1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
fs_set_multicast_list(struct net_device * dev)67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 struct fs_enet_private *fep = netdev_priv(dev);
70
71 (*fep->ops->set_multicast_list)(dev);
72 }
73
skb_align(struct sk_buff * skb,int align)74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 int off = ((unsigned long)skb->data) & (align - 1);
77
78 if (off)
79 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
fs_enet_rx_napi(struct napi_struct * napi,int budget)83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn, *skbt;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
93
94 if (budget <= 0)
95 return received;
96
97 /*
98 * First, grab all of the stats for the incoming packet.
99 * These get messed up if we get called due to a busy condition.
100 */
101 bdp = fep->cur_rx;
102
103 /* clear RX status bits for napi*/
104 (*fep->ops->napi_clear_rx_event)(dev);
105
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 curidx = bdp - fep->rx_bd_base;
108
109 /*
110 * Since we have allocated space to hold a complete frame,
111 * the last indicator should be set.
112 */
113 if ((sc & BD_ENET_RX_LAST) == 0)
114 dev_warn(fep->dev, "rcv is not +last\n");
115
116 /*
117 * Check for errors.
118 */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 fep->stats.rx_errors++;
122 /* Frame too long or too short. */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 fep->stats.rx_length_errors++;
125 /* Frame alignment */
126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 fep->stats.rx_frame_errors++;
128 /* CRC Error */
129 if (sc & BD_ENET_RX_CR)
130 fep->stats.rx_crc_errors++;
131 /* FIFO overrun */
132 if (sc & BD_ENET_RX_OV)
133 fep->stats.rx_crc_errors++;
134
135 skb = fep->rx_skbuff[curidx];
136
137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 DMA_FROM_DEVICE);
140
141 skbn = skb;
142
143 } else {
144 skb = fep->rx_skbuff[curidx];
145
146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 DMA_FROM_DEVICE);
149
150 /*
151 * Process the incoming frame.
152 */
153 fep->stats.rx_packets++;
154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155 fep->stats.rx_bytes += pkt_len + 4;
156
157 if (pkt_len <= fpi->rx_copybreak) {
158 /* +2 to make IP header L1 cache aligned */
159 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 if (skbn != NULL) {
161 skb_reserve(skbn, 2); /* align IP header */
162 skb_copy_from_linear_data(skb,
163 skbn->data, pkt_len);
164 /* swap */
165 skbt = skb;
166 skb = skbn;
167 skbn = skbt;
168 }
169 } else {
170 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171
172 if (skbn)
173 skb_align(skbn, ENET_RX_ALIGN);
174 }
175
176 if (skbn != NULL) {
177 skb_put(skb, pkt_len); /* Make room */
178 skb->protocol = eth_type_trans(skb, dev);
179 received++;
180 netif_receive_skb(skb);
181 } else {
182 fep->stats.rx_dropped++;
183 skbn = skb;
184 }
185 }
186
187 fep->rx_skbuff[curidx] = skbn;
188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 DMA_FROM_DEVICE));
191 CBDW_DATLEN(bdp, 0);
192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194 /*
195 * Update BD pointer to next entry.
196 */
197 if ((sc & BD_ENET_RX_WRAP) == 0)
198 bdp++;
199 else
200 bdp = fep->rx_bd_base;
201
202 (*fep->ops->rx_bd_done)(dev);
203
204 if (received >= budget)
205 break;
206 }
207
208 fep->cur_rx = bdp;
209
210 if (received < budget) {
211 /* done */
212 napi_complete(napi);
213 (*fep->ops->napi_enable_rx)(dev);
214 }
215 return received;
216 }
217
fs_enet_tx_napi(struct napi_struct * napi,int budget)218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219 {
220 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221 napi_tx);
222 struct net_device *dev = fep->ndev;
223 cbd_t __iomem *bdp;
224 struct sk_buff *skb;
225 int dirtyidx, do_wake, do_restart;
226 u16 sc;
227 int has_tx_work = 0;
228
229 spin_lock(&fep->tx_lock);
230 bdp = fep->dirty_tx;
231
232 /* clear TX status bits for napi*/
233 (*fep->ops->napi_clear_tx_event)(dev);
234
235 do_wake = do_restart = 0;
236 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237 dirtyidx = bdp - fep->tx_bd_base;
238
239 if (fep->tx_free == fep->tx_ring)
240 break;
241
242 skb = fep->tx_skbuff[dirtyidx];
243
244 /*
245 * Check for errors.
246 */
247 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249
250 if (sc & BD_ENET_TX_HB) /* No heartbeat */
251 fep->stats.tx_heartbeat_errors++;
252 if (sc & BD_ENET_TX_LC) /* Late collision */
253 fep->stats.tx_window_errors++;
254 if (sc & BD_ENET_TX_RL) /* Retrans limit */
255 fep->stats.tx_aborted_errors++;
256 if (sc & BD_ENET_TX_UN) /* Underrun */
257 fep->stats.tx_fifo_errors++;
258 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
259 fep->stats.tx_carrier_errors++;
260
261 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262 fep->stats.tx_errors++;
263 do_restart = 1;
264 }
265 } else
266 fep->stats.tx_packets++;
267
268 if (sc & BD_ENET_TX_READY) {
269 dev_warn(fep->dev,
270 "HEY! Enet xmit interrupt and TX_READY.\n");
271 }
272
273 /*
274 * Deferred means some collisions occurred during transmit,
275 * but we eventually sent the packet OK.
276 */
277 if (sc & BD_ENET_TX_DEF)
278 fep->stats.collisions++;
279
280 /* unmap */
281 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
282 skb->len, DMA_TO_DEVICE);
283
284 /*
285 * Free the sk buffer associated with this last transmit.
286 */
287 dev_kfree_skb(skb);
288 fep->tx_skbuff[dirtyidx] = NULL;
289
290 /*
291 * Update pointer to next buffer descriptor to be transmitted.
292 */
293 if ((sc & BD_ENET_TX_WRAP) == 0)
294 bdp++;
295 else
296 bdp = fep->tx_bd_base;
297
298 /*
299 * Since we have freed up a buffer, the ring is no longer
300 * full.
301 */
302 if (!fep->tx_free++)
303 do_wake = 1;
304 has_tx_work = 1;
305 }
306
307 fep->dirty_tx = bdp;
308
309 if (do_restart)
310 (*fep->ops->tx_restart)(dev);
311
312 if (!has_tx_work) {
313 napi_complete(napi);
314 (*fep->ops->napi_enable_tx)(dev);
315 }
316
317 spin_unlock(&fep->tx_lock);
318
319 if (do_wake)
320 netif_wake_queue(dev);
321
322 if (has_tx_work)
323 return budget;
324 return 0;
325 }
326
327 /*
328 * The interrupt handler.
329 * This is called from the MPC core interrupt.
330 */
331 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)332 fs_enet_interrupt(int irq, void *dev_id)
333 {
334 struct net_device *dev = dev_id;
335 struct fs_enet_private *fep;
336 const struct fs_platform_info *fpi;
337 u32 int_events;
338 u32 int_clr_events;
339 int nr, napi_ok;
340 int handled;
341
342 fep = netdev_priv(dev);
343 fpi = fep->fpi;
344
345 nr = 0;
346 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
347 nr++;
348
349 int_clr_events = int_events;
350 int_clr_events &= ~fep->ev_napi_rx;
351
352 (*fep->ops->clear_int_events)(dev, int_clr_events);
353
354 if (int_events & fep->ev_err)
355 (*fep->ops->ev_error)(dev, int_events);
356
357 if (int_events & fep->ev_rx) {
358 napi_ok = napi_schedule_prep(&fep->napi);
359
360 (*fep->ops->napi_disable_rx)(dev);
361 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
362
363 /* NOTE: it is possible for FCCs in NAPI mode */
364 /* to submit a spurious interrupt while in poll */
365 if (napi_ok)
366 __napi_schedule(&fep->napi);
367 }
368
369 if (int_events & fep->ev_tx) {
370 napi_ok = napi_schedule_prep(&fep->napi_tx);
371
372 (*fep->ops->napi_disable_tx)(dev);
373 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
374
375 /* NOTE: it is possible for FCCs in NAPI mode */
376 /* to submit a spurious interrupt while in poll */
377 if (napi_ok)
378 __napi_schedule(&fep->napi_tx);
379 }
380 }
381
382 handled = nr > 0;
383 return IRQ_RETVAL(handled);
384 }
385
fs_init_bds(struct net_device * dev)386 void fs_init_bds(struct net_device *dev)
387 {
388 struct fs_enet_private *fep = netdev_priv(dev);
389 cbd_t __iomem *bdp;
390 struct sk_buff *skb;
391 int i;
392
393 fs_cleanup_bds(dev);
394
395 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
396 fep->tx_free = fep->tx_ring;
397 fep->cur_rx = fep->rx_bd_base;
398
399 /*
400 * Initialize the receive buffer descriptors.
401 */
402 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
403 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
404 if (skb == NULL)
405 break;
406
407 skb_align(skb, ENET_RX_ALIGN);
408 fep->rx_skbuff[i] = skb;
409 CBDW_BUFADDR(bdp,
410 dma_map_single(fep->dev, skb->data,
411 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
412 DMA_FROM_DEVICE));
413 CBDW_DATLEN(bdp, 0); /* zero */
414 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
415 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
416 }
417 /*
418 * if we failed, fillup remainder
419 */
420 for (; i < fep->rx_ring; i++, bdp++) {
421 fep->rx_skbuff[i] = NULL;
422 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
423 }
424
425 /*
426 * ...and the same for transmit.
427 */
428 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
429 fep->tx_skbuff[i] = NULL;
430 CBDW_BUFADDR(bdp, 0);
431 CBDW_DATLEN(bdp, 0);
432 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
433 }
434 }
435
fs_cleanup_bds(struct net_device * dev)436 void fs_cleanup_bds(struct net_device *dev)
437 {
438 struct fs_enet_private *fep = netdev_priv(dev);
439 struct sk_buff *skb;
440 cbd_t __iomem *bdp;
441 int i;
442
443 /*
444 * Reset SKB transmit buffers.
445 */
446 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
447 if ((skb = fep->tx_skbuff[i]) == NULL)
448 continue;
449
450 /* unmap */
451 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
452 skb->len, DMA_TO_DEVICE);
453
454 fep->tx_skbuff[i] = NULL;
455 dev_kfree_skb(skb);
456 }
457
458 /*
459 * Reset SKB receive buffers
460 */
461 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
462 if ((skb = fep->rx_skbuff[i]) == NULL)
463 continue;
464
465 /* unmap */
466 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
467 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
468 DMA_FROM_DEVICE);
469
470 fep->rx_skbuff[i] = NULL;
471
472 dev_kfree_skb(skb);
473 }
474 }
475
476 /**********************************************************************************/
477
478 #ifdef CONFIG_FS_ENET_MPC5121_FEC
479 /*
480 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
481 */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)482 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
483 struct sk_buff *skb)
484 {
485 struct sk_buff *new_skb;
486
487 /* Alloc new skb */
488 new_skb = netdev_alloc_skb(dev, skb->len + 4);
489 if (!new_skb)
490 return NULL;
491
492 /* Make sure new skb is properly aligned */
493 skb_align(new_skb, 4);
494
495 /* Copy data to new skb ... */
496 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
497 skb_put(new_skb, skb->len);
498
499 /* ... and free an old one */
500 dev_kfree_skb_any(skb);
501
502 return new_skb;
503 }
504 #endif
505
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)506 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
507 {
508 struct fs_enet_private *fep = netdev_priv(dev);
509 cbd_t __iomem *bdp;
510 int curidx;
511 u16 sc;
512
513 #ifdef CONFIG_FS_ENET_MPC5121_FEC
514 if (((unsigned long)skb->data) & 0x3) {
515 skb = tx_skb_align_workaround(dev, skb);
516 if (!skb) {
517 /*
518 * We have lost packet due to memory allocation error
519 * in tx_skb_align_workaround(). Hopefully original
520 * skb is still valid, so try transmit it later.
521 */
522 return NETDEV_TX_BUSY;
523 }
524 }
525 #endif
526 spin_lock(&fep->tx_lock);
527
528 /*
529 * Fill in a Tx ring entry
530 */
531 bdp = fep->cur_tx;
532
533 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
534 netif_stop_queue(dev);
535 spin_unlock(&fep->tx_lock);
536
537 /*
538 * Ooops. All transmit buffers are full. Bail out.
539 * This should not happen, since the tx queue should be stopped.
540 */
541 dev_warn(fep->dev, "tx queue full!.\n");
542 return NETDEV_TX_BUSY;
543 }
544
545 curidx = bdp - fep->tx_bd_base;
546 /*
547 * Clear all of the status flags.
548 */
549 CBDC_SC(bdp, BD_ENET_TX_STATS);
550
551 /*
552 * Save skb pointer.
553 */
554 fep->tx_skbuff[curidx] = skb;
555
556 fep->stats.tx_bytes += skb->len;
557
558 /*
559 * Push the data cache so the CPM does not get stale memory data.
560 */
561 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
562 skb->data, skb->len, DMA_TO_DEVICE));
563 CBDW_DATLEN(bdp, skb->len);
564
565 /*
566 * If this was the last BD in the ring, start at the beginning again.
567 */
568 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
569 fep->cur_tx++;
570 else
571 fep->cur_tx = fep->tx_bd_base;
572
573 if (!--fep->tx_free)
574 netif_stop_queue(dev);
575
576 /* Trigger transmission start */
577 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
578 BD_ENET_TX_LAST | BD_ENET_TX_TC;
579
580 /* note that while FEC does not have this bit
581 * it marks it as available for software use
582 * yay for hw reuse :) */
583 if (skb->len <= 60)
584 sc |= BD_ENET_TX_PAD;
585 CBDS_SC(bdp, sc);
586
587 skb_tx_timestamp(skb);
588
589 (*fep->ops->tx_kickstart)(dev);
590
591 spin_unlock(&fep->tx_lock);
592
593 return NETDEV_TX_OK;
594 }
595
fs_timeout(struct net_device * dev)596 static void fs_timeout(struct net_device *dev)
597 {
598 struct fs_enet_private *fep = netdev_priv(dev);
599 unsigned long flags;
600 int wake = 0;
601
602 fep->stats.tx_errors++;
603
604 spin_lock_irqsave(&fep->lock, flags);
605
606 if (dev->flags & IFF_UP) {
607 phy_stop(fep->phydev);
608 (*fep->ops->stop)(dev);
609 (*fep->ops->restart)(dev);
610 phy_start(fep->phydev);
611 }
612
613 phy_start(fep->phydev);
614 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
615 spin_unlock_irqrestore(&fep->lock, flags);
616
617 if (wake)
618 netif_wake_queue(dev);
619 }
620
621 /*-----------------------------------------------------------------------------
622 * generic link-change handler - should be sufficient for most cases
623 *-----------------------------------------------------------------------------*/
generic_adjust_link(struct net_device * dev)624 static void generic_adjust_link(struct net_device *dev)
625 {
626 struct fs_enet_private *fep = netdev_priv(dev);
627 struct phy_device *phydev = fep->phydev;
628 int new_state = 0;
629
630 if (phydev->link) {
631 /* adjust to duplex mode */
632 if (phydev->duplex != fep->oldduplex) {
633 new_state = 1;
634 fep->oldduplex = phydev->duplex;
635 }
636
637 if (phydev->speed != fep->oldspeed) {
638 new_state = 1;
639 fep->oldspeed = phydev->speed;
640 }
641
642 if (!fep->oldlink) {
643 new_state = 1;
644 fep->oldlink = 1;
645 }
646
647 if (new_state)
648 fep->ops->restart(dev);
649 } else if (fep->oldlink) {
650 new_state = 1;
651 fep->oldlink = 0;
652 fep->oldspeed = 0;
653 fep->oldduplex = -1;
654 }
655
656 if (new_state && netif_msg_link(fep))
657 phy_print_status(phydev);
658 }
659
660
fs_adjust_link(struct net_device * dev)661 static void fs_adjust_link(struct net_device *dev)
662 {
663 struct fs_enet_private *fep = netdev_priv(dev);
664 unsigned long flags;
665
666 spin_lock_irqsave(&fep->lock, flags);
667
668 if(fep->ops->adjust_link)
669 fep->ops->adjust_link(dev);
670 else
671 generic_adjust_link(dev);
672
673 spin_unlock_irqrestore(&fep->lock, flags);
674 }
675
fs_init_phy(struct net_device * dev)676 static int fs_init_phy(struct net_device *dev)
677 {
678 struct fs_enet_private *fep = netdev_priv(dev);
679 struct phy_device *phydev;
680 phy_interface_t iface;
681
682 fep->oldlink = 0;
683 fep->oldspeed = 0;
684 fep->oldduplex = -1;
685
686 iface = fep->fpi->use_rmii ?
687 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
688
689 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
690 iface);
691 if (!phydev) {
692 dev_err(&dev->dev, "Could not attach to PHY\n");
693 return -ENODEV;
694 }
695
696 fep->phydev = phydev;
697
698 return 0;
699 }
700
fs_enet_open(struct net_device * dev)701 static int fs_enet_open(struct net_device *dev)
702 {
703 struct fs_enet_private *fep = netdev_priv(dev);
704 int r;
705 int err;
706
707 /* to initialize the fep->cur_rx,... */
708 /* not doing this, will cause a crash in fs_enet_rx_napi */
709 fs_init_bds(fep->ndev);
710
711 napi_enable(&fep->napi);
712 napi_enable(&fep->napi_tx);
713
714 /* Install our interrupt handler. */
715 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
716 "fs_enet-mac", dev);
717 if (r != 0) {
718 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
719 napi_disable(&fep->napi);
720 napi_disable(&fep->napi_tx);
721 return -EINVAL;
722 }
723
724 err = fs_init_phy(dev);
725 if (err) {
726 free_irq(fep->interrupt, dev);
727 napi_disable(&fep->napi);
728 napi_disable(&fep->napi_tx);
729 return err;
730 }
731 phy_start(fep->phydev);
732
733 netif_start_queue(dev);
734
735 return 0;
736 }
737
fs_enet_close(struct net_device * dev)738 static int fs_enet_close(struct net_device *dev)
739 {
740 struct fs_enet_private *fep = netdev_priv(dev);
741 unsigned long flags;
742
743 netif_stop_queue(dev);
744 netif_carrier_off(dev);
745 napi_disable(&fep->napi);
746 napi_disable(&fep->napi_tx);
747 phy_stop(fep->phydev);
748
749 spin_lock_irqsave(&fep->lock, flags);
750 spin_lock(&fep->tx_lock);
751 (*fep->ops->stop)(dev);
752 spin_unlock(&fep->tx_lock);
753 spin_unlock_irqrestore(&fep->lock, flags);
754
755 /* release any irqs */
756 phy_disconnect(fep->phydev);
757 fep->phydev = NULL;
758 free_irq(fep->interrupt, dev);
759
760 return 0;
761 }
762
fs_enet_get_stats(struct net_device * dev)763 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
764 {
765 struct fs_enet_private *fep = netdev_priv(dev);
766 return &fep->stats;
767 }
768
769 /*************************************************************************/
770
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)771 static void fs_get_drvinfo(struct net_device *dev,
772 struct ethtool_drvinfo *info)
773 {
774 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
775 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
776 }
777
fs_get_regs_len(struct net_device * dev)778 static int fs_get_regs_len(struct net_device *dev)
779 {
780 struct fs_enet_private *fep = netdev_priv(dev);
781
782 return (*fep->ops->get_regs_len)(dev);
783 }
784
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)785 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
786 void *p)
787 {
788 struct fs_enet_private *fep = netdev_priv(dev);
789 unsigned long flags;
790 int r, len;
791
792 len = regs->len;
793
794 spin_lock_irqsave(&fep->lock, flags);
795 r = (*fep->ops->get_regs)(dev, p, &len);
796 spin_unlock_irqrestore(&fep->lock, flags);
797
798 if (r == 0)
799 regs->version = 0;
800 }
801
fs_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)802 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803 {
804 struct fs_enet_private *fep = netdev_priv(dev);
805
806 if (!fep->phydev)
807 return -ENODEV;
808
809 return phy_ethtool_gset(fep->phydev, cmd);
810 }
811
fs_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)812 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
813 {
814 struct fs_enet_private *fep = netdev_priv(dev);
815
816 if (!fep->phydev)
817 return -ENODEV;
818
819 return phy_ethtool_sset(fep->phydev, cmd);
820 }
821
fs_nway_reset(struct net_device * dev)822 static int fs_nway_reset(struct net_device *dev)
823 {
824 return 0;
825 }
826
fs_get_msglevel(struct net_device * dev)827 static u32 fs_get_msglevel(struct net_device *dev)
828 {
829 struct fs_enet_private *fep = netdev_priv(dev);
830 return fep->msg_enable;
831 }
832
fs_set_msglevel(struct net_device * dev,u32 value)833 static void fs_set_msglevel(struct net_device *dev, u32 value)
834 {
835 struct fs_enet_private *fep = netdev_priv(dev);
836 fep->msg_enable = value;
837 }
838
839 static const struct ethtool_ops fs_ethtool_ops = {
840 .get_drvinfo = fs_get_drvinfo,
841 .get_regs_len = fs_get_regs_len,
842 .get_settings = fs_get_settings,
843 .set_settings = fs_set_settings,
844 .nway_reset = fs_nway_reset,
845 .get_link = ethtool_op_get_link,
846 .get_msglevel = fs_get_msglevel,
847 .set_msglevel = fs_set_msglevel,
848 .get_regs = fs_get_regs,
849 .get_ts_info = ethtool_op_get_ts_info,
850 };
851
fs_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)852 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
853 {
854 struct fs_enet_private *fep = netdev_priv(dev);
855
856 if (!netif_running(dev))
857 return -EINVAL;
858
859 return phy_mii_ioctl(fep->phydev, rq, cmd);
860 }
861
862 extern int fs_mii_connect(struct net_device *dev);
863 extern void fs_mii_disconnect(struct net_device *dev);
864
865 /**************************************************************************************/
866
867 #ifdef CONFIG_FS_ENET_HAS_FEC
868 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
869 #else
870 #define IS_FEC(match) 0
871 #endif
872
873 static const struct net_device_ops fs_enet_netdev_ops = {
874 .ndo_open = fs_enet_open,
875 .ndo_stop = fs_enet_close,
876 .ndo_get_stats = fs_enet_get_stats,
877 .ndo_start_xmit = fs_enet_start_xmit,
878 .ndo_tx_timeout = fs_timeout,
879 .ndo_set_rx_mode = fs_set_multicast_list,
880 .ndo_do_ioctl = fs_ioctl,
881 .ndo_validate_addr = eth_validate_addr,
882 .ndo_set_mac_address = eth_mac_addr,
883 .ndo_change_mtu = eth_change_mtu,
884 #ifdef CONFIG_NET_POLL_CONTROLLER
885 .ndo_poll_controller = fs_enet_netpoll,
886 #endif
887 };
888
889 static struct of_device_id fs_enet_match[];
fs_enet_probe(struct platform_device * ofdev)890 static int fs_enet_probe(struct platform_device *ofdev)
891 {
892 const struct of_device_id *match;
893 struct net_device *ndev;
894 struct fs_enet_private *fep;
895 struct fs_platform_info *fpi;
896 const u32 *data;
897 struct clk *clk;
898 int err;
899 const u8 *mac_addr;
900 const char *phy_connection_type;
901 int privsize, len, ret = -ENODEV;
902
903 match = of_match_device(fs_enet_match, &ofdev->dev);
904 if (!match)
905 return -EINVAL;
906
907 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
908 if (!fpi)
909 return -ENOMEM;
910
911 if (!IS_FEC(match)) {
912 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
913 if (!data || len != 4)
914 goto out_free_fpi;
915
916 fpi->cp_command = *data;
917 }
918
919 fpi->rx_ring = 32;
920 fpi->tx_ring = 32;
921 fpi->rx_copybreak = 240;
922 fpi->napi_weight = 17;
923 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
924 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
925 err = of_phy_register_fixed_link(ofdev->dev.of_node);
926 if (err)
927 goto out_free_fpi;
928
929 /* In the case of a fixed PHY, the DT node associated
930 * to the PHY is the Ethernet MAC DT node.
931 */
932 fpi->phy_node = of_node_get(ofdev->dev.of_node);
933 }
934
935 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
936 phy_connection_type = of_get_property(ofdev->dev.of_node,
937 "phy-connection-type", NULL);
938 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
939 fpi->use_rmii = 1;
940 }
941
942 /* make clock lookup non-fatal (the driver is shared among platforms),
943 * but require enable to succeed when a clock was specified/found,
944 * keep a reference to the clock upon successful acquisition
945 */
946 clk = devm_clk_get(&ofdev->dev, "per");
947 if (!IS_ERR(clk)) {
948 err = clk_prepare_enable(clk);
949 if (err) {
950 ret = err;
951 goto out_free_fpi;
952 }
953 fpi->clk_per = clk;
954 }
955
956 privsize = sizeof(*fep) +
957 sizeof(struct sk_buff **) *
958 (fpi->rx_ring + fpi->tx_ring);
959
960 ndev = alloc_etherdev(privsize);
961 if (!ndev) {
962 ret = -ENOMEM;
963 goto out_put;
964 }
965
966 SET_NETDEV_DEV(ndev, &ofdev->dev);
967 platform_set_drvdata(ofdev, ndev);
968
969 fep = netdev_priv(ndev);
970 fep->dev = &ofdev->dev;
971 fep->ndev = ndev;
972 fep->fpi = fpi;
973 fep->ops = match->data;
974
975 ret = fep->ops->setup_data(ndev);
976 if (ret)
977 goto out_free_dev;
978
979 fep->rx_skbuff = (struct sk_buff **)&fep[1];
980 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
981
982 spin_lock_init(&fep->lock);
983 spin_lock_init(&fep->tx_lock);
984
985 mac_addr = of_get_mac_address(ofdev->dev.of_node);
986 if (mac_addr)
987 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
988
989 ret = fep->ops->allocate_bd(ndev);
990 if (ret)
991 goto out_cleanup_data;
992
993 fep->rx_bd_base = fep->ring_base;
994 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
995
996 fep->tx_ring = fpi->tx_ring;
997 fep->rx_ring = fpi->rx_ring;
998
999 ndev->netdev_ops = &fs_enet_netdev_ops;
1000 ndev->watchdog_timeo = 2 * HZ;
1001 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1002 netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1003
1004 ndev->ethtool_ops = &fs_ethtool_ops;
1005
1006 init_timer(&fep->phy_timer_list);
1007
1008 netif_carrier_off(ndev);
1009
1010 ret = register_netdev(ndev);
1011 if (ret)
1012 goto out_free_bd;
1013
1014 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1015
1016 return 0;
1017
1018 out_free_bd:
1019 fep->ops->free_bd(ndev);
1020 out_cleanup_data:
1021 fep->ops->cleanup_data(ndev);
1022 out_free_dev:
1023 free_netdev(ndev);
1024 out_put:
1025 of_node_put(fpi->phy_node);
1026 if (fpi->clk_per)
1027 clk_disable_unprepare(fpi->clk_per);
1028 out_free_fpi:
1029 kfree(fpi);
1030 return ret;
1031 }
1032
fs_enet_remove(struct platform_device * ofdev)1033 static int fs_enet_remove(struct platform_device *ofdev)
1034 {
1035 struct net_device *ndev = platform_get_drvdata(ofdev);
1036 struct fs_enet_private *fep = netdev_priv(ndev);
1037
1038 unregister_netdev(ndev);
1039
1040 fep->ops->free_bd(ndev);
1041 fep->ops->cleanup_data(ndev);
1042 dev_set_drvdata(fep->dev, NULL);
1043 of_node_put(fep->fpi->phy_node);
1044 if (fep->fpi->clk_per)
1045 clk_disable_unprepare(fep->fpi->clk_per);
1046 free_netdev(ndev);
1047 return 0;
1048 }
1049
1050 static struct of_device_id fs_enet_match[] = {
1051 #ifdef CONFIG_FS_ENET_HAS_SCC
1052 {
1053 .compatible = "fsl,cpm1-scc-enet",
1054 .data = (void *)&fs_scc_ops,
1055 },
1056 {
1057 .compatible = "fsl,cpm2-scc-enet",
1058 .data = (void *)&fs_scc_ops,
1059 },
1060 #endif
1061 #ifdef CONFIG_FS_ENET_HAS_FCC
1062 {
1063 .compatible = "fsl,cpm2-fcc-enet",
1064 .data = (void *)&fs_fcc_ops,
1065 },
1066 #endif
1067 #ifdef CONFIG_FS_ENET_HAS_FEC
1068 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1069 {
1070 .compatible = "fsl,mpc5121-fec",
1071 .data = (void *)&fs_fec_ops,
1072 },
1073 {
1074 .compatible = "fsl,mpc5125-fec",
1075 .data = (void *)&fs_fec_ops,
1076 },
1077 #else
1078 {
1079 .compatible = "fsl,pq1-fec-enet",
1080 .data = (void *)&fs_fec_ops,
1081 },
1082 #endif
1083 #endif
1084 {}
1085 };
1086 MODULE_DEVICE_TABLE(of, fs_enet_match);
1087
1088 static struct platform_driver fs_enet_driver = {
1089 .driver = {
1090 .owner = THIS_MODULE,
1091 .name = "fs_enet",
1092 .of_match_table = fs_enet_match,
1093 },
1094 .probe = fs_enet_probe,
1095 .remove = fs_enet_remove,
1096 };
1097
1098 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1099 static void fs_enet_netpoll(struct net_device *dev)
1100 {
1101 disable_irq(dev->irq);
1102 fs_enet_interrupt(dev->irq, dev);
1103 enable_irq(dev->irq);
1104 }
1105 #endif
1106
1107 module_platform_driver(fs_enet_driver);
1108