 	.get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2359 	.setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2360 
2361 	.allow_hb = xpc_allow_hb_sn2,
2362 	.disallow_hb = xpc_disallow_hb_sn2,
2363 	.disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2364 	.increment_heartbeat = xpc_increment_heartbeat_sn2,
2365 	.offline_heartbeat = xpc_offline_heartbeat_sn2,
2366 	.online_heartbeat = xpc_online_heartbeat_sn2,
2367 	.heartbeat_init = xpc_heartbeat_init_sn2,
2368 	.heartbeat_exit = xpc_heartbeat_exit_sn2,
2369 	.get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2370 
2371 	.request_partition_activation =
2372 		xpc_request_partition_activation_sn2,
2373 	.request_partition_reactivation =
2374 		xpc_request_partition_reactivation_sn2,
2375 	.request_partition_deactivation =
2376 		xpc_request_partition_deactivation_sn2,
2377 	.cancel_partition_deactivation_request =
2378 		xpc_cancel_partition_deactivation_request_sn2,
2379 
2380 	.setup_ch_structures = xpc_setup_ch_structures_sn2,
2381 	.teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2382 
2383 	.make_first_contact = xpc_make_first_contact_sn2,
2384 
2385 	.get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2386 	.send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2387 	.send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2388 	.send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2389 	.send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2390 	.send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2391 	.process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2392 
2393 	.save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2394 
2395 	.setup_msg_structures = xpc_setup_msg_structures_sn2,
2396 	.teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2397 
2398 	.indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2399 	.indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2400 	.partition_engaged = xpc_partition_engaged_sn2,
2401 	.any_partition_engaged = xpc_any_partition_engaged_sn2,
2402 	.assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2403 
2404 	.n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2405 	.send_payload = xpc_send_payload_sn2,
2406 	.get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2407 	.received_payload = xpc_received_payload_sn2,
2408 	.notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2409 };
2410 
2411 int
xpc_init_sn2(void)2412 xpc_init_sn2(void)
2413 {
2414 	int ret;
2415 	size_t buf_size;
2416 
2417 	xpc_arch_ops = xpc_arch_ops_sn2;
2418 
2419 	if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2420 		dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2421 			"larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2422 		return -E2BIG;
2423 	}
2424 
2425 	buf_size = max(XPC_RP_VARS_SIZE,
2426 		       XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2427 	xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2428 								   GFP_KERNEL,
2429 					      &xpc_remote_copy_buffer_base_sn2);
2430 	if (xpc_remote_copy_buffer_sn2 == NULL) {
2431 		dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2432 		return -ENOMEM;
2433 	}
2434 
2435 	/* open up protections for IPI and [potentially] amo operations */
2436 	xpc_allow_IPI_ops_sn2();
2437 	xpc_allow_amo_ops_shub_wars_1_1_sn2();
2438 
2439 	/*
2440 	 * This is safe to do before the xpc_hb_checker thread has started
2441 	 * because the handler releases a wait queue.  If an interrupt is
2442 	 * received before the thread is waiting, it will not go to sleep,
2443 	 * but rather immediately process the interrupt.
2444 	 */
2445 	ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2446 			  "xpc hb", NULL);
2447 	if (ret != 0) {
2448 		dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2449 			"errno=%d\n", -ret);
2450 		xpc_disallow_IPI_ops_sn2();
2451 		kfree(xpc_remote_copy_buffer_base_sn2);
2452 	}
2453 	return ret;
2454 }
2455 
2456 void
xpc_exit_sn2(void)2457 xpc_exit_sn2(void)
2458 {
2459 	free_irq(SGI_XPC_ACTIVATE, NULL);
2460 	xpc_disallow_IPI_ops_sn2();
2461 	kfree(xpc_remote_copy_buffer_base_sn2);
2462 }
2463