• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Renesas R-Car CAN device driver
2  *
3  * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
4  * Copyright (C) 2013 Renesas Solutions Corp.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/can/led.h>
20 #include <linux/can/dev.h>
21 #include <linux/clk.h>
22 #include <linux/can/platform/rcar_can.h>
23 #include <linux/of.h>
24 
25 #define RCAR_CAN_DRV_NAME	"rcar_can"
26 
27 /* Mailbox configuration:
28  * mailbox 60 - 63 - Rx FIFO mailboxes
29  * mailbox 56 - 59 - Tx FIFO mailboxes
30  * non-FIFO mailboxes are not used
31  */
32 #define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
33 #define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
34 #define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
35 #define RCAR_CAN_FIFO_DEPTH	4
36 
37 /* Mailbox registers structure */
38 struct rcar_can_mbox_regs {
39 	u32 id;		/* IDE and RTR bits, SID and EID */
40 	u8 stub;	/* Not used */
41 	u8 dlc;		/* Data Length Code - bits [0..3] */
42 	u8 data[8];	/* Data Bytes */
43 	u8 tsh;		/* Time Stamp Higher Byte */
44 	u8 tsl;		/* Time Stamp Lower Byte */
45 };
46 
47 struct rcar_can_regs {
48 	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
49 	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
50 	u32 fidcr[2];	/* FIFO Received ID Compare Register */
51 	u32 mkivlr1;	/* Mask Invalid Register 1 */
52 	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
53 	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
54 	u32 mkivlr0;    /* Mask Invalid Register 0*/
55 	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
56 	u8 pad_440[0x3c0];
57 	u8 mctl[64];	/* Message Control Registers */
58 	u16 ctlr;	/* Control Register */
59 	u16 str;	/* Status register */
60 	u8 bcr[3];	/* Bit Configuration Register */
61 	u8 clkr;	/* Clock Select Register */
62 	u8 rfcr;	/* Receive FIFO Control Register */
63 	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
64 	u8 tfcr;	/* Transmit FIFO Control Register */
65 	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
66 	u8 eier;	/* Error Interrupt Enable Register */
67 	u8 eifr;	/* Error Interrupt Factor Judge Register */
68 	u8 recr;	/* Receive Error Count Register */
69 	u8 tecr;        /* Transmit Error Count Register */
70 	u8 ecsr;	/* Error Code Store Register */
71 	u8 cssr;	/* Channel Search Support Register */
72 	u8 mssr;	/* Mailbox Search Status Register */
73 	u8 msmr;	/* Mailbox Search Mode Register */
74 	u16 tsr;	/* Time Stamp Register */
75 	u8 afsr;	/* Acceptance Filter Support Register */
76 	u8 pad_857;
77 	u8 tcr;		/* Test Control Register */
78 	u8 pad_859[7];
79 	u8 ier;		/* Interrupt Enable Register */
80 	u8 isr;		/* Interrupt Status Register */
81 	u8 pad_862;
82 	u8 mbsmr;	/* Mailbox Search Mask Register */
83 };
84 
85 struct rcar_can_priv {
86 	struct can_priv can;	/* Must be the first member! */
87 	struct net_device *ndev;
88 	struct napi_struct napi;
89 	struct rcar_can_regs __iomem *regs;
90 	struct clk *clk;
91 	struct clk *can_clk;
92 	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
93 	u32 tx_head;
94 	u32 tx_tail;
95 	u8 clock_select;
96 	u8 ier;
97 };
98 
99 static const struct can_bittiming_const rcar_can_bittiming_const = {
100 	.name = RCAR_CAN_DRV_NAME,
101 	.tseg1_min = 4,
102 	.tseg1_max = 16,
103 	.tseg2_min = 2,
104 	.tseg2_max = 8,
105 	.sjw_max = 4,
106 	.brp_min = 1,
107 	.brp_max = 1024,
108 	.brp_inc = 1,
109 };
110 
111 /* Control Register bits */
112 #define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
113 #define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
114 					/* at bus-off entry */
115 #define RCAR_CAN_CTLR_SLPM	(1 << 10)
116 #define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
117 #define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
118 #define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
119 #define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
120 #define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
121 #define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
122 #define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
123 #define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
124 
125 /* Status Register bits */
126 #define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
127 
128 /* FIFO Received ID Compare Registers 0 and 1 bits */
129 #define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
130 #define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
131 
132 /* Receive FIFO Control Register bits */
133 #define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
134 #define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
135 
136 /* Transmit FIFO Control Register bits */
137 #define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
138 					/* Number Status Bits */
139 #define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
140 					/* Message Number Status Bits */
141 #define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
142 
143 #define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
144 					/* for Rx mailboxes 0-31 */
145 #define RCAR_CAN_N_RX_MKREGS2	8
146 
147 /* Bit Configuration Register settings */
148 #define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
149 #define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
150 #define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
151 #define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
152 
153 /* Mailbox and Mask Registers bits */
154 #define RCAR_CAN_IDE		(1 << 31)
155 #define RCAR_CAN_RTR		(1 << 30)
156 #define RCAR_CAN_SID_SHIFT	18
157 
158 /* Mailbox Interrupt Enable Register 1 bits */
159 #define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
160 #define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
161 
162 /* Interrupt Enable Register bits */
163 #define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
164 #define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
165 					/* Enable Bit */
166 #define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
167 					/* Enable Bit */
168 /* Interrupt Status Register bits */
169 #define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
170 #define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
171 					/* Status Bit */
172 #define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
173 					/* Status Bit */
174 
175 /* Error Interrupt Enable Register bits */
176 #define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
177 #define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
178 					/* Interrupt Enable */
179 #define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
180 #define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
181 #define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
182 #define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
183 #define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
184 #define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
185 
186 /* Error Interrupt Factor Judge Register bits */
187 #define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
188 #define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
189 					 /* Detect Flag */
190 #define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
191 #define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
192 #define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
193 #define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
194 #define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
195 #define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
196 
197 /* Error Code Store Register bits */
198 #define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
199 #define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
200 #define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
201 #define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
202 #define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
203 #define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
204 #define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
205 #define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
206 
207 #define RCAR_CAN_NAPI_WEIGHT	4
208 #define MAX_STR_READS		0x100
209 
tx_failure_cleanup(struct net_device * ndev)210 static void tx_failure_cleanup(struct net_device *ndev)
211 {
212 	int i;
213 
214 	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
215 		can_free_echo_skb(ndev, i);
216 }
217 
rcar_can_error(struct net_device * ndev)218 static void rcar_can_error(struct net_device *ndev)
219 {
220 	struct rcar_can_priv *priv = netdev_priv(ndev);
221 	struct net_device_stats *stats = &ndev->stats;
222 	struct can_frame *cf;
223 	struct sk_buff *skb;
224 	u8 eifr, txerr = 0, rxerr = 0;
225 
226 	/* Propagate the error condition to the CAN stack */
227 	skb = alloc_can_err_skb(ndev, &cf);
228 
229 	eifr = readb(&priv->regs->eifr);
230 	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
231 		txerr = readb(&priv->regs->tecr);
232 		rxerr = readb(&priv->regs->recr);
233 		if (skb) {
234 			cf->can_id |= CAN_ERR_CRTL;
235 			cf->data[6] = txerr;
236 			cf->data[7] = rxerr;
237 		}
238 	}
239 	if (eifr & RCAR_CAN_EIFR_BEIF) {
240 		int rx_errors = 0, tx_errors = 0;
241 		u8 ecsr;
242 
243 		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244 		if (skb) {
245 			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246 			cf->data[2] = CAN_ERR_PROT_UNSPEC;
247 		}
248 		ecsr = readb(&priv->regs->ecsr);
249 		if (ecsr & RCAR_CAN_ECSR_ADEF) {
250 			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
251 			tx_errors++;
252 			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
253 			if (skb)
254 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
255 		}
256 		if (ecsr & RCAR_CAN_ECSR_BE0F) {
257 			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
258 			tx_errors++;
259 			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
260 			if (skb)
261 				cf->data[2] |= CAN_ERR_PROT_BIT0;
262 		}
263 		if (ecsr & RCAR_CAN_ECSR_BE1F) {
264 			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
265 			tx_errors++;
266 			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
267 			if (skb)
268 				cf->data[2] |= CAN_ERR_PROT_BIT1;
269 		}
270 		if (ecsr & RCAR_CAN_ECSR_CEF) {
271 			netdev_dbg(priv->ndev, "CRC Error\n");
272 			rx_errors++;
273 			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
274 			if (skb)
275 				cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
276 		}
277 		if (ecsr & RCAR_CAN_ECSR_AEF) {
278 			netdev_dbg(priv->ndev, "ACK Error\n");
279 			tx_errors++;
280 			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
281 			if (skb) {
282 				cf->can_id |= CAN_ERR_ACK;
283 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
284 			}
285 		}
286 		if (ecsr & RCAR_CAN_ECSR_FEF) {
287 			netdev_dbg(priv->ndev, "Form Error\n");
288 			rx_errors++;
289 			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
290 			if (skb)
291 				cf->data[2] |= CAN_ERR_PROT_FORM;
292 		}
293 		if (ecsr & RCAR_CAN_ECSR_SEF) {
294 			netdev_dbg(priv->ndev, "Stuff Error\n");
295 			rx_errors++;
296 			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
297 			if (skb)
298 				cf->data[2] |= CAN_ERR_PROT_STUFF;
299 		}
300 
301 		priv->can.can_stats.bus_error++;
302 		ndev->stats.rx_errors += rx_errors;
303 		ndev->stats.tx_errors += tx_errors;
304 		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
305 	}
306 	if (eifr & RCAR_CAN_EIFR_EWIF) {
307 		netdev_dbg(priv->ndev, "Error warning interrupt\n");
308 		priv->can.state = CAN_STATE_ERROR_WARNING;
309 		priv->can.can_stats.error_warning++;
310 		/* Clear interrupt condition */
311 		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
312 		if (skb)
313 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
314 					      CAN_ERR_CRTL_RX_WARNING;
315 	}
316 	if (eifr & RCAR_CAN_EIFR_EPIF) {
317 		netdev_dbg(priv->ndev, "Error passive interrupt\n");
318 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
319 		priv->can.can_stats.error_passive++;
320 		/* Clear interrupt condition */
321 		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
322 		if (skb)
323 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
324 					      CAN_ERR_CRTL_RX_PASSIVE;
325 	}
326 	if (eifr & RCAR_CAN_EIFR_BOEIF) {
327 		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
328 		tx_failure_cleanup(ndev);
329 		priv->ier = RCAR_CAN_IER_ERSIE;
330 		writeb(priv->ier, &priv->regs->ier);
331 		priv->can.state = CAN_STATE_BUS_OFF;
332 		/* Clear interrupt condition */
333 		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
334 		can_bus_off(ndev);
335 		if (skb)
336 			cf->can_id |= CAN_ERR_BUSOFF;
337 	}
338 	if (eifr & RCAR_CAN_EIFR_ORIF) {
339 		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
340 		ndev->stats.rx_over_errors++;
341 		ndev->stats.rx_errors++;
342 		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
343 		if (skb) {
344 			cf->can_id |= CAN_ERR_CRTL;
345 			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
346 		}
347 	}
348 	if (eifr & RCAR_CAN_EIFR_OLIF) {
349 		netdev_dbg(priv->ndev,
350 			   "Overload Frame Transmission error interrupt\n");
351 		ndev->stats.rx_over_errors++;
352 		ndev->stats.rx_errors++;
353 		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
354 		if (skb) {
355 			cf->can_id |= CAN_ERR_PROT;
356 			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
357 		}
358 	}
359 
360 	if (skb) {
361 		stats->rx_packets++;
362 		stats->rx_bytes += cf->can_dlc;
363 		netif_rx(skb);
364 	}
365 }
366 
rcar_can_tx_done(struct net_device * ndev)367 static void rcar_can_tx_done(struct net_device *ndev)
368 {
369 	struct rcar_can_priv *priv = netdev_priv(ndev);
370 	struct net_device_stats *stats = &ndev->stats;
371 	u8 isr;
372 
373 	while (1) {
374 		u8 unsent = readb(&priv->regs->tfcr);
375 
376 		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
377 			  RCAR_CAN_TFCR_TFUST_SHIFT;
378 		if (priv->tx_head - priv->tx_tail <= unsent)
379 			break;
380 		stats->tx_packets++;
381 		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
382 						RCAR_CAN_FIFO_DEPTH];
383 		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
384 		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
385 		priv->tx_tail++;
386 		netif_wake_queue(ndev);
387 	}
388 	/* Clear interrupt */
389 	isr = readb(&priv->regs->isr);
390 	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
391 	can_led_event(ndev, CAN_LED_EVENT_TX);
392 }
393 
rcar_can_interrupt(int irq,void * dev_id)394 static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
395 {
396 	struct net_device *ndev = dev_id;
397 	struct rcar_can_priv *priv = netdev_priv(ndev);
398 	u8 isr;
399 
400 	isr = readb(&priv->regs->isr);
401 	if (!(isr & priv->ier))
402 		return IRQ_NONE;
403 
404 	if (isr & RCAR_CAN_ISR_ERSF)
405 		rcar_can_error(ndev);
406 
407 	if (isr & RCAR_CAN_ISR_TXFF)
408 		rcar_can_tx_done(ndev);
409 
410 	if (isr & RCAR_CAN_ISR_RXFF) {
411 		if (napi_schedule_prep(&priv->napi)) {
412 			/* Disable Rx FIFO interrupts */
413 			priv->ier &= ~RCAR_CAN_IER_RXFIE;
414 			writeb(priv->ier, &priv->regs->ier);
415 			__napi_schedule(&priv->napi);
416 		}
417 	}
418 
419 	return IRQ_HANDLED;
420 }
421 
rcar_can_set_bittiming(struct net_device * dev)422 static void rcar_can_set_bittiming(struct net_device *dev)
423 {
424 	struct rcar_can_priv *priv = netdev_priv(dev);
425 	struct can_bittiming *bt = &priv->can.bittiming;
426 	u32 bcr;
427 
428 	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
429 	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
430 	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
431 	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
432 	 * All the registers are big-endian but they get byte-swapped on 32-bit
433 	 * read/write (but not on 8-bit, contrary to the manuals)...
434 	 */
435 	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
436 }
437 
rcar_can_start(struct net_device * ndev)438 static void rcar_can_start(struct net_device *ndev)
439 {
440 	struct rcar_can_priv *priv = netdev_priv(ndev);
441 	u16 ctlr;
442 	int i;
443 
444 	/* Set controller to known mode:
445 	 * - FIFO mailbox mode
446 	 * - accept all messages
447 	 * - overrun mode
448 	 * CAN is in sleep mode after MCU hardware or software reset.
449 	 */
450 	ctlr = readw(&priv->regs->ctlr);
451 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
452 	writew(ctlr, &priv->regs->ctlr);
453 	/* Go to reset mode */
454 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
455 	writew(ctlr, &priv->regs->ctlr);
456 	for (i = 0; i < MAX_STR_READS; i++) {
457 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
458 			break;
459 	}
460 	rcar_can_set_bittiming(ndev);
461 	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
462 	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
463 					/* at bus-off */
464 	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
465 	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
466 	writew(ctlr, &priv->regs->ctlr);
467 
468 	/* Accept all SID and EID */
469 	writel(0, &priv->regs->mkr_2_9[6]);
470 	writel(0, &priv->regs->mkr_2_9[7]);
471 	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
472 	writel(0, &priv->regs->mkivlr1);
473 	/* Accept all frames */
474 	writel(0, &priv->regs->fidcr[0]);
475 	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
476 	/* Enable and configure FIFO mailbox interrupts */
477 	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
478 
479 	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
480 		    RCAR_CAN_IER_TXFIE;
481 	writeb(priv->ier, &priv->regs->ier);
482 
483 	/* Accumulate error codes */
484 	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
485 	/* Enable error interrupts */
486 	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
487 	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
488 	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
489 	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
490 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
491 
492 	/* Go to operation mode */
493 	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
494 	for (i = 0; i < MAX_STR_READS; i++) {
495 		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
496 			break;
497 	}
498 	/* Enable Rx and Tx FIFO */
499 	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
500 	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
501 }
502 
rcar_can_open(struct net_device * ndev)503 static int rcar_can_open(struct net_device *ndev)
504 {
505 	struct rcar_can_priv *priv = netdev_priv(ndev);
506 	int err;
507 
508 	err = clk_prepare_enable(priv->clk);
509 	if (err) {
510 		netdev_err(ndev, "failed to enable periperal clock, error %d\n",
511 			   err);
512 		goto out;
513 	}
514 	err = clk_prepare_enable(priv->can_clk);
515 	if (err) {
516 		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
517 			   err);
518 		goto out_clock;
519 	}
520 	err = open_candev(ndev);
521 	if (err) {
522 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
523 		goto out_can_clock;
524 	}
525 	napi_enable(&priv->napi);
526 	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
527 	if (err) {
528 		netdev_err(ndev, "error requesting interrupt %x\n", ndev->irq);
529 		goto out_close;
530 	}
531 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
532 	rcar_can_start(ndev);
533 	netif_start_queue(ndev);
534 	return 0;
535 out_close:
536 	napi_disable(&priv->napi);
537 	close_candev(ndev);
538 out_can_clock:
539 	clk_disable_unprepare(priv->can_clk);
540 out_clock:
541 	clk_disable_unprepare(priv->clk);
542 out:
543 	return err;
544 }
545 
rcar_can_stop(struct net_device * ndev)546 static void rcar_can_stop(struct net_device *ndev)
547 {
548 	struct rcar_can_priv *priv = netdev_priv(ndev);
549 	u16 ctlr;
550 	int i;
551 
552 	/* Go to (force) reset mode */
553 	ctlr = readw(&priv->regs->ctlr);
554 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
555 	writew(ctlr, &priv->regs->ctlr);
556 	for (i = 0; i < MAX_STR_READS; i++) {
557 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
558 			break;
559 	}
560 	writel(0, &priv->regs->mier0);
561 	writel(0, &priv->regs->mier1);
562 	writeb(0, &priv->regs->ier);
563 	writeb(0, &priv->regs->eier);
564 	/* Go to sleep mode */
565 	ctlr |= RCAR_CAN_CTLR_SLPM;
566 	writew(ctlr, &priv->regs->ctlr);
567 	priv->can.state = CAN_STATE_STOPPED;
568 }
569 
rcar_can_close(struct net_device * ndev)570 static int rcar_can_close(struct net_device *ndev)
571 {
572 	struct rcar_can_priv *priv = netdev_priv(ndev);
573 
574 	netif_stop_queue(ndev);
575 	rcar_can_stop(ndev);
576 	free_irq(ndev->irq, ndev);
577 	napi_disable(&priv->napi);
578 	clk_disable_unprepare(priv->can_clk);
579 	clk_disable_unprepare(priv->clk);
580 	close_candev(ndev);
581 	can_led_event(ndev, CAN_LED_EVENT_STOP);
582 	return 0;
583 }
584 
rcar_can_start_xmit(struct sk_buff * skb,struct net_device * ndev)585 static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
586 				       struct net_device *ndev)
587 {
588 	struct rcar_can_priv *priv = netdev_priv(ndev);
589 	struct can_frame *cf = (struct can_frame *)skb->data;
590 	u32 data, i;
591 
592 	if (can_dropped_invalid_skb(ndev, skb))
593 		return NETDEV_TX_OK;
594 
595 	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
596 		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
597 	else				/* Standard frame format */
598 		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
599 
600 	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
601 		data |= RCAR_CAN_RTR;
602 	} else {
603 		for (i = 0; i < cf->can_dlc; i++)
604 			writeb(cf->data[i],
605 			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
606 	}
607 
608 	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
609 
610 	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
611 
612 	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
613 	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
614 	priv->tx_head++;
615 	/* Start Tx: write 0xff to the TFPCR register to increment
616 	 * the CPU-side pointer for the transmit FIFO to the next
617 	 * mailbox location
618 	 */
619 	writeb(0xff, &priv->regs->tfpcr);
620 	/* Stop the queue if we've filled all FIFO entries */
621 	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
622 		netif_stop_queue(ndev);
623 
624 	return NETDEV_TX_OK;
625 }
626 
627 static const struct net_device_ops rcar_can_netdev_ops = {
628 	.ndo_open = rcar_can_open,
629 	.ndo_stop = rcar_can_close,
630 	.ndo_start_xmit = rcar_can_start_xmit,
631 	.ndo_change_mtu = can_change_mtu,
632 };
633 
rcar_can_rx_pkt(struct rcar_can_priv * priv)634 static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
635 {
636 	struct net_device_stats *stats = &priv->ndev->stats;
637 	struct can_frame *cf;
638 	struct sk_buff *skb;
639 	u32 data;
640 	u8 dlc;
641 
642 	skb = alloc_can_skb(priv->ndev, &cf);
643 	if (!skb) {
644 		stats->rx_dropped++;
645 		return;
646 	}
647 
648 	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
649 	if (data & RCAR_CAN_IDE)
650 		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
651 	else
652 		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
653 
654 	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
655 	cf->can_dlc = get_can_dlc(dlc);
656 	if (data & RCAR_CAN_RTR) {
657 		cf->can_id |= CAN_RTR_FLAG;
658 	} else {
659 		for (dlc = 0; dlc < cf->can_dlc; dlc++)
660 			cf->data[dlc] =
661 			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
662 	}
663 
664 	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
665 
666 	stats->rx_bytes += cf->can_dlc;
667 	stats->rx_packets++;
668 	netif_receive_skb(skb);
669 }
670 
rcar_can_rx_poll(struct napi_struct * napi,int quota)671 static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
672 {
673 	struct rcar_can_priv *priv = container_of(napi,
674 						  struct rcar_can_priv, napi);
675 	int num_pkts;
676 
677 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
678 		u8 rfcr, isr;
679 
680 		isr = readb(&priv->regs->isr);
681 		/* Clear interrupt bit */
682 		if (isr & RCAR_CAN_ISR_RXFF)
683 			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
684 		rfcr = readb(&priv->regs->rfcr);
685 		if (rfcr & RCAR_CAN_RFCR_RFEST)
686 			break;
687 		rcar_can_rx_pkt(priv);
688 		/* Write 0xff to the RFPCR register to increment
689 		 * the CPU-side pointer for the receive FIFO
690 		 * to the next mailbox location
691 		 */
692 		writeb(0xff, &priv->regs->rfpcr);
693 	}
694 	/* All packets processed */
695 	if (num_pkts < quota) {
696 		napi_complete(napi);
697 		priv->ier |= RCAR_CAN_IER_RXFIE;
698 		writeb(priv->ier, &priv->regs->ier);
699 	}
700 	return num_pkts;
701 }
702 
rcar_can_do_set_mode(struct net_device * ndev,enum can_mode mode)703 static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
704 {
705 	switch (mode) {
706 	case CAN_MODE_START:
707 		rcar_can_start(ndev);
708 		netif_wake_queue(ndev);
709 		return 0;
710 	default:
711 		return -EOPNOTSUPP;
712 	}
713 }
714 
rcar_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)715 static int rcar_can_get_berr_counter(const struct net_device *dev,
716 				     struct can_berr_counter *bec)
717 {
718 	struct rcar_can_priv *priv = netdev_priv(dev);
719 	int err;
720 
721 	err = clk_prepare_enable(priv->clk);
722 	if (err)
723 		return err;
724 	bec->txerr = readb(&priv->regs->tecr);
725 	bec->rxerr = readb(&priv->regs->recr);
726 	clk_disable_unprepare(priv->clk);
727 	return 0;
728 }
729 
730 static const char * const clock_names[] = {
731 	[CLKR_CLKP1]	= "clkp1",
732 	[CLKR_CLKP2]	= "clkp2",
733 	[CLKR_CLKEXT]	= "can_clk",
734 };
735 
rcar_can_probe(struct platform_device * pdev)736 static int rcar_can_probe(struct platform_device *pdev)
737 {
738 	struct rcar_can_platform_data *pdata;
739 	struct rcar_can_priv *priv;
740 	struct net_device *ndev;
741 	struct resource *mem;
742 	void __iomem *addr;
743 	u32 clock_select = CLKR_CLKP1;
744 	int err = -ENODEV;
745 	int irq;
746 
747 	if (pdev->dev.of_node) {
748 		of_property_read_u32(pdev->dev.of_node,
749 				     "renesas,can-clock-select", &clock_select);
750 	} else {
751 		pdata = dev_get_platdata(&pdev->dev);
752 		if (!pdata) {
753 			dev_err(&pdev->dev, "No platform data provided!\n");
754 			goto fail;
755 		}
756 		clock_select = pdata->clock_select;
757 	}
758 
759 	irq = platform_get_irq(pdev, 0);
760 	if (!irq) {
761 		dev_err(&pdev->dev, "No IRQ resource\n");
762 		goto fail;
763 	}
764 
765 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
766 	addr = devm_ioremap_resource(&pdev->dev, mem);
767 	if (IS_ERR(addr)) {
768 		err = PTR_ERR(addr);
769 		goto fail;
770 	}
771 
772 	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
773 	if (!ndev) {
774 		dev_err(&pdev->dev, "alloc_candev() failed\n");
775 		err = -ENOMEM;
776 		goto fail;
777 	}
778 
779 	priv = netdev_priv(ndev);
780 
781 	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
782 	if (IS_ERR(priv->clk)) {
783 		err = PTR_ERR(priv->clk);
784 		dev_err(&pdev->dev, "cannot get peripheral clock: %d\n", err);
785 		goto fail_clk;
786 	}
787 
788 	if (clock_select >= ARRAY_SIZE(clock_names)) {
789 		err = -EINVAL;
790 		dev_err(&pdev->dev, "invalid CAN clock selected\n");
791 		goto fail_clk;
792 	}
793 	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
794 	if (IS_ERR(priv->can_clk)) {
795 		err = PTR_ERR(priv->can_clk);
796 		dev_err(&pdev->dev, "cannot get CAN clock: %d\n", err);
797 		goto fail_clk;
798 	}
799 
800 	ndev->netdev_ops = &rcar_can_netdev_ops;
801 	ndev->irq = irq;
802 	ndev->flags |= IFF_ECHO;
803 	priv->ndev = ndev;
804 	priv->regs = addr;
805 	priv->clock_select = clock_select;
806 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
807 	priv->can.bittiming_const = &rcar_can_bittiming_const;
808 	priv->can.do_set_mode = rcar_can_do_set_mode;
809 	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
810 	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
811 	platform_set_drvdata(pdev, ndev);
812 	SET_NETDEV_DEV(ndev, &pdev->dev);
813 
814 	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
815 		       RCAR_CAN_NAPI_WEIGHT);
816 	err = register_candev(ndev);
817 	if (err) {
818 		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
819 			err);
820 		goto fail_candev;
821 	}
822 
823 	devm_can_led_init(ndev);
824 
825 	dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%u)\n",
826 		 priv->regs, ndev->irq);
827 
828 	return 0;
829 fail_candev:
830 	netif_napi_del(&priv->napi);
831 fail_clk:
832 	free_candev(ndev);
833 fail:
834 	return err;
835 }
836 
rcar_can_remove(struct platform_device * pdev)837 static int rcar_can_remove(struct platform_device *pdev)
838 {
839 	struct net_device *ndev = platform_get_drvdata(pdev);
840 	struct rcar_can_priv *priv = netdev_priv(ndev);
841 
842 	unregister_candev(ndev);
843 	netif_napi_del(&priv->napi);
844 	free_candev(ndev);
845 	return 0;
846 }
847 
rcar_can_suspend(struct device * dev)848 static int __maybe_unused rcar_can_suspend(struct device *dev)
849 {
850 	struct net_device *ndev = dev_get_drvdata(dev);
851 	struct rcar_can_priv *priv = netdev_priv(ndev);
852 	u16 ctlr;
853 
854 	if (netif_running(ndev)) {
855 		netif_stop_queue(ndev);
856 		netif_device_detach(ndev);
857 	}
858 	ctlr = readw(&priv->regs->ctlr);
859 	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
860 	writew(ctlr, &priv->regs->ctlr);
861 	ctlr |= RCAR_CAN_CTLR_SLPM;
862 	writew(ctlr, &priv->regs->ctlr);
863 	priv->can.state = CAN_STATE_SLEEPING;
864 
865 	clk_disable(priv->clk);
866 	return 0;
867 }
868 
rcar_can_resume(struct device * dev)869 static int __maybe_unused rcar_can_resume(struct device *dev)
870 {
871 	struct net_device *ndev = dev_get_drvdata(dev);
872 	struct rcar_can_priv *priv = netdev_priv(ndev);
873 	u16 ctlr;
874 	int err;
875 
876 	err = clk_enable(priv->clk);
877 	if (err) {
878 		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
879 		return err;
880 	}
881 
882 	ctlr = readw(&priv->regs->ctlr);
883 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
884 	writew(ctlr, &priv->regs->ctlr);
885 	ctlr &= ~RCAR_CAN_CTLR_CANM;
886 	writew(ctlr, &priv->regs->ctlr);
887 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
888 
889 	if (netif_running(ndev)) {
890 		netif_device_attach(ndev);
891 		netif_start_queue(ndev);
892 	}
893 	return 0;
894 }
895 
896 static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
897 
898 static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
899 	{ .compatible = "renesas,can-r8a7778" },
900 	{ .compatible = "renesas,can-r8a7779" },
901 	{ .compatible = "renesas,can-r8a7790" },
902 	{ .compatible = "renesas,can-r8a7791" },
903 	{ }
904 };
905 MODULE_DEVICE_TABLE(of, rcar_can_of_table);
906 
907 static struct platform_driver rcar_can_driver = {
908 	.driver = {
909 		.name = RCAR_CAN_DRV_NAME,
910 		.owner = THIS_MODULE,
911 		.of_match_table = of_match_ptr(rcar_can_of_table),
912 		.pm = &rcar_can_pm_ops,
913 	},
914 	.probe = rcar_can_probe,
915 	.remove = rcar_can_remove,
916 };
917 
918 module_platform_driver(rcar_can_driver);
919 
920 MODULE_AUTHOR("Cogent Embedded, Inc.");
921 MODULE_LICENSE("GPL");
922 MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
923 MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
924