• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
30 
31 #include <linux/platform_data/mtd-nand-omap2.h>
32 
33 #define	DRIVER_NAME	"omap2-nand"
34 #define	OMAP_NAND_TIMEOUT_MS	5000
35 
36 #define NAND_Ecc_P1e		(1 << 0)
37 #define NAND_Ecc_P2e		(1 << 1)
38 #define NAND_Ecc_P4e		(1 << 2)
39 #define NAND_Ecc_P8e		(1 << 3)
40 #define NAND_Ecc_P16e		(1 << 4)
41 #define NAND_Ecc_P32e		(1 << 5)
42 #define NAND_Ecc_P64e		(1 << 6)
43 #define NAND_Ecc_P128e		(1 << 7)
44 #define NAND_Ecc_P256e		(1 << 8)
45 #define NAND_Ecc_P512e		(1 << 9)
46 #define NAND_Ecc_P1024e		(1 << 10)
47 #define NAND_Ecc_P2048e		(1 << 11)
48 
49 #define NAND_Ecc_P1o		(1 << 16)
50 #define NAND_Ecc_P2o		(1 << 17)
51 #define NAND_Ecc_P4o		(1 << 18)
52 #define NAND_Ecc_P8o		(1 << 19)
53 #define NAND_Ecc_P16o		(1 << 20)
54 #define NAND_Ecc_P32o		(1 << 21)
55 #define NAND_Ecc_P64o		(1 << 22)
56 #define NAND_Ecc_P128o		(1 << 23)
57 #define NAND_Ecc_P256o		(1 << 24)
58 #define NAND_Ecc_P512o		(1 << 25)
59 #define NAND_Ecc_P1024o		(1 << 26)
60 #define NAND_Ecc_P2048o		(1 << 27)
61 
62 #define TF(value)	(value ? 1 : 0)
63 
64 #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
65 #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
66 #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
67 #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
68 #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
69 #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
70 #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
71 #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
72 
73 #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
74 #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
75 #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
76 #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
77 #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
78 #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
79 #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
80 #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
81 
82 #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
83 #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
84 #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
85 #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
86 #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
87 #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
88 #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
89 #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
90 
91 #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
92 #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
93 #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
94 #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
95 #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
96 #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
97 #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
98 #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
99 
100 #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
101 #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
102 
103 #define	PREFETCH_CONFIG1_CS_SHIFT	24
104 #define	ECC_CONFIG_CS_SHIFT		1
105 #define	CS_MASK				0x7
106 #define	ENABLE_PREFETCH			(0x1 << 7)
107 #define	DMA_MPU_MODE_SHIFT		2
108 #define	ECCSIZE0_SHIFT			12
109 #define	ECCSIZE1_SHIFT			22
110 #define	ECC1RESULTSIZE			0x1
111 #define	ECCCLEAR			0x100
112 #define	ECC1				0x1
113 #define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
114 #define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
115 #define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
116 #define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
117 #define	STATUS_BUFF_EMPTY		0x00000001
118 
119 #define OMAP24XX_DMA_GPMC		4
120 
121 #define SECTOR_BYTES		512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD		4
124 
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
131 
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
136 
137 #define BADBLOCK_MARKER_LENGTH		2
138 
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140 				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141 				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142 				0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144 	0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146 
147 /* oob info generated runtime depending on ecc algorithm and layout selected */
148 static struct nand_ecclayout omap_oobinfo;
149 
150 struct omap_nand_info {
151 	struct nand_hw_control		controller;
152 	struct omap_nand_platform_data	*pdata;
153 	struct mtd_info			mtd;
154 	struct nand_chip		nand;
155 	struct platform_device		*pdev;
156 
157 	int				gpmc_cs;
158 	unsigned long			phys_base;
159 	enum omap_ecc			ecc_opt;
160 	struct completion		comp;
161 	struct dma_chan			*dma;
162 	int				gpmc_irq_fifo;
163 	int				gpmc_irq_count;
164 	enum {
165 		OMAP_NAND_IO_READ = 0,	/* read */
166 		OMAP_NAND_IO_WRITE,	/* write */
167 	} iomode;
168 	u_char				*buf;
169 	int					buf_len;
170 	struct gpmc_nand_regs		reg;
171 	/* fields specific for BCHx_HW ECC scheme */
172 	struct device			*elm_dev;
173 	struct device_node		*of_node;
174 };
175 
176 /**
177  * omap_prefetch_enable - configures and starts prefetch transfer
178  * @cs: cs (chip select) number
179  * @fifo_th: fifo threshold to be used for read/ write
180  * @dma_mode: dma mode enable (1) or disable (0)
181  * @u32_count: number of bytes to be transferred
182  * @is_write: prefetch read(0) or write post(1) mode
183  */
omap_prefetch_enable(int cs,int fifo_th,int dma_mode,unsigned int u32_count,int is_write,struct omap_nand_info * info)184 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
185 	unsigned int u32_count, int is_write, struct omap_nand_info *info)
186 {
187 	u32 val;
188 
189 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
190 		return -1;
191 
192 	if (readl(info->reg.gpmc_prefetch_control))
193 		return -EBUSY;
194 
195 	/* Set the amount of bytes to be prefetched */
196 	writel(u32_count, info->reg.gpmc_prefetch_config2);
197 
198 	/* Set dma/mpu mode, the prefetch read / post write and
199 	 * enable the engine. Set which cs is has requested for.
200 	 */
201 	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
202 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
203 		(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
204 	writel(val, info->reg.gpmc_prefetch_config1);
205 
206 	/*  Start the prefetch engine */
207 	writel(0x1, info->reg.gpmc_prefetch_control);
208 
209 	return 0;
210 }
211 
212 /**
213  * omap_prefetch_reset - disables and stops the prefetch engine
214  */
omap_prefetch_reset(int cs,struct omap_nand_info * info)215 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
216 {
217 	u32 config1;
218 
219 	/* check if the same module/cs is trying to reset */
220 	config1 = readl(info->reg.gpmc_prefetch_config1);
221 	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
222 		return -EINVAL;
223 
224 	/* Stop the PFPW engine */
225 	writel(0x0, info->reg.gpmc_prefetch_control);
226 
227 	/* Reset/disable the PFPW engine */
228 	writel(0x0, info->reg.gpmc_prefetch_config1);
229 
230 	return 0;
231 }
232 
233 /**
234  * omap_hwcontrol - hardware specific access to control-lines
235  * @mtd: MTD device structure
236  * @cmd: command to device
237  * @ctrl:
238  * NAND_NCE: bit 0 -> don't care
239  * NAND_CLE: bit 1 -> Command Latch
240  * NAND_ALE: bit 2 -> Address Latch
241  *
242  * NOTE: boards may use different bits for these!!
243  */
omap_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)244 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
245 {
246 	struct omap_nand_info *info = container_of(mtd,
247 					struct omap_nand_info, mtd);
248 
249 	if (cmd != NAND_CMD_NONE) {
250 		if (ctrl & NAND_CLE)
251 			writeb(cmd, info->reg.gpmc_nand_command);
252 
253 		else if (ctrl & NAND_ALE)
254 			writeb(cmd, info->reg.gpmc_nand_address);
255 
256 		else /* NAND_NCE */
257 			writeb(cmd, info->reg.gpmc_nand_data);
258 	}
259 }
260 
261 /**
262  * omap_read_buf8 - read data from NAND controller into buffer
263  * @mtd: MTD device structure
264  * @buf: buffer to store date
265  * @len: number of bytes to read
266  */
omap_read_buf8(struct mtd_info * mtd,u_char * buf,int len)267 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
268 {
269 	struct nand_chip *nand = mtd->priv;
270 
271 	ioread8_rep(nand->IO_ADDR_R, buf, len);
272 }
273 
274 /**
275  * omap_write_buf8 - write buffer to NAND controller
276  * @mtd: MTD device structure
277  * @buf: data buffer
278  * @len: number of bytes to write
279  */
omap_write_buf8(struct mtd_info * mtd,const u_char * buf,int len)280 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
281 {
282 	struct omap_nand_info *info = container_of(mtd,
283 						struct omap_nand_info, mtd);
284 	u_char *p = (u_char *)buf;
285 	u32	status = 0;
286 
287 	while (len--) {
288 		iowrite8(*p++, info->nand.IO_ADDR_W);
289 		/* wait until buffer is available for write */
290 		do {
291 			status = readl(info->reg.gpmc_status) &
292 					STATUS_BUFF_EMPTY;
293 		} while (!status);
294 	}
295 }
296 
297 /**
298  * omap_read_buf16 - read data from NAND controller into buffer
299  * @mtd: MTD device structure
300  * @buf: buffer to store date
301  * @len: number of bytes to read
302  */
omap_read_buf16(struct mtd_info * mtd,u_char * buf,int len)303 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
304 {
305 	struct nand_chip *nand = mtd->priv;
306 
307 	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
308 }
309 
310 /**
311  * omap_write_buf16 - write buffer to NAND controller
312  * @mtd: MTD device structure
313  * @buf: data buffer
314  * @len: number of bytes to write
315  */
omap_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)316 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
317 {
318 	struct omap_nand_info *info = container_of(mtd,
319 						struct omap_nand_info, mtd);
320 	u16 *p = (u16 *) buf;
321 	u32	status = 0;
322 	/* FIXME try bursts of writesw() or DMA ... */
323 	len >>= 1;
324 
325 	while (len--) {
326 		iowrite16(*p++, info->nand.IO_ADDR_W);
327 		/* wait until buffer is available for write */
328 		do {
329 			status = readl(info->reg.gpmc_status) &
330 					STATUS_BUFF_EMPTY;
331 		} while (!status);
332 	}
333 }
334 
335 /**
336  * omap_read_buf_pref - read data from NAND controller into buffer
337  * @mtd: MTD device structure
338  * @buf: buffer to store date
339  * @len: number of bytes to read
340  */
omap_read_buf_pref(struct mtd_info * mtd,u_char * buf,int len)341 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
342 {
343 	struct omap_nand_info *info = container_of(mtd,
344 						struct omap_nand_info, mtd);
345 	uint32_t r_count = 0;
346 	int ret = 0;
347 	u32 *p = (u32 *)buf;
348 
349 	/* take care of subpage reads */
350 	if (len % 4) {
351 		if (info->nand.options & NAND_BUSWIDTH_16)
352 			omap_read_buf16(mtd, buf, len % 4);
353 		else
354 			omap_read_buf8(mtd, buf, len % 4);
355 		p = (u32 *) (buf + len % 4);
356 		len -= len % 4;
357 	}
358 
359 	/* configure and start prefetch transfer */
360 	ret = omap_prefetch_enable(info->gpmc_cs,
361 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
362 	if (ret) {
363 		/* PFPW engine is busy, use cpu copy method */
364 		if (info->nand.options & NAND_BUSWIDTH_16)
365 			omap_read_buf16(mtd, (u_char *)p, len);
366 		else
367 			omap_read_buf8(mtd, (u_char *)p, len);
368 	} else {
369 		do {
370 			r_count = readl(info->reg.gpmc_prefetch_status);
371 			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
372 			r_count = r_count >> 2;
373 			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
374 			p += r_count;
375 			len -= r_count << 2;
376 		} while (len);
377 		/* disable and stop the PFPW engine */
378 		omap_prefetch_reset(info->gpmc_cs, info);
379 	}
380 }
381 
382 /**
383  * omap_write_buf_pref - write buffer to NAND controller
384  * @mtd: MTD device structure
385  * @buf: data buffer
386  * @len: number of bytes to write
387  */
omap_write_buf_pref(struct mtd_info * mtd,const u_char * buf,int len)388 static void omap_write_buf_pref(struct mtd_info *mtd,
389 					const u_char *buf, int len)
390 {
391 	struct omap_nand_info *info = container_of(mtd,
392 						struct omap_nand_info, mtd);
393 	uint32_t w_count = 0;
394 	int i = 0, ret = 0;
395 	u16 *p = (u16 *)buf;
396 	unsigned long tim, limit;
397 	u32 val;
398 
399 	/* take care of subpage writes */
400 	if (len % 2 != 0) {
401 		writeb(*buf, info->nand.IO_ADDR_W);
402 		p = (u16 *)(buf + 1);
403 		len--;
404 	}
405 
406 	/*  configure and start prefetch transfer */
407 	ret = omap_prefetch_enable(info->gpmc_cs,
408 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
409 	if (ret) {
410 		/* PFPW engine is busy, use cpu copy method */
411 		if (info->nand.options & NAND_BUSWIDTH_16)
412 			omap_write_buf16(mtd, (u_char *)p, len);
413 		else
414 			omap_write_buf8(mtd, (u_char *)p, len);
415 	} else {
416 		while (len) {
417 			w_count = readl(info->reg.gpmc_prefetch_status);
418 			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
419 			w_count = w_count >> 1;
420 			for (i = 0; (i < w_count) && len; i++, len -= 2)
421 				iowrite16(*p++, info->nand.IO_ADDR_W);
422 		}
423 		/* wait for data to flushed-out before reset the prefetch */
424 		tim = 0;
425 		limit = (loops_per_jiffy *
426 					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
427 		do {
428 			cpu_relax();
429 			val = readl(info->reg.gpmc_prefetch_status);
430 			val = PREFETCH_STATUS_COUNT(val);
431 		} while (val && (tim++ < limit));
432 
433 		/* disable and stop the PFPW engine */
434 		omap_prefetch_reset(info->gpmc_cs, info);
435 	}
436 }
437 
438 /*
439  * omap_nand_dma_callback: callback on the completion of dma transfer
440  * @data: pointer to completion data structure
441  */
omap_nand_dma_callback(void * data)442 static void omap_nand_dma_callback(void *data)
443 {
444 	complete((struct completion *) data);
445 }
446 
447 /*
448  * omap_nand_dma_transfer: configure and start dma transfer
449  * @mtd: MTD device structure
450  * @addr: virtual address in RAM of source/destination
451  * @len: number of data bytes to be transferred
452  * @is_write: flag for read/write operation
453  */
omap_nand_dma_transfer(struct mtd_info * mtd,void * addr,unsigned int len,int is_write)454 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
455 					unsigned int len, int is_write)
456 {
457 	struct omap_nand_info *info = container_of(mtd,
458 					struct omap_nand_info, mtd);
459 	struct dma_async_tx_descriptor *tx;
460 	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
461 							DMA_FROM_DEVICE;
462 	struct scatterlist sg;
463 	unsigned long tim, limit;
464 	unsigned n;
465 	int ret;
466 	u32 val;
467 
468 	if (addr >= high_memory) {
469 		struct page *p1;
470 
471 		if (((size_t)addr & PAGE_MASK) !=
472 			((size_t)(addr + len - 1) & PAGE_MASK))
473 			goto out_copy;
474 		p1 = vmalloc_to_page(addr);
475 		if (!p1)
476 			goto out_copy;
477 		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
478 	}
479 
480 	sg_init_one(&sg, addr, len);
481 	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
482 	if (n == 0) {
483 		dev_err(&info->pdev->dev,
484 			"Couldn't DMA map a %d byte buffer\n", len);
485 		goto out_copy;
486 	}
487 
488 	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
489 		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
490 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
491 	if (!tx)
492 		goto out_copy_unmap;
493 
494 	tx->callback = omap_nand_dma_callback;
495 	tx->callback_param = &info->comp;
496 	dmaengine_submit(tx);
497 
498 	/*  configure and start prefetch transfer */
499 	ret = omap_prefetch_enable(info->gpmc_cs,
500 		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
501 	if (ret)
502 		/* PFPW engine is busy, use cpu copy method */
503 		goto out_copy_unmap;
504 
505 	init_completion(&info->comp);
506 	dma_async_issue_pending(info->dma);
507 
508 	/* setup and start DMA using dma_addr */
509 	wait_for_completion(&info->comp);
510 	tim = 0;
511 	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
512 
513 	do {
514 		cpu_relax();
515 		val = readl(info->reg.gpmc_prefetch_status);
516 		val = PREFETCH_STATUS_COUNT(val);
517 	} while (val && (tim++ < limit));
518 
519 	/* disable and stop the PFPW engine */
520 	omap_prefetch_reset(info->gpmc_cs, info);
521 
522 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
523 	return 0;
524 
525 out_copy_unmap:
526 	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 out_copy:
528 	if (info->nand.options & NAND_BUSWIDTH_16)
529 		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
530 			: omap_write_buf16(mtd, (u_char *) addr, len);
531 	else
532 		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
533 			: omap_write_buf8(mtd, (u_char *) addr, len);
534 	return 0;
535 }
536 
537 /**
538  * omap_read_buf_dma_pref - read data from NAND controller into buffer
539  * @mtd: MTD device structure
540  * @buf: buffer to store date
541  * @len: number of bytes to read
542  */
omap_read_buf_dma_pref(struct mtd_info * mtd,u_char * buf,int len)543 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
544 {
545 	if (len <= mtd->oobsize)
546 		omap_read_buf_pref(mtd, buf, len);
547 	else
548 		/* start transfer in DMA mode */
549 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
550 }
551 
552 /**
553  * omap_write_buf_dma_pref - write buffer to NAND controller
554  * @mtd: MTD device structure
555  * @buf: data buffer
556  * @len: number of bytes to write
557  */
omap_write_buf_dma_pref(struct mtd_info * mtd,const u_char * buf,int len)558 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
559 					const u_char *buf, int len)
560 {
561 	if (len <= mtd->oobsize)
562 		omap_write_buf_pref(mtd, buf, len);
563 	else
564 		/* start transfer in DMA mode */
565 		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
566 }
567 
568 /*
569  * omap_nand_irq - GPMC irq handler
570  * @this_irq: gpmc irq number
571  * @dev: omap_nand_info structure pointer is passed here
572  */
omap_nand_irq(int this_irq,void * dev)573 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
574 {
575 	struct omap_nand_info *info = (struct omap_nand_info *) dev;
576 	u32 bytes;
577 
578 	bytes = readl(info->reg.gpmc_prefetch_status);
579 	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
580 	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
581 	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
582 		if (this_irq == info->gpmc_irq_count)
583 			goto done;
584 
585 		if (info->buf_len && (info->buf_len < bytes))
586 			bytes = info->buf_len;
587 		else if (!info->buf_len)
588 			bytes = 0;
589 		iowrite32_rep(info->nand.IO_ADDR_W,
590 						(u32 *)info->buf, bytes >> 2);
591 		info->buf = info->buf + bytes;
592 		info->buf_len -= bytes;
593 
594 	} else {
595 		ioread32_rep(info->nand.IO_ADDR_R,
596 						(u32 *)info->buf, bytes >> 2);
597 		info->buf = info->buf + bytes;
598 
599 		if (this_irq == info->gpmc_irq_count)
600 			goto done;
601 	}
602 
603 	return IRQ_HANDLED;
604 
605 done:
606 	complete(&info->comp);
607 
608 	disable_irq_nosync(info->gpmc_irq_fifo);
609 	disable_irq_nosync(info->gpmc_irq_count);
610 
611 	return IRQ_HANDLED;
612 }
613 
614 /*
615  * omap_read_buf_irq_pref - read data from NAND controller into buffer
616  * @mtd: MTD device structure
617  * @buf: buffer to store date
618  * @len: number of bytes to read
619  */
omap_read_buf_irq_pref(struct mtd_info * mtd,u_char * buf,int len)620 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
621 {
622 	struct omap_nand_info *info = container_of(mtd,
623 						struct omap_nand_info, mtd);
624 	int ret = 0;
625 
626 	if (len <= mtd->oobsize) {
627 		omap_read_buf_pref(mtd, buf, len);
628 		return;
629 	}
630 
631 	info->iomode = OMAP_NAND_IO_READ;
632 	info->buf = buf;
633 	init_completion(&info->comp);
634 
635 	/*  configure and start prefetch transfer */
636 	ret = omap_prefetch_enable(info->gpmc_cs,
637 			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
638 	if (ret)
639 		/* PFPW engine is busy, use cpu copy method */
640 		goto out_copy;
641 
642 	info->buf_len = len;
643 
644 	enable_irq(info->gpmc_irq_count);
645 	enable_irq(info->gpmc_irq_fifo);
646 
647 	/* waiting for read to complete */
648 	wait_for_completion(&info->comp);
649 
650 	/* disable and stop the PFPW engine */
651 	omap_prefetch_reset(info->gpmc_cs, info);
652 	return;
653 
654 out_copy:
655 	if (info->nand.options & NAND_BUSWIDTH_16)
656 		omap_read_buf16(mtd, buf, len);
657 	else
658 		omap_read_buf8(mtd, buf, len);
659 }
660 
661 /*
662  * omap_write_buf_irq_pref - write buffer to NAND controller
663  * @mtd: MTD device structure
664  * @buf: data buffer
665  * @len: number of bytes to write
666  */
omap_write_buf_irq_pref(struct mtd_info * mtd,const u_char * buf,int len)667 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
668 					const u_char *buf, int len)
669 {
670 	struct omap_nand_info *info = container_of(mtd,
671 						struct omap_nand_info, mtd);
672 	int ret = 0;
673 	unsigned long tim, limit;
674 	u32 val;
675 
676 	if (len <= mtd->oobsize) {
677 		omap_write_buf_pref(mtd, buf, len);
678 		return;
679 	}
680 
681 	info->iomode = OMAP_NAND_IO_WRITE;
682 	info->buf = (u_char *) buf;
683 	init_completion(&info->comp);
684 
685 	/* configure and start prefetch transfer : size=24 */
686 	ret = omap_prefetch_enable(info->gpmc_cs,
687 		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
688 	if (ret)
689 		/* PFPW engine is busy, use cpu copy method */
690 		goto out_copy;
691 
692 	info->buf_len = len;
693 
694 	enable_irq(info->gpmc_irq_count);
695 	enable_irq(info->gpmc_irq_fifo);
696 
697 	/* waiting for write to complete */
698 	wait_for_completion(&info->comp);
699 
700 	/* wait for data to flushed-out before reset the prefetch */
701 	tim = 0;
702 	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
703 	do {
704 		val = readl(info->reg.gpmc_prefetch_status);
705 		val = PREFETCH_STATUS_COUNT(val);
706 		cpu_relax();
707 	} while (val && (tim++ < limit));
708 
709 	/* disable and stop the PFPW engine */
710 	omap_prefetch_reset(info->gpmc_cs, info);
711 	return;
712 
713 out_copy:
714 	if (info->nand.options & NAND_BUSWIDTH_16)
715 		omap_write_buf16(mtd, buf, len);
716 	else
717 		omap_write_buf8(mtd, buf, len);
718 }
719 
720 /**
721  * gen_true_ecc - This function will generate true ECC value
722  * @ecc_buf: buffer to store ecc code
723  *
724  * This generated true ECC value can be used when correcting
725  * data read from NAND flash memory core
726  */
gen_true_ecc(u8 * ecc_buf)727 static void gen_true_ecc(u8 *ecc_buf)
728 {
729 	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
730 		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
731 
732 	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
733 			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
734 	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
735 			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
736 	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
737 			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
738 }
739 
740 /**
741  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742  * @ecc_data1:  ecc code from nand spare area
743  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
744  * @page_data:  page data
745  *
746  * This function compares two ECC's and indicates if there is an error.
747  * If the error can be corrected it will be corrected to the buffer.
748  * If there is no error, %0 is returned. If there is an error but it
749  * was corrected, %1 is returned. Otherwise, %-1 is returned.
750  */
omap_compare_ecc(u8 * ecc_data1,u8 * ecc_data2,u8 * page_data)751 static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
752 			    u8 *ecc_data2,	/* read from register */
753 			    u8 *page_data)
754 {
755 	uint	i;
756 	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
757 	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
758 	u8	ecc_bit[24];
759 	u8	ecc_sum = 0;
760 	u8	find_bit = 0;
761 	uint	find_byte = 0;
762 	int	isEccFF;
763 
764 	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
765 
766 	gen_true_ecc(ecc_data1);
767 	gen_true_ecc(ecc_data2);
768 
769 	for (i = 0; i <= 2; i++) {
770 		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
771 		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
772 	}
773 
774 	for (i = 0; i < 8; i++) {
775 		tmp0_bit[i]     = *ecc_data1 % 2;
776 		*ecc_data1	= *ecc_data1 / 2;
777 	}
778 
779 	for (i = 0; i < 8; i++) {
780 		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
781 		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
782 	}
783 
784 	for (i = 0; i < 8; i++) {
785 		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
786 		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
787 	}
788 
789 	for (i = 0; i < 8; i++) {
790 		comp0_bit[i]     = *ecc_data2 % 2;
791 		*ecc_data2       = *ecc_data2 / 2;
792 	}
793 
794 	for (i = 0; i < 8; i++) {
795 		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
796 		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
797 	}
798 
799 	for (i = 0; i < 8; i++) {
800 		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
801 		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
802 	}
803 
804 	for (i = 0; i < 6; i++)
805 		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
806 
807 	for (i = 0; i < 8; i++)
808 		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
809 
810 	for (i = 0; i < 8; i++)
811 		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
812 
813 	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
814 	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
815 
816 	for (i = 0; i < 24; i++)
817 		ecc_sum += ecc_bit[i];
818 
819 	switch (ecc_sum) {
820 	case 0:
821 		/* Not reached because this function is not called if
822 		 *  ECC values are equal
823 		 */
824 		return 0;
825 
826 	case 1:
827 		/* Uncorrectable error */
828 		pr_debug("ECC UNCORRECTED_ERROR 1\n");
829 		return -1;
830 
831 	case 11:
832 		/* UN-Correctable error */
833 		pr_debug("ECC UNCORRECTED_ERROR B\n");
834 		return -1;
835 
836 	case 12:
837 		/* Correctable error */
838 		find_byte = (ecc_bit[23] << 8) +
839 			    (ecc_bit[21] << 7) +
840 			    (ecc_bit[19] << 6) +
841 			    (ecc_bit[17] << 5) +
842 			    (ecc_bit[15] << 4) +
843 			    (ecc_bit[13] << 3) +
844 			    (ecc_bit[11] << 2) +
845 			    (ecc_bit[9]  << 1) +
846 			    ecc_bit[7];
847 
848 		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
849 
850 		pr_debug("Correcting single bit ECC error at offset: "
851 				"%d, bit: %d\n", find_byte, find_bit);
852 
853 		page_data[find_byte] ^= (1 << find_bit);
854 
855 		return 1;
856 	default:
857 		if (isEccFF) {
858 			if (ecc_data2[0] == 0 &&
859 			    ecc_data2[1] == 0 &&
860 			    ecc_data2[2] == 0)
861 				return 0;
862 		}
863 		pr_debug("UNCORRECTED_ERROR default\n");
864 		return -1;
865 	}
866 }
867 
868 /**
869  * omap_correct_data - Compares the ECC read with HW generated ECC
870  * @mtd: MTD device structure
871  * @dat: page data
872  * @read_ecc: ecc read from nand flash
873  * @calc_ecc: ecc read from HW ECC registers
874  *
875  * Compares the ecc read from nand spare area with ECC registers values
876  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877  * detection and correction. If there are no errors, %0 is returned. If
878  * there were errors and all of the errors were corrected, the number of
879  * corrected errors is returned. If uncorrectable errors exist, %-1 is
880  * returned.
881  */
omap_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)882 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
883 				u_char *read_ecc, u_char *calc_ecc)
884 {
885 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
886 							mtd);
887 	int blockCnt = 0, i = 0, ret = 0;
888 	int stat = 0;
889 
890 	/* Ex NAND_ECC_HW12_2048 */
891 	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
892 			(info->nand.ecc.size  == 2048))
893 		blockCnt = 4;
894 	else
895 		blockCnt = 1;
896 
897 	for (i = 0; i < blockCnt; i++) {
898 		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
899 			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
900 			if (ret < 0)
901 				return ret;
902 			/* keep track of the number of corrected errors */
903 			stat += ret;
904 		}
905 		read_ecc += 3;
906 		calc_ecc += 3;
907 		dat      += 512;
908 	}
909 	return stat;
910 }
911 
912 /**
913  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
914  * @mtd: MTD device structure
915  * @dat: The pointer to data on which ecc is computed
916  * @ecc_code: The ecc_code buffer
917  *
918  * Using noninverted ECC can be considered ugly since writing a blank
919  * page ie. padding will clear the ECC bytes. This is no problem as long
920  * nobody is trying to write data on the seemingly unused page. Reading
921  * an erased page will produce an ECC mismatch between generated and read
922  * ECC bytes that has to be dealt with separately.
923  */
omap_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)924 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
925 				u_char *ecc_code)
926 {
927 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
928 							mtd);
929 	u32 val;
930 
931 	val = readl(info->reg.gpmc_ecc_config);
932 	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
933 		return -EINVAL;
934 
935 	/* read ecc result */
936 	val = readl(info->reg.gpmc_ecc1_result);
937 	*ecc_code++ = val;          /* P128e, ..., P1e */
938 	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
939 	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
940 	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
941 
942 	return 0;
943 }
944 
945 /**
946  * omap_enable_hwecc - This function enables the hardware ecc functionality
947  * @mtd: MTD device structure
948  * @mode: Read/Write mode
949  */
omap_enable_hwecc(struct mtd_info * mtd,int mode)950 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
951 {
952 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
953 							mtd);
954 	struct nand_chip *chip = mtd->priv;
955 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
956 	u32 val;
957 
958 	/* clear ecc and enable bits */
959 	val = ECCCLEAR | ECC1;
960 	writel(val, info->reg.gpmc_ecc_control);
961 
962 	/* program ecc and result sizes */
963 	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
964 			 ECC1RESULTSIZE);
965 	writel(val, info->reg.gpmc_ecc_size_config);
966 
967 	switch (mode) {
968 	case NAND_ECC_READ:
969 	case NAND_ECC_WRITE:
970 		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
971 		break;
972 	case NAND_ECC_READSYN:
973 		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
974 		break;
975 	default:
976 		dev_info(&info->pdev->dev,
977 			"error: unrecognized Mode[%d]!\n", mode);
978 		break;
979 	}
980 
981 	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
982 	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
983 	writel(val, info->reg.gpmc_ecc_config);
984 }
985 
986 /**
987  * omap_wait - wait until the command is done
988  * @mtd: MTD device structure
989  * @chip: NAND Chip structure
990  *
991  * Wait function is called during Program and erase operations and
992  * the way it is called from MTD layer, we should wait till the NAND
993  * chip is ready after the programming/erase operation has completed.
994  *
995  * Erase can take up to 400ms and program up to 20ms according to
996  * general NAND and SmartMedia specs
997  */
omap_wait(struct mtd_info * mtd,struct nand_chip * chip)998 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
999 {
1000 	struct nand_chip *this = mtd->priv;
1001 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1002 							mtd);
1003 	unsigned long timeo = jiffies;
1004 	int status, state = this->state;
1005 
1006 	if (state == FL_ERASING)
1007 		timeo += msecs_to_jiffies(400);
1008 	else
1009 		timeo += msecs_to_jiffies(20);
1010 
1011 	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1012 	while (time_before(jiffies, timeo)) {
1013 		status = readb(info->reg.gpmc_nand_data);
1014 		if (status & NAND_STATUS_READY)
1015 			break;
1016 		cond_resched();
1017 	}
1018 
1019 	status = readb(info->reg.gpmc_nand_data);
1020 	return status;
1021 }
1022 
1023 /**
1024  * omap_dev_ready - calls the platform specific dev_ready function
1025  * @mtd: MTD device structure
1026  */
omap_dev_ready(struct mtd_info * mtd)1027 static int omap_dev_ready(struct mtd_info *mtd)
1028 {
1029 	unsigned int val = 0;
1030 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1031 							mtd);
1032 
1033 	val = readl(info->reg.gpmc_status);
1034 
1035 	if ((val & 0x100) == 0x100) {
1036 		return 1;
1037 	} else {
1038 		return 0;
1039 	}
1040 }
1041 
1042 /**
1043  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1044  * @mtd: MTD device structure
1045  * @mode: Read/Write mode
1046  *
1047  * When using BCH, sector size is hardcoded to 512 bytes.
1048  * Using wrapping mode 6 both for reading and writing if ELM module not uses
1049  * for error correction.
1050  * On writing,
1051  * eccsize0 = 0  (no additional protected byte in spare area)
1052  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1053  */
omap_enable_hwecc_bch(struct mtd_info * mtd,int mode)1054 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1055 {
1056 	unsigned int bch_type;
1057 	unsigned int dev_width, nsectors;
1058 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1059 						   mtd);
1060 	enum omap_ecc ecc_opt = info->ecc_opt;
1061 	struct nand_chip *chip = mtd->priv;
1062 	u32 val, wr_mode;
1063 	unsigned int ecc_size1, ecc_size0;
1064 
1065 	/* GPMC configurations for calculating ECC */
1066 	switch (ecc_opt) {
1067 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1068 		bch_type = 0;
1069 		nsectors = 1;
1070 		if (mode == NAND_ECC_READ) {
1071 			wr_mode	  = BCH_WRAPMODE_6;
1072 			ecc_size0 = BCH_ECC_SIZE0;
1073 			ecc_size1 = BCH_ECC_SIZE1;
1074 		} else {
1075 			wr_mode   = BCH_WRAPMODE_6;
1076 			ecc_size0 = BCH_ECC_SIZE0;
1077 			ecc_size1 = BCH_ECC_SIZE1;
1078 		}
1079 		break;
1080 	case OMAP_ECC_BCH4_CODE_HW:
1081 		bch_type = 0;
1082 		nsectors = chip->ecc.steps;
1083 		if (mode == NAND_ECC_READ) {
1084 			wr_mode	  = BCH_WRAPMODE_1;
1085 			ecc_size0 = BCH4R_ECC_SIZE0;
1086 			ecc_size1 = BCH4R_ECC_SIZE1;
1087 		} else {
1088 			wr_mode   = BCH_WRAPMODE_6;
1089 			ecc_size0 = BCH_ECC_SIZE0;
1090 			ecc_size1 = BCH_ECC_SIZE1;
1091 		}
1092 		break;
1093 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1094 		bch_type = 1;
1095 		nsectors = 1;
1096 		if (mode == NAND_ECC_READ) {
1097 			wr_mode	  = BCH_WRAPMODE_6;
1098 			ecc_size0 = BCH_ECC_SIZE0;
1099 			ecc_size1 = BCH_ECC_SIZE1;
1100 		} else {
1101 			wr_mode   = BCH_WRAPMODE_6;
1102 			ecc_size0 = BCH_ECC_SIZE0;
1103 			ecc_size1 = BCH_ECC_SIZE1;
1104 		}
1105 		break;
1106 	case OMAP_ECC_BCH8_CODE_HW:
1107 		bch_type = 1;
1108 		nsectors = chip->ecc.steps;
1109 		if (mode == NAND_ECC_READ) {
1110 			wr_mode	  = BCH_WRAPMODE_1;
1111 			ecc_size0 = BCH8R_ECC_SIZE0;
1112 			ecc_size1 = BCH8R_ECC_SIZE1;
1113 		} else {
1114 			wr_mode   = BCH_WRAPMODE_6;
1115 			ecc_size0 = BCH_ECC_SIZE0;
1116 			ecc_size1 = BCH_ECC_SIZE1;
1117 		}
1118 		break;
1119 	case OMAP_ECC_BCH16_CODE_HW:
1120 		bch_type = 0x2;
1121 		nsectors = chip->ecc.steps;
1122 		if (mode == NAND_ECC_READ) {
1123 			wr_mode	  = 0x01;
1124 			ecc_size0 = 52; /* ECC bits in nibbles per sector */
1125 			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1126 		} else {
1127 			wr_mode	  = 0x01;
1128 			ecc_size0 = 0;  /* extra bits in nibbles per sector */
1129 			ecc_size1 = 52; /* OOB bits in nibbles per sector */
1130 		}
1131 		break;
1132 	default:
1133 		return;
1134 	}
1135 
1136 	writel(ECC1, info->reg.gpmc_ecc_control);
1137 
1138 	/* Configure ecc size for BCH */
1139 	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1140 	writel(val, info->reg.gpmc_ecc_size_config);
1141 
1142 	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1143 
1144 	/* BCH configuration */
1145 	val = ((1                        << 16) | /* enable BCH */
1146 	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
1147 	       (wr_mode                  <<  8) | /* wrap mode */
1148 	       (dev_width                <<  7) | /* bus width */
1149 	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1150 	       (info->gpmc_cs            <<  1) | /* ECC CS */
1151 	       (0x1));                            /* enable ECC */
1152 
1153 	writel(val, info->reg.gpmc_ecc_config);
1154 
1155 	/* Clear ecc and enable bits */
1156 	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1157 }
1158 
1159 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1160 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1161 				0x97, 0x79, 0xe5, 0x24, 0xb5};
1162 
1163 /**
1164  * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1165  * @mtd:	MTD device structure
1166  * @dat:	The pointer to data on which ecc is computed
1167  * @ecc_code:	The ecc_code buffer
1168  *
1169  * Support calculating of BCH4/8 ecc vectors for the page
1170  */
omap_calculate_ecc_bch(struct mtd_info * mtd,const u_char * dat,u_char * ecc_calc)1171 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1172 					const u_char *dat, u_char *ecc_calc)
1173 {
1174 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1175 						   mtd);
1176 	int eccbytes	= info->nand.ecc.bytes;
1177 	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1178 	u8 *ecc_code;
1179 	unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1180 	u32 val;
1181 	int i, j;
1182 
1183 	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1184 	for (i = 0; i < nsectors; i++) {
1185 		ecc_code = ecc_calc;
1186 		switch (info->ecc_opt) {
1187 		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1188 		case OMAP_ECC_BCH8_CODE_HW:
1189 			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1190 			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1191 			bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1192 			bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1193 			*ecc_code++ = (bch_val4 & 0xFF);
1194 			*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1195 			*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1196 			*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1197 			*ecc_code++ = (bch_val3 & 0xFF);
1198 			*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1199 			*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1200 			*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1201 			*ecc_code++ = (bch_val2 & 0xFF);
1202 			*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1203 			*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1204 			*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1205 			*ecc_code++ = (bch_val1 & 0xFF);
1206 			break;
1207 		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1208 		case OMAP_ECC_BCH4_CODE_HW:
1209 			bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1210 			bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1211 			*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1212 			*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1213 			*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1214 				((bch_val1 >> 28) & 0xF);
1215 			*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1216 			*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1217 			*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1218 			*ecc_code++ = ((bch_val1 & 0xF) << 4);
1219 			break;
1220 		case OMAP_ECC_BCH16_CODE_HW:
1221 			val = readl(gpmc_regs->gpmc_bch_result6[i]);
1222 			ecc_code[0]  = ((val >>  8) & 0xFF);
1223 			ecc_code[1]  = ((val >>  0) & 0xFF);
1224 			val = readl(gpmc_regs->gpmc_bch_result5[i]);
1225 			ecc_code[2]  = ((val >> 24) & 0xFF);
1226 			ecc_code[3]  = ((val >> 16) & 0xFF);
1227 			ecc_code[4]  = ((val >>  8) & 0xFF);
1228 			ecc_code[5]  = ((val >>  0) & 0xFF);
1229 			val = readl(gpmc_regs->gpmc_bch_result4[i]);
1230 			ecc_code[6]  = ((val >> 24) & 0xFF);
1231 			ecc_code[7]  = ((val >> 16) & 0xFF);
1232 			ecc_code[8]  = ((val >>  8) & 0xFF);
1233 			ecc_code[9]  = ((val >>  0) & 0xFF);
1234 			val = readl(gpmc_regs->gpmc_bch_result3[i]);
1235 			ecc_code[10] = ((val >> 24) & 0xFF);
1236 			ecc_code[11] = ((val >> 16) & 0xFF);
1237 			ecc_code[12] = ((val >>  8) & 0xFF);
1238 			ecc_code[13] = ((val >>  0) & 0xFF);
1239 			val = readl(gpmc_regs->gpmc_bch_result2[i]);
1240 			ecc_code[14] = ((val >> 24) & 0xFF);
1241 			ecc_code[15] = ((val >> 16) & 0xFF);
1242 			ecc_code[16] = ((val >>  8) & 0xFF);
1243 			ecc_code[17] = ((val >>  0) & 0xFF);
1244 			val = readl(gpmc_regs->gpmc_bch_result1[i]);
1245 			ecc_code[18] = ((val >> 24) & 0xFF);
1246 			ecc_code[19] = ((val >> 16) & 0xFF);
1247 			ecc_code[20] = ((val >>  8) & 0xFF);
1248 			ecc_code[21] = ((val >>  0) & 0xFF);
1249 			val = readl(gpmc_regs->gpmc_bch_result0[i]);
1250 			ecc_code[22] = ((val >> 24) & 0xFF);
1251 			ecc_code[23] = ((val >> 16) & 0xFF);
1252 			ecc_code[24] = ((val >>  8) & 0xFF);
1253 			ecc_code[25] = ((val >>  0) & 0xFF);
1254 			break;
1255 		default:
1256 			return -EINVAL;
1257 		}
1258 
1259 		/* ECC scheme specific syndrome customizations */
1260 		switch (info->ecc_opt) {
1261 		case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1262 			/* Add constant polynomial to remainder, so that
1263 			 * ECC of blank pages results in 0x0 on reading back */
1264 			for (j = 0; j < eccbytes; j++)
1265 				ecc_calc[j] ^= bch4_polynomial[j];
1266 			break;
1267 		case OMAP_ECC_BCH4_CODE_HW:
1268 			/* Set  8th ECC byte as 0x0 for ROM compatibility */
1269 			ecc_calc[eccbytes - 1] = 0x0;
1270 			break;
1271 		case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1272 			/* Add constant polynomial to remainder, so that
1273 			 * ECC of blank pages results in 0x0 on reading back */
1274 			for (j = 0; j < eccbytes; j++)
1275 				ecc_calc[j] ^= bch8_polynomial[j];
1276 			break;
1277 		case OMAP_ECC_BCH8_CODE_HW:
1278 			/* Set 14th ECC byte as 0x0 for ROM compatibility */
1279 			ecc_calc[eccbytes - 1] = 0x0;
1280 			break;
1281 		case OMAP_ECC_BCH16_CODE_HW:
1282 			break;
1283 		default:
1284 			return -EINVAL;
1285 		}
1286 
1287 	ecc_calc += eccbytes;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * erased_sector_bitflips - count bit flips
1295  * @data:	data sector buffer
1296  * @oob:	oob buffer
1297  * @info:	omap_nand_info
1298  *
1299  * Check the bit flips in erased page falls below correctable level.
1300  * If falls below, report the page as erased with correctable bit
1301  * flip, else report as uncorrectable page.
1302  */
erased_sector_bitflips(u_char * data,u_char * oob,struct omap_nand_info * info)1303 static int erased_sector_bitflips(u_char *data, u_char *oob,
1304 		struct omap_nand_info *info)
1305 {
1306 	int flip_bits = 0, i;
1307 
1308 	for (i = 0; i < info->nand.ecc.size; i++) {
1309 		flip_bits += hweight8(~data[i]);
1310 		if (flip_bits > info->nand.ecc.strength)
1311 			return 0;
1312 	}
1313 
1314 	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1315 		flip_bits += hweight8(~oob[i]);
1316 		if (flip_bits > info->nand.ecc.strength)
1317 			return 0;
1318 	}
1319 
1320 	/*
1321 	 * Bit flips falls in correctable level.
1322 	 * Fill data area with 0xFF
1323 	 */
1324 	if (flip_bits) {
1325 		memset(data, 0xFF, info->nand.ecc.size);
1326 		memset(oob, 0xFF, info->nand.ecc.bytes);
1327 	}
1328 
1329 	return flip_bits;
1330 }
1331 
1332 /**
1333  * omap_elm_correct_data - corrects page data area in case error reported
1334  * @mtd:	MTD device structure
1335  * @data:	page data
1336  * @read_ecc:	ecc read from nand flash
1337  * @calc_ecc:	ecc read from HW ECC registers
1338  *
1339  * Calculated ecc vector reported as zero in case of non-error pages.
1340  * In case of non-zero ecc vector, first filter out erased-pages, and
1341  * then process data via ELM to detect bit-flips.
1342  */
omap_elm_correct_data(struct mtd_info * mtd,u_char * data,u_char * read_ecc,u_char * calc_ecc)1343 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1344 				u_char *read_ecc, u_char *calc_ecc)
1345 {
1346 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1347 			mtd);
1348 	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1349 	int eccsteps = info->nand.ecc.steps;
1350 	int i , j, stat = 0;
1351 	int eccflag, actual_eccbytes;
1352 	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1353 	u_char *ecc_vec = calc_ecc;
1354 	u_char *spare_ecc = read_ecc;
1355 	u_char *erased_ecc_vec;
1356 	u_char *buf;
1357 	int bitflip_count;
1358 	bool is_error_reported = false;
1359 	u32 bit_pos, byte_pos, error_max, pos;
1360 	int err;
1361 
1362 	switch (info->ecc_opt) {
1363 	case OMAP_ECC_BCH4_CODE_HW:
1364 		/* omit  7th ECC byte reserved for ROM code compatibility */
1365 		actual_eccbytes = ecc->bytes - 1;
1366 		erased_ecc_vec = bch4_vector;
1367 		break;
1368 	case OMAP_ECC_BCH8_CODE_HW:
1369 		/* omit 14th ECC byte reserved for ROM code compatibility */
1370 		actual_eccbytes = ecc->bytes - 1;
1371 		erased_ecc_vec = bch8_vector;
1372 		break;
1373 	case OMAP_ECC_BCH16_CODE_HW:
1374 		actual_eccbytes = ecc->bytes;
1375 		erased_ecc_vec = bch16_vector;
1376 		break;
1377 	default:
1378 		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1379 		return -EINVAL;
1380 	}
1381 
1382 	/* Initialize elm error vector to zero */
1383 	memset(err_vec, 0, sizeof(err_vec));
1384 
1385 	for (i = 0; i < eccsteps ; i++) {
1386 		eccflag = 0;	/* initialize eccflag */
1387 
1388 		/*
1389 		 * Check any error reported,
1390 		 * In case of error, non zero ecc reported.
1391 		 */
1392 		for (j = 0; j < actual_eccbytes; j++) {
1393 			if (calc_ecc[j] != 0) {
1394 				eccflag = 1; /* non zero ecc, error present */
1395 				break;
1396 			}
1397 		}
1398 
1399 		if (eccflag == 1) {
1400 			if (memcmp(calc_ecc, erased_ecc_vec,
1401 						actual_eccbytes) == 0) {
1402 				/*
1403 				 * calc_ecc[] matches pattern for ECC(all 0xff)
1404 				 * so this is definitely an erased-page
1405 				 */
1406 			} else {
1407 				buf = &data[info->nand.ecc.size * i];
1408 				/*
1409 				 * count number of 0-bits in read_buf.
1410 				 * This check can be removed once a similar
1411 				 * check is introduced in generic NAND driver
1412 				 */
1413 				bitflip_count = erased_sector_bitflips(
1414 						buf, read_ecc, info);
1415 				if (bitflip_count) {
1416 					/*
1417 					 * number of 0-bits within ECC limits
1418 					 * So this may be an erased-page
1419 					 */
1420 					stat += bitflip_count;
1421 				} else {
1422 					/*
1423 					 * Too many 0-bits. It may be a
1424 					 * - programmed-page, OR
1425 					 * - erased-page with many bit-flips
1426 					 * So this page requires check by ELM
1427 					 */
1428 					err_vec[i].error_reported = true;
1429 					is_error_reported = true;
1430 				}
1431 			}
1432 		}
1433 
1434 		/* Update the ecc vector */
1435 		calc_ecc += ecc->bytes;
1436 		read_ecc += ecc->bytes;
1437 	}
1438 
1439 	/* Check if any error reported */
1440 	if (!is_error_reported)
1441 		return stat;
1442 
1443 	/* Decode BCH error using ELM module */
1444 	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1445 
1446 	err = 0;
1447 	for (i = 0; i < eccsteps; i++) {
1448 		if (err_vec[i].error_uncorrectable) {
1449 			dev_err(&info->pdev->dev,
1450 				"uncorrectable bit-flips found\n");
1451 			err = -EBADMSG;
1452 		} else if (err_vec[i].error_reported) {
1453 			for (j = 0; j < err_vec[i].error_count; j++) {
1454 				switch (info->ecc_opt) {
1455 				case OMAP_ECC_BCH4_CODE_HW:
1456 					/* Add 4 bits to take care of padding */
1457 					pos = err_vec[i].error_loc[j] +
1458 						BCH4_BIT_PAD;
1459 					break;
1460 				case OMAP_ECC_BCH8_CODE_HW:
1461 				case OMAP_ECC_BCH16_CODE_HW:
1462 					pos = err_vec[i].error_loc[j];
1463 					break;
1464 				default:
1465 					return -EINVAL;
1466 				}
1467 				error_max = (ecc->size + actual_eccbytes) * 8;
1468 				/* Calculate bit position of error */
1469 				bit_pos = pos % 8;
1470 
1471 				/* Calculate byte position of error */
1472 				byte_pos = (error_max - pos - 1) / 8;
1473 
1474 				if (pos < error_max) {
1475 					if (byte_pos < 512) {
1476 						pr_debug("bitflip@dat[%d]=%x\n",
1477 						     byte_pos, data[byte_pos]);
1478 						data[byte_pos] ^= 1 << bit_pos;
1479 					} else {
1480 						pr_debug("bitflip@oob[%d]=%x\n",
1481 							(byte_pos - 512),
1482 						     spare_ecc[byte_pos - 512]);
1483 						spare_ecc[byte_pos - 512] ^=
1484 							1 << bit_pos;
1485 					}
1486 				} else {
1487 					dev_err(&info->pdev->dev,
1488 						"invalid bit-flip @ %d:%d\n",
1489 						byte_pos, bit_pos);
1490 					err = -EBADMSG;
1491 				}
1492 			}
1493 		}
1494 
1495 		/* Update number of correctable errors */
1496 		stat += err_vec[i].error_count;
1497 
1498 		/* Update page data with sector size */
1499 		data += ecc->size;
1500 		spare_ecc += ecc->bytes;
1501 	}
1502 
1503 	return (err) ? err : stat;
1504 }
1505 
1506 /**
1507  * omap_write_page_bch - BCH ecc based write page function for entire page
1508  * @mtd:		mtd info structure
1509  * @chip:		nand chip info structure
1510  * @buf:		data buffer
1511  * @oob_required:	must write chip->oob_poi to OOB
1512  *
1513  * Custom write page method evolved to support multi sector writing in one shot
1514  */
omap_write_page_bch(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1515 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1516 				  const uint8_t *buf, int oob_required)
1517 {
1518 	int i;
1519 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1520 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1521 
1522 	/* Enable GPMC ecc engine */
1523 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1524 
1525 	/* Write data */
1526 	chip->write_buf(mtd, buf, mtd->writesize);
1527 
1528 	/* Update ecc vector from GPMC result registers */
1529 	chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1530 
1531 	for (i = 0; i < chip->ecc.total; i++)
1532 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1533 
1534 	/* Write ecc vector to OOB area */
1535 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1536 	return 0;
1537 }
1538 
1539 /**
1540  * omap_read_page_bch - BCH ecc based page read function for entire page
1541  * @mtd:		mtd info structure
1542  * @chip:		nand chip info structure
1543  * @buf:		buffer to store read data
1544  * @oob_required:	caller requires OOB data read to chip->oob_poi
1545  * @page:		page number to read
1546  *
1547  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1548  * used for error correction.
1549  * Custom method evolved to support ELM error correction & multi sector
1550  * reading. On reading page data area is read along with OOB data with
1551  * ecc engine enabled. ecc vector updated after read of OOB data.
1552  * For non error pages ecc vector reported as zero.
1553  */
omap_read_page_bch(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1554 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1555 				uint8_t *buf, int oob_required, int page)
1556 {
1557 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1558 	uint8_t *ecc_code = chip->buffers->ecccode;
1559 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1560 	uint8_t *oob = &chip->oob_poi[eccpos[0]];
1561 	uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1562 	int stat;
1563 	unsigned int max_bitflips = 0;
1564 
1565 	/* Enable GPMC ecc engine */
1566 	chip->ecc.hwctl(mtd, NAND_ECC_READ);
1567 
1568 	/* Read data */
1569 	chip->read_buf(mtd, buf, mtd->writesize);
1570 
1571 	/* Read oob bytes */
1572 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1573 	chip->read_buf(mtd, oob, chip->ecc.total);
1574 
1575 	/* Calculate ecc bytes */
1576 	chip->ecc.calculate(mtd, buf, ecc_calc);
1577 
1578 	memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1579 
1580 	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1581 
1582 	if (stat < 0) {
1583 		mtd->ecc_stats.failed++;
1584 	} else {
1585 		mtd->ecc_stats.corrected += stat;
1586 		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1587 	}
1588 
1589 	return max_bitflips;
1590 }
1591 
1592 /**
1593  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1594  * @omap_nand_info: NAND device structure containing platform data
1595  */
is_elm_present(struct omap_nand_info * info,struct device_node * elm_node)1596 static bool is_elm_present(struct omap_nand_info *info,
1597 			   struct device_node *elm_node)
1598 {
1599 	struct platform_device *pdev;
1600 
1601 	/* check whether elm-id is passed via DT */
1602 	if (!elm_node) {
1603 		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1604 		return false;
1605 	}
1606 	pdev = of_find_device_by_node(elm_node);
1607 	/* check whether ELM device is registered */
1608 	if (!pdev) {
1609 		dev_err(&info->pdev->dev, "ELM device not found\n");
1610 		return false;
1611 	}
1612 	/* ELM module available, now configure it */
1613 	info->elm_dev = &pdev->dev;
1614 	return true;
1615 }
1616 
omap2_nand_ecc_check(struct omap_nand_info * info,struct omap_nand_platform_data * pdata)1617 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1618 				 struct omap_nand_platform_data	*pdata)
1619 {
1620 	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1621 
1622 	switch (info->ecc_opt) {
1623 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1624 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1625 		ecc_needs_omap_bch = false;
1626 		ecc_needs_bch = true;
1627 		ecc_needs_elm = false;
1628 		break;
1629 	case OMAP_ECC_BCH4_CODE_HW:
1630 	case OMAP_ECC_BCH8_CODE_HW:
1631 	case OMAP_ECC_BCH16_CODE_HW:
1632 		ecc_needs_omap_bch = true;
1633 		ecc_needs_bch = false;
1634 		ecc_needs_elm = true;
1635 		break;
1636 	default:
1637 		ecc_needs_omap_bch = false;
1638 		ecc_needs_bch = false;
1639 		ecc_needs_elm = false;
1640 		break;
1641 	}
1642 
1643 	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1644 		dev_err(&info->pdev->dev,
1645 			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1646 		return false;
1647 	}
1648 	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1649 		dev_err(&info->pdev->dev,
1650 			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1651 		return false;
1652 	}
1653 	if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1654 		dev_err(&info->pdev->dev, "ELM not available\n");
1655 		return false;
1656 	}
1657 
1658 	return true;
1659 }
1660 
omap_nand_probe(struct platform_device * pdev)1661 static int omap_nand_probe(struct platform_device *pdev)
1662 {
1663 	struct omap_nand_info		*info;
1664 	struct omap_nand_platform_data	*pdata;
1665 	struct mtd_info			*mtd;
1666 	struct nand_chip		*nand_chip;
1667 	struct nand_ecclayout		*ecclayout;
1668 	int				err;
1669 	int				i;
1670 	dma_cap_mask_t			mask;
1671 	unsigned			sig;
1672 	unsigned			oob_index;
1673 	struct resource			*res;
1674 	struct mtd_part_parser_data	ppdata = {};
1675 
1676 	pdata = dev_get_platdata(&pdev->dev);
1677 	if (pdata == NULL) {
1678 		dev_err(&pdev->dev, "platform data missing\n");
1679 		return -ENODEV;
1680 	}
1681 
1682 	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1683 				GFP_KERNEL);
1684 	if (!info)
1685 		return -ENOMEM;
1686 
1687 	platform_set_drvdata(pdev, info);
1688 
1689 	spin_lock_init(&info->controller.lock);
1690 	init_waitqueue_head(&info->controller.wq);
1691 
1692 	info->pdev		= pdev;
1693 	info->gpmc_cs		= pdata->cs;
1694 	info->reg		= pdata->reg;
1695 	info->of_node		= pdata->of_node;
1696 	info->ecc_opt		= pdata->ecc_opt;
1697 	mtd			= &info->mtd;
1698 	mtd->priv		= &info->nand;
1699 	mtd->name		= dev_name(&pdev->dev);
1700 	mtd->owner		= THIS_MODULE;
1701 	nand_chip		= &info->nand;
1702 	nand_chip->ecc.priv	= NULL;
1703 
1704 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1705 	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1706 	if (IS_ERR(nand_chip->IO_ADDR_R))
1707 		return PTR_ERR(nand_chip->IO_ADDR_R);
1708 
1709 	info->phys_base = res->start;
1710 
1711 	nand_chip->controller = &info->controller;
1712 
1713 	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1714 	nand_chip->cmd_ctrl  = omap_hwcontrol;
1715 
1716 	/*
1717 	 * If RDY/BSY line is connected to OMAP then use the omap ready
1718 	 * function and the generic nand_wait function which reads the status
1719 	 * register after monitoring the RDY/BSY line. Otherwise use a standard
1720 	 * chip delay which is slightly more than tR (AC Timing) of the NAND
1721 	 * device and read status register until you get a failure or success
1722 	 */
1723 	if (pdata->dev_ready) {
1724 		nand_chip->dev_ready = omap_dev_ready;
1725 		nand_chip->chip_delay = 0;
1726 	} else {
1727 		nand_chip->waitfunc = omap_wait;
1728 		nand_chip->chip_delay = 50;
1729 	}
1730 
1731 	if (pdata->flash_bbt)
1732 		nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1733 	else
1734 		nand_chip->options |= NAND_SKIP_BBTSCAN;
1735 
1736 	/* scan NAND device connected to chip controller */
1737 	nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1738 	if (nand_scan_ident(mtd, 1, NULL)) {
1739 		dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1740 		err = -ENXIO;
1741 		goto return_error;
1742 	}
1743 
1744 	/* re-populate low-level callbacks based on xfer modes */
1745 	switch (pdata->xfer_type) {
1746 	case NAND_OMAP_PREFETCH_POLLED:
1747 		nand_chip->read_buf   = omap_read_buf_pref;
1748 		nand_chip->write_buf  = omap_write_buf_pref;
1749 		break;
1750 
1751 	case NAND_OMAP_POLLED:
1752 		/* Use nand_base defaults for {read,write}_buf */
1753 		break;
1754 
1755 	case NAND_OMAP_PREFETCH_DMA:
1756 		dma_cap_zero(mask);
1757 		dma_cap_set(DMA_SLAVE, mask);
1758 		sig = OMAP24XX_DMA_GPMC;
1759 		info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1760 		if (!info->dma) {
1761 			dev_err(&pdev->dev, "DMA engine request failed\n");
1762 			err = -ENXIO;
1763 			goto return_error;
1764 		} else {
1765 			struct dma_slave_config cfg;
1766 
1767 			memset(&cfg, 0, sizeof(cfg));
1768 			cfg.src_addr = info->phys_base;
1769 			cfg.dst_addr = info->phys_base;
1770 			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1771 			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1772 			cfg.src_maxburst = 16;
1773 			cfg.dst_maxburst = 16;
1774 			err = dmaengine_slave_config(info->dma, &cfg);
1775 			if (err) {
1776 				dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1777 					err);
1778 				goto return_error;
1779 			}
1780 			nand_chip->read_buf   = omap_read_buf_dma_pref;
1781 			nand_chip->write_buf  = omap_write_buf_dma_pref;
1782 		}
1783 		break;
1784 
1785 	case NAND_OMAP_PREFETCH_IRQ:
1786 		info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1787 		if (info->gpmc_irq_fifo <= 0) {
1788 			dev_err(&pdev->dev, "error getting fifo irq\n");
1789 			err = -ENODEV;
1790 			goto return_error;
1791 		}
1792 		err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1793 					omap_nand_irq, IRQF_SHARED,
1794 					"gpmc-nand-fifo", info);
1795 		if (err) {
1796 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1797 						info->gpmc_irq_fifo, err);
1798 			info->gpmc_irq_fifo = 0;
1799 			goto return_error;
1800 		}
1801 
1802 		info->gpmc_irq_count = platform_get_irq(pdev, 1);
1803 		if (info->gpmc_irq_count <= 0) {
1804 			dev_err(&pdev->dev, "error getting count irq\n");
1805 			err = -ENODEV;
1806 			goto return_error;
1807 		}
1808 		err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1809 					omap_nand_irq, IRQF_SHARED,
1810 					"gpmc-nand-count", info);
1811 		if (err) {
1812 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1813 						info->gpmc_irq_count, err);
1814 			info->gpmc_irq_count = 0;
1815 			goto return_error;
1816 		}
1817 
1818 		nand_chip->read_buf  = omap_read_buf_irq_pref;
1819 		nand_chip->write_buf = omap_write_buf_irq_pref;
1820 
1821 		break;
1822 
1823 	default:
1824 		dev_err(&pdev->dev,
1825 			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1826 		err = -EINVAL;
1827 		goto return_error;
1828 	}
1829 
1830 	if (!omap2_nand_ecc_check(info, pdata)) {
1831 		err = -EINVAL;
1832 		goto return_error;
1833 	}
1834 
1835 	/* populate MTD interface based on ECC scheme */
1836 	ecclayout		= &omap_oobinfo;
1837 	switch (info->ecc_opt) {
1838 	case OMAP_ECC_HAM1_CODE_SW:
1839 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1840 		break;
1841 
1842 	case OMAP_ECC_HAM1_CODE_HW:
1843 		pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1844 		nand_chip->ecc.mode             = NAND_ECC_HW;
1845 		nand_chip->ecc.bytes            = 3;
1846 		nand_chip->ecc.size             = 512;
1847 		nand_chip->ecc.strength         = 1;
1848 		nand_chip->ecc.calculate        = omap_calculate_ecc;
1849 		nand_chip->ecc.hwctl            = omap_enable_hwecc;
1850 		nand_chip->ecc.correct          = omap_correct_data;
1851 		/* define ECC layout */
1852 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1853 							(mtd->writesize /
1854 							nand_chip->ecc.size);
1855 		if (nand_chip->options & NAND_BUSWIDTH_16)
1856 			oob_index		= BADBLOCK_MARKER_LENGTH;
1857 		else
1858 			oob_index		= 1;
1859 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1860 			ecclayout->eccpos[i]	= oob_index;
1861 		/* no reserved-marker in ecclayout for this ecc-scheme */
1862 		ecclayout->oobfree->offset	=
1863 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1864 		break;
1865 
1866 	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1867 		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1868 		nand_chip->ecc.mode		= NAND_ECC_HW;
1869 		nand_chip->ecc.size		= 512;
1870 		nand_chip->ecc.bytes		= 7;
1871 		nand_chip->ecc.strength		= 4;
1872 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1873 		nand_chip->ecc.correct		= nand_bch_correct_data;
1874 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1875 		/* define ECC layout */
1876 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1877 							(mtd->writesize /
1878 							nand_chip->ecc.size);
1879 		oob_index			= BADBLOCK_MARKER_LENGTH;
1880 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1881 			ecclayout->eccpos[i] = oob_index;
1882 			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1883 				oob_index++;
1884 		}
1885 		/* include reserved-marker in ecclayout->oobfree calculation */
1886 		ecclayout->oobfree->offset	= 1 +
1887 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1888 		/* software bch library is used for locating errors */
1889 		nand_chip->ecc.priv		= nand_bch_init(mtd,
1890 							nand_chip->ecc.size,
1891 							nand_chip->ecc.bytes,
1892 							&ecclayout);
1893 		if (!nand_chip->ecc.priv) {
1894 			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1895 			err = -EINVAL;
1896 			goto return_error;
1897 		}
1898 		break;
1899 
1900 	case OMAP_ECC_BCH4_CODE_HW:
1901 		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1902 		nand_chip->ecc.mode		= NAND_ECC_HW;
1903 		nand_chip->ecc.size		= 512;
1904 		/* 14th bit is kept reserved for ROM-code compatibility */
1905 		nand_chip->ecc.bytes		= 7 + 1;
1906 		nand_chip->ecc.strength		= 4;
1907 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1908 		nand_chip->ecc.correct		= omap_elm_correct_data;
1909 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1910 		nand_chip->ecc.read_page	= omap_read_page_bch;
1911 		nand_chip->ecc.write_page	= omap_write_page_bch;
1912 		/* define ECC layout */
1913 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1914 							(mtd->writesize /
1915 							nand_chip->ecc.size);
1916 		oob_index			= BADBLOCK_MARKER_LENGTH;
1917 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1918 			ecclayout->eccpos[i]	= oob_index;
1919 		/* reserved marker already included in ecclayout->eccbytes */
1920 		ecclayout->oobfree->offset	=
1921 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1922 
1923 		err = elm_config(info->elm_dev, BCH4_ECC,
1924 				 info->mtd.writesize / nand_chip->ecc.size,
1925 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1926 		if (err < 0)
1927 			goto return_error;
1928 		break;
1929 
1930 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1931 		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1932 		nand_chip->ecc.mode		= NAND_ECC_HW;
1933 		nand_chip->ecc.size		= 512;
1934 		nand_chip->ecc.bytes		= 13;
1935 		nand_chip->ecc.strength		= 8;
1936 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1937 		nand_chip->ecc.correct		= nand_bch_correct_data;
1938 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1939 		/* define ECC layout */
1940 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1941 							(mtd->writesize /
1942 							nand_chip->ecc.size);
1943 		oob_index			= BADBLOCK_MARKER_LENGTH;
1944 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1945 			ecclayout->eccpos[i] = oob_index;
1946 			if (((i + 1) % nand_chip->ecc.bytes) == 0)
1947 				oob_index++;
1948 		}
1949 		/* include reserved-marker in ecclayout->oobfree calculation */
1950 		ecclayout->oobfree->offset	= 1 +
1951 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1952 		/* software bch library is used for locating errors */
1953 		nand_chip->ecc.priv		= nand_bch_init(mtd,
1954 							nand_chip->ecc.size,
1955 							nand_chip->ecc.bytes,
1956 							&ecclayout);
1957 		if (!nand_chip->ecc.priv) {
1958 			dev_err(&info->pdev->dev, "unable to use BCH library\n");
1959 			err = -EINVAL;
1960 			goto return_error;
1961 		}
1962 		break;
1963 
1964 	case OMAP_ECC_BCH8_CODE_HW:
1965 		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1966 		nand_chip->ecc.mode		= NAND_ECC_HW;
1967 		nand_chip->ecc.size		= 512;
1968 		/* 14th bit is kept reserved for ROM-code compatibility */
1969 		nand_chip->ecc.bytes		= 13 + 1;
1970 		nand_chip->ecc.strength		= 8;
1971 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
1972 		nand_chip->ecc.correct		= omap_elm_correct_data;
1973 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
1974 		nand_chip->ecc.read_page	= omap_read_page_bch;
1975 		nand_chip->ecc.write_page	= omap_write_page_bch;
1976 
1977 		err = elm_config(info->elm_dev, BCH8_ECC,
1978 				 info->mtd.writesize / nand_chip->ecc.size,
1979 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
1980 		if (err < 0)
1981 			goto return_error;
1982 
1983 		/* define ECC layout */
1984 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
1985 							(mtd->writesize /
1986 							nand_chip->ecc.size);
1987 		oob_index			= BADBLOCK_MARKER_LENGTH;
1988 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1989 			ecclayout->eccpos[i]	= oob_index;
1990 		/* reserved marker already included in ecclayout->eccbytes */
1991 		ecclayout->oobfree->offset	=
1992 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1993 		break;
1994 
1995 	case OMAP_ECC_BCH16_CODE_HW:
1996 		pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1997 		nand_chip->ecc.mode		= NAND_ECC_HW;
1998 		nand_chip->ecc.size		= 512;
1999 		nand_chip->ecc.bytes		= 26;
2000 		nand_chip->ecc.strength		= 16;
2001 		nand_chip->ecc.hwctl		= omap_enable_hwecc_bch;
2002 		nand_chip->ecc.correct		= omap_elm_correct_data;
2003 		nand_chip->ecc.calculate	= omap_calculate_ecc_bch;
2004 		nand_chip->ecc.read_page	= omap_read_page_bch;
2005 		nand_chip->ecc.write_page	= omap_write_page_bch;
2006 
2007 		err = elm_config(info->elm_dev, BCH16_ECC,
2008 				 info->mtd.writesize / nand_chip->ecc.size,
2009 				 nand_chip->ecc.size, nand_chip->ecc.bytes);
2010 		if (err < 0)
2011 			goto return_error;
2012 
2013 		/* define ECC layout */
2014 		ecclayout->eccbytes		= nand_chip->ecc.bytes *
2015 							(mtd->writesize /
2016 							nand_chip->ecc.size);
2017 		oob_index			= BADBLOCK_MARKER_LENGTH;
2018 		for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
2019 			ecclayout->eccpos[i]	= oob_index;
2020 		/* reserved marker already included in ecclayout->eccbytes */
2021 		ecclayout->oobfree->offset	=
2022 				ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
2023 		break;
2024 	default:
2025 		dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2026 		err = -EINVAL;
2027 		goto return_error;
2028 	}
2029 
2030 	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
2031 		goto scan_tail;
2032 
2033 	/* all OOB bytes from oobfree->offset till end off OOB are free */
2034 	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2035 	/* check if NAND device's OOB is enough to store ECC signatures */
2036 	if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2037 		dev_err(&info->pdev->dev,
2038 			"not enough OOB bytes required = %d, available=%d\n",
2039 			ecclayout->eccbytes, mtd->oobsize);
2040 		err = -EINVAL;
2041 		goto return_error;
2042 	}
2043 	nand_chip->ecc.layout = ecclayout;
2044 
2045 scan_tail:
2046 	/* second phase scan */
2047 	if (nand_scan_tail(mtd)) {
2048 		err = -ENXIO;
2049 		goto return_error;
2050 	}
2051 
2052 	ppdata.of_node = pdata->of_node;
2053 	mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
2054 				  pdata->nr_parts);
2055 
2056 	platform_set_drvdata(pdev, mtd);
2057 
2058 	return 0;
2059 
2060 return_error:
2061 	if (info->dma)
2062 		dma_release_channel(info->dma);
2063 	if (nand_chip->ecc.priv) {
2064 		nand_bch_free(nand_chip->ecc.priv);
2065 		nand_chip->ecc.priv = NULL;
2066 	}
2067 	return err;
2068 }
2069 
omap_nand_remove(struct platform_device * pdev)2070 static int omap_nand_remove(struct platform_device *pdev)
2071 {
2072 	struct mtd_info *mtd = platform_get_drvdata(pdev);
2073 	struct nand_chip *nand_chip = mtd->priv;
2074 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2075 							mtd);
2076 	if (nand_chip->ecc.priv) {
2077 		nand_bch_free(nand_chip->ecc.priv);
2078 		nand_chip->ecc.priv = NULL;
2079 	}
2080 	if (info->dma)
2081 		dma_release_channel(info->dma);
2082 	nand_release(mtd);
2083 	return 0;
2084 }
2085 
2086 static struct platform_driver omap_nand_driver = {
2087 	.probe		= omap_nand_probe,
2088 	.remove		= omap_nand_remove,
2089 	.driver		= {
2090 		.name	= DRIVER_NAME,
2091 		.owner	= THIS_MODULE,
2092 	},
2093 };
2094 
2095 module_platform_driver(omap_nand_driver);
2096 
2097 MODULE_ALIAS("platform:" DRIVER_NAME);
2098 MODULE_LICENSE("GPL");
2099 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2100