• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * slcan.c - serial line CAN interface driver (using tty line discipline)
3  *
4  * This file is derived from linux/drivers/net/slip/slip.c
5  *
6  * slip.c Authors  : Laurence Culhane <loz@holmes.demon.co.uk>
7  *                   Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8  * slcan.c Author  : Oliver Hartkopp <socketcan@hartkopp.net>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see http://www.gnu.org/licenses/gpl.html
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34  * DAMAGE.
35  *
36  */
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/workqueue.h>
56 #include <linux/can.h>
57 #include <linux/can/skb.h>
58 
59 static __initconst const char banner[] =
60 	KERN_INFO "slcan: serial line CAN interface driver\n";
61 
62 MODULE_ALIAS_LDISC(N_SLCAN);
63 MODULE_DESCRIPTION("serial line CAN interface");
64 MODULE_LICENSE("GPL");
65 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
66 
67 #define SLCAN_MAGIC 0x53CA
68 
69 static int maxdev = 10;		/* MAX number of SLCAN channels;
70 				   This can be overridden with
71 				   insmod slcan.ko maxdev=nnn	*/
72 module_param(maxdev, int, 0);
73 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
74 
75 /* maximum rx buffer len: extended CAN frame with timestamp */
76 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
77 
78 #define SLC_CMD_LEN 1
79 #define SLC_SFF_ID_LEN 3
80 #define SLC_EFF_ID_LEN 8
81 
82 struct slcan {
83 	int			magic;
84 
85 	/* Various fields. */
86 	struct tty_struct	*tty;		/* ptr to TTY structure	     */
87 	struct net_device	*dev;		/* easy for intr handling    */
88 	spinlock_t		lock;
89 	struct work_struct	tx_work;	/* Flushes transmit buffer   */
90 
91 	/* These are pointers to the malloc()ed frame buffers. */
92 	unsigned char		rbuff[SLC_MTU];	/* receiver buffer	     */
93 	int			rcount;         /* received chars counter    */
94 	unsigned char		xbuff[SLC_MTU];	/* transmitter buffer	     */
95 	unsigned char		*xhead;         /* pointer to next XMIT byte */
96 	int			xleft;          /* bytes left in XMIT queue  */
97 
98 	unsigned long		flags;		/* Flag values/ mode etc     */
99 #define SLF_INUSE		0		/* Channel in use            */
100 #define SLF_ERROR		1               /* Parity, etc. error        */
101 };
102 
103 static struct net_device **slcan_devs;
104 
105  /************************************************************************
106   *			SLCAN ENCAPSULATION FORMAT			 *
107   ************************************************************************/
108 
109 /*
110  * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
111  * frame format) a data length code (can_dlc) which can be from 0 to 8
112  * and up to <can_dlc> data bytes as payload.
113  * Additionally a CAN frame may become a remote transmission frame if the
114  * RTR-bit is set. This causes another ECU to send a CAN frame with the
115  * given can_id.
116  *
117  * The SLCAN ASCII representation of these different frame types is:
118  * <type> <id> <dlc> <data>*
119  *
120  * Extended frames (29 bit) are defined by capital characters in the type.
121  * RTR frames are defined as 'r' types - normal frames have 't' type:
122  * t => 11 bit data frame
123  * r => 11 bit RTR frame
124  * T => 29 bit data frame
125  * R => 29 bit RTR frame
126  *
127  * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
128  * The <dlc> is a one byte ASCII number ('0' - '8')
129  * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
130  *
131  * Examples:
132  *
133  * t1230 : can_id 0x123, can_dlc 0, no data
134  * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
135  * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
136  * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
137  *
138  */
139 
140  /************************************************************************
141   *			STANDARD SLCAN DECAPSULATION			 *
142   ************************************************************************/
143 
144 /* Send one completely decapsulated can_frame to the network layer */
slc_bump(struct slcan * sl)145 static void slc_bump(struct slcan *sl)
146 {
147 	struct sk_buff *skb;
148 	struct can_frame cf;
149 	int i, tmp;
150 	u32 tmpid;
151 	char *cmd = sl->rbuff;
152 
153 	cf.can_id = 0;
154 
155 	switch (*cmd) {
156 	case 'r':
157 		cf.can_id = CAN_RTR_FLAG;
158 		/* fallthrough */
159 	case 't':
160 		/* store dlc ASCII value and terminate SFF CAN ID string */
161 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
162 		sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
163 		/* point to payload data behind the dlc */
164 		cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
165 		break;
166 	case 'R':
167 		cf.can_id = CAN_RTR_FLAG;
168 		/* fallthrough */
169 	case 'T':
170 		cf.can_id |= CAN_EFF_FLAG;
171 		/* store dlc ASCII value and terminate EFF CAN ID string */
172 		cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
173 		sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
174 		/* point to payload data behind the dlc */
175 		cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
176 		break;
177 	default:
178 		return;
179 	}
180 
181 	if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
182 		return;
183 
184 	cf.can_id |= tmpid;
185 
186 	/* get can_dlc from sanitized ASCII value */
187 	if (cf.can_dlc >= '0' && cf.can_dlc < '9')
188 		cf.can_dlc -= '0';
189 	else
190 		return;
191 
192 	*(u64 *) (&cf.data) = 0; /* clear payload */
193 
194 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
195 	if (!(cf.can_id & CAN_RTR_FLAG)) {
196 		for (i = 0; i < cf.can_dlc; i++) {
197 			tmp = hex_to_bin(*cmd++);
198 			if (tmp < 0)
199 				return;
200 			cf.data[i] = (tmp << 4);
201 			tmp = hex_to_bin(*cmd++);
202 			if (tmp < 0)
203 				return;
204 			cf.data[i] |= tmp;
205 		}
206 	}
207 
208 	skb = dev_alloc_skb(sizeof(struct can_frame) +
209 			    sizeof(struct can_skb_priv));
210 	if (!skb)
211 		return;
212 
213 	skb->dev = sl->dev;
214 	skb->protocol = htons(ETH_P_CAN);
215 	skb->pkt_type = PACKET_BROADCAST;
216 	skb->ip_summed = CHECKSUM_UNNECESSARY;
217 
218 	can_skb_reserve(skb);
219 	can_skb_prv(skb)->ifindex = sl->dev->ifindex;
220 
221 	memcpy(skb_put(skb, sizeof(struct can_frame)),
222 	       &cf, sizeof(struct can_frame));
223 	netif_rx_ni(skb);
224 
225 	sl->dev->stats.rx_packets++;
226 	sl->dev->stats.rx_bytes += cf.can_dlc;
227 }
228 
229 /* parse tty input stream */
slcan_unesc(struct slcan * sl,unsigned char s)230 static void slcan_unesc(struct slcan *sl, unsigned char s)
231 {
232 	if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
233 		if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
234 		    (sl->rcount > 4))  {
235 			slc_bump(sl);
236 		}
237 		sl->rcount = 0;
238 	} else {
239 		if (!test_bit(SLF_ERROR, &sl->flags))  {
240 			if (sl->rcount < SLC_MTU)  {
241 				sl->rbuff[sl->rcount++] = s;
242 				return;
243 			} else {
244 				sl->dev->stats.rx_over_errors++;
245 				set_bit(SLF_ERROR, &sl->flags);
246 			}
247 		}
248 	}
249 }
250 
251  /************************************************************************
252   *			STANDARD SLCAN ENCAPSULATION			 *
253   ************************************************************************/
254 
255 /* Encapsulate one can_frame and stuff into a TTY queue. */
slc_encaps(struct slcan * sl,struct can_frame * cf)256 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
257 {
258 	int actual, i;
259 	unsigned char *pos;
260 	unsigned char *endpos;
261 	canid_t id = cf->can_id;
262 
263 	pos = sl->xbuff;
264 
265 	if (cf->can_id & CAN_RTR_FLAG)
266 		*pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
267 	else
268 		*pos = 'T'; /* becomes 't' in standard frame format (SSF) */
269 
270 	/* determine number of chars for the CAN-identifier */
271 	if (cf->can_id & CAN_EFF_FLAG) {
272 		id &= CAN_EFF_MASK;
273 		endpos = pos + SLC_EFF_ID_LEN;
274 	} else {
275 		*pos |= 0x20; /* convert R/T to lower case for SFF */
276 		id &= CAN_SFF_MASK;
277 		endpos = pos + SLC_SFF_ID_LEN;
278 	}
279 
280 	/* build 3 (SFF) or 8 (EFF) digit CAN identifier */
281 	pos++;
282 	while (endpos >= pos) {
283 		*endpos-- = hex_asc_upper[id & 0xf];
284 		id >>= 4;
285 	}
286 
287 	pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
288 
289 	*pos++ = cf->can_dlc + '0';
290 
291 	/* RTR frames may have a dlc > 0 but they never have any data bytes */
292 	if (!(cf->can_id & CAN_RTR_FLAG)) {
293 		for (i = 0; i < cf->can_dlc; i++)
294 			pos = hex_byte_pack_upper(pos, cf->data[i]);
295 	}
296 
297 	*pos++ = '\r';
298 
299 	/* Order of next two lines is *very* important.
300 	 * When we are sending a little amount of data,
301 	 * the transfer may be completed inside the ops->write()
302 	 * routine, because it's running with interrupts enabled.
303 	 * In this case we *never* got WRITE_WAKEUP event,
304 	 * if we did not request it before write operation.
305 	 *       14 Oct 1994  Dmitry Gorodchanin.
306 	 */
307 	set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
308 	actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
309 	sl->xleft = (pos - sl->xbuff) - actual;
310 	sl->xhead = sl->xbuff + actual;
311 	sl->dev->stats.tx_bytes += cf->can_dlc;
312 }
313 
314 /* Write out any remaining transmit buffer. Scheduled when tty is writable */
slcan_transmit(struct work_struct * work)315 static void slcan_transmit(struct work_struct *work)
316 {
317 	struct slcan *sl = container_of(work, struct slcan, tx_work);
318 	int actual;
319 
320 	spin_lock_bh(&sl->lock);
321 	/* First make sure we're connected. */
322 	if (!sl->tty || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev)) {
323 		spin_unlock_bh(&sl->lock);
324 		return;
325 	}
326 
327 	if (sl->xleft <= 0)  {
328 		/* Now serial buffer is almost free & we can start
329 		 * transmission of another packet */
330 		sl->dev->stats.tx_packets++;
331 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
332 		spin_unlock_bh(&sl->lock);
333 		netif_wake_queue(sl->dev);
334 		return;
335 	}
336 
337 	actual = sl->tty->ops->write(sl->tty, sl->xhead, sl->xleft);
338 	sl->xleft -= actual;
339 	sl->xhead += actual;
340 	spin_unlock_bh(&sl->lock);
341 }
342 
343 /*
344  * Called by the driver when there's room for more data.
345  * Schedule the transmit.
346  */
slcan_write_wakeup(struct tty_struct * tty)347 static void slcan_write_wakeup(struct tty_struct *tty)
348 {
349 	struct slcan *sl = tty->disc_data;
350 
351 	schedule_work(&sl->tx_work);
352 }
353 
354 /* Send a can_frame to a TTY queue. */
slc_xmit(struct sk_buff * skb,struct net_device * dev)355 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
356 {
357 	struct slcan *sl = netdev_priv(dev);
358 
359 	if (skb->len != sizeof(struct can_frame))
360 		goto out;
361 
362 	spin_lock(&sl->lock);
363 	if (!netif_running(dev))  {
364 		spin_unlock(&sl->lock);
365 		printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
366 		goto out;
367 	}
368 	if (sl->tty == NULL) {
369 		spin_unlock(&sl->lock);
370 		goto out;
371 	}
372 
373 	netif_stop_queue(sl->dev);
374 	slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
375 	spin_unlock(&sl->lock);
376 
377 out:
378 	kfree_skb(skb);
379 	return NETDEV_TX_OK;
380 }
381 
382 
383 /******************************************
384  *   Routines looking at netdevice side.
385  ******************************************/
386 
387 /* Netdevice UP -> DOWN routine */
slc_close(struct net_device * dev)388 static int slc_close(struct net_device *dev)
389 {
390 	struct slcan *sl = netdev_priv(dev);
391 
392 	spin_lock_bh(&sl->lock);
393 	if (sl->tty) {
394 		/* TTY discipline is running. */
395 		clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
396 	}
397 	netif_stop_queue(dev);
398 	sl->rcount   = 0;
399 	sl->xleft    = 0;
400 	spin_unlock_bh(&sl->lock);
401 
402 	return 0;
403 }
404 
405 /* Netdevice DOWN -> UP routine */
slc_open(struct net_device * dev)406 static int slc_open(struct net_device *dev)
407 {
408 	struct slcan *sl = netdev_priv(dev);
409 
410 	if (sl->tty == NULL)
411 		return -ENODEV;
412 
413 	sl->flags &= (1 << SLF_INUSE);
414 	netif_start_queue(dev);
415 	return 0;
416 }
417 
418 /* Hook the destructor so we can free slcan devs at the right point in time */
slc_free_netdev(struct net_device * dev)419 static void slc_free_netdev(struct net_device *dev)
420 {
421 	int i = dev->base_addr;
422 	free_netdev(dev);
423 	slcan_devs[i] = NULL;
424 }
425 
slcan_change_mtu(struct net_device * dev,int new_mtu)426 static int slcan_change_mtu(struct net_device *dev, int new_mtu)
427 {
428 	return -EINVAL;
429 }
430 
431 static const struct net_device_ops slc_netdev_ops = {
432 	.ndo_open               = slc_open,
433 	.ndo_stop               = slc_close,
434 	.ndo_start_xmit         = slc_xmit,
435 	.ndo_change_mtu         = slcan_change_mtu,
436 };
437 
slc_setup(struct net_device * dev)438 static void slc_setup(struct net_device *dev)
439 {
440 	dev->netdev_ops		= &slc_netdev_ops;
441 	dev->destructor		= slc_free_netdev;
442 
443 	dev->hard_header_len	= 0;
444 	dev->addr_len		= 0;
445 	dev->tx_queue_len	= 10;
446 
447 	dev->mtu		= sizeof(struct can_frame);
448 	dev->type		= ARPHRD_CAN;
449 
450 	/* New-style flags. */
451 	dev->flags		= IFF_NOARP;
452 	dev->features           = NETIF_F_HW_CSUM;
453 }
454 
455 /******************************************
456   Routines looking at TTY side.
457  ******************************************/
458 
459 /*
460  * Handle the 'receiver data ready' interrupt.
461  * This function is called by the 'tty_io' module in the kernel when
462  * a block of SLCAN data has been received, which can now be decapsulated
463  * and sent on to some IP layer for further processing. This will not
464  * be re-entered while running but other ldisc functions may be called
465  * in parallel
466  */
467 
slcan_receive_buf(struct tty_struct * tty,const unsigned char * cp,char * fp,int count)468 static void slcan_receive_buf(struct tty_struct *tty,
469 			      const unsigned char *cp, char *fp, int count)
470 {
471 	struct slcan *sl = (struct slcan *) tty->disc_data;
472 
473 	if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
474 		return;
475 
476 	/* Read the characters out of the buffer */
477 	while (count--) {
478 		if (fp && *fp++) {
479 			if (!test_and_set_bit(SLF_ERROR, &sl->flags))
480 				sl->dev->stats.rx_errors++;
481 			cp++;
482 			continue;
483 		}
484 		slcan_unesc(sl, *cp++);
485 	}
486 }
487 
488 /************************************
489  *  slcan_open helper routines.
490  ************************************/
491 
492 /* Collect hanged up channels */
slc_sync(void)493 static void slc_sync(void)
494 {
495 	int i;
496 	struct net_device *dev;
497 	struct slcan	  *sl;
498 
499 	for (i = 0; i < maxdev; i++) {
500 		dev = slcan_devs[i];
501 		if (dev == NULL)
502 			break;
503 
504 		sl = netdev_priv(dev);
505 		if (sl->tty)
506 			continue;
507 		if (dev->flags & IFF_UP)
508 			dev_close(dev);
509 	}
510 }
511 
512 /* Find a free SLCAN channel, and link in this `tty' line. */
slc_alloc(dev_t line)513 static struct slcan *slc_alloc(dev_t line)
514 {
515 	int i;
516 	char name[IFNAMSIZ];
517 	struct net_device *dev = NULL;
518 	struct slcan       *sl;
519 
520 	for (i = 0; i < maxdev; i++) {
521 		dev = slcan_devs[i];
522 		if (dev == NULL)
523 			break;
524 
525 	}
526 
527 	/* Sorry, too many, all slots in use */
528 	if (i >= maxdev)
529 		return NULL;
530 
531 	sprintf(name, "slcan%d", i);
532 	dev = alloc_netdev(sizeof(*sl), name, NET_NAME_UNKNOWN, slc_setup);
533 	if (!dev)
534 		return NULL;
535 
536 	dev->base_addr  = i;
537 	sl = netdev_priv(dev);
538 
539 	/* Initialize channel control data */
540 	sl->magic = SLCAN_MAGIC;
541 	sl->dev	= dev;
542 	spin_lock_init(&sl->lock);
543 	INIT_WORK(&sl->tx_work, slcan_transmit);
544 	slcan_devs[i] = dev;
545 
546 	return sl;
547 }
548 
549 /*
550  * Open the high-level part of the SLCAN channel.
551  * This function is called by the TTY module when the
552  * SLCAN line discipline is called for.  Because we are
553  * sure the tty line exists, we only have to link it to
554  * a free SLCAN channel...
555  *
556  * Called in process context serialized from other ldisc calls.
557  */
558 
slcan_open(struct tty_struct * tty)559 static int slcan_open(struct tty_struct *tty)
560 {
561 	struct slcan *sl;
562 	int err;
563 
564 	if (!capable(CAP_NET_ADMIN))
565 		return -EPERM;
566 
567 	if (tty->ops->write == NULL)
568 		return -EOPNOTSUPP;
569 
570 	/* RTnetlink lock is misused here to serialize concurrent
571 	   opens of slcan channels. There are better ways, but it is
572 	   the simplest one.
573 	 */
574 	rtnl_lock();
575 
576 	/* Collect hanged up channels. */
577 	slc_sync();
578 
579 	sl = tty->disc_data;
580 
581 	err = -EEXIST;
582 	/* First make sure we're not already connected. */
583 	if (sl && sl->magic == SLCAN_MAGIC)
584 		goto err_exit;
585 
586 	/* OK.  Find a free SLCAN channel to use. */
587 	err = -ENFILE;
588 	sl = slc_alloc(tty_devnum(tty));
589 	if (sl == NULL)
590 		goto err_exit;
591 
592 	sl->tty = tty;
593 	tty->disc_data = sl;
594 
595 	if (!test_bit(SLF_INUSE, &sl->flags)) {
596 		/* Perform the low-level SLCAN initialization. */
597 		sl->rcount   = 0;
598 		sl->xleft    = 0;
599 
600 		set_bit(SLF_INUSE, &sl->flags);
601 
602 		err = register_netdevice(sl->dev);
603 		if (err)
604 			goto err_free_chan;
605 	}
606 
607 	/* Done.  We have linked the TTY line to a channel. */
608 	rtnl_unlock();
609 	tty->receive_room = 65536;	/* We don't flow control */
610 
611 	/* TTY layer expects 0 on success */
612 	return 0;
613 
614 err_free_chan:
615 	sl->tty = NULL;
616 	tty->disc_data = NULL;
617 	clear_bit(SLF_INUSE, &sl->flags);
618 
619 err_exit:
620 	rtnl_unlock();
621 
622 	/* Count references from TTY module */
623 	return err;
624 }
625 
626 /*
627  * Close down a SLCAN channel.
628  * This means flushing out any pending queues, and then returning. This
629  * call is serialized against other ldisc functions.
630  *
631  * We also use this method for a hangup event.
632  */
633 
slcan_close(struct tty_struct * tty)634 static void slcan_close(struct tty_struct *tty)
635 {
636 	struct slcan *sl = (struct slcan *) tty->disc_data;
637 
638 	/* First make sure we're connected. */
639 	if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
640 		return;
641 
642 	spin_lock_bh(&sl->lock);
643 	tty->disc_data = NULL;
644 	sl->tty = NULL;
645 	spin_unlock_bh(&sl->lock);
646 
647 	flush_work(&sl->tx_work);
648 
649 	/* Flush network side */
650 	unregister_netdev(sl->dev);
651 	/* This will complete via sl_free_netdev */
652 }
653 
slcan_hangup(struct tty_struct * tty)654 static int slcan_hangup(struct tty_struct *tty)
655 {
656 	slcan_close(tty);
657 	return 0;
658 }
659 
660 /* Perform I/O control on an active SLCAN channel. */
slcan_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)661 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
662 		       unsigned int cmd, unsigned long arg)
663 {
664 	struct slcan *sl = (struct slcan *) tty->disc_data;
665 	unsigned int tmp;
666 
667 	/* First make sure we're connected. */
668 	if (!sl || sl->magic != SLCAN_MAGIC)
669 		return -EINVAL;
670 
671 	switch (cmd) {
672 	case SIOCGIFNAME:
673 		tmp = strlen(sl->dev->name) + 1;
674 		if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
675 			return -EFAULT;
676 		return 0;
677 
678 	case SIOCSIFHWADDR:
679 		return -EINVAL;
680 
681 	default:
682 		return tty_mode_ioctl(tty, file, cmd, arg);
683 	}
684 }
685 
686 static struct tty_ldisc_ops slc_ldisc = {
687 	.owner		= THIS_MODULE,
688 	.magic		= TTY_LDISC_MAGIC,
689 	.name		= "slcan",
690 	.open		= slcan_open,
691 	.close		= slcan_close,
692 	.hangup		= slcan_hangup,
693 	.ioctl		= slcan_ioctl,
694 	.receive_buf	= slcan_receive_buf,
695 	.write_wakeup	= slcan_write_wakeup,
696 };
697 
slcan_init(void)698 static int __init slcan_init(void)
699 {
700 	int status;
701 
702 	if (maxdev < 4)
703 		maxdev = 4; /* Sanity */
704 
705 	printk(banner);
706 	printk(KERN_INFO "slcan: %d dynamic interface channels.\n", maxdev);
707 
708 	slcan_devs = kzalloc(sizeof(struct net_device *)*maxdev, GFP_KERNEL);
709 	if (!slcan_devs)
710 		return -ENOMEM;
711 
712 	/* Fill in our line protocol discipline, and register it */
713 	status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
714 	if (status)  {
715 		printk(KERN_ERR "slcan: can't register line discipline\n");
716 		kfree(slcan_devs);
717 	}
718 	return status;
719 }
720 
slcan_exit(void)721 static void __exit slcan_exit(void)
722 {
723 	int i;
724 	struct net_device *dev;
725 	struct slcan *sl;
726 	unsigned long timeout = jiffies + HZ;
727 	int busy = 0;
728 
729 	if (slcan_devs == NULL)
730 		return;
731 
732 	/* First of all: check for active disciplines and hangup them.
733 	 */
734 	do {
735 		if (busy)
736 			msleep_interruptible(100);
737 
738 		busy = 0;
739 		for (i = 0; i < maxdev; i++) {
740 			dev = slcan_devs[i];
741 			if (!dev)
742 				continue;
743 			sl = netdev_priv(dev);
744 			spin_lock_bh(&sl->lock);
745 			if (sl->tty) {
746 				busy++;
747 				tty_hangup(sl->tty);
748 			}
749 			spin_unlock_bh(&sl->lock);
750 		}
751 	} while (busy && time_before(jiffies, timeout));
752 
753 	/* FIXME: hangup is async so we should wait when doing this second
754 	   phase */
755 
756 	for (i = 0; i < maxdev; i++) {
757 		dev = slcan_devs[i];
758 		if (!dev)
759 			continue;
760 		slcan_devs[i] = NULL;
761 
762 		sl = netdev_priv(dev);
763 		if (sl->tty) {
764 			printk(KERN_ERR "%s: tty discipline still running\n",
765 			       dev->name);
766 			/* Intentionally leak the control block. */
767 			dev->destructor = NULL;
768 		}
769 
770 		unregister_netdev(dev);
771 	}
772 
773 	kfree(slcan_devs);
774 	slcan_devs = NULL;
775 
776 	i = tty_unregister_ldisc(N_SLCAN);
777 	if (i)
778 		printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
779 }
780 
781 module_init(slcan_init);
782 module_exit(slcan_exit);
783