• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38 
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41 
42 #define DRIVER_NAME "mxc_nand"
43 
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
67 
68 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
78 
79 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
80 
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD				(1 << 0)
86 #define NFC_ADDR			(1 << 1)
87 #define NFC_INPUT			(1 << 2)
88 #define NFC_OUTPUT			(1 << 3)
89 #define NFC_ID				(1 << 4)
90 #define NFC_STATUS			(1 << 5)
91 
92 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
94 
95 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
98 
99 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
100 
101 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
102 
103 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
105 #define NFC_V3_WRPROT_LOCK		(1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
108 
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110 
111 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
125 
126 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8			(1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
133 
134 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ			(1 << 0)
136 #define NFC_V3_IPC_INT			(1 << 31)
137 
138 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
139 
140 struct mxc_nand_host;
141 
142 struct mxc_nand_devtype_data {
143 	void (*preset)(struct mtd_info *);
144 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146 	void (*send_page)(struct mtd_info *, unsigned int);
147 	void (*send_read_id)(struct mxc_nand_host *);
148 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
149 	int (*check_int)(struct mxc_nand_host *);
150 	void (*irq_control)(struct mxc_nand_host *, int);
151 	u32 (*get_ecc_status)(struct mxc_nand_host *);
152 	struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153 	void (*select_chip)(struct mtd_info *mtd, int chip);
154 	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155 			u_char *read_ecc, u_char *calc_ecc);
156 
157 	/*
158 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
160 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161 	 */
162 	int irqpending_quirk;
163 	int needs_ip;
164 
165 	size_t regs_offset;
166 	size_t spare0_offset;
167 	size_t axi_offset;
168 
169 	int spare_len;
170 	int eccbytes;
171 	int eccsize;
172 	int ppb_shift;
173 };
174 
175 struct mxc_nand_host {
176 	struct mtd_info		mtd;
177 	struct nand_chip	nand;
178 	struct device		*dev;
179 
180 	void __iomem		*spare0;
181 	void __iomem		*main_area0;
182 
183 	void __iomem		*base;
184 	void __iomem		*regs;
185 	void __iomem		*regs_axi;
186 	void __iomem		*regs_ip;
187 	int			status_request;
188 	struct clk		*clk;
189 	int			clk_act;
190 	int			irq;
191 	int			eccsize;
192 	int			active_cs;
193 
194 	struct completion	op_completion;
195 
196 	uint8_t			*data_buf;
197 	unsigned int		buf_start;
198 
199 	const struct mxc_nand_devtype_data *devtype_data;
200 	struct mxc_nand_platform_data pdata;
201 };
202 
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205 	.eccbytes = 5,
206 	.eccpos = {6, 7, 8, 9, 10},
207 	.oobfree = {{0, 5}, {12, 4}, }
208 };
209 
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211 	.eccbytes = 20,
212 	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213 		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214 	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216 
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219 	.eccbytes = 1 * 9,
220 	.eccpos = {
221 		 7,  8,  9, 10, 11, 12, 13, 14, 15
222 	},
223 	.oobfree = {
224 		{.offset = 0, .length = 5}
225 	}
226 };
227 
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230 	.eccbytes = 4 * 9,
231 	.eccpos = {
232 		 7,  8,  9, 10, 11, 12, 13, 14, 15,
233 		23, 24, 25, 26, 27, 28, 29, 30, 31,
234 		39, 40, 41, 42, 43, 44, 45, 46, 47,
235 		55, 56, 57, 58, 59, 60, 61, 62, 63
236 	},
237 	.oobfree = {
238 		{.offset = 2, .length = 4},
239 		{.offset = 16, .length = 7},
240 		{.offset = 32, .length = 7},
241 		{.offset = 48, .length = 7}
242 	}
243 };
244 
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247 	.eccbytes = 8 * 9,
248 	.eccpos = {
249 		7,  8,  9, 10, 11, 12, 13, 14, 15,
250 		23, 24, 25, 26, 27, 28, 29, 30, 31,
251 		39, 40, 41, 42, 43, 44, 45, 46, 47,
252 		55, 56, 57, 58, 59, 60, 61, 62, 63,
253 		71, 72, 73, 74, 75, 76, 77, 78, 79,
254 		87, 88, 89, 90, 91, 92, 93, 94, 95,
255 		103, 104, 105, 106, 107, 108, 109, 110, 111,
256 		119, 120, 121, 122, 123, 124, 125, 126, 127,
257 	},
258 	.oobfree = {
259 		{.offset = 2, .length = 4},
260 		{.offset = 16, .length = 7},
261 		{.offset = 32, .length = 7},
262 		{.offset = 48, .length = 7},
263 		{.offset = 64, .length = 7},
264 		{.offset = 80, .length = 7},
265 		{.offset = 96, .length = 7},
266 		{.offset = 112, .length = 7},
267 	}
268 };
269 
270 static const char * const part_probes[] = {
271 	"cmdlinepart", "RedBoot", "ofpart", NULL };
272 
memcpy32_fromio(void * trg,const void __iomem * src,size_t size)273 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
274 {
275 	int i;
276 	u32 *t = trg;
277 	const __iomem u32 *s = src;
278 
279 	for (i = 0; i < (size >> 2); i++)
280 		*t++ = __raw_readl(s++);
281 }
282 
memcpy32_toio(void __iomem * trg,const void * src,int size)283 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 {
285 	int i;
286 	u32 __iomem *t = trg;
287 	const u32 *s = src;
288 
289 	for (i = 0; i < (size >> 2); i++)
290 		__raw_writel(*s++, t++);
291 }
292 
check_int_v3(struct mxc_nand_host * host)293 static int check_int_v3(struct mxc_nand_host *host)
294 {
295 	uint32_t tmp;
296 
297 	tmp = readl(NFC_V3_IPC);
298 	if (!(tmp & NFC_V3_IPC_INT))
299 		return 0;
300 
301 	tmp &= ~NFC_V3_IPC_INT;
302 	writel(tmp, NFC_V3_IPC);
303 
304 	return 1;
305 }
306 
check_int_v1_v2(struct mxc_nand_host * host)307 static int check_int_v1_v2(struct mxc_nand_host *host)
308 {
309 	uint32_t tmp;
310 
311 	tmp = readw(NFC_V1_V2_CONFIG2);
312 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
313 		return 0;
314 
315 	if (!host->devtype_data->irqpending_quirk)
316 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
317 
318 	return 1;
319 }
320 
irq_control_v1_v2(struct mxc_nand_host * host,int activate)321 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
322 {
323 	uint16_t tmp;
324 
325 	tmp = readw(NFC_V1_V2_CONFIG1);
326 
327 	if (activate)
328 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
329 	else
330 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
331 
332 	writew(tmp, NFC_V1_V2_CONFIG1);
333 }
334 
irq_control_v3(struct mxc_nand_host * host,int activate)335 static void irq_control_v3(struct mxc_nand_host *host, int activate)
336 {
337 	uint32_t tmp;
338 
339 	tmp = readl(NFC_V3_CONFIG2);
340 
341 	if (activate)
342 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
343 	else
344 		tmp |= NFC_V3_CONFIG2_INT_MSK;
345 
346 	writel(tmp, NFC_V3_CONFIG2);
347 }
348 
irq_control(struct mxc_nand_host * host,int activate)349 static void irq_control(struct mxc_nand_host *host, int activate)
350 {
351 	if (host->devtype_data->irqpending_quirk) {
352 		if (activate)
353 			enable_irq(host->irq);
354 		else
355 			disable_irq_nosync(host->irq);
356 	} else {
357 		host->devtype_data->irq_control(host, activate);
358 	}
359 }
360 
get_ecc_status_v1(struct mxc_nand_host * host)361 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
362 {
363 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
364 }
365 
get_ecc_status_v2(struct mxc_nand_host * host)366 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
367 {
368 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
369 }
370 
get_ecc_status_v3(struct mxc_nand_host * host)371 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
372 {
373 	return readl(NFC_V3_ECC_STATUS_RESULT);
374 }
375 
mxc_nfc_irq(int irq,void * dev_id)376 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
377 {
378 	struct mxc_nand_host *host = dev_id;
379 
380 	if (!host->devtype_data->check_int(host))
381 		return IRQ_NONE;
382 
383 	irq_control(host, 0);
384 
385 	complete(&host->op_completion);
386 
387 	return IRQ_HANDLED;
388 }
389 
390 /* This function polls the NANDFC to wait for the basic operation to
391  * complete by checking the INT bit of config2 register.
392  */
wait_op_done(struct mxc_nand_host * host,int useirq)393 static void wait_op_done(struct mxc_nand_host *host, int useirq)
394 {
395 	int max_retries = 8000;
396 
397 	if (useirq) {
398 		if (!host->devtype_data->check_int(host)) {
399 			reinit_completion(&host->op_completion);
400 			irq_control(host, 1);
401 			wait_for_completion(&host->op_completion);
402 		}
403 	} else {
404 		while (max_retries-- > 0) {
405 			if (host->devtype_data->check_int(host))
406 				break;
407 
408 			udelay(1);
409 		}
410 		if (max_retries < 0)
411 			pr_debug("%s: INT not set\n", __func__);
412 	}
413 }
414 
send_cmd_v3(struct mxc_nand_host * host,uint16_t cmd,int useirq)415 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
416 {
417 	/* fill command */
418 	writel(cmd, NFC_V3_FLASH_CMD);
419 
420 	/* send out command */
421 	writel(NFC_CMD, NFC_V3_LAUNCH);
422 
423 	/* Wait for operation to complete */
424 	wait_op_done(host, useirq);
425 }
426 
427 /* This function issues the specified command to the NAND device and
428  * waits for completion. */
send_cmd_v1_v2(struct mxc_nand_host * host,uint16_t cmd,int useirq)429 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
430 {
431 	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
432 
433 	writew(cmd, NFC_V1_V2_FLASH_CMD);
434 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
435 
436 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
437 		int max_retries = 100;
438 		/* Reset completion is indicated by NFC_CONFIG2 */
439 		/* being set to 0 */
440 		while (max_retries-- > 0) {
441 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
442 				break;
443 			}
444 			udelay(1);
445 		}
446 		if (max_retries < 0)
447 			pr_debug("%s: RESET failed\n", __func__);
448 	} else {
449 		/* Wait for operation to complete */
450 		wait_op_done(host, useirq);
451 	}
452 }
453 
send_addr_v3(struct mxc_nand_host * host,uint16_t addr,int islast)454 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
455 {
456 	/* fill address */
457 	writel(addr, NFC_V3_FLASH_ADDR0);
458 
459 	/* send out address */
460 	writel(NFC_ADDR, NFC_V3_LAUNCH);
461 
462 	wait_op_done(host, 0);
463 }
464 
465 /* This function sends an address (or partial address) to the
466  * NAND device. The address is used to select the source/destination for
467  * a NAND command. */
send_addr_v1_v2(struct mxc_nand_host * host,uint16_t addr,int islast)468 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
469 {
470 	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
471 
472 	writew(addr, NFC_V1_V2_FLASH_ADDR);
473 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
474 
475 	/* Wait for operation to complete */
476 	wait_op_done(host, islast);
477 }
478 
send_page_v3(struct mtd_info * mtd,unsigned int ops)479 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
480 {
481 	struct nand_chip *nand_chip = mtd->priv;
482 	struct mxc_nand_host *host = nand_chip->priv;
483 	uint32_t tmp;
484 
485 	tmp = readl(NFC_V3_CONFIG1);
486 	tmp &= ~(7 << 4);
487 	writel(tmp, NFC_V3_CONFIG1);
488 
489 	/* transfer data from NFC ram to nand */
490 	writel(ops, NFC_V3_LAUNCH);
491 
492 	wait_op_done(host, false);
493 }
494 
send_page_v2(struct mtd_info * mtd,unsigned int ops)495 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
496 {
497 	struct nand_chip *nand_chip = mtd->priv;
498 	struct mxc_nand_host *host = nand_chip->priv;
499 
500 	/* NANDFC buffer 0 is used for page read/write */
501 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
502 
503 	writew(ops, NFC_V1_V2_CONFIG2);
504 
505 	/* Wait for operation to complete */
506 	wait_op_done(host, true);
507 }
508 
send_page_v1(struct mtd_info * mtd,unsigned int ops)509 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
510 {
511 	struct nand_chip *nand_chip = mtd->priv;
512 	struct mxc_nand_host *host = nand_chip->priv;
513 	int bufs, i;
514 
515 	if (mtd->writesize > 512)
516 		bufs = 4;
517 	else
518 		bufs = 1;
519 
520 	for (i = 0; i < bufs; i++) {
521 
522 		/* NANDFC buffer 0 is used for page read/write */
523 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
524 
525 		writew(ops, NFC_V1_V2_CONFIG2);
526 
527 		/* Wait for operation to complete */
528 		wait_op_done(host, true);
529 	}
530 }
531 
send_read_id_v3(struct mxc_nand_host * host)532 static void send_read_id_v3(struct mxc_nand_host *host)
533 {
534 	struct nand_chip *this = &host->nand;
535 
536 	/* Read ID into main buffer */
537 	writel(NFC_ID, NFC_V3_LAUNCH);
538 
539 	wait_op_done(host, true);
540 
541 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
542 
543 	if (this->options & NAND_BUSWIDTH_16) {
544 		/* compress the ID info */
545 		host->data_buf[1] = host->data_buf[2];
546 		host->data_buf[2] = host->data_buf[4];
547 		host->data_buf[3] = host->data_buf[6];
548 		host->data_buf[4] = host->data_buf[8];
549 		host->data_buf[5] = host->data_buf[10];
550 	}
551 }
552 
553 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id_v1_v2(struct mxc_nand_host * host)554 static void send_read_id_v1_v2(struct mxc_nand_host *host)
555 {
556 	struct nand_chip *this = &host->nand;
557 
558 	/* NANDFC buffer 0 is used for device ID output */
559 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
560 
561 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
562 
563 	/* Wait for operation to complete */
564 	wait_op_done(host, true);
565 
566 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
567 
568 	if (this->options & NAND_BUSWIDTH_16) {
569 		/* compress the ID info */
570 		host->data_buf[1] = host->data_buf[2];
571 		host->data_buf[2] = host->data_buf[4];
572 		host->data_buf[3] = host->data_buf[6];
573 		host->data_buf[4] = host->data_buf[8];
574 		host->data_buf[5] = host->data_buf[10];
575 	}
576 }
577 
get_dev_status_v3(struct mxc_nand_host * host)578 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
579 {
580 	writew(NFC_STATUS, NFC_V3_LAUNCH);
581 	wait_op_done(host, true);
582 
583 	return readl(NFC_V3_CONFIG1) >> 16;
584 }
585 
586 /* This function requests the NANDFC to perform a read of the
587  * NAND device status and returns the current status. */
get_dev_status_v1_v2(struct mxc_nand_host * host)588 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
589 {
590 	void __iomem *main_buf = host->main_area0;
591 	uint32_t store;
592 	uint16_t ret;
593 
594 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
595 
596 	/*
597 	 * The device status is stored in main_area0. To
598 	 * prevent corruption of the buffer save the value
599 	 * and restore it afterwards.
600 	 */
601 	store = readl(main_buf);
602 
603 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
604 	wait_op_done(host, true);
605 
606 	ret = readw(main_buf);
607 
608 	writel(store, main_buf);
609 
610 	return ret;
611 }
612 
613 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)614 static int mxc_nand_dev_ready(struct mtd_info *mtd)
615 {
616 	/*
617 	 * NFC handles R/B internally. Therefore, this function
618 	 * always returns status as ready.
619 	 */
620 	return 1;
621 }
622 
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)623 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
624 {
625 	/*
626 	 * If HW ECC is enabled, we turn it on during init. There is
627 	 * no need to enable again here.
628 	 */
629 }
630 
mxc_nand_correct_data_v1(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)631 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
632 				 u_char *read_ecc, u_char *calc_ecc)
633 {
634 	struct nand_chip *nand_chip = mtd->priv;
635 	struct mxc_nand_host *host = nand_chip->priv;
636 
637 	/*
638 	 * 1-Bit errors are automatically corrected in HW.  No need for
639 	 * additional correction.  2-Bit errors cannot be corrected by
640 	 * HW ECC, so we need to return failure
641 	 */
642 	uint16_t ecc_status = get_ecc_status_v1(host);
643 
644 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
645 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
646 		return -1;
647 	}
648 
649 	return 0;
650 }
651 
mxc_nand_correct_data_v2_v3(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)652 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
653 				 u_char *read_ecc, u_char *calc_ecc)
654 {
655 	struct nand_chip *nand_chip = mtd->priv;
656 	struct mxc_nand_host *host = nand_chip->priv;
657 	u32 ecc_stat, err;
658 	int no_subpages = 1;
659 	int ret = 0;
660 	u8 ecc_bit_mask, err_limit;
661 
662 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
663 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
664 
665 	no_subpages = mtd->writesize >> 9;
666 
667 	ecc_stat = host->devtype_data->get_ecc_status(host);
668 
669 	do {
670 		err = ecc_stat & ecc_bit_mask;
671 		if (err > err_limit) {
672 			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
673 			return -1;
674 		} else {
675 			ret += err;
676 		}
677 		ecc_stat >>= 4;
678 	} while (--no_subpages);
679 
680 	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
681 
682 	return ret;
683 }
684 
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)685 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
686 				  u_char *ecc_code)
687 {
688 	return 0;
689 }
690 
mxc_nand_read_byte(struct mtd_info * mtd)691 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
692 {
693 	struct nand_chip *nand_chip = mtd->priv;
694 	struct mxc_nand_host *host = nand_chip->priv;
695 	uint8_t ret;
696 
697 	/* Check for status request */
698 	if (host->status_request)
699 		return host->devtype_data->get_dev_status(host) & 0xFF;
700 
701 	ret = *(uint8_t *)(host->data_buf + host->buf_start);
702 	host->buf_start++;
703 
704 	return ret;
705 }
706 
mxc_nand_read_word(struct mtd_info * mtd)707 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
708 {
709 	struct nand_chip *nand_chip = mtd->priv;
710 	struct mxc_nand_host *host = nand_chip->priv;
711 	uint16_t ret;
712 
713 	ret = *(uint16_t *)(host->data_buf + host->buf_start);
714 	host->buf_start += 2;
715 
716 	return ret;
717 }
718 
719 /* Write data of length len to buffer buf. The data to be
720  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
721  * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)722 static void mxc_nand_write_buf(struct mtd_info *mtd,
723 				const u_char *buf, int len)
724 {
725 	struct nand_chip *nand_chip = mtd->priv;
726 	struct mxc_nand_host *host = nand_chip->priv;
727 	u16 col = host->buf_start;
728 	int n = mtd->oobsize + mtd->writesize - col;
729 
730 	n = min(n, len);
731 
732 	memcpy(host->data_buf + col, buf, n);
733 
734 	host->buf_start += n;
735 }
736 
737 /* Read the data buffer from the NAND Flash. To read the data from NAND
738  * Flash first the data output cycle is initiated by the NFC, which copies
739  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
740  */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)741 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
742 {
743 	struct nand_chip *nand_chip = mtd->priv;
744 	struct mxc_nand_host *host = nand_chip->priv;
745 	u16 col = host->buf_start;
746 	int n = mtd->oobsize + mtd->writesize - col;
747 
748 	n = min(n, len);
749 
750 	memcpy(buf, host->data_buf + col, n);
751 
752 	host->buf_start += n;
753 }
754 
755 /* This function is used by upper layer for select and
756  * deselect of the NAND chip */
mxc_nand_select_chip_v1_v3(struct mtd_info * mtd,int chip)757 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
758 {
759 	struct nand_chip *nand_chip = mtd->priv;
760 	struct mxc_nand_host *host = nand_chip->priv;
761 
762 	if (chip == -1) {
763 		/* Disable the NFC clock */
764 		if (host->clk_act) {
765 			clk_disable_unprepare(host->clk);
766 			host->clk_act = 0;
767 		}
768 		return;
769 	}
770 
771 	if (!host->clk_act) {
772 		/* Enable the NFC clock */
773 		clk_prepare_enable(host->clk);
774 		host->clk_act = 1;
775 	}
776 }
777 
mxc_nand_select_chip_v2(struct mtd_info * mtd,int chip)778 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
779 {
780 	struct nand_chip *nand_chip = mtd->priv;
781 	struct mxc_nand_host *host = nand_chip->priv;
782 
783 	if (chip == -1) {
784 		/* Disable the NFC clock */
785 		if (host->clk_act) {
786 			clk_disable_unprepare(host->clk);
787 			host->clk_act = 0;
788 		}
789 		return;
790 	}
791 
792 	if (!host->clk_act) {
793 		/* Enable the NFC clock */
794 		clk_prepare_enable(host->clk);
795 		host->clk_act = 1;
796 	}
797 
798 	host->active_cs = chip;
799 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
800 }
801 
802 /*
803  * Function to transfer data to/from spare area.
804  */
copy_spare(struct mtd_info * mtd,bool bfrom)805 static void copy_spare(struct mtd_info *mtd, bool bfrom)
806 {
807 	struct nand_chip *this = mtd->priv;
808 	struct mxc_nand_host *host = this->priv;
809 	u16 i, j;
810 	u16 n = mtd->writesize >> 9;
811 	u8 *d = host->data_buf + mtd->writesize;
812 	u8 __iomem *s = host->spare0;
813 	u16 t = host->devtype_data->spare_len;
814 
815 	j = (mtd->oobsize / n >> 1) << 1;
816 
817 	if (bfrom) {
818 		for (i = 0; i < n - 1; i++)
819 			memcpy32_fromio(d + i * j, s + i * t, j);
820 
821 		/* the last section */
822 		memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
823 	} else {
824 		for (i = 0; i < n - 1; i++)
825 			memcpy32_toio(&s[i * t], &d[i * j], j);
826 
827 		/* the last section */
828 		memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
829 	}
830 }
831 
mxc_do_addr_cycle(struct mtd_info * mtd,int column,int page_addr)832 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
833 {
834 	struct nand_chip *nand_chip = mtd->priv;
835 	struct mxc_nand_host *host = nand_chip->priv;
836 
837 	/* Write out column address, if necessary */
838 	if (column != -1) {
839 		/*
840 		 * MXC NANDFC can only perform full page+spare or
841 		 * spare-only read/write.  When the upper layers
842 		 * perform a read/write buf operation, the saved column
843 		  * address is used to index into the full page.
844 		 */
845 		host->devtype_data->send_addr(host, 0, page_addr == -1);
846 		if (mtd->writesize > 512)
847 			/* another col addr cycle for 2k page */
848 			host->devtype_data->send_addr(host, 0, false);
849 	}
850 
851 	/* Write out page address, if necessary */
852 	if (page_addr != -1) {
853 		/* paddr_0 - p_addr_7 */
854 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
855 
856 		if (mtd->writesize > 512) {
857 			if (mtd->size >= 0x10000000) {
858 				/* paddr_8 - paddr_15 */
859 				host->devtype_data->send_addr(host,
860 						(page_addr >> 8) & 0xff,
861 						false);
862 				host->devtype_data->send_addr(host,
863 						(page_addr >> 16) & 0xff,
864 						true);
865 			} else
866 				/* paddr_8 - paddr_15 */
867 				host->devtype_data->send_addr(host,
868 						(page_addr >> 8) & 0xff, true);
869 		} else {
870 			/* One more address cycle for higher density devices */
871 			if (mtd->size >= 0x4000000) {
872 				/* paddr_8 - paddr_15 */
873 				host->devtype_data->send_addr(host,
874 						(page_addr >> 8) & 0xff,
875 						false);
876 				host->devtype_data->send_addr(host,
877 						(page_addr >> 16) & 0xff,
878 						true);
879 			} else
880 				/* paddr_8 - paddr_15 */
881 				host->devtype_data->send_addr(host,
882 						(page_addr >> 8) & 0xff, true);
883 		}
884 	}
885 }
886 
887 /*
888  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
889  * on how much oob the nand chip has. For 8bit ecc we need at least
890  * 26 bytes of oob data per 512 byte block.
891  */
get_eccsize(struct mtd_info * mtd)892 static int get_eccsize(struct mtd_info *mtd)
893 {
894 	int oobbytes_per_512 = 0;
895 
896 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
897 
898 	if (oobbytes_per_512 < 26)
899 		return 4;
900 	else
901 		return 8;
902 }
903 
preset_v1(struct mtd_info * mtd)904 static void preset_v1(struct mtd_info *mtd)
905 {
906 	struct nand_chip *nand_chip = mtd->priv;
907 	struct mxc_nand_host *host = nand_chip->priv;
908 	uint16_t config1 = 0;
909 
910 	if (nand_chip->ecc.mode == NAND_ECC_HW)
911 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
912 
913 	if (!host->devtype_data->irqpending_quirk)
914 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
915 
916 	host->eccsize = 1;
917 
918 	writew(config1, NFC_V1_V2_CONFIG1);
919 	/* preset operation */
920 
921 	/* Unlock the internal RAM Buffer */
922 	writew(0x2, NFC_V1_V2_CONFIG);
923 
924 	/* Blocks to be unlocked */
925 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
926 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
927 
928 	/* Unlock Block Command for given address range */
929 	writew(0x4, NFC_V1_V2_WRPROT);
930 }
931 
preset_v2(struct mtd_info * mtd)932 static void preset_v2(struct mtd_info *mtd)
933 {
934 	struct nand_chip *nand_chip = mtd->priv;
935 	struct mxc_nand_host *host = nand_chip->priv;
936 	uint16_t config1 = 0;
937 
938 	if (nand_chip->ecc.mode == NAND_ECC_HW)
939 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
940 
941 	config1 |= NFC_V2_CONFIG1_FP_INT;
942 
943 	if (!host->devtype_data->irqpending_quirk)
944 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
945 
946 	if (mtd->writesize) {
947 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
948 
949 		host->eccsize = get_eccsize(mtd);
950 		if (host->eccsize == 4)
951 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
952 
953 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
954 	} else {
955 		host->eccsize = 1;
956 	}
957 
958 	writew(config1, NFC_V1_V2_CONFIG1);
959 	/* preset operation */
960 
961 	/* Unlock the internal RAM Buffer */
962 	writew(0x2, NFC_V1_V2_CONFIG);
963 
964 	/* Blocks to be unlocked */
965 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
966 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
967 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
968 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
969 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
970 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
971 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
972 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
973 
974 	/* Unlock Block Command for given address range */
975 	writew(0x4, NFC_V1_V2_WRPROT);
976 }
977 
preset_v3(struct mtd_info * mtd)978 static void preset_v3(struct mtd_info *mtd)
979 {
980 	struct nand_chip *chip = mtd->priv;
981 	struct mxc_nand_host *host = chip->priv;
982 	uint32_t config2, config3;
983 	int i, addr_phases;
984 
985 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
986 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
987 
988 	/* Unlock the internal RAM Buffer */
989 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
990 			NFC_V3_WRPROT);
991 
992 	/* Blocks to be unlocked */
993 	for (i = 0; i < NAND_MAX_CHIPS; i++)
994 		writel(0x0 |	(0xffff << 16),
995 				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
996 
997 	writel(0, NFC_V3_IPC);
998 
999 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000 		NFC_V3_CONFIG2_2CMD_PHASES |
1001 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1003 		NFC_V3_CONFIG2_INT_MSK |
1004 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005 
1006 	if (chip->ecc.mode == NAND_ECC_HW)
1007 		config2 |= NFC_V3_CONFIG2_ECC_EN;
1008 
1009 	addr_phases = fls(chip->pagemask) >> 3;
1010 
1011 	if (mtd->writesize == 2048) {
1012 		config2 |= NFC_V3_CONFIG2_PS_2048;
1013 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014 	} else if (mtd->writesize == 4096) {
1015 		config2 |= NFC_V3_CONFIG2_PS_4096;
1016 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017 	} else {
1018 		config2 |= NFC_V3_CONFIG2_PS_512;
1019 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020 	}
1021 
1022 	if (mtd->writesize) {
1023 		config2 |= NFC_V3_CONFIG2_PPB(
1024 				ffs(mtd->erasesize / mtd->writesize) - 6,
1025 				host->devtype_data->ppb_shift);
1026 		host->eccsize = get_eccsize(mtd);
1027 		if (host->eccsize == 8)
1028 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029 	}
1030 
1031 	writel(config2, NFC_V3_CONFIG2);
1032 
1033 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034 			NFC_V3_CONFIG3_NO_SDMA |
1035 			NFC_V3_CONFIG3_RBB_MODE |
1036 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037 			NFC_V3_CONFIG3_ADD_OP(0);
1038 
1039 	if (!(chip->options & NAND_BUSWIDTH_16))
1040 		config3 |= NFC_V3_CONFIG3_FW8;
1041 
1042 	writel(config3, NFC_V3_CONFIG3);
1043 
1044 	writel(0, NFC_V3_DELAY_LINE);
1045 }
1046 
1047 /* Used by the upper layer to write command to NAND Flash for
1048  * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)1049 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050 				int column, int page_addr)
1051 {
1052 	struct nand_chip *nand_chip = mtd->priv;
1053 	struct mxc_nand_host *host = nand_chip->priv;
1054 
1055 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056 	      command, column, page_addr);
1057 
1058 	/* Reset command state information */
1059 	host->status_request = false;
1060 
1061 	/* Command pre-processing step */
1062 	switch (command) {
1063 	case NAND_CMD_RESET:
1064 		host->devtype_data->preset(mtd);
1065 		host->devtype_data->send_cmd(host, command, false);
1066 		break;
1067 
1068 	case NAND_CMD_STATUS:
1069 		host->buf_start = 0;
1070 		host->status_request = true;
1071 
1072 		host->devtype_data->send_cmd(host, command, true);
1073 		mxc_do_addr_cycle(mtd, column, page_addr);
1074 		break;
1075 
1076 	case NAND_CMD_READ0:
1077 	case NAND_CMD_READOOB:
1078 		if (command == NAND_CMD_READ0)
1079 			host->buf_start = column;
1080 		else
1081 			host->buf_start = column + mtd->writesize;
1082 
1083 		command = NAND_CMD_READ0; /* only READ0 is valid */
1084 
1085 		host->devtype_data->send_cmd(host, command, false);
1086 		mxc_do_addr_cycle(mtd, column, page_addr);
1087 
1088 		if (mtd->writesize > 512)
1089 			host->devtype_data->send_cmd(host,
1090 					NAND_CMD_READSTART, true);
1091 
1092 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093 
1094 		memcpy32_fromio(host->data_buf, host->main_area0,
1095 				mtd->writesize);
1096 		copy_spare(mtd, true);
1097 		break;
1098 
1099 	case NAND_CMD_SEQIN:
1100 		if (column >= mtd->writesize)
1101 			/* call ourself to read a page */
1102 			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103 
1104 		host->buf_start = column;
1105 
1106 		host->devtype_data->send_cmd(host, command, false);
1107 		mxc_do_addr_cycle(mtd, column, page_addr);
1108 		break;
1109 
1110 	case NAND_CMD_PAGEPROG:
1111 		memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112 		copy_spare(mtd, false);
1113 		host->devtype_data->send_page(mtd, NFC_INPUT);
1114 		host->devtype_data->send_cmd(host, command, true);
1115 		mxc_do_addr_cycle(mtd, column, page_addr);
1116 		break;
1117 
1118 	case NAND_CMD_READID:
1119 		host->devtype_data->send_cmd(host, command, true);
1120 		mxc_do_addr_cycle(mtd, column, page_addr);
1121 		host->devtype_data->send_read_id(host);
1122 		host->buf_start = column;
1123 		break;
1124 
1125 	case NAND_CMD_ERASE1:
1126 	case NAND_CMD_ERASE2:
1127 		host->devtype_data->send_cmd(host, command, false);
1128 		mxc_do_addr_cycle(mtd, column, page_addr);
1129 
1130 		break;
1131 	}
1132 }
1133 
1134 /*
1135  * The generic flash bbt decriptors overlap with our ecc
1136  * hardware, so define some i.MX specific ones.
1137  */
1138 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140 
1141 static struct nand_bbt_descr bbt_main_descr = {
1142 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144 	.offs = 0,
1145 	.len = 4,
1146 	.veroffs = 4,
1147 	.maxblocks = 4,
1148 	.pattern = bbt_pattern,
1149 };
1150 
1151 static struct nand_bbt_descr bbt_mirror_descr = {
1152 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154 	.offs = 0,
1155 	.len = 4,
1156 	.veroffs = 4,
1157 	.maxblocks = 4,
1158 	.pattern = mirror_pattern,
1159 };
1160 
1161 /* v1 + irqpending_quirk: i.MX21 */
1162 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163 	.preset = preset_v1,
1164 	.send_cmd = send_cmd_v1_v2,
1165 	.send_addr = send_addr_v1_v2,
1166 	.send_page = send_page_v1,
1167 	.send_read_id = send_read_id_v1_v2,
1168 	.get_dev_status = get_dev_status_v1_v2,
1169 	.check_int = check_int_v1_v2,
1170 	.irq_control = irq_control_v1_v2,
1171 	.get_ecc_status = get_ecc_status_v1,
1172 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175 	.select_chip = mxc_nand_select_chip_v1_v3,
1176 	.correct_data = mxc_nand_correct_data_v1,
1177 	.irqpending_quirk = 1,
1178 	.needs_ip = 0,
1179 	.regs_offset = 0xe00,
1180 	.spare0_offset = 0x800,
1181 	.spare_len = 16,
1182 	.eccbytes = 3,
1183 	.eccsize = 1,
1184 };
1185 
1186 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188 	.preset = preset_v1,
1189 	.send_cmd = send_cmd_v1_v2,
1190 	.send_addr = send_addr_v1_v2,
1191 	.send_page = send_page_v1,
1192 	.send_read_id = send_read_id_v1_v2,
1193 	.get_dev_status = get_dev_status_v1_v2,
1194 	.check_int = check_int_v1_v2,
1195 	.irq_control = irq_control_v1_v2,
1196 	.get_ecc_status = get_ecc_status_v1,
1197 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200 	.select_chip = mxc_nand_select_chip_v1_v3,
1201 	.correct_data = mxc_nand_correct_data_v1,
1202 	.irqpending_quirk = 0,
1203 	.needs_ip = 0,
1204 	.regs_offset = 0xe00,
1205 	.spare0_offset = 0x800,
1206 	.axi_offset = 0,
1207 	.spare_len = 16,
1208 	.eccbytes = 3,
1209 	.eccsize = 1,
1210 };
1211 
1212 /* v21: i.MX25, i.MX35 */
1213 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214 	.preset = preset_v2,
1215 	.send_cmd = send_cmd_v1_v2,
1216 	.send_addr = send_addr_v1_v2,
1217 	.send_page = send_page_v2,
1218 	.send_read_id = send_read_id_v1_v2,
1219 	.get_dev_status = get_dev_status_v1_v2,
1220 	.check_int = check_int_v1_v2,
1221 	.irq_control = irq_control_v1_v2,
1222 	.get_ecc_status = get_ecc_status_v2,
1223 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225 	.ecclayout_4k = &nandv2_hw_eccoob_4k,
1226 	.select_chip = mxc_nand_select_chip_v2,
1227 	.correct_data = mxc_nand_correct_data_v2_v3,
1228 	.irqpending_quirk = 0,
1229 	.needs_ip = 0,
1230 	.regs_offset = 0x1e00,
1231 	.spare0_offset = 0x1000,
1232 	.axi_offset = 0,
1233 	.spare_len = 64,
1234 	.eccbytes = 9,
1235 	.eccsize = 0,
1236 };
1237 
1238 /* v3.2a: i.MX51 */
1239 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240 	.preset = preset_v3,
1241 	.send_cmd = send_cmd_v3,
1242 	.send_addr = send_addr_v3,
1243 	.send_page = send_page_v3,
1244 	.send_read_id = send_read_id_v3,
1245 	.get_dev_status = get_dev_status_v3,
1246 	.check_int = check_int_v3,
1247 	.irq_control = irq_control_v3,
1248 	.get_ecc_status = get_ecc_status_v3,
1249 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252 	.select_chip = mxc_nand_select_chip_v1_v3,
1253 	.correct_data = mxc_nand_correct_data_v2_v3,
1254 	.irqpending_quirk = 0,
1255 	.needs_ip = 1,
1256 	.regs_offset = 0,
1257 	.spare0_offset = 0x1000,
1258 	.axi_offset = 0x1e00,
1259 	.spare_len = 64,
1260 	.eccbytes = 0,
1261 	.eccsize = 0,
1262 	.ppb_shift = 7,
1263 };
1264 
1265 /* v3.2b: i.MX53 */
1266 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267 	.preset = preset_v3,
1268 	.send_cmd = send_cmd_v3,
1269 	.send_addr = send_addr_v3,
1270 	.send_page = send_page_v3,
1271 	.send_read_id = send_read_id_v3,
1272 	.get_dev_status = get_dev_status_v3,
1273 	.check_int = check_int_v3,
1274 	.irq_control = irq_control_v3,
1275 	.get_ecc_status = get_ecc_status_v3,
1276 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279 	.select_chip = mxc_nand_select_chip_v1_v3,
1280 	.correct_data = mxc_nand_correct_data_v2_v3,
1281 	.irqpending_quirk = 0,
1282 	.needs_ip = 1,
1283 	.regs_offset = 0,
1284 	.spare0_offset = 0x1000,
1285 	.axi_offset = 0x1e00,
1286 	.spare_len = 64,
1287 	.eccbytes = 0,
1288 	.eccsize = 0,
1289 	.ppb_shift = 8,
1290 };
1291 
is_imx21_nfc(struct mxc_nand_host * host)1292 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293 {
1294 	return host->devtype_data == &imx21_nand_devtype_data;
1295 }
1296 
is_imx27_nfc(struct mxc_nand_host * host)1297 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298 {
1299 	return host->devtype_data == &imx27_nand_devtype_data;
1300 }
1301 
is_imx25_nfc(struct mxc_nand_host * host)1302 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303 {
1304 	return host->devtype_data == &imx25_nand_devtype_data;
1305 }
1306 
is_imx51_nfc(struct mxc_nand_host * host)1307 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308 {
1309 	return host->devtype_data == &imx51_nand_devtype_data;
1310 }
1311 
is_imx53_nfc(struct mxc_nand_host * host)1312 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313 {
1314 	return host->devtype_data == &imx53_nand_devtype_data;
1315 }
1316 
1317 static struct platform_device_id mxcnd_devtype[] = {
1318 	{
1319 		.name = "imx21-nand",
1320 		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321 	}, {
1322 		.name = "imx27-nand",
1323 		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324 	}, {
1325 		.name = "imx25-nand",
1326 		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327 	}, {
1328 		.name = "imx51-nand",
1329 		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330 	}, {
1331 		.name = "imx53-nand",
1332 		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333 	}, {
1334 		/* sentinel */
1335 	}
1336 };
1337 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338 
1339 #ifdef CONFIG_OF_MTD
1340 static const struct of_device_id mxcnd_dt_ids[] = {
1341 	{
1342 		.compatible = "fsl,imx21-nand",
1343 		.data = &imx21_nand_devtype_data,
1344 	}, {
1345 		.compatible = "fsl,imx27-nand",
1346 		.data = &imx27_nand_devtype_data,
1347 	}, {
1348 		.compatible = "fsl,imx25-nand",
1349 		.data = &imx25_nand_devtype_data,
1350 	}, {
1351 		.compatible = "fsl,imx51-nand",
1352 		.data = &imx51_nand_devtype_data,
1353 	}, {
1354 		.compatible = "fsl,imx53-nand",
1355 		.data = &imx53_nand_devtype_data,
1356 	},
1357 	{ /* sentinel */ }
1358 };
1359 
mxcnd_probe_dt(struct mxc_nand_host * host)1360 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361 {
1362 	struct device_node *np = host->dev->of_node;
1363 	struct mxc_nand_platform_data *pdata = &host->pdata;
1364 	const struct of_device_id *of_id =
1365 		of_match_device(mxcnd_dt_ids, host->dev);
1366 	int buswidth;
1367 
1368 	if (!np)
1369 		return 1;
1370 
1371 	if (of_get_nand_ecc_mode(np) >= 0)
1372 		pdata->hw_ecc = 1;
1373 
1374 	pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375 
1376 	buswidth = of_get_nand_bus_width(np);
1377 	if (buswidth < 0)
1378 		return buswidth;
1379 
1380 	pdata->width = buswidth / 8;
1381 
1382 	host->devtype_data = of_id->data;
1383 
1384 	return 0;
1385 }
1386 #else
mxcnd_probe_dt(struct mxc_nand_host * host)1387 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388 {
1389 	return 1;
1390 }
1391 #endif
1392 
mxcnd_probe(struct platform_device * pdev)1393 static int mxcnd_probe(struct platform_device *pdev)
1394 {
1395 	struct nand_chip *this;
1396 	struct mtd_info *mtd;
1397 	struct mxc_nand_host *host;
1398 	struct resource *res;
1399 	int err = 0;
1400 
1401 	/* Allocate memory for MTD device structure and private data */
1402 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1403 			GFP_KERNEL);
1404 	if (!host)
1405 		return -ENOMEM;
1406 
1407 	/* allocate a temporary buffer for the nand_scan_ident() */
1408 	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1409 	if (!host->data_buf)
1410 		return -ENOMEM;
1411 
1412 	host->dev = &pdev->dev;
1413 	/* structures must be linked */
1414 	this = &host->nand;
1415 	mtd = &host->mtd;
1416 	mtd->priv = this;
1417 	mtd->owner = THIS_MODULE;
1418 	mtd->dev.parent = &pdev->dev;
1419 	mtd->name = DRIVER_NAME;
1420 
1421 	/* 50 us command delay time */
1422 	this->chip_delay = 5;
1423 
1424 	this->priv = host;
1425 	this->dev_ready = mxc_nand_dev_ready;
1426 	this->cmdfunc = mxc_nand_command;
1427 	this->read_byte = mxc_nand_read_byte;
1428 	this->read_word = mxc_nand_read_word;
1429 	this->write_buf = mxc_nand_write_buf;
1430 	this->read_buf = mxc_nand_read_buf;
1431 
1432 	host->clk = devm_clk_get(&pdev->dev, NULL);
1433 	if (IS_ERR(host->clk))
1434 		return PTR_ERR(host->clk);
1435 
1436 	err = mxcnd_probe_dt(host);
1437 	if (err > 0) {
1438 		struct mxc_nand_platform_data *pdata =
1439 					dev_get_platdata(&pdev->dev);
1440 		if (pdata) {
1441 			host->pdata = *pdata;
1442 			host->devtype_data = (struct mxc_nand_devtype_data *)
1443 						pdev->id_entry->driver_data;
1444 		} else {
1445 			err = -ENODEV;
1446 		}
1447 	}
1448 	if (err < 0)
1449 		return err;
1450 
1451 	if (host->devtype_data->needs_ip) {
1452 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1453 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1454 		if (IS_ERR(host->regs_ip))
1455 			return PTR_ERR(host->regs_ip);
1456 
1457 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1458 	} else {
1459 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1460 	}
1461 
1462 	host->base = devm_ioremap_resource(&pdev->dev, res);
1463 	if (IS_ERR(host->base))
1464 		return PTR_ERR(host->base);
1465 
1466 	host->main_area0 = host->base;
1467 
1468 	if (host->devtype_data->regs_offset)
1469 		host->regs = host->base + host->devtype_data->regs_offset;
1470 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1471 	if (host->devtype_data->axi_offset)
1472 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1473 
1474 	this->ecc.bytes = host->devtype_data->eccbytes;
1475 	host->eccsize = host->devtype_data->eccsize;
1476 
1477 	this->select_chip = host->devtype_data->select_chip;
1478 	this->ecc.size = 512;
1479 	this->ecc.layout = host->devtype_data->ecclayout_512;
1480 
1481 	if (host->pdata.hw_ecc) {
1482 		this->ecc.calculate = mxc_nand_calculate_ecc;
1483 		this->ecc.hwctl = mxc_nand_enable_hwecc;
1484 		this->ecc.correct = host->devtype_data->correct_data;
1485 		this->ecc.mode = NAND_ECC_HW;
1486 	} else {
1487 		this->ecc.mode = NAND_ECC_SOFT;
1488 	}
1489 
1490 	/* NAND bus width determines access functions used by upper layer */
1491 	if (host->pdata.width == 2)
1492 		this->options |= NAND_BUSWIDTH_16;
1493 
1494 	if (host->pdata.flash_bbt) {
1495 		this->bbt_td = &bbt_main_descr;
1496 		this->bbt_md = &bbt_mirror_descr;
1497 		/* update flash based bbt */
1498 		this->bbt_options |= NAND_BBT_USE_FLASH;
1499 	}
1500 
1501 	init_completion(&host->op_completion);
1502 
1503 	host->irq = platform_get_irq(pdev, 0);
1504 	if (host->irq < 0)
1505 		return host->irq;
1506 
1507 	/*
1508 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1509 	 * because we must not disable_irq_nosync without having requested the
1510 	 * irq.
1511 	 */
1512 	host->devtype_data->irq_control(host, 0);
1513 
1514 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1515 			0, DRIVER_NAME, host);
1516 	if (err)
1517 		return err;
1518 
1519 	err = clk_prepare_enable(host->clk);
1520 	if (err)
1521 		return err;
1522 	host->clk_act = 1;
1523 
1524 	/*
1525 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1526 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1527 	 * on this machine.
1528 	 */
1529 	if (host->devtype_data->irqpending_quirk) {
1530 		disable_irq_nosync(host->irq);
1531 		host->devtype_data->irq_control(host, 1);
1532 	}
1533 
1534 	/* first scan to find the device and get the page size */
1535 	if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1536 		err = -ENXIO;
1537 		goto escan;
1538 	}
1539 
1540 	/* allocate the right size buffer now */
1541 	devm_kfree(&pdev->dev, (void *)host->data_buf);
1542 	host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1543 					GFP_KERNEL);
1544 	if (!host->data_buf) {
1545 		err = -ENOMEM;
1546 		goto escan;
1547 	}
1548 
1549 	/* Call preset again, with correct writesize this time */
1550 	host->devtype_data->preset(mtd);
1551 
1552 	if (mtd->writesize == 2048)
1553 		this->ecc.layout = host->devtype_data->ecclayout_2k;
1554 	else if (mtd->writesize == 4096)
1555 		this->ecc.layout = host->devtype_data->ecclayout_4k;
1556 
1557 	if (this->ecc.mode == NAND_ECC_HW) {
1558 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1559 			this->ecc.strength = 1;
1560 		else
1561 			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1562 	}
1563 
1564 	/* second phase scan */
1565 	if (nand_scan_tail(mtd)) {
1566 		err = -ENXIO;
1567 		goto escan;
1568 	}
1569 
1570 	/* Register the partitions */
1571 	mtd_device_parse_register(mtd, part_probes,
1572 			&(struct mtd_part_parser_data){
1573 				.of_node = pdev->dev.of_node,
1574 			},
1575 			host->pdata.parts,
1576 			host->pdata.nr_parts);
1577 
1578 	platform_set_drvdata(pdev, host);
1579 
1580 	return 0;
1581 
1582 escan:
1583 	if (host->clk_act)
1584 		clk_disable_unprepare(host->clk);
1585 
1586 	return err;
1587 }
1588 
mxcnd_remove(struct platform_device * pdev)1589 static int mxcnd_remove(struct platform_device *pdev)
1590 {
1591 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1592 
1593 	nand_release(&host->mtd);
1594 	if (host->clk_act)
1595 		clk_disable_unprepare(host->clk);
1596 
1597 	return 0;
1598 }
1599 
1600 static struct platform_driver mxcnd_driver = {
1601 	.driver = {
1602 		   .name = DRIVER_NAME,
1603 		   .owner = THIS_MODULE,
1604 		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1605 	},
1606 	.id_table = mxcnd_devtype,
1607 	.probe = mxcnd_probe,
1608 	.remove = mxcnd_remove,
1609 };
1610 module_platform_driver(mxcnd_driver);
1611 
1612 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1613 MODULE_DESCRIPTION("MXC NAND MTD driver");
1614 MODULE_LICENSE("GPL");
1615