• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23 
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25 
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42 
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
49 
50 #define S3C2410_NFREG(x) (x)
51 
52 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN		(1<<15)
67 #define S3C2410_NFCONF_INITECC		(1<<12)
68 #define S3C2410_NFCONF_nFCE		(1<<11)
69 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
72 #define S3C2410_NFSTAT_BUSY		(1<<0)
73 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
76 #define S3C2440_NFCONT_INITECC		(1<<4)
77 #define S3C2440_NFCONT_nFCE		(1<<1)
78 #define S3C2440_NFCONT_ENABLE		(1<<0)
79 #define S3C2440_NFSTAT_READY		(1<<0)
80 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
82 #define S3C2412_NFCONT_nFCE0		(1<<1)
83 #define S3C2412_NFSTAT_READY		(1<<0)
84 
85 /* new oob placement block for use with hardware ecc generation
86  */
87 
88 static struct nand_ecclayout nand_hw_eccoob = {
89 	.eccbytes = 3,
90 	.eccpos = {0, 1, 2},
91 	.oobfree = {{8, 8}}
92 };
93 
94 /* controller and mtd information */
95 
96 struct s3c2410_nand_info;
97 
98 /**
99  * struct s3c2410_nand_mtd - driver MTD structure
100  * @mtd: The MTD instance to pass to the MTD layer.
101  * @chip: The NAND chip information.
102  * @set: The platform information supplied for this set of NAND chips.
103  * @info: Link back to the hardware information.
104  * @scan_res: The result from calling nand_scan_ident().
105 */
106 struct s3c2410_nand_mtd {
107 	struct mtd_info			mtd;
108 	struct nand_chip		chip;
109 	struct s3c2410_nand_set		*set;
110 	struct s3c2410_nand_info	*info;
111 	int				scan_res;
112 };
113 
114 enum s3c_cpu_type {
115 	TYPE_S3C2410,
116 	TYPE_S3C2412,
117 	TYPE_S3C2440,
118 };
119 
120 enum s3c_nand_clk_state {
121 	CLOCK_DISABLE	= 0,
122 	CLOCK_ENABLE,
123 	CLOCK_SUSPEND,
124 };
125 
126 /* overview of the s3c2410 nand state */
127 
128 /**
129  * struct s3c2410_nand_info - NAND controller state.
130  * @mtds: An array of MTD instances on this controoler.
131  * @platform: The platform data for this board.
132  * @device: The platform device we bound to.
133  * @clk: The clock resource for this controller.
134  * @regs: The area mapped for the hardware registers.
135  * @sel_reg: Pointer to the register controlling the NAND selection.
136  * @sel_bit: The bit in @sel_reg to select the NAND chip.
137  * @mtd_count: The number of MTDs created from this controller.
138  * @save_sel: The contents of @sel_reg to be saved over suspend.
139  * @clk_rate: The clock rate from @clk.
140  * @clk_state: The current clock state.
141  * @cpu_type: The exact type of this controller.
142  */
143 struct s3c2410_nand_info {
144 	/* mtd info */
145 	struct nand_hw_control		controller;
146 	struct s3c2410_nand_mtd		*mtds;
147 	struct s3c2410_platform_nand	*platform;
148 
149 	/* device info */
150 	struct device			*device;
151 	struct clk			*clk;
152 	void __iomem			*regs;
153 	void __iomem			*sel_reg;
154 	int				sel_bit;
155 	int				mtd_count;
156 	unsigned long			save_sel;
157 	unsigned long			clk_rate;
158 	enum s3c_nand_clk_state		clk_state;
159 
160 	enum s3c_cpu_type		cpu_type;
161 
162 #ifdef CONFIG_CPU_FREQ
163 	struct notifier_block	freq_transition;
164 #endif
165 };
166 
167 /* conversion functions */
168 
s3c2410_nand_mtd_toours(struct mtd_info * mtd)169 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
170 {
171 	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
172 }
173 
s3c2410_nand_mtd_toinfo(struct mtd_info * mtd)174 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
175 {
176 	return s3c2410_nand_mtd_toours(mtd)->info;
177 }
178 
to_nand_info(struct platform_device * dev)179 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
180 {
181 	return platform_get_drvdata(dev);
182 }
183 
to_nand_plat(struct platform_device * dev)184 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
185 {
186 	return dev_get_platdata(&dev->dev);
187 }
188 
allow_clk_suspend(struct s3c2410_nand_info * info)189 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
190 {
191 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
192 	return 1;
193 #else
194 	return 0;
195 #endif
196 }
197 
198 /**
199  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200  * @info: The controller instance.
201  * @new_state: State to which clock should be set.
202  */
s3c2410_nand_clk_set_state(struct s3c2410_nand_info * info,enum s3c_nand_clk_state new_state)203 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
204 		enum s3c_nand_clk_state new_state)
205 {
206 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
207 		return;
208 
209 	if (info->clk_state == CLOCK_ENABLE) {
210 		if (new_state != CLOCK_ENABLE)
211 			clk_disable_unprepare(info->clk);
212 	} else {
213 		if (new_state == CLOCK_ENABLE)
214 			clk_prepare_enable(info->clk);
215 	}
216 
217 	info->clk_state = new_state;
218 }
219 
220 /* timing calculations */
221 
222 #define NS_IN_KHZ 1000000
223 
224 /**
225  * s3c_nand_calc_rate - calculate timing data.
226  * @wanted: The cycle time in nanoseconds.
227  * @clk: The clock rate in kHz.
228  * @max: The maximum divider value.
229  *
230  * Calculate the timing value from the given parameters.
231  */
s3c_nand_calc_rate(int wanted,unsigned long clk,int max)232 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
233 {
234 	int result;
235 
236 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
237 
238 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
239 
240 	if (result > max) {
241 		pr_err("%d ns is too big for current clock rate %ld\n",
242 			wanted, clk);
243 		return -1;
244 	}
245 
246 	if (result < 1)
247 		result = 1;
248 
249 	return result;
250 }
251 
252 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
253 
254 /* controller setup */
255 
256 /**
257  * s3c2410_nand_setrate - setup controller timing information.
258  * @info: The controller instance.
259  *
260  * Given the information supplied by the platform, calculate and set
261  * the necessary timing registers in the hardware to generate the
262  * necessary timing cycles to the hardware.
263  */
s3c2410_nand_setrate(struct s3c2410_nand_info * info)264 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
265 {
266 	struct s3c2410_platform_nand *plat = info->platform;
267 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
268 	int tacls, twrph0, twrph1;
269 	unsigned long clkrate = clk_get_rate(info->clk);
270 	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
271 	unsigned long flags;
272 
273 	/* calculate the timing information for the controller */
274 
275 	info->clk_rate = clkrate;
276 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
277 
278 	if (plat != NULL) {
279 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
280 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
281 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
282 	} else {
283 		/* default timings */
284 		tacls = tacls_max;
285 		twrph0 = 8;
286 		twrph1 = 8;
287 	}
288 
289 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
290 		dev_err(info->device, "cannot get suitable timings\n");
291 		return -EINVAL;
292 	}
293 
294 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
295 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
296 						twrph1, to_ns(twrph1, clkrate));
297 
298 	switch (info->cpu_type) {
299 	case TYPE_S3C2410:
300 		mask = (S3C2410_NFCONF_TACLS(3) |
301 			S3C2410_NFCONF_TWRPH0(7) |
302 			S3C2410_NFCONF_TWRPH1(7));
303 		set = S3C2410_NFCONF_EN;
304 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
305 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
306 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
307 		break;
308 
309 	case TYPE_S3C2440:
310 	case TYPE_S3C2412:
311 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
312 			S3C2440_NFCONF_TWRPH0(7) |
313 			S3C2440_NFCONF_TWRPH1(7));
314 
315 		set = S3C2440_NFCONF_TACLS(tacls - 1);
316 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
317 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
318 		break;
319 
320 	default:
321 		BUG();
322 	}
323 
324 	local_irq_save(flags);
325 
326 	cfg = readl(info->regs + S3C2410_NFCONF);
327 	cfg &= ~mask;
328 	cfg |= set;
329 	writel(cfg, info->regs + S3C2410_NFCONF);
330 
331 	local_irq_restore(flags);
332 
333 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
334 
335 	return 0;
336 }
337 
338 /**
339  * s3c2410_nand_inithw - basic hardware initialisation
340  * @info: The hardware state.
341  *
342  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343  * to setup the hardware access speeds and set the controller to be enabled.
344 */
s3c2410_nand_inithw(struct s3c2410_nand_info * info)345 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
346 {
347 	int ret;
348 
349 	ret = s3c2410_nand_setrate(info);
350 	if (ret < 0)
351 		return ret;
352 
353 	switch (info->cpu_type) {
354 	case TYPE_S3C2410:
355 	default:
356 		break;
357 
358 	case TYPE_S3C2440:
359 	case TYPE_S3C2412:
360 		/* enable the controller and de-assert nFCE */
361 
362 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
363 	}
364 
365 	return 0;
366 }
367 
368 /**
369  * s3c2410_nand_select_chip - select the given nand chip
370  * @mtd: The MTD instance for this chip.
371  * @chip: The chip number.
372  *
373  * This is called by the MTD layer to either select a given chip for the
374  * @mtd instance, or to indicate that the access has finished and the
375  * chip can be de-selected.
376  *
377  * The routine ensures that the nFCE line is correctly setup, and any
378  * platform specific selection code is called to route nFCE to the specific
379  * chip.
380  */
s3c2410_nand_select_chip(struct mtd_info * mtd,int chip)381 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
382 {
383 	struct s3c2410_nand_info *info;
384 	struct s3c2410_nand_mtd *nmtd;
385 	struct nand_chip *this = mtd->priv;
386 	unsigned long cur;
387 
388 	nmtd = this->priv;
389 	info = nmtd->info;
390 
391 	if (chip != -1)
392 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
393 
394 	cur = readl(info->sel_reg);
395 
396 	if (chip == -1) {
397 		cur |= info->sel_bit;
398 	} else {
399 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
400 			dev_err(info->device, "invalid chip %d\n", chip);
401 			return;
402 		}
403 
404 		if (info->platform != NULL) {
405 			if (info->platform->select_chip != NULL)
406 				(info->platform->select_chip) (nmtd->set, chip);
407 		}
408 
409 		cur &= ~info->sel_bit;
410 	}
411 
412 	writel(cur, info->sel_reg);
413 
414 	if (chip == -1)
415 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
416 }
417 
418 /* s3c2410_nand_hwcontrol
419  *
420  * Issue command and address cycles to the chip
421 */
422 
s3c2410_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)423 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
424 				   unsigned int ctrl)
425 {
426 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
427 
428 	if (cmd == NAND_CMD_NONE)
429 		return;
430 
431 	if (ctrl & NAND_CLE)
432 		writeb(cmd, info->regs + S3C2410_NFCMD);
433 	else
434 		writeb(cmd, info->regs + S3C2410_NFADDR);
435 }
436 
437 /* command and control functions */
438 
s3c2440_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)439 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
440 				   unsigned int ctrl)
441 {
442 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
443 
444 	if (cmd == NAND_CMD_NONE)
445 		return;
446 
447 	if (ctrl & NAND_CLE)
448 		writeb(cmd, info->regs + S3C2440_NFCMD);
449 	else
450 		writeb(cmd, info->regs + S3C2440_NFADDR);
451 }
452 
453 /* s3c2410_nand_devready()
454  *
455  * returns 0 if the nand is busy, 1 if it is ready
456 */
457 
s3c2410_nand_devready(struct mtd_info * mtd)458 static int s3c2410_nand_devready(struct mtd_info *mtd)
459 {
460 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
461 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
462 }
463 
s3c2440_nand_devready(struct mtd_info * mtd)464 static int s3c2440_nand_devready(struct mtd_info *mtd)
465 {
466 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
468 }
469 
s3c2412_nand_devready(struct mtd_info * mtd)470 static int s3c2412_nand_devready(struct mtd_info *mtd)
471 {
472 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
473 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
474 }
475 
476 /* ECC handling functions */
477 
478 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
s3c2410_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)479 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
480 				     u_char *read_ecc, u_char *calc_ecc)
481 {
482 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483 	unsigned int diff0, diff1, diff2;
484 	unsigned int bit, byte;
485 
486 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
487 
488 	diff0 = read_ecc[0] ^ calc_ecc[0];
489 	diff1 = read_ecc[1] ^ calc_ecc[1];
490 	diff2 = read_ecc[2] ^ calc_ecc[2];
491 
492 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493 		 __func__, 3, read_ecc, 3, calc_ecc,
494 		 diff0, diff1, diff2);
495 
496 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
497 		return 0;		/* ECC is ok */
498 
499 	/* sometimes people do not think about using the ECC, so check
500 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501 	 * the error, on the assumption that this is an un-eccd page.
502 	 */
503 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
504 	    && info->platform->ignore_unset_ecc)
505 		return 0;
506 
507 	/* Can we correct this ECC (ie, one row and column change).
508 	 * Note, this is similar to the 256 error code on smartmedia */
509 
510 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
511 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
512 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
513 		/* calculate the bit position of the error */
514 
515 		bit  = ((diff2 >> 3) & 1) |
516 		       ((diff2 >> 4) & 2) |
517 		       ((diff2 >> 5) & 4);
518 
519 		/* calculate the byte position of the error */
520 
521 		byte = ((diff2 << 7) & 0x100) |
522 		       ((diff1 << 0) & 0x80)  |
523 		       ((diff1 << 1) & 0x40)  |
524 		       ((diff1 << 2) & 0x20)  |
525 		       ((diff1 << 3) & 0x10)  |
526 		       ((diff0 >> 4) & 0x08)  |
527 		       ((diff0 >> 3) & 0x04)  |
528 		       ((diff0 >> 2) & 0x02)  |
529 		       ((diff0 >> 1) & 0x01);
530 
531 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
532 			bit, byte);
533 
534 		dat[byte] ^= (1 << bit);
535 		return 1;
536 	}
537 
538 	/* if there is only one bit difference in the ECC, then
539 	 * one of only a row or column parity has changed, which
540 	 * means the error is most probably in the ECC itself */
541 
542 	diff0 |= (diff1 << 8);
543 	diff0 |= (diff2 << 16);
544 
545 	if ((diff0 & ~(1<<fls(diff0))) == 0)
546 		return 1;
547 
548 	return -1;
549 }
550 
551 /* ECC functions
552  *
553  * These allow the s3c2410 and s3c2440 to use the controller's ECC
554  * generator block to ECC the data as it passes through]
555 */
556 
s3c2410_nand_enable_hwecc(struct mtd_info * mtd,int mode)557 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
558 {
559 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
560 	unsigned long ctrl;
561 
562 	ctrl = readl(info->regs + S3C2410_NFCONF);
563 	ctrl |= S3C2410_NFCONF_INITECC;
564 	writel(ctrl, info->regs + S3C2410_NFCONF);
565 }
566 
s3c2412_nand_enable_hwecc(struct mtd_info * mtd,int mode)567 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
568 {
569 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
570 	unsigned long ctrl;
571 
572 	ctrl = readl(info->regs + S3C2440_NFCONT);
573 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
574 	       info->regs + S3C2440_NFCONT);
575 }
576 
s3c2440_nand_enable_hwecc(struct mtd_info * mtd,int mode)577 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
578 {
579 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
580 	unsigned long ctrl;
581 
582 	ctrl = readl(info->regs + S3C2440_NFCONT);
583 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
584 }
585 
s3c2410_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)586 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
587 				      u_char *ecc_code)
588 {
589 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
590 
591 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
592 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
593 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
594 
595 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
596 
597 	return 0;
598 }
599 
s3c2412_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)600 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
601 				      u_char *ecc_code)
602 {
603 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
604 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
605 
606 	ecc_code[0] = ecc;
607 	ecc_code[1] = ecc >> 8;
608 	ecc_code[2] = ecc >> 16;
609 
610 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
611 
612 	return 0;
613 }
614 
s3c2440_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)615 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
616 				      u_char *ecc_code)
617 {
618 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
619 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
620 
621 	ecc_code[0] = ecc;
622 	ecc_code[1] = ecc >> 8;
623 	ecc_code[2] = ecc >> 16;
624 
625 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
626 
627 	return 0;
628 }
629 #endif
630 
631 /* over-ride the standard functions for a little more speed. We can
632  * use read/write block to move the data buffers to/from the controller
633 */
634 
s3c2410_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)635 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
636 {
637 	struct nand_chip *this = mtd->priv;
638 	readsb(this->IO_ADDR_R, buf, len);
639 }
640 
s3c2440_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)641 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
642 {
643 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644 
645 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
646 
647 	/* cleanup if we've got less than a word to do */
648 	if (len & 3) {
649 		buf += len & ~3;
650 
651 		for (; len & 3; len--)
652 			*buf++ = readb(info->regs + S3C2440_NFDATA);
653 	}
654 }
655 
s3c2410_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)656 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
657 				   int len)
658 {
659 	struct nand_chip *this = mtd->priv;
660 	writesb(this->IO_ADDR_W, buf, len);
661 }
662 
s3c2440_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)663 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
664 				   int len)
665 {
666 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
667 
668 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
669 
670 	/* cleanup any fractional write */
671 	if (len & 3) {
672 		buf += len & ~3;
673 
674 		for (; len & 3; len--, buf++)
675 			writeb(*buf, info->regs + S3C2440_NFDATA);
676 	}
677 }
678 
679 /* cpufreq driver support */
680 
681 #ifdef CONFIG_CPU_FREQ
682 
s3c2410_nand_cpufreq_transition(struct notifier_block * nb,unsigned long val,void * data)683 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
684 					  unsigned long val, void *data)
685 {
686 	struct s3c2410_nand_info *info;
687 	unsigned long newclk;
688 
689 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
690 	newclk = clk_get_rate(info->clk);
691 
692 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
693 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
694 		s3c2410_nand_setrate(info);
695 	}
696 
697 	return 0;
698 }
699 
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)700 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
701 {
702 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
703 
704 	return cpufreq_register_notifier(&info->freq_transition,
705 					 CPUFREQ_TRANSITION_NOTIFIER);
706 }
707 
708 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)709 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
710 {
711 	cpufreq_unregister_notifier(&info->freq_transition,
712 				    CPUFREQ_TRANSITION_NOTIFIER);
713 }
714 
715 #else
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)716 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
717 {
718 	return 0;
719 }
720 
721 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)722 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
723 {
724 }
725 #endif
726 
727 /* device management functions */
728 
s3c24xx_nand_remove(struct platform_device * pdev)729 static int s3c24xx_nand_remove(struct platform_device *pdev)
730 {
731 	struct s3c2410_nand_info *info = to_nand_info(pdev);
732 
733 	if (info == NULL)
734 		return 0;
735 
736 	s3c2410_nand_cpufreq_deregister(info);
737 
738 	/* Release all our mtds  and their partitions, then go through
739 	 * freeing the resources used
740 	 */
741 
742 	if (info->mtds != NULL) {
743 		struct s3c2410_nand_mtd *ptr = info->mtds;
744 		int mtdno;
745 
746 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
747 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
748 			nand_release(&ptr->mtd);
749 		}
750 	}
751 
752 	/* free the common resources */
753 
754 	if (!IS_ERR(info->clk))
755 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
756 
757 	return 0;
758 }
759 
s3c2410_nand_add_partition(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * mtd,struct s3c2410_nand_set * set)760 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
761 				      struct s3c2410_nand_mtd *mtd,
762 				      struct s3c2410_nand_set *set)
763 {
764 	if (set) {
765 		mtd->mtd.name = set->name;
766 
767 		return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
768 					 set->partitions, set->nr_partitions);
769 	}
770 
771 	return -ENODEV;
772 }
773 
774 /**
775  * s3c2410_nand_init_chip - initialise a single instance of an chip
776  * @info: The base NAND controller the chip is on.
777  * @nmtd: The new controller MTD instance to fill in.
778  * @set: The information passed from the board specific platform data.
779  *
780  * Initialise the given @nmtd from the information in @info and @set. This
781  * readies the structure for use with the MTD layer functions by ensuring
782  * all pointers are setup and the necessary control routines selected.
783  */
s3c2410_nand_init_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd,struct s3c2410_nand_set * set)784 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
785 				   struct s3c2410_nand_mtd *nmtd,
786 				   struct s3c2410_nand_set *set)
787 {
788 	struct nand_chip *chip = &nmtd->chip;
789 	void __iomem *regs = info->regs;
790 
791 	chip->write_buf    = s3c2410_nand_write_buf;
792 	chip->read_buf     = s3c2410_nand_read_buf;
793 	chip->select_chip  = s3c2410_nand_select_chip;
794 	chip->chip_delay   = 50;
795 	chip->priv	   = nmtd;
796 	chip->options	   = set->options;
797 	chip->controller   = &info->controller;
798 
799 	switch (info->cpu_type) {
800 	case TYPE_S3C2410:
801 		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
802 		info->sel_reg   = regs + S3C2410_NFCONF;
803 		info->sel_bit	= S3C2410_NFCONF_nFCE;
804 		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
805 		chip->dev_ready = s3c2410_nand_devready;
806 		break;
807 
808 	case TYPE_S3C2440:
809 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
810 		info->sel_reg   = regs + S3C2440_NFCONT;
811 		info->sel_bit	= S3C2440_NFCONT_nFCE;
812 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
813 		chip->dev_ready = s3c2440_nand_devready;
814 		chip->read_buf  = s3c2440_nand_read_buf;
815 		chip->write_buf	= s3c2440_nand_write_buf;
816 		break;
817 
818 	case TYPE_S3C2412:
819 		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
820 		info->sel_reg   = regs + S3C2440_NFCONT;
821 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
822 		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
823 		chip->dev_ready = s3c2412_nand_devready;
824 
825 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
826 			dev_info(info->device, "System booted from NAND\n");
827 
828 		break;
829 	}
830 
831 	chip->IO_ADDR_R = chip->IO_ADDR_W;
832 
833 	nmtd->info	   = info;
834 	nmtd->mtd.priv	   = chip;
835 	nmtd->mtd.owner    = THIS_MODULE;
836 	nmtd->set	   = set;
837 
838 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
839 	chip->ecc.calculate = s3c2410_nand_calculate_ecc;
840 	chip->ecc.correct   = s3c2410_nand_correct_data;
841 	chip->ecc.mode	    = NAND_ECC_HW;
842 	chip->ecc.strength  = 1;
843 
844 	switch (info->cpu_type) {
845 	case TYPE_S3C2410:
846 		chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
847 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
848 		break;
849 
850 	case TYPE_S3C2412:
851 		chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
852 		chip->ecc.calculate = s3c2412_nand_calculate_ecc;
853 		break;
854 
855 	case TYPE_S3C2440:
856 		chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
857 		chip->ecc.calculate = s3c2440_nand_calculate_ecc;
858 		break;
859 	}
860 #else
861 	chip->ecc.mode	    = NAND_ECC_SOFT;
862 #endif
863 
864 	if (set->ecc_layout != NULL)
865 		chip->ecc.layout = set->ecc_layout;
866 
867 	if (set->disable_ecc)
868 		chip->ecc.mode	= NAND_ECC_NONE;
869 
870 	switch (chip->ecc.mode) {
871 	case NAND_ECC_NONE:
872 		dev_info(info->device, "NAND ECC disabled\n");
873 		break;
874 	case NAND_ECC_SOFT:
875 		dev_info(info->device, "NAND soft ECC\n");
876 		break;
877 	case NAND_ECC_HW:
878 		dev_info(info->device, "NAND hardware ECC\n");
879 		break;
880 	default:
881 		dev_info(info->device, "NAND ECC UNKNOWN\n");
882 		break;
883 	}
884 
885 	/* If you use u-boot BBT creation code, specifying this flag will
886 	 * let the kernel fish out the BBT from the NAND, and also skip the
887 	 * full NAND scan that can take 1/2s or so. Little things... */
888 	if (set->flash_bbt) {
889 		chip->bbt_options |= NAND_BBT_USE_FLASH;
890 		chip->options |= NAND_SKIP_BBTSCAN;
891 	}
892 }
893 
894 /**
895  * s3c2410_nand_update_chip - post probe update
896  * @info: The controller instance.
897  * @nmtd: The driver version of the MTD instance.
898  *
899  * This routine is called after the chip probe has successfully completed
900  * and the relevant per-chip information updated. This call ensure that
901  * we update the internal state accordingly.
902  *
903  * The internal state is currently limited to the ECC state information.
904 */
s3c2410_nand_update_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd)905 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
906 				     struct s3c2410_nand_mtd *nmtd)
907 {
908 	struct nand_chip *chip = &nmtd->chip;
909 
910 	dev_dbg(info->device, "chip %p => page shift %d\n",
911 		chip, chip->page_shift);
912 
913 	if (chip->ecc.mode != NAND_ECC_HW)
914 		return;
915 
916 		/* change the behaviour depending on whether we are using
917 		 * the large or small page nand device */
918 
919 	if (chip->page_shift > 10) {
920 		chip->ecc.size	    = 256;
921 		chip->ecc.bytes	    = 3;
922 	} else {
923 		chip->ecc.size	    = 512;
924 		chip->ecc.bytes	    = 3;
925 		chip->ecc.layout    = &nand_hw_eccoob;
926 	}
927 }
928 
929 /* s3c24xx_nand_probe
930  *
931  * called by device layer when it finds a device matching
932  * one our driver can handled. This code checks to see if
933  * it can allocate all necessary resources then calls the
934  * nand layer to look for devices
935 */
s3c24xx_nand_probe(struct platform_device * pdev)936 static int s3c24xx_nand_probe(struct platform_device *pdev)
937 {
938 	struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
939 	enum s3c_cpu_type cpu_type;
940 	struct s3c2410_nand_info *info;
941 	struct s3c2410_nand_mtd *nmtd;
942 	struct s3c2410_nand_set *sets;
943 	struct resource *res;
944 	int err = 0;
945 	int size;
946 	int nr_sets;
947 	int setno;
948 
949 	cpu_type = platform_get_device_id(pdev)->driver_data;
950 
951 	pr_debug("s3c2410_nand_probe(%p)\n", pdev);
952 
953 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
954 	if (info == NULL) {
955 		err = -ENOMEM;
956 		goto exit_error;
957 	}
958 
959 	platform_set_drvdata(pdev, info);
960 
961 	spin_lock_init(&info->controller.lock);
962 	init_waitqueue_head(&info->controller.wq);
963 
964 	/* get the clock source and enable it */
965 
966 	info->clk = devm_clk_get(&pdev->dev, "nand");
967 	if (IS_ERR(info->clk)) {
968 		dev_err(&pdev->dev, "failed to get clock\n");
969 		err = -ENOENT;
970 		goto exit_error;
971 	}
972 
973 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
974 
975 	/* allocate and map the resource */
976 
977 	/* currently we assume we have the one resource */
978 	res = pdev->resource;
979 	size = resource_size(res);
980 
981 	info->device	= &pdev->dev;
982 	info->platform	= plat;
983 	info->cpu_type	= cpu_type;
984 
985 	info->regs = devm_ioremap_resource(&pdev->dev, res);
986 	if (IS_ERR(info->regs)) {
987 		err = PTR_ERR(info->regs);
988 		goto exit_error;
989 	}
990 
991 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
992 
993 	/* initialise the hardware */
994 
995 	err = s3c2410_nand_inithw(info);
996 	if (err != 0)
997 		goto exit_error;
998 
999 	sets = (plat != NULL) ? plat->sets : NULL;
1000 	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1001 
1002 	info->mtd_count = nr_sets;
1003 
1004 	/* allocate our information */
1005 
1006 	size = nr_sets * sizeof(*info->mtds);
1007 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1008 	if (info->mtds == NULL) {
1009 		err = -ENOMEM;
1010 		goto exit_error;
1011 	}
1012 
1013 	/* initialise all possible chips */
1014 
1015 	nmtd = info->mtds;
1016 
1017 	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1018 		pr_debug("initialising set %d (%p, info %p)\n",
1019 			 setno, nmtd, info);
1020 
1021 		s3c2410_nand_init_chip(info, nmtd, sets);
1022 
1023 		nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1024 						 (sets) ? sets->nr_chips : 1,
1025 						 NULL);
1026 
1027 		if (nmtd->scan_res == 0) {
1028 			s3c2410_nand_update_chip(info, nmtd);
1029 			nand_scan_tail(&nmtd->mtd);
1030 			s3c2410_nand_add_partition(info, nmtd, sets);
1031 		}
1032 
1033 		if (sets != NULL)
1034 			sets++;
1035 	}
1036 
1037 	err = s3c2410_nand_cpufreq_register(info);
1038 	if (err < 0) {
1039 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1040 		goto exit_error;
1041 	}
1042 
1043 	if (allow_clk_suspend(info)) {
1044 		dev_info(&pdev->dev, "clock idle support enabled\n");
1045 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1046 	}
1047 
1048 	pr_debug("initialised ok\n");
1049 	return 0;
1050 
1051  exit_error:
1052 	s3c24xx_nand_remove(pdev);
1053 
1054 	if (err == 0)
1055 		err = -EINVAL;
1056 	return err;
1057 }
1058 
1059 /* PM Support */
1060 #ifdef CONFIG_PM
1061 
s3c24xx_nand_suspend(struct platform_device * dev,pm_message_t pm)1062 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1063 {
1064 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1065 
1066 	if (info) {
1067 		info->save_sel = readl(info->sel_reg);
1068 
1069 		/* For the moment, we must ensure nFCE is high during
1070 		 * the time we are suspended. This really should be
1071 		 * handled by suspending the MTDs we are using, but
1072 		 * that is currently not the case. */
1073 
1074 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1075 
1076 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
s3c24xx_nand_resume(struct platform_device * dev)1082 static int s3c24xx_nand_resume(struct platform_device *dev)
1083 {
1084 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1085 	unsigned long sel;
1086 
1087 	if (info) {
1088 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1089 		s3c2410_nand_inithw(info);
1090 
1091 		/* Restore the state of the nFCE line. */
1092 
1093 		sel = readl(info->sel_reg);
1094 		sel &= ~info->sel_bit;
1095 		sel |= info->save_sel & info->sel_bit;
1096 		writel(sel, info->sel_reg);
1097 
1098 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 #else
1105 #define s3c24xx_nand_suspend NULL
1106 #define s3c24xx_nand_resume NULL
1107 #endif
1108 
1109 /* driver device registration */
1110 
1111 static struct platform_device_id s3c24xx_driver_ids[] = {
1112 	{
1113 		.name		= "s3c2410-nand",
1114 		.driver_data	= TYPE_S3C2410,
1115 	}, {
1116 		.name		= "s3c2440-nand",
1117 		.driver_data	= TYPE_S3C2440,
1118 	}, {
1119 		.name		= "s3c2412-nand",
1120 		.driver_data	= TYPE_S3C2412,
1121 	}, {
1122 		.name		= "s3c6400-nand",
1123 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1124 	},
1125 	{ }
1126 };
1127 
1128 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1129 
1130 static struct platform_driver s3c24xx_nand_driver = {
1131 	.probe		= s3c24xx_nand_probe,
1132 	.remove		= s3c24xx_nand_remove,
1133 	.suspend	= s3c24xx_nand_suspend,
1134 	.resume		= s3c24xx_nand_resume,
1135 	.id_table	= s3c24xx_driver_ids,
1136 	.driver		= {
1137 		.name	= "s3c24xx-nand",
1138 		.owner	= THIS_MODULE,
1139 	},
1140 };
1141 
1142 module_platform_driver(s3c24xx_nand_driver);
1143 
1144 MODULE_LICENSE("GPL");
1145 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1146 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1147