1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)44 u8 can_dlc2len(u8 can_dlc)
45 {
46 return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)62 u8 can_len2dlc(u8 len)
63 {
64 if (unlikely(len > 64))
65 return 0xF;
66
67 return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73
74 /*
75 * Bit-timing calculation derived from:
76 *
77 * Code based on LinCAN sources and H8S2638 project
78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79 * Copyright 2005 Stanislav Marek
80 * email: pisa@cmp.felk.cvut.cz
81 *
82 * Calculates proper bit-timing parameters for a specified bit-rate
83 * and sample-point, which can then be used to set the bit-timing
84 * registers of the CAN controller. You can find more information
85 * in the header file linux/can/netlink.h.
86 */
can_update_spt(const struct can_bittiming_const * btc,int sampl_pt,int tseg,int * tseg1,int * tseg2)87 static int can_update_spt(const struct can_bittiming_const *btc,
88 int sampl_pt, int tseg, int *tseg1, int *tseg2)
89 {
90 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91 if (*tseg2 < btc->tseg2_min)
92 *tseg2 = btc->tseg2_min;
93 if (*tseg2 > btc->tseg2_max)
94 *tseg2 = btc->tseg2_max;
95 *tseg1 = tseg - *tseg2;
96 if (*tseg1 > btc->tseg1_max) {
97 *tseg1 = btc->tseg1_max;
98 *tseg2 = tseg - *tseg1;
99 }
100 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101 }
102
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
104 const struct can_bittiming_const *btc)
105 {
106 struct can_priv *priv = netdev_priv(dev);
107 long best_error = 1000000000, error = 0;
108 int best_tseg = 0, best_brp = 0, brp = 0;
109 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110 int spt_error = 1000, spt = 0, sampl_pt;
111 long rate;
112 u64 v64;
113
114 /* Use CiA recommended sample points */
115 if (bt->sample_point) {
116 sampl_pt = bt->sample_point;
117 } else {
118 if (bt->bitrate > 800000)
119 sampl_pt = 750;
120 else if (bt->bitrate > 500000)
121 sampl_pt = 800;
122 else
123 sampl_pt = 875;
124 }
125
126 /* tseg even = round down, odd = round up */
127 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
128 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
129 tsegall = 1 + tseg / 2;
130 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
131 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
132 /* chose brp step which is possible in system */
133 brp = (brp / btc->brp_inc) * btc->brp_inc;
134 if ((brp < btc->brp_min) || (brp > btc->brp_max))
135 continue;
136 rate = priv->clock.freq / (brp * tsegall);
137 error = bt->bitrate - rate;
138 /* tseg brp biterror */
139 if (error < 0)
140 error = -error;
141 if (error > best_error)
142 continue;
143 best_error = error;
144 if (error == 0) {
145 spt = can_update_spt(btc, sampl_pt, tseg / 2,
146 &tseg1, &tseg2);
147 error = sampl_pt - spt;
148 if (error < 0)
149 error = -error;
150 if (error > spt_error)
151 continue;
152 spt_error = error;
153 }
154 best_tseg = tseg / 2;
155 best_brp = brp;
156 if (error == 0)
157 break;
158 }
159
160 if (best_error) {
161 /* Error in one-tenth of a percent */
162 error = (best_error * 1000) / bt->bitrate;
163 if (error > CAN_CALC_MAX_ERROR) {
164 netdev_err(dev,
165 "bitrate error %ld.%ld%% too high\n",
166 error / 10, error % 10);
167 return -EDOM;
168 } else {
169 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170 error / 10, error % 10);
171 }
172 }
173
174 /* real sample point */
175 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176 &tseg1, &tseg2);
177
178 v64 = (u64)best_brp * 1000000000UL;
179 do_div(v64, priv->clock.freq);
180 bt->tq = (u32)v64;
181 bt->prop_seg = tseg1 / 2;
182 bt->phase_seg1 = tseg1 - bt->prop_seg;
183 bt->phase_seg2 = tseg2;
184
185 /* check for sjw user settings */
186 if (!bt->sjw || !btc->sjw_max)
187 bt->sjw = 1;
188 else {
189 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190 if (bt->sjw > btc->sjw_max)
191 bt->sjw = btc->sjw_max;
192 /* bt->sjw must not be higher than tseg2 */
193 if (tseg2 < bt->sjw)
194 bt->sjw = tseg2;
195 }
196
197 bt->brp = best_brp;
198 /* real bit-rate */
199 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201 return 0;
202 }
203 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205 const struct can_bittiming_const *btc)
206 {
207 netdev_err(dev, "bit-timing calculation not available\n");
208 return -EINVAL;
209 }
210 #endif /* CONFIG_CAN_CALC_BITTIMING */
211
212 /*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219 const struct can_bittiming_const *btc)
220 {
221 struct can_priv *priv = netdev_priv(dev);
222 int tseg1, alltseg;
223 u64 brp64;
224
225 tseg1 = bt->prop_seg + bt->phase_seg1;
226 if (!bt->sjw)
227 bt->sjw = 1;
228 if (bt->sjw > btc->sjw_max ||
229 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231 return -ERANGE;
232
233 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234 if (btc->brp_inc > 1)
235 do_div(brp64, btc->brp_inc);
236 brp64 += 500000000UL - 1;
237 do_div(brp64, 1000000000UL); /* the practicable BRP */
238 if (btc->brp_inc > 1)
239 brp64 *= btc->brp_inc;
240 bt->brp = (u32)brp64;
241
242 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243 return -EINVAL;
244
245 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249 return 0;
250 }
251
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253 const struct can_bittiming_const *btc)
254 {
255 int err;
256
257 /* Check if the CAN device has bit-timing parameters */
258 if (!btc)
259 return -EOPNOTSUPP;
260
261 /*
262 * Depending on the given can_bittiming parameter structure the CAN
263 * timing parameters are calculated based on the provided bitrate OR
264 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265 * provided directly which are then checked and fixed up.
266 */
267 if (!bt->tq && bt->bitrate)
268 err = can_calc_bittiming(dev, bt, btc);
269 else if (bt->tq && !bt->bitrate)
270 err = can_fixup_bittiming(dev, bt, btc);
271 else
272 err = -EINVAL;
273
274 return err;
275 }
276
277 /*
278 * Local echo of CAN messages
279 *
280 * CAN network devices *should* support a local echo functionality
281 * (see Documentation/networking/can.txt). To test the handling of CAN
282 * interfaces that do not support the local echo both driver types are
283 * implemented. In the case that the driver does not support the echo
284 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285 * to perform the echo as a fallback solution.
286 */
can_flush_echo_skb(struct net_device * dev)287 static void can_flush_echo_skb(struct net_device *dev)
288 {
289 struct can_priv *priv = netdev_priv(dev);
290 struct net_device_stats *stats = &dev->stats;
291 int i;
292
293 for (i = 0; i < priv->echo_skb_max; i++) {
294 if (priv->echo_skb[i]) {
295 kfree_skb(priv->echo_skb[i]);
296 priv->echo_skb[i] = NULL;
297 stats->tx_dropped++;
298 stats->tx_aborted_errors++;
299 }
300 }
301 }
302
303 /*
304 * Put the skb on the stack to be looped backed locally lateron
305 *
306 * The function is typically called in the start_xmit function
307 * of the device driver. The driver must protect access to
308 * priv->echo_skb, if necessary.
309 */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)310 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311 unsigned int idx)
312 {
313 struct can_priv *priv = netdev_priv(dev);
314
315 BUG_ON(idx >= priv->echo_skb_max);
316
317 /* check flag whether this packet has to be looped back */
318 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319 (skb->protocol != htons(ETH_P_CAN) &&
320 skb->protocol != htons(ETH_P_CANFD))) {
321 kfree_skb(skb);
322 return;
323 }
324
325 if (!priv->echo_skb[idx]) {
326
327 skb = can_create_echo_skb(skb);
328 if (!skb)
329 return;
330
331 /* make settings for echo to reduce code in irq context */
332 skb->pkt_type = PACKET_BROADCAST;
333 skb->ip_summed = CHECKSUM_UNNECESSARY;
334 skb->dev = dev;
335
336 /* save this skb for tx interrupt echo handling */
337 priv->echo_skb[idx] = skb;
338 } else {
339 /* locking problem with netif_stop_queue() ?? */
340 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341 kfree_skb(skb);
342 }
343 }
344 EXPORT_SYMBOL_GPL(can_put_echo_skb);
345
346 /*
347 * Get the skb from the stack and loop it back locally
348 *
349 * The function is typically called when the TX done interrupt
350 * is handled in the device driver. The driver must protect
351 * access to priv->echo_skb, if necessary.
352 */
can_get_echo_skb(struct net_device * dev,unsigned int idx)353 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354 {
355 struct can_priv *priv = netdev_priv(dev);
356
357 BUG_ON(idx >= priv->echo_skb_max);
358
359 if (priv->echo_skb[idx]) {
360 struct sk_buff *skb = priv->echo_skb[idx];
361 struct can_frame *cf = (struct can_frame *)skb->data;
362 u8 dlc = cf->can_dlc;
363
364 netif_rx(priv->echo_skb[idx]);
365 priv->echo_skb[idx] = NULL;
366
367 return dlc;
368 }
369
370 return 0;
371 }
372 EXPORT_SYMBOL_GPL(can_get_echo_skb);
373
374 /*
375 * Remove the skb from the stack and free it.
376 *
377 * The function is typically called when TX failed.
378 */
can_free_echo_skb(struct net_device * dev,unsigned int idx)379 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380 {
381 struct can_priv *priv = netdev_priv(dev);
382
383 BUG_ON(idx >= priv->echo_skb_max);
384
385 if (priv->echo_skb[idx]) {
386 dev_kfree_skb_any(priv->echo_skb[idx]);
387 priv->echo_skb[idx] = NULL;
388 }
389 }
390 EXPORT_SYMBOL_GPL(can_free_echo_skb);
391
392 /*
393 * CAN device restart for bus-off recovery
394 */
can_restart(struct net_device * dev)395 static void can_restart(struct net_device *dev)
396 {
397 struct can_priv *priv = netdev_priv(dev);
398 struct net_device_stats *stats = &dev->stats;
399 struct sk_buff *skb;
400 struct can_frame *cf;
401 int err;
402
403 BUG_ON(netif_carrier_ok(dev));
404
405 /*
406 * No synchronization needed because the device is bus-off and
407 * no messages can come in or go out.
408 */
409 can_flush_echo_skb(dev);
410
411 /* send restart message upstream */
412 skb = alloc_can_err_skb(dev, &cf);
413 if (skb == NULL) {
414 err = -ENOMEM;
415 goto restart;
416 }
417 cf->can_id |= CAN_ERR_RESTARTED;
418
419 netif_rx(skb);
420
421 stats->rx_packets++;
422 stats->rx_bytes += cf->can_dlc;
423
424 restart:
425 netdev_dbg(dev, "restarted\n");
426 priv->can_stats.restarts++;
427
428 /* Now restart the device */
429 err = priv->do_set_mode(dev, CAN_MODE_START);
430
431 netif_carrier_on(dev);
432 if (err)
433 netdev_err(dev, "Error %d during restart", err);
434 }
435
can_restart_work(struct work_struct * work)436 static void can_restart_work(struct work_struct *work)
437 {
438 struct delayed_work *dwork = to_delayed_work(work);
439 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
440
441 can_restart(priv->dev);
442 }
443
can_restart_now(struct net_device * dev)444 int can_restart_now(struct net_device *dev)
445 {
446 struct can_priv *priv = netdev_priv(dev);
447
448 /*
449 * A manual restart is only permitted if automatic restart is
450 * disabled and the device is in the bus-off state
451 */
452 if (priv->restart_ms)
453 return -EINVAL;
454 if (priv->state != CAN_STATE_BUS_OFF)
455 return -EBUSY;
456
457 cancel_delayed_work_sync(&priv->restart_work);
458 can_restart(dev);
459
460 return 0;
461 }
462
463 /*
464 * CAN bus-off
465 *
466 * This functions should be called when the device goes bus-off to
467 * tell the netif layer that no more packets can be sent or received.
468 * If enabled, a timer is started to trigger bus-off recovery.
469 */
can_bus_off(struct net_device * dev)470 void can_bus_off(struct net_device *dev)
471 {
472 struct can_priv *priv = netdev_priv(dev);
473
474 netdev_dbg(dev, "bus-off\n");
475
476 netif_carrier_off(dev);
477 priv->can_stats.bus_off++;
478
479 if (priv->restart_ms)
480 schedule_delayed_work(&priv->restart_work,
481 msecs_to_jiffies(priv->restart_ms));
482 }
483 EXPORT_SYMBOL_GPL(can_bus_off);
484
can_setup(struct net_device * dev)485 static void can_setup(struct net_device *dev)
486 {
487 dev->type = ARPHRD_CAN;
488 dev->mtu = CAN_MTU;
489 dev->hard_header_len = 0;
490 dev->addr_len = 0;
491 dev->tx_queue_len = 10;
492
493 /* New-style flags. */
494 dev->flags = IFF_NOARP;
495 dev->features = NETIF_F_HW_CSUM;
496 }
497
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)498 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
499 {
500 struct sk_buff *skb;
501
502 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
503 sizeof(struct can_frame));
504 if (unlikely(!skb))
505 return NULL;
506
507 skb->protocol = htons(ETH_P_CAN);
508 skb->pkt_type = PACKET_BROADCAST;
509 skb->ip_summed = CHECKSUM_UNNECESSARY;
510
511 skb_reset_mac_header(skb);
512 skb_reset_network_header(skb);
513 skb_reset_transport_header(skb);
514
515 can_skb_reserve(skb);
516 can_skb_prv(skb)->ifindex = dev->ifindex;
517
518 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
519 memset(*cf, 0, sizeof(struct can_frame));
520
521 return skb;
522 }
523 EXPORT_SYMBOL_GPL(alloc_can_skb);
524
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)525 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
526 struct canfd_frame **cfd)
527 {
528 struct sk_buff *skb;
529
530 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
531 sizeof(struct canfd_frame));
532 if (unlikely(!skb))
533 return NULL;
534
535 skb->protocol = htons(ETH_P_CANFD);
536 skb->pkt_type = PACKET_BROADCAST;
537 skb->ip_summed = CHECKSUM_UNNECESSARY;
538
539 skb_reset_mac_header(skb);
540 skb_reset_network_header(skb);
541 skb_reset_transport_header(skb);
542
543 can_skb_reserve(skb);
544 can_skb_prv(skb)->ifindex = dev->ifindex;
545
546 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
547 memset(*cfd, 0, sizeof(struct canfd_frame));
548
549 return skb;
550 }
551 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
552
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)553 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
554 {
555 struct sk_buff *skb;
556
557 skb = alloc_can_skb(dev, cf);
558 if (unlikely(!skb))
559 return NULL;
560
561 (*cf)->can_id = CAN_ERR_FLAG;
562 (*cf)->can_dlc = CAN_ERR_DLC;
563
564 return skb;
565 }
566 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
567
568 /*
569 * Allocate and setup space for the CAN network device
570 */
alloc_candev(int sizeof_priv,unsigned int echo_skb_max)571 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
572 {
573 struct net_device *dev;
574 struct can_priv *priv;
575 int size;
576
577 if (echo_skb_max)
578 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
579 echo_skb_max * sizeof(struct sk_buff *);
580 else
581 size = sizeof_priv;
582
583 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
584 if (!dev)
585 return NULL;
586
587 priv = netdev_priv(dev);
588 priv->dev = dev;
589
590 if (echo_skb_max) {
591 priv->echo_skb_max = echo_skb_max;
592 priv->echo_skb = (void *)priv +
593 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
594 }
595
596 priv->state = CAN_STATE_STOPPED;
597
598 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
599
600 return dev;
601 }
602 EXPORT_SYMBOL_GPL(alloc_candev);
603
604 /*
605 * Free space of the CAN network device
606 */
free_candev(struct net_device * dev)607 void free_candev(struct net_device *dev)
608 {
609 free_netdev(dev);
610 }
611 EXPORT_SYMBOL_GPL(free_candev);
612
613 /*
614 * changing MTU and control mode for CAN/CANFD devices
615 */
can_change_mtu(struct net_device * dev,int new_mtu)616 int can_change_mtu(struct net_device *dev, int new_mtu)
617 {
618 struct can_priv *priv = netdev_priv(dev);
619
620 /* Do not allow changing the MTU while running */
621 if (dev->flags & IFF_UP)
622 return -EBUSY;
623
624 /* allow change of MTU according to the CANFD ability of the device */
625 switch (new_mtu) {
626 case CAN_MTU:
627 /* 'CANFD-only' controllers can not switch to CAN_MTU */
628 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
629 return -EINVAL;
630
631 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
632 break;
633
634 case CANFD_MTU:
635 /* check for potential CANFD ability */
636 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
637 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
638 return -EINVAL;
639
640 priv->ctrlmode |= CAN_CTRLMODE_FD;
641 break;
642
643 default:
644 return -EINVAL;
645 }
646
647 dev->mtu = new_mtu;
648 return 0;
649 }
650 EXPORT_SYMBOL_GPL(can_change_mtu);
651
652 /*
653 * Common open function when the device gets opened.
654 *
655 * This function should be called in the open function of the device
656 * driver.
657 */
open_candev(struct net_device * dev)658 int open_candev(struct net_device *dev)
659 {
660 struct can_priv *priv = netdev_priv(dev);
661
662 if (!priv->bittiming.bitrate) {
663 netdev_err(dev, "bit-timing not yet defined\n");
664 return -EINVAL;
665 }
666
667 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
668 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
669 (!priv->data_bittiming.bitrate ||
670 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
671 netdev_err(dev, "incorrect/missing data bit-timing\n");
672 return -EINVAL;
673 }
674
675 /* Switch carrier on if device was stopped while in bus-off state */
676 if (!netif_carrier_ok(dev))
677 netif_carrier_on(dev);
678
679 return 0;
680 }
681 EXPORT_SYMBOL_GPL(open_candev);
682
683 /*
684 * Common close function for cleanup before the device gets closed.
685 *
686 * This function should be called in the close function of the device
687 * driver.
688 */
close_candev(struct net_device * dev)689 void close_candev(struct net_device *dev)
690 {
691 struct can_priv *priv = netdev_priv(dev);
692
693 cancel_delayed_work_sync(&priv->restart_work);
694 can_flush_echo_skb(dev);
695 }
696 EXPORT_SYMBOL_GPL(close_candev);
697
698 /*
699 * CAN netlink interface
700 */
701 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
702 [IFLA_CAN_STATE] = { .type = NLA_U32 },
703 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
704 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
705 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
706 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
707 [IFLA_CAN_BITTIMING_CONST]
708 = { .len = sizeof(struct can_bittiming_const) },
709 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
710 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
711 [IFLA_CAN_DATA_BITTIMING]
712 = { .len = sizeof(struct can_bittiming) },
713 [IFLA_CAN_DATA_BITTIMING_CONST]
714 = { .len = sizeof(struct can_bittiming_const) },
715 };
716
can_validate(struct nlattr * tb[],struct nlattr * data[])717 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
718 {
719 bool is_can_fd = false;
720
721 /* Make sure that valid CAN FD configurations always consist of
722 * - nominal/arbitration bittiming
723 * - data bittiming
724 * - control mode with CAN_CTRLMODE_FD set
725 */
726
727 if (!data)
728 return 0;
729
730 if (data[IFLA_CAN_CTRLMODE]) {
731 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
732
733 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
734 }
735
736 if (is_can_fd) {
737 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
738 return -EOPNOTSUPP;
739 }
740
741 if (data[IFLA_CAN_DATA_BITTIMING]) {
742 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
743 return -EOPNOTSUPP;
744 }
745
746 return 0;
747 }
748
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])749 static int can_changelink(struct net_device *dev,
750 struct nlattr *tb[], struct nlattr *data[])
751 {
752 struct can_priv *priv = netdev_priv(dev);
753 int err;
754
755 /* We need synchronization with dev->stop() */
756 ASSERT_RTNL();
757
758 if (data[IFLA_CAN_BITTIMING]) {
759 struct can_bittiming bt;
760
761 /* Do not allow changing bittiming while running */
762 if (dev->flags & IFF_UP)
763 return -EBUSY;
764 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
765 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
766 if (err)
767 return err;
768 memcpy(&priv->bittiming, &bt, sizeof(bt));
769
770 if (priv->do_set_bittiming) {
771 /* Finally, set the bit-timing registers */
772 err = priv->do_set_bittiming(dev);
773 if (err)
774 return err;
775 }
776 }
777
778 if (data[IFLA_CAN_CTRLMODE]) {
779 struct can_ctrlmode *cm;
780 u32 ctrlstatic;
781 u32 maskedflags;
782
783 /* Do not allow changing controller mode while running */
784 if (dev->flags & IFF_UP)
785 return -EBUSY;
786 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
787 ctrlstatic = priv->ctrlmode_static;
788 maskedflags = cm->flags & cm->mask;
789
790 /* check whether provided bits are allowed to be passed */
791 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
792 return -EOPNOTSUPP;
793
794 /* do not check for static fd-non-iso if 'fd' is disabled */
795 if (!(maskedflags & CAN_CTRLMODE_FD))
796 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
797
798 /* make sure static options are provided by configuration */
799 if ((maskedflags & ctrlstatic) != ctrlstatic)
800 return -EOPNOTSUPP;
801
802 /* clear bits to be modified and copy the flag values */
803 priv->ctrlmode &= ~cm->mask;
804 priv->ctrlmode |= maskedflags;
805
806 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
807 if (priv->ctrlmode & CAN_CTRLMODE_FD)
808 dev->mtu = CANFD_MTU;
809 else
810 dev->mtu = CAN_MTU;
811 }
812
813 if (data[IFLA_CAN_RESTART_MS]) {
814 /* Do not allow changing restart delay while running */
815 if (dev->flags & IFF_UP)
816 return -EBUSY;
817 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
818 }
819
820 if (data[IFLA_CAN_RESTART]) {
821 /* Do not allow a restart while not running */
822 if (!(dev->flags & IFF_UP))
823 return -EINVAL;
824 err = can_restart_now(dev);
825 if (err)
826 return err;
827 }
828
829 if (data[IFLA_CAN_DATA_BITTIMING]) {
830 struct can_bittiming dbt;
831
832 /* Do not allow changing bittiming while running */
833 if (dev->flags & IFF_UP)
834 return -EBUSY;
835 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
836 sizeof(dbt));
837 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
838 if (err)
839 return err;
840 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
841
842 if (priv->do_set_data_bittiming) {
843 /* Finally, set the bit-timing registers */
844 err = priv->do_set_data_bittiming(dev);
845 if (err)
846 return err;
847 }
848 }
849
850 return 0;
851 }
852
can_get_size(const struct net_device * dev)853 static size_t can_get_size(const struct net_device *dev)
854 {
855 struct can_priv *priv = netdev_priv(dev);
856 size_t size = 0;
857
858 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
859 size += nla_total_size(sizeof(struct can_bittiming));
860 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
861 size += nla_total_size(sizeof(struct can_bittiming_const));
862 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
863 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
864 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
865 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
866 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
867 size += nla_total_size(sizeof(struct can_berr_counter));
868 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
869 size += nla_total_size(sizeof(struct can_bittiming));
870 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
871 size += nla_total_size(sizeof(struct can_bittiming_const));
872
873 return size;
874 }
875
can_fill_info(struct sk_buff * skb,const struct net_device * dev)876 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
877 {
878 struct can_priv *priv = netdev_priv(dev);
879 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
880 struct can_berr_counter bec;
881 enum can_state state = priv->state;
882
883 if (priv->do_get_state)
884 priv->do_get_state(dev, &state);
885
886 if ((priv->bittiming.bitrate &&
887 nla_put(skb, IFLA_CAN_BITTIMING,
888 sizeof(priv->bittiming), &priv->bittiming)) ||
889
890 (priv->bittiming_const &&
891 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
892 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
893
894 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
895 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
896 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
897 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
898
899 (priv->do_get_berr_counter &&
900 !priv->do_get_berr_counter(dev, &bec) &&
901 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
902
903 (priv->data_bittiming.bitrate &&
904 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
905 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
906
907 (priv->data_bittiming_const &&
908 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
909 sizeof(*priv->data_bittiming_const),
910 priv->data_bittiming_const)))
911 return -EMSGSIZE;
912
913 return 0;
914 }
915
can_get_xstats_size(const struct net_device * dev)916 static size_t can_get_xstats_size(const struct net_device *dev)
917 {
918 return sizeof(struct can_device_stats);
919 }
920
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)921 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
922 {
923 struct can_priv *priv = netdev_priv(dev);
924
925 if (nla_put(skb, IFLA_INFO_XSTATS,
926 sizeof(priv->can_stats), &priv->can_stats))
927 goto nla_put_failure;
928 return 0;
929
930 nla_put_failure:
931 return -EMSGSIZE;
932 }
933
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])934 static int can_newlink(struct net *src_net, struct net_device *dev,
935 struct nlattr *tb[], struct nlattr *data[])
936 {
937 return -EOPNOTSUPP;
938 }
939
can_dellink(struct net_device * dev,struct list_head * head)940 static void can_dellink(struct net_device *dev, struct list_head *head)
941 {
942 return;
943 }
944
945 static struct rtnl_link_ops can_link_ops __read_mostly = {
946 .kind = "can",
947 .maxtype = IFLA_CAN_MAX,
948 .policy = can_policy,
949 .setup = can_setup,
950 .validate = can_validate,
951 .newlink = can_newlink,
952 .changelink = can_changelink,
953 .dellink = can_dellink,
954 .get_size = can_get_size,
955 .fill_info = can_fill_info,
956 .get_xstats_size = can_get_xstats_size,
957 .fill_xstats = can_fill_xstats,
958 };
959
960 /*
961 * Register the CAN network device
962 */
register_candev(struct net_device * dev)963 int register_candev(struct net_device *dev)
964 {
965 dev->rtnl_link_ops = &can_link_ops;
966 return register_netdev(dev);
967 }
968 EXPORT_SYMBOL_GPL(register_candev);
969
970 /*
971 * Unregister the CAN network device
972 */
unregister_candev(struct net_device * dev)973 void unregister_candev(struct net_device *dev)
974 {
975 unregister_netdev(dev);
976 }
977 EXPORT_SYMBOL_GPL(unregister_candev);
978
979 /*
980 * Test if a network device is a candev based device
981 * and return the can_priv* if so.
982 */
safe_candev_priv(struct net_device * dev)983 struct can_priv *safe_candev_priv(struct net_device *dev)
984 {
985 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
986 return NULL;
987
988 return netdev_priv(dev);
989 }
990 EXPORT_SYMBOL_GPL(safe_candev_priv);
991
can_dev_init(void)992 static __init int can_dev_init(void)
993 {
994 int err;
995
996 can_led_notifier_init();
997
998 err = rtnl_link_register(&can_link_ops);
999 if (!err)
1000 printk(KERN_INFO MOD_DESC "\n");
1001
1002 return err;
1003 }
1004 module_init(can_dev_init);
1005
can_dev_exit(void)1006 static __exit void can_dev_exit(void)
1007 {
1008 rtnl_link_unregister(&can_link_ops);
1009
1010 can_led_notifier_exit();
1011 }
1012 module_exit(can_dev_exit);
1013
1014 MODULE_ALIAS_RTNL_LINK("can");
1015