• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31 
32 #define MOD_DESC "CAN device driver interface"
33 
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37 
38 /* CAN DLC to real data length conversion helpers */
39 
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 			     8, 12, 16, 20, 24, 32, 48, 64};
42 
43 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)44 u8 can_dlc2len(u8 can_dlc)
45 {
46 	return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49 
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
51 			     9, 9, 9, 9,			/* 9 - 12 */
52 			     10, 10, 10, 10,			/* 13 - 16 */
53 			     11, 11, 11, 11,			/* 17 - 20 */
54 			     12, 12, 12, 12,			/* 21 - 24 */
55 			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
56 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
57 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
58 			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
59 			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
60 
61 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)62 u8 can_len2dlc(u8 len)
63 {
64 	if (unlikely(len > 64))
65 		return 0xF;
66 
67 	return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70 
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73 
74 /*
75  * Bit-timing calculation derived from:
76  *
77  * Code based on LinCAN sources and H8S2638 project
78  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79  * Copyright 2005      Stanislav Marek
80  * email: pisa@cmp.felk.cvut.cz
81  *
82  * Calculates proper bit-timing parameters for a specified bit-rate
83  * and sample-point, which can then be used to set the bit-timing
84  * registers of the CAN controller. You can find more information
85  * in the header file linux/can/netlink.h.
86  */
can_update_spt(const struct can_bittiming_const * btc,int sampl_pt,int tseg,int * tseg1,int * tseg2)87 static int can_update_spt(const struct can_bittiming_const *btc,
88 			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
89 {
90 	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91 	if (*tseg2 < btc->tseg2_min)
92 		*tseg2 = btc->tseg2_min;
93 	if (*tseg2 > btc->tseg2_max)
94 		*tseg2 = btc->tseg2_max;
95 	*tseg1 = tseg - *tseg2;
96 	if (*tseg1 > btc->tseg1_max) {
97 		*tseg1 = btc->tseg1_max;
98 		*tseg2 = tseg - *tseg1;
99 	}
100 	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101 }
102 
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
104 			      const struct can_bittiming_const *btc)
105 {
106 	struct can_priv *priv = netdev_priv(dev);
107 	long best_error = 1000000000, error = 0;
108 	int best_tseg = 0, best_brp = 0, brp = 0;
109 	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110 	int spt_error = 1000, spt = 0, sampl_pt;
111 	long rate;
112 	u64 v64;
113 
114 	/* Use CiA recommended sample points */
115 	if (bt->sample_point) {
116 		sampl_pt = bt->sample_point;
117 	} else {
118 		if (bt->bitrate > 800000)
119 			sampl_pt = 750;
120 		else if (bt->bitrate > 500000)
121 			sampl_pt = 800;
122 		else
123 			sampl_pt = 875;
124 	}
125 
126 	/* tseg even = round down, odd = round up */
127 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
128 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
129 		tsegall = 1 + tseg / 2;
130 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
131 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
132 		/* chose brp step which is possible in system */
133 		brp = (brp / btc->brp_inc) * btc->brp_inc;
134 		if ((brp < btc->brp_min) || (brp > btc->brp_max))
135 			continue;
136 		rate = priv->clock.freq / (brp * tsegall);
137 		error = bt->bitrate - rate;
138 		/* tseg brp biterror */
139 		if (error < 0)
140 			error = -error;
141 		if (error > best_error)
142 			continue;
143 		best_error = error;
144 		if (error == 0) {
145 			spt = can_update_spt(btc, sampl_pt, tseg / 2,
146 					     &tseg1, &tseg2);
147 			error = sampl_pt - spt;
148 			if (error < 0)
149 				error = -error;
150 			if (error > spt_error)
151 				continue;
152 			spt_error = error;
153 		}
154 		best_tseg = tseg / 2;
155 		best_brp = brp;
156 		if (error == 0)
157 			break;
158 	}
159 
160 	if (best_error) {
161 		/* Error in one-tenth of a percent */
162 		error = (best_error * 1000) / bt->bitrate;
163 		if (error > CAN_CALC_MAX_ERROR) {
164 			netdev_err(dev,
165 				   "bitrate error %ld.%ld%% too high\n",
166 				   error / 10, error % 10);
167 			return -EDOM;
168 		} else {
169 			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170 				    error / 10, error % 10);
171 		}
172 	}
173 
174 	/* real sample point */
175 	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176 					  &tseg1, &tseg2);
177 
178 	v64 = (u64)best_brp * 1000000000UL;
179 	do_div(v64, priv->clock.freq);
180 	bt->tq = (u32)v64;
181 	bt->prop_seg = tseg1 / 2;
182 	bt->phase_seg1 = tseg1 - bt->prop_seg;
183 	bt->phase_seg2 = tseg2;
184 
185 	/* check for sjw user settings */
186 	if (!bt->sjw || !btc->sjw_max)
187 		bt->sjw = 1;
188 	else {
189 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190 		if (bt->sjw > btc->sjw_max)
191 			bt->sjw = btc->sjw_max;
192 		/* bt->sjw must not be higher than tseg2 */
193 		if (tseg2 < bt->sjw)
194 			bt->sjw = tseg2;
195 	}
196 
197 	bt->brp = best_brp;
198 	/* real bit-rate */
199 	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200 
201 	return 0;
202 }
203 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)204 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205 			      const struct can_bittiming_const *btc)
206 {
207 	netdev_err(dev, "bit-timing calculation not available\n");
208 	return -EINVAL;
209 }
210 #endif /* CONFIG_CAN_CALC_BITTIMING */
211 
212 /*
213  * Checks the validity of the specified bit-timing parameters prop_seg,
214  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215  * prescaler value brp. You can find more information in the header
216  * file linux/can/netlink.h.
217  */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)218 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219 			       const struct can_bittiming_const *btc)
220 {
221 	struct can_priv *priv = netdev_priv(dev);
222 	int tseg1, alltseg;
223 	u64 brp64;
224 
225 	tseg1 = bt->prop_seg + bt->phase_seg1;
226 	if (!bt->sjw)
227 		bt->sjw = 1;
228 	if (bt->sjw > btc->sjw_max ||
229 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231 		return -ERANGE;
232 
233 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234 	if (btc->brp_inc > 1)
235 		do_div(brp64, btc->brp_inc);
236 	brp64 += 500000000UL - 1;
237 	do_div(brp64, 1000000000UL); /* the practicable BRP */
238 	if (btc->brp_inc > 1)
239 		brp64 *= btc->brp_inc;
240 	bt->brp = (u32)brp64;
241 
242 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243 		return -EINVAL;
244 
245 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248 
249 	return 0;
250 }
251 
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)252 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253 			     const struct can_bittiming_const *btc)
254 {
255 	int err;
256 
257 	/* Check if the CAN device has bit-timing parameters */
258 	if (!btc)
259 		return -EOPNOTSUPP;
260 
261 	/*
262 	 * Depending on the given can_bittiming parameter structure the CAN
263 	 * timing parameters are calculated based on the provided bitrate OR
264 	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265 	 * provided directly which are then checked and fixed up.
266 	 */
267 	if (!bt->tq && bt->bitrate)
268 		err = can_calc_bittiming(dev, bt, btc);
269 	else if (bt->tq && !bt->bitrate)
270 		err = can_fixup_bittiming(dev, bt, btc);
271 	else
272 		err = -EINVAL;
273 
274 	return err;
275 }
276 
277 /*
278  * Local echo of CAN messages
279  *
280  * CAN network devices *should* support a local echo functionality
281  * (see Documentation/networking/can.txt). To test the handling of CAN
282  * interfaces that do not support the local echo both driver types are
283  * implemented. In the case that the driver does not support the echo
284  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285  * to perform the echo as a fallback solution.
286  */
can_flush_echo_skb(struct net_device * dev)287 static void can_flush_echo_skb(struct net_device *dev)
288 {
289 	struct can_priv *priv = netdev_priv(dev);
290 	struct net_device_stats *stats = &dev->stats;
291 	int i;
292 
293 	for (i = 0; i < priv->echo_skb_max; i++) {
294 		if (priv->echo_skb[i]) {
295 			kfree_skb(priv->echo_skb[i]);
296 			priv->echo_skb[i] = NULL;
297 			stats->tx_dropped++;
298 			stats->tx_aborted_errors++;
299 		}
300 	}
301 }
302 
303 /*
304  * Put the skb on the stack to be looped backed locally lateron
305  *
306  * The function is typically called in the start_xmit function
307  * of the device driver. The driver must protect access to
308  * priv->echo_skb, if necessary.
309  */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)310 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311 		      unsigned int idx)
312 {
313 	struct can_priv *priv = netdev_priv(dev);
314 
315 	BUG_ON(idx >= priv->echo_skb_max);
316 
317 	/* check flag whether this packet has to be looped back */
318 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319 	    (skb->protocol != htons(ETH_P_CAN) &&
320 	     skb->protocol != htons(ETH_P_CANFD))) {
321 		kfree_skb(skb);
322 		return;
323 	}
324 
325 	if (!priv->echo_skb[idx]) {
326 
327 		skb = can_create_echo_skb(skb);
328 		if (!skb)
329 			return;
330 
331 		/* make settings for echo to reduce code in irq context */
332 		skb->pkt_type = PACKET_BROADCAST;
333 		skb->ip_summed = CHECKSUM_UNNECESSARY;
334 		skb->dev = dev;
335 
336 		/* save this skb for tx interrupt echo handling */
337 		priv->echo_skb[idx] = skb;
338 	} else {
339 		/* locking problem with netif_stop_queue() ?? */
340 		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341 		kfree_skb(skb);
342 	}
343 }
344 EXPORT_SYMBOL_GPL(can_put_echo_skb);
345 
346 /*
347  * Get the skb from the stack and loop it back locally
348  *
349  * The function is typically called when the TX done interrupt
350  * is handled in the device driver. The driver must protect
351  * access to priv->echo_skb, if necessary.
352  */
can_get_echo_skb(struct net_device * dev,unsigned int idx)353 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354 {
355 	struct can_priv *priv = netdev_priv(dev);
356 
357 	BUG_ON(idx >= priv->echo_skb_max);
358 
359 	if (priv->echo_skb[idx]) {
360 		struct sk_buff *skb = priv->echo_skb[idx];
361 		struct can_frame *cf = (struct can_frame *)skb->data;
362 		u8 dlc = cf->can_dlc;
363 
364 		netif_rx(priv->echo_skb[idx]);
365 		priv->echo_skb[idx] = NULL;
366 
367 		return dlc;
368 	}
369 
370 	return 0;
371 }
372 EXPORT_SYMBOL_GPL(can_get_echo_skb);
373 
374 /*
375   * Remove the skb from the stack and free it.
376   *
377   * The function is typically called when TX failed.
378   */
can_free_echo_skb(struct net_device * dev,unsigned int idx)379 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380 {
381 	struct can_priv *priv = netdev_priv(dev);
382 
383 	BUG_ON(idx >= priv->echo_skb_max);
384 
385 	if (priv->echo_skb[idx]) {
386 		dev_kfree_skb_any(priv->echo_skb[idx]);
387 		priv->echo_skb[idx] = NULL;
388 	}
389 }
390 EXPORT_SYMBOL_GPL(can_free_echo_skb);
391 
392 /*
393  * CAN device restart for bus-off recovery
394  */
can_restart(struct net_device * dev)395 static void can_restart(struct net_device *dev)
396 {
397 	struct can_priv *priv = netdev_priv(dev);
398 	struct net_device_stats *stats = &dev->stats;
399 	struct sk_buff *skb;
400 	struct can_frame *cf;
401 	int err;
402 
403 	BUG_ON(netif_carrier_ok(dev));
404 
405 	/*
406 	 * No synchronization needed because the device is bus-off and
407 	 * no messages can come in or go out.
408 	 */
409 	can_flush_echo_skb(dev);
410 
411 	/* send restart message upstream */
412 	skb = alloc_can_err_skb(dev, &cf);
413 	if (skb == NULL) {
414 		err = -ENOMEM;
415 		goto restart;
416 	}
417 	cf->can_id |= CAN_ERR_RESTARTED;
418 
419 	netif_rx(skb);
420 
421 	stats->rx_packets++;
422 	stats->rx_bytes += cf->can_dlc;
423 
424 restart:
425 	netdev_dbg(dev, "restarted\n");
426 	priv->can_stats.restarts++;
427 
428 	/* Now restart the device */
429 	err = priv->do_set_mode(dev, CAN_MODE_START);
430 
431 	netif_carrier_on(dev);
432 	if (err)
433 		netdev_err(dev, "Error %d during restart", err);
434 }
435 
can_restart_work(struct work_struct * work)436 static void can_restart_work(struct work_struct *work)
437 {
438 	struct delayed_work *dwork = to_delayed_work(work);
439 	struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
440 
441 	can_restart(priv->dev);
442 }
443 
can_restart_now(struct net_device * dev)444 int can_restart_now(struct net_device *dev)
445 {
446 	struct can_priv *priv = netdev_priv(dev);
447 
448 	/*
449 	 * A manual restart is only permitted if automatic restart is
450 	 * disabled and the device is in the bus-off state
451 	 */
452 	if (priv->restart_ms)
453 		return -EINVAL;
454 	if (priv->state != CAN_STATE_BUS_OFF)
455 		return -EBUSY;
456 
457 	cancel_delayed_work_sync(&priv->restart_work);
458 	can_restart(dev);
459 
460 	return 0;
461 }
462 
463 /*
464  * CAN bus-off
465  *
466  * This functions should be called when the device goes bus-off to
467  * tell the netif layer that no more packets can be sent or received.
468  * If enabled, a timer is started to trigger bus-off recovery.
469  */
can_bus_off(struct net_device * dev)470 void can_bus_off(struct net_device *dev)
471 {
472 	struct can_priv *priv = netdev_priv(dev);
473 
474 	netdev_dbg(dev, "bus-off\n");
475 
476 	netif_carrier_off(dev);
477 	priv->can_stats.bus_off++;
478 
479 	if (priv->restart_ms)
480 		schedule_delayed_work(&priv->restart_work,
481 				      msecs_to_jiffies(priv->restart_ms));
482 }
483 EXPORT_SYMBOL_GPL(can_bus_off);
484 
can_setup(struct net_device * dev)485 static void can_setup(struct net_device *dev)
486 {
487 	dev->type = ARPHRD_CAN;
488 	dev->mtu = CAN_MTU;
489 	dev->hard_header_len = 0;
490 	dev->addr_len = 0;
491 	dev->tx_queue_len = 10;
492 
493 	/* New-style flags. */
494 	dev->flags = IFF_NOARP;
495 	dev->features = NETIF_F_HW_CSUM;
496 }
497 
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)498 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
499 {
500 	struct sk_buff *skb;
501 
502 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
503 			       sizeof(struct can_frame));
504 	if (unlikely(!skb))
505 		return NULL;
506 
507 	skb->protocol = htons(ETH_P_CAN);
508 	skb->pkt_type = PACKET_BROADCAST;
509 	skb->ip_summed = CHECKSUM_UNNECESSARY;
510 
511 	skb_reset_mac_header(skb);
512 	skb_reset_network_header(skb);
513 	skb_reset_transport_header(skb);
514 
515 	can_skb_reserve(skb);
516 	can_skb_prv(skb)->ifindex = dev->ifindex;
517 
518 	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
519 	memset(*cf, 0, sizeof(struct can_frame));
520 
521 	return skb;
522 }
523 EXPORT_SYMBOL_GPL(alloc_can_skb);
524 
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)525 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
526 				struct canfd_frame **cfd)
527 {
528 	struct sk_buff *skb;
529 
530 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
531 			       sizeof(struct canfd_frame));
532 	if (unlikely(!skb))
533 		return NULL;
534 
535 	skb->protocol = htons(ETH_P_CANFD);
536 	skb->pkt_type = PACKET_BROADCAST;
537 	skb->ip_summed = CHECKSUM_UNNECESSARY;
538 
539 	skb_reset_mac_header(skb);
540 	skb_reset_network_header(skb);
541 	skb_reset_transport_header(skb);
542 
543 	can_skb_reserve(skb);
544 	can_skb_prv(skb)->ifindex = dev->ifindex;
545 
546 	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
547 	memset(*cfd, 0, sizeof(struct canfd_frame));
548 
549 	return skb;
550 }
551 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
552 
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)553 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
554 {
555 	struct sk_buff *skb;
556 
557 	skb = alloc_can_skb(dev, cf);
558 	if (unlikely(!skb))
559 		return NULL;
560 
561 	(*cf)->can_id = CAN_ERR_FLAG;
562 	(*cf)->can_dlc = CAN_ERR_DLC;
563 
564 	return skb;
565 }
566 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
567 
568 /*
569  * Allocate and setup space for the CAN network device
570  */
alloc_candev(int sizeof_priv,unsigned int echo_skb_max)571 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
572 {
573 	struct net_device *dev;
574 	struct can_priv *priv;
575 	int size;
576 
577 	if (echo_skb_max)
578 		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
579 			echo_skb_max * sizeof(struct sk_buff *);
580 	else
581 		size = sizeof_priv;
582 
583 	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
584 	if (!dev)
585 		return NULL;
586 
587 	priv = netdev_priv(dev);
588 	priv->dev = dev;
589 
590 	if (echo_skb_max) {
591 		priv->echo_skb_max = echo_skb_max;
592 		priv->echo_skb = (void *)priv +
593 			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
594 	}
595 
596 	priv->state = CAN_STATE_STOPPED;
597 
598 	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
599 
600 	return dev;
601 }
602 EXPORT_SYMBOL_GPL(alloc_candev);
603 
604 /*
605  * Free space of the CAN network device
606  */
free_candev(struct net_device * dev)607 void free_candev(struct net_device *dev)
608 {
609 	free_netdev(dev);
610 }
611 EXPORT_SYMBOL_GPL(free_candev);
612 
613 /*
614  * changing MTU and control mode for CAN/CANFD devices
615  */
can_change_mtu(struct net_device * dev,int new_mtu)616 int can_change_mtu(struct net_device *dev, int new_mtu)
617 {
618 	struct can_priv *priv = netdev_priv(dev);
619 
620 	/* Do not allow changing the MTU while running */
621 	if (dev->flags & IFF_UP)
622 		return -EBUSY;
623 
624 	/* allow change of MTU according to the CANFD ability of the device */
625 	switch (new_mtu) {
626 	case CAN_MTU:
627 		/* 'CANFD-only' controllers can not switch to CAN_MTU */
628 		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
629 			return -EINVAL;
630 
631 		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
632 		break;
633 
634 	case CANFD_MTU:
635 		/* check for potential CANFD ability */
636 		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
637 		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
638 			return -EINVAL;
639 
640 		priv->ctrlmode |= CAN_CTRLMODE_FD;
641 		break;
642 
643 	default:
644 		return -EINVAL;
645 	}
646 
647 	dev->mtu = new_mtu;
648 	return 0;
649 }
650 EXPORT_SYMBOL_GPL(can_change_mtu);
651 
652 /*
653  * Common open function when the device gets opened.
654  *
655  * This function should be called in the open function of the device
656  * driver.
657  */
open_candev(struct net_device * dev)658 int open_candev(struct net_device *dev)
659 {
660 	struct can_priv *priv = netdev_priv(dev);
661 
662 	if (!priv->bittiming.bitrate) {
663 		netdev_err(dev, "bit-timing not yet defined\n");
664 		return -EINVAL;
665 	}
666 
667 	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
668 	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
669 	    (!priv->data_bittiming.bitrate ||
670 	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
671 		netdev_err(dev, "incorrect/missing data bit-timing\n");
672 		return -EINVAL;
673 	}
674 
675 	/* Switch carrier on if device was stopped while in bus-off state */
676 	if (!netif_carrier_ok(dev))
677 		netif_carrier_on(dev);
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(open_candev);
682 
683 /*
684  * Common close function for cleanup before the device gets closed.
685  *
686  * This function should be called in the close function of the device
687  * driver.
688  */
close_candev(struct net_device * dev)689 void close_candev(struct net_device *dev)
690 {
691 	struct can_priv *priv = netdev_priv(dev);
692 
693 	cancel_delayed_work_sync(&priv->restart_work);
694 	can_flush_echo_skb(dev);
695 }
696 EXPORT_SYMBOL_GPL(close_candev);
697 
698 /*
699  * CAN netlink interface
700  */
701 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
702 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
703 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
704 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
705 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
706 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
707 	[IFLA_CAN_BITTIMING_CONST]
708 				= { .len = sizeof(struct can_bittiming_const) },
709 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
710 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
711 	[IFLA_CAN_DATA_BITTIMING]
712 				= { .len = sizeof(struct can_bittiming) },
713 	[IFLA_CAN_DATA_BITTIMING_CONST]
714 				= { .len = sizeof(struct can_bittiming_const) },
715 };
716 
can_validate(struct nlattr * tb[],struct nlattr * data[])717 static int can_validate(struct nlattr *tb[], struct nlattr *data[])
718 {
719 	bool is_can_fd = false;
720 
721 	/* Make sure that valid CAN FD configurations always consist of
722 	 * - nominal/arbitration bittiming
723 	 * - data bittiming
724 	 * - control mode with CAN_CTRLMODE_FD set
725 	 */
726 
727 	if (!data)
728 		return 0;
729 
730 	if (data[IFLA_CAN_CTRLMODE]) {
731 		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
732 
733 		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
734 	}
735 
736 	if (is_can_fd) {
737 		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
738 			return -EOPNOTSUPP;
739 	}
740 
741 	if (data[IFLA_CAN_DATA_BITTIMING]) {
742 		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
743 			return -EOPNOTSUPP;
744 	}
745 
746 	return 0;
747 }
748 
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])749 static int can_changelink(struct net_device *dev,
750 			  struct nlattr *tb[], struct nlattr *data[])
751 {
752 	struct can_priv *priv = netdev_priv(dev);
753 	int err;
754 
755 	/* We need synchronization with dev->stop() */
756 	ASSERT_RTNL();
757 
758 	if (data[IFLA_CAN_BITTIMING]) {
759 		struct can_bittiming bt;
760 
761 		/* Do not allow changing bittiming while running */
762 		if (dev->flags & IFF_UP)
763 			return -EBUSY;
764 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
765 		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
766 		if (err)
767 			return err;
768 		memcpy(&priv->bittiming, &bt, sizeof(bt));
769 
770 		if (priv->do_set_bittiming) {
771 			/* Finally, set the bit-timing registers */
772 			err = priv->do_set_bittiming(dev);
773 			if (err)
774 				return err;
775 		}
776 	}
777 
778 	if (data[IFLA_CAN_CTRLMODE]) {
779 		struct can_ctrlmode *cm;
780 		u32 ctrlstatic;
781 		u32 maskedflags;
782 
783 		/* Do not allow changing controller mode while running */
784 		if (dev->flags & IFF_UP)
785 			return -EBUSY;
786 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
787 		ctrlstatic = priv->ctrlmode_static;
788 		maskedflags = cm->flags & cm->mask;
789 
790 		/* check whether provided bits are allowed to be passed */
791 		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
792 			return -EOPNOTSUPP;
793 
794 		/* do not check for static fd-non-iso if 'fd' is disabled */
795 		if (!(maskedflags & CAN_CTRLMODE_FD))
796 			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
797 
798 		/* make sure static options are provided by configuration */
799 		if ((maskedflags & ctrlstatic) != ctrlstatic)
800 			return -EOPNOTSUPP;
801 
802 		/* clear bits to be modified and copy the flag values */
803 		priv->ctrlmode &= ~cm->mask;
804 		priv->ctrlmode |= maskedflags;
805 
806 		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
807 		if (priv->ctrlmode & CAN_CTRLMODE_FD)
808 			dev->mtu = CANFD_MTU;
809 		else
810 			dev->mtu = CAN_MTU;
811 	}
812 
813 	if (data[IFLA_CAN_RESTART_MS]) {
814 		/* Do not allow changing restart delay while running */
815 		if (dev->flags & IFF_UP)
816 			return -EBUSY;
817 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
818 	}
819 
820 	if (data[IFLA_CAN_RESTART]) {
821 		/* Do not allow a restart while not running */
822 		if (!(dev->flags & IFF_UP))
823 			return -EINVAL;
824 		err = can_restart_now(dev);
825 		if (err)
826 			return err;
827 	}
828 
829 	if (data[IFLA_CAN_DATA_BITTIMING]) {
830 		struct can_bittiming dbt;
831 
832 		/* Do not allow changing bittiming while running */
833 		if (dev->flags & IFF_UP)
834 			return -EBUSY;
835 		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
836 		       sizeof(dbt));
837 		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
838 		if (err)
839 			return err;
840 		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
841 
842 		if (priv->do_set_data_bittiming) {
843 			/* Finally, set the bit-timing registers */
844 			err = priv->do_set_data_bittiming(dev);
845 			if (err)
846 				return err;
847 		}
848 	}
849 
850 	return 0;
851 }
852 
can_get_size(const struct net_device * dev)853 static size_t can_get_size(const struct net_device *dev)
854 {
855 	struct can_priv *priv = netdev_priv(dev);
856 	size_t size = 0;
857 
858 	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
859 		size += nla_total_size(sizeof(struct can_bittiming));
860 	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
861 		size += nla_total_size(sizeof(struct can_bittiming_const));
862 	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
863 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
864 	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
865 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
866 	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
867 		size += nla_total_size(sizeof(struct can_berr_counter));
868 	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
869 		size += nla_total_size(sizeof(struct can_bittiming));
870 	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
871 		size += nla_total_size(sizeof(struct can_bittiming_const));
872 
873 	return size;
874 }
875 
can_fill_info(struct sk_buff * skb,const struct net_device * dev)876 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
877 {
878 	struct can_priv *priv = netdev_priv(dev);
879 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
880 	struct can_berr_counter bec;
881 	enum can_state state = priv->state;
882 
883 	if (priv->do_get_state)
884 		priv->do_get_state(dev, &state);
885 
886 	if ((priv->bittiming.bitrate &&
887 	     nla_put(skb, IFLA_CAN_BITTIMING,
888 		     sizeof(priv->bittiming), &priv->bittiming)) ||
889 
890 	    (priv->bittiming_const &&
891 	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
892 		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
893 
894 	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
895 	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
896 	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
897 	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
898 
899 	    (priv->do_get_berr_counter &&
900 	     !priv->do_get_berr_counter(dev, &bec) &&
901 	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
902 
903 	    (priv->data_bittiming.bitrate &&
904 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
905 		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
906 
907 	    (priv->data_bittiming_const &&
908 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
909 		     sizeof(*priv->data_bittiming_const),
910 		     priv->data_bittiming_const)))
911 		return -EMSGSIZE;
912 
913 	return 0;
914 }
915 
can_get_xstats_size(const struct net_device * dev)916 static size_t can_get_xstats_size(const struct net_device *dev)
917 {
918 	return sizeof(struct can_device_stats);
919 }
920 
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)921 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
922 {
923 	struct can_priv *priv = netdev_priv(dev);
924 
925 	if (nla_put(skb, IFLA_INFO_XSTATS,
926 		    sizeof(priv->can_stats), &priv->can_stats))
927 		goto nla_put_failure;
928 	return 0;
929 
930 nla_put_failure:
931 	return -EMSGSIZE;
932 }
933 
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[])934 static int can_newlink(struct net *src_net, struct net_device *dev,
935 		       struct nlattr *tb[], struct nlattr *data[])
936 {
937 	return -EOPNOTSUPP;
938 }
939 
can_dellink(struct net_device * dev,struct list_head * head)940 static void can_dellink(struct net_device *dev, struct list_head *head)
941 {
942 	return;
943 }
944 
945 static struct rtnl_link_ops can_link_ops __read_mostly = {
946 	.kind		= "can",
947 	.maxtype	= IFLA_CAN_MAX,
948 	.policy		= can_policy,
949 	.setup		= can_setup,
950 	.validate	= can_validate,
951 	.newlink	= can_newlink,
952 	.changelink	= can_changelink,
953 	.dellink	= can_dellink,
954 	.get_size	= can_get_size,
955 	.fill_info	= can_fill_info,
956 	.get_xstats_size = can_get_xstats_size,
957 	.fill_xstats	= can_fill_xstats,
958 };
959 
960 /*
961  * Register the CAN network device
962  */
register_candev(struct net_device * dev)963 int register_candev(struct net_device *dev)
964 {
965 	dev->rtnl_link_ops = &can_link_ops;
966 	return register_netdev(dev);
967 }
968 EXPORT_SYMBOL_GPL(register_candev);
969 
970 /*
971  * Unregister the CAN network device
972  */
unregister_candev(struct net_device * dev)973 void unregister_candev(struct net_device *dev)
974 {
975 	unregister_netdev(dev);
976 }
977 EXPORT_SYMBOL_GPL(unregister_candev);
978 
979 /*
980  * Test if a network device is a candev based device
981  * and return the can_priv* if so.
982  */
safe_candev_priv(struct net_device * dev)983 struct can_priv *safe_candev_priv(struct net_device *dev)
984 {
985 	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
986 		return NULL;
987 
988 	return netdev_priv(dev);
989 }
990 EXPORT_SYMBOL_GPL(safe_candev_priv);
991 
can_dev_init(void)992 static __init int can_dev_init(void)
993 {
994 	int err;
995 
996 	can_led_notifier_init();
997 
998 	err = rtnl_link_register(&can_link_ops);
999 	if (!err)
1000 		printk(KERN_INFO MOD_DESC "\n");
1001 
1002 	return err;
1003 }
1004 module_init(can_dev_init);
1005 
can_dev_exit(void)1006 static __exit void can_dev_exit(void)
1007 {
1008 	rtnl_link_unregister(&can_link_ops);
1009 
1010 	can_led_notifier_exit();
1011 }
1012 module_exit(can_dev_exit);
1013 
1014 MODULE_ALIAS_RTNL_LINK("can");
1015