1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev);
120 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
121 struct sk_buff *skb);
122 static int gfar_set_mac_address(struct net_device *dev);
123 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
124 static irqreturn_t gfar_error(int irq, void *dev_id);
125 static irqreturn_t gfar_transmit(int irq, void *dev_id);
126 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
127 static void adjust_link(struct net_device *dev);
128 static noinline void gfar_update_link_state(struct gfar_private *priv);
129 static int init_phy(struct net_device *dev);
130 static int gfar_probe(struct platform_device *ofdev);
131 static int gfar_remove(struct platform_device *ofdev);
132 static void free_skb_resources(struct gfar_private *priv);
133 static void gfar_set_multi(struct net_device *dev);
134 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
135 static void gfar_configure_serdes(struct net_device *dev);
136 static int gfar_poll_rx(struct napi_struct *napi, int budget);
137 static int gfar_poll_tx(struct napi_struct *napi, int budget);
138 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
139 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 static void gfar_netpoll(struct net_device *dev);
142 #endif
143 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
144 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
145 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
146 int amount_pull, struct napi_struct *napi);
147 static void gfar_halt_nodisable(struct gfar_private *priv);
148 static void gfar_clear_exact_match(struct net_device *dev);
149 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
150 const u8 *addr);
151 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
152
153 MODULE_AUTHOR("Freescale Semiconductor, Inc");
154 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
155 MODULE_LICENSE("GPL");
156
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)157 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
158 dma_addr_t buf)
159 {
160 u32 lstatus;
161
162 bdp->bufPtr = buf;
163
164 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
165 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
166 lstatus |= BD_LFLAG(RXBD_WRAP);
167
168 gfar_wmb();
169
170 bdp->lstatus = lstatus;
171 }
172
gfar_init_bds(struct net_device * ndev)173 static int gfar_init_bds(struct net_device *ndev)
174 {
175 struct gfar_private *priv = netdev_priv(ndev);
176 struct gfar_priv_tx_q *tx_queue = NULL;
177 struct gfar_priv_rx_q *rx_queue = NULL;
178 struct txbd8 *txbdp;
179 struct rxbd8 *rxbdp;
180 int i, j;
181
182 for (i = 0; i < priv->num_tx_queues; i++) {
183 tx_queue = priv->tx_queue[i];
184 /* Initialize some variables in our dev structure */
185 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
186 tx_queue->dirty_tx = tx_queue->tx_bd_base;
187 tx_queue->cur_tx = tx_queue->tx_bd_base;
188 tx_queue->skb_curtx = 0;
189 tx_queue->skb_dirtytx = 0;
190
191 /* Initialize Transmit Descriptor Ring */
192 txbdp = tx_queue->tx_bd_base;
193 for (j = 0; j < tx_queue->tx_ring_size; j++) {
194 txbdp->lstatus = 0;
195 txbdp->bufPtr = 0;
196 txbdp++;
197 }
198
199 /* Set the last descriptor in the ring to indicate wrap */
200 txbdp--;
201 txbdp->status |= TXBD_WRAP;
202 }
203
204 for (i = 0; i < priv->num_rx_queues; i++) {
205 rx_queue = priv->rx_queue[i];
206 rx_queue->cur_rx = rx_queue->rx_bd_base;
207 rx_queue->skb_currx = 0;
208 rxbdp = rx_queue->rx_bd_base;
209
210 for (j = 0; j < rx_queue->rx_ring_size; j++) {
211 struct sk_buff *skb = rx_queue->rx_skbuff[j];
212
213 if (skb) {
214 gfar_init_rxbdp(rx_queue, rxbdp,
215 rxbdp->bufPtr);
216 } else {
217 skb = gfar_new_skb(ndev);
218 if (!skb) {
219 netdev_err(ndev, "Can't allocate RX buffers\n");
220 return -ENOMEM;
221 }
222 rx_queue->rx_skbuff[j] = skb;
223
224 gfar_new_rxbdp(rx_queue, rxbdp, skb);
225 }
226
227 rxbdp++;
228 }
229
230 }
231
232 return 0;
233 }
234
gfar_alloc_skb_resources(struct net_device * ndev)235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237 void *vaddr;
238 dma_addr_t addr;
239 int i, j, k;
240 struct gfar_private *priv = netdev_priv(ndev);
241 struct device *dev = priv->dev;
242 struct gfar_priv_tx_q *tx_queue = NULL;
243 struct gfar_priv_rx_q *rx_queue = NULL;
244
245 priv->total_tx_ring_size = 0;
246 for (i = 0; i < priv->num_tx_queues; i++)
247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249 priv->total_rx_ring_size = 0;
250 for (i = 0; i < priv->num_rx_queues; i++)
251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253 /* Allocate memory for the buffer descriptors */
254 vaddr = dma_alloc_coherent(dev,
255 (priv->total_tx_ring_size *
256 sizeof(struct txbd8)) +
257 (priv->total_rx_ring_size *
258 sizeof(struct rxbd8)),
259 &addr, GFP_KERNEL);
260 if (!vaddr)
261 return -ENOMEM;
262
263 for (i = 0; i < priv->num_tx_queues; i++) {
264 tx_queue = priv->tx_queue[i];
265 tx_queue->tx_bd_base = vaddr;
266 tx_queue->tx_bd_dma_base = addr;
267 tx_queue->dev = ndev;
268 /* enet DMA only understands physical addresses */
269 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
270 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
271 }
272
273 /* Start the rx descriptor ring where the tx ring leaves off */
274 for (i = 0; i < priv->num_rx_queues; i++) {
275 rx_queue = priv->rx_queue[i];
276 rx_queue->rx_bd_base = vaddr;
277 rx_queue->rx_bd_dma_base = addr;
278 rx_queue->dev = ndev;
279 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
280 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
281 }
282
283 /* Setup the skbuff rings */
284 for (i = 0; i < priv->num_tx_queues; i++) {
285 tx_queue = priv->tx_queue[i];
286 tx_queue->tx_skbuff =
287 kmalloc_array(tx_queue->tx_ring_size,
288 sizeof(*tx_queue->tx_skbuff),
289 GFP_KERNEL);
290 if (!tx_queue->tx_skbuff)
291 goto cleanup;
292
293 for (k = 0; k < tx_queue->tx_ring_size; k++)
294 tx_queue->tx_skbuff[k] = NULL;
295 }
296
297 for (i = 0; i < priv->num_rx_queues; i++) {
298 rx_queue = priv->rx_queue[i];
299 rx_queue->rx_skbuff =
300 kmalloc_array(rx_queue->rx_ring_size,
301 sizeof(*rx_queue->rx_skbuff),
302 GFP_KERNEL);
303 if (!rx_queue->rx_skbuff)
304 goto cleanup;
305
306 for (j = 0; j < rx_queue->rx_ring_size; j++)
307 rx_queue->rx_skbuff[j] = NULL;
308 }
309
310 if (gfar_init_bds(ndev))
311 goto cleanup;
312
313 return 0;
314
315 cleanup:
316 free_skb_resources(priv);
317 return -ENOMEM;
318 }
319
gfar_init_tx_rx_base(struct gfar_private * priv)320 static void gfar_init_tx_rx_base(struct gfar_private *priv)
321 {
322 struct gfar __iomem *regs = priv->gfargrp[0].regs;
323 u32 __iomem *baddr;
324 int i;
325
326 baddr = ®s->tbase0;
327 for (i = 0; i < priv->num_tx_queues; i++) {
328 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
329 baddr += 2;
330 }
331
332 baddr = ®s->rbase0;
333 for (i = 0; i < priv->num_rx_queues; i++) {
334 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
335 baddr += 2;
336 }
337 }
338
gfar_rx_buff_size_config(struct gfar_private * priv)339 static void gfar_rx_buff_size_config(struct gfar_private *priv)
340 {
341 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
342
343 /* set this when rx hw offload (TOE) functions are being used */
344 priv->uses_rxfcb = 0;
345
346 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
347 priv->uses_rxfcb = 1;
348
349 if (priv->hwts_rx_en)
350 priv->uses_rxfcb = 1;
351
352 if (priv->uses_rxfcb)
353 frame_size += GMAC_FCB_LEN;
354
355 frame_size += priv->padding;
356
357 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
358 INCREMENTAL_BUFFER_SIZE;
359
360 priv->rx_buffer_size = frame_size;
361 }
362
gfar_mac_rx_config(struct gfar_private * priv)363 static void gfar_mac_rx_config(struct gfar_private *priv)
364 {
365 struct gfar __iomem *regs = priv->gfargrp[0].regs;
366 u32 rctrl = 0;
367
368 if (priv->rx_filer_enable) {
369 rctrl |= RCTRL_FILREN;
370 /* Program the RIR0 reg with the required distribution */
371 if (priv->poll_mode == GFAR_SQ_POLLING)
372 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
373 else /* GFAR_MQ_POLLING */
374 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0);
375 }
376
377 /* Restore PROMISC mode */
378 if (priv->ndev->flags & IFF_PROMISC)
379 rctrl |= RCTRL_PROM;
380
381 if (priv->ndev->features & NETIF_F_RXCSUM)
382 rctrl |= RCTRL_CHECKSUMMING;
383
384 if (priv->extended_hash)
385 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
386
387 if (priv->padding) {
388 rctrl &= ~RCTRL_PAL_MASK;
389 rctrl |= RCTRL_PADDING(priv->padding);
390 }
391
392 /* Enable HW time stamping if requested from user space */
393 if (priv->hwts_rx_en)
394 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
395
396 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
397 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
398
399 /* Init rctrl based on our settings */
400 gfar_write(®s->rctrl, rctrl);
401 }
402
gfar_mac_tx_config(struct gfar_private * priv)403 static void gfar_mac_tx_config(struct gfar_private *priv)
404 {
405 struct gfar __iomem *regs = priv->gfargrp[0].regs;
406 u32 tctrl = 0;
407
408 if (priv->ndev->features & NETIF_F_IP_CSUM)
409 tctrl |= TCTRL_INIT_CSUM;
410
411 if (priv->prio_sched_en)
412 tctrl |= TCTRL_TXSCHED_PRIO;
413 else {
414 tctrl |= TCTRL_TXSCHED_WRRS;
415 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
416 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
417 }
418
419 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
420 tctrl |= TCTRL_VLINS;
421
422 gfar_write(®s->tctrl, tctrl);
423 }
424
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)425 static void gfar_configure_coalescing(struct gfar_private *priv,
426 unsigned long tx_mask, unsigned long rx_mask)
427 {
428 struct gfar __iomem *regs = priv->gfargrp[0].regs;
429 u32 __iomem *baddr;
430
431 if (priv->mode == MQ_MG_MODE) {
432 int i = 0;
433
434 baddr = ®s->txic0;
435 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
436 gfar_write(baddr + i, 0);
437 if (likely(priv->tx_queue[i]->txcoalescing))
438 gfar_write(baddr + i, priv->tx_queue[i]->txic);
439 }
440
441 baddr = ®s->rxic0;
442 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
443 gfar_write(baddr + i, 0);
444 if (likely(priv->rx_queue[i]->rxcoalescing))
445 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
446 }
447 } else {
448 /* Backward compatible case -- even if we enable
449 * multiple queues, there's only single reg to program
450 */
451 gfar_write(®s->txic, 0);
452 if (likely(priv->tx_queue[0]->txcoalescing))
453 gfar_write(®s->txic, priv->tx_queue[0]->txic);
454
455 gfar_write(®s->rxic, 0);
456 if (unlikely(priv->rx_queue[0]->rxcoalescing))
457 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
458 }
459 }
460
gfar_configure_coalescing_all(struct gfar_private * priv)461 void gfar_configure_coalescing_all(struct gfar_private *priv)
462 {
463 gfar_configure_coalescing(priv, 0xFF, 0xFF);
464 }
465
gfar_get_stats(struct net_device * dev)466 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
467 {
468 struct gfar_private *priv = netdev_priv(dev);
469 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
470 unsigned long tx_packets = 0, tx_bytes = 0;
471 int i;
472
473 for (i = 0; i < priv->num_rx_queues; i++) {
474 rx_packets += priv->rx_queue[i]->stats.rx_packets;
475 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
476 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
477 }
478
479 dev->stats.rx_packets = rx_packets;
480 dev->stats.rx_bytes = rx_bytes;
481 dev->stats.rx_dropped = rx_dropped;
482
483 for (i = 0; i < priv->num_tx_queues; i++) {
484 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
485 tx_packets += priv->tx_queue[i]->stats.tx_packets;
486 }
487
488 dev->stats.tx_bytes = tx_bytes;
489 dev->stats.tx_packets = tx_packets;
490
491 return &dev->stats;
492 }
493
494 static const struct net_device_ops gfar_netdev_ops = {
495 .ndo_open = gfar_enet_open,
496 .ndo_start_xmit = gfar_start_xmit,
497 .ndo_stop = gfar_close,
498 .ndo_change_mtu = gfar_change_mtu,
499 .ndo_set_features = gfar_set_features,
500 .ndo_set_rx_mode = gfar_set_multi,
501 .ndo_tx_timeout = gfar_timeout,
502 .ndo_do_ioctl = gfar_ioctl,
503 .ndo_get_stats = gfar_get_stats,
504 .ndo_set_mac_address = eth_mac_addr,
505 .ndo_validate_addr = eth_validate_addr,
506 #ifdef CONFIG_NET_POLL_CONTROLLER
507 .ndo_poll_controller = gfar_netpoll,
508 #endif
509 };
510
gfar_ints_disable(struct gfar_private * priv)511 static void gfar_ints_disable(struct gfar_private *priv)
512 {
513 int i;
514 for (i = 0; i < priv->num_grps; i++) {
515 struct gfar __iomem *regs = priv->gfargrp[i].regs;
516 /* Clear IEVENT */
517 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
518
519 /* Initialize IMASK */
520 gfar_write(®s->imask, IMASK_INIT_CLEAR);
521 }
522 }
523
gfar_ints_enable(struct gfar_private * priv)524 static void gfar_ints_enable(struct gfar_private *priv)
525 {
526 int i;
527 for (i = 0; i < priv->num_grps; i++) {
528 struct gfar __iomem *regs = priv->gfargrp[i].regs;
529 /* Unmask the interrupts we look for */
530 gfar_write(®s->imask, IMASK_DEFAULT);
531 }
532 }
533
lock_tx_qs(struct gfar_private * priv)534 void lock_tx_qs(struct gfar_private *priv)
535 {
536 int i;
537
538 for (i = 0; i < priv->num_tx_queues; i++)
539 spin_lock(&priv->tx_queue[i]->txlock);
540 }
541
unlock_tx_qs(struct gfar_private * priv)542 void unlock_tx_qs(struct gfar_private *priv)
543 {
544 int i;
545
546 for (i = 0; i < priv->num_tx_queues; i++)
547 spin_unlock(&priv->tx_queue[i]->txlock);
548 }
549
gfar_alloc_tx_queues(struct gfar_private * priv)550 static int gfar_alloc_tx_queues(struct gfar_private *priv)
551 {
552 int i;
553
554 for (i = 0; i < priv->num_tx_queues; i++) {
555 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
556 GFP_KERNEL);
557 if (!priv->tx_queue[i])
558 return -ENOMEM;
559
560 priv->tx_queue[i]->tx_skbuff = NULL;
561 priv->tx_queue[i]->qindex = i;
562 priv->tx_queue[i]->dev = priv->ndev;
563 spin_lock_init(&(priv->tx_queue[i]->txlock));
564 }
565 return 0;
566 }
567
gfar_alloc_rx_queues(struct gfar_private * priv)568 static int gfar_alloc_rx_queues(struct gfar_private *priv)
569 {
570 int i;
571
572 for (i = 0; i < priv->num_rx_queues; i++) {
573 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
574 GFP_KERNEL);
575 if (!priv->rx_queue[i])
576 return -ENOMEM;
577
578 priv->rx_queue[i]->rx_skbuff = NULL;
579 priv->rx_queue[i]->qindex = i;
580 priv->rx_queue[i]->dev = priv->ndev;
581 }
582 return 0;
583 }
584
gfar_free_tx_queues(struct gfar_private * priv)585 static void gfar_free_tx_queues(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < priv->num_tx_queues; i++)
590 kfree(priv->tx_queue[i]);
591 }
592
gfar_free_rx_queues(struct gfar_private * priv)593 static void gfar_free_rx_queues(struct gfar_private *priv)
594 {
595 int i;
596
597 for (i = 0; i < priv->num_rx_queues; i++)
598 kfree(priv->rx_queue[i]);
599 }
600
unmap_group_regs(struct gfar_private * priv)601 static void unmap_group_regs(struct gfar_private *priv)
602 {
603 int i;
604
605 for (i = 0; i < MAXGROUPS; i++)
606 if (priv->gfargrp[i].regs)
607 iounmap(priv->gfargrp[i].regs);
608 }
609
free_gfar_dev(struct gfar_private * priv)610 static void free_gfar_dev(struct gfar_private *priv)
611 {
612 int i, j;
613
614 for (i = 0; i < priv->num_grps; i++)
615 for (j = 0; j < GFAR_NUM_IRQS; j++) {
616 kfree(priv->gfargrp[i].irqinfo[j]);
617 priv->gfargrp[i].irqinfo[j] = NULL;
618 }
619
620 free_netdev(priv->ndev);
621 }
622
disable_napi(struct gfar_private * priv)623 static void disable_napi(struct gfar_private *priv)
624 {
625 int i;
626
627 for (i = 0; i < priv->num_grps; i++) {
628 napi_disable(&priv->gfargrp[i].napi_rx);
629 napi_disable(&priv->gfargrp[i].napi_tx);
630 }
631 }
632
enable_napi(struct gfar_private * priv)633 static void enable_napi(struct gfar_private *priv)
634 {
635 int i;
636
637 for (i = 0; i < priv->num_grps; i++) {
638 napi_enable(&priv->gfargrp[i].napi_rx);
639 napi_enable(&priv->gfargrp[i].napi_tx);
640 }
641 }
642
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)643 static int gfar_parse_group(struct device_node *np,
644 struct gfar_private *priv, const char *model)
645 {
646 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
647 int i;
648
649 for (i = 0; i < GFAR_NUM_IRQS; i++) {
650 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
651 GFP_KERNEL);
652 if (!grp->irqinfo[i])
653 return -ENOMEM;
654 }
655
656 grp->regs = of_iomap(np, 0);
657 if (!grp->regs)
658 return -ENOMEM;
659
660 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
661
662 /* If we aren't the FEC we have multiple interrupts */
663 if (model && strcasecmp(model, "FEC")) {
664 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
665 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
666 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
667 gfar_irq(grp, RX)->irq == NO_IRQ ||
668 gfar_irq(grp, ER)->irq == NO_IRQ)
669 return -EINVAL;
670 }
671
672 grp->priv = priv;
673 spin_lock_init(&grp->grplock);
674 if (priv->mode == MQ_MG_MODE) {
675 u32 *rxq_mask, *txq_mask;
676 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
677 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
678
679 if (priv->poll_mode == GFAR_SQ_POLLING) {
680 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
681 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
682 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
683 } else { /* GFAR_MQ_POLLING */
684 grp->rx_bit_map = rxq_mask ?
685 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
686 grp->tx_bit_map = txq_mask ?
687 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
688 }
689 } else {
690 grp->rx_bit_map = 0xFF;
691 grp->tx_bit_map = 0xFF;
692 }
693
694 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
695 * right to left, so we need to revert the 8 bits to get the q index
696 */
697 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
698 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
699
700 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
701 * also assign queues to groups
702 */
703 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
704 if (!grp->rx_queue)
705 grp->rx_queue = priv->rx_queue[i];
706 grp->num_rx_queues++;
707 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
708 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
709 priv->rx_queue[i]->grp = grp;
710 }
711
712 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
713 if (!grp->tx_queue)
714 grp->tx_queue = priv->tx_queue[i];
715 grp->num_tx_queues++;
716 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
717 priv->tqueue |= (TQUEUE_EN0 >> i);
718 priv->tx_queue[i]->grp = grp;
719 }
720
721 priv->num_grps++;
722
723 return 0;
724 }
725
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)726 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
727 {
728 const char *model;
729 const char *ctype;
730 const void *mac_addr;
731 int err = 0, i;
732 struct net_device *dev = NULL;
733 struct gfar_private *priv = NULL;
734 struct device_node *np = ofdev->dev.of_node;
735 struct device_node *child = NULL;
736 const u32 *stash;
737 const u32 *stash_len;
738 const u32 *stash_idx;
739 unsigned int num_tx_qs, num_rx_qs;
740 u32 *tx_queues, *rx_queues;
741 unsigned short mode, poll_mode;
742
743 if (!np || !of_device_is_available(np))
744 return -ENODEV;
745
746 if (of_device_is_compatible(np, "fsl,etsec2")) {
747 mode = MQ_MG_MODE;
748 poll_mode = GFAR_SQ_POLLING;
749 } else {
750 mode = SQ_SG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 }
753
754 /* parse the num of HW tx and rx queues */
755 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
756 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
757
758 if (mode == SQ_SG_MODE) {
759 num_tx_qs = 1;
760 num_rx_qs = 1;
761 } else { /* MQ_MG_MODE */
762 /* get the actual number of supported groups */
763 unsigned int num_grps = of_get_available_child_count(np);
764
765 if (num_grps == 0 || num_grps > MAXGROUPS) {
766 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 num_grps);
768 pr_err("Cannot do alloc_etherdev, aborting\n");
769 return -EINVAL;
770 }
771
772 if (poll_mode == GFAR_SQ_POLLING) {
773 num_tx_qs = num_grps; /* one txq per int group */
774 num_rx_qs = num_grps; /* one rxq per int group */
775 } else { /* GFAR_MQ_POLLING */
776 num_tx_qs = tx_queues ? *tx_queues : 1;
777 num_rx_qs = rx_queues ? *rx_queues : 1;
778 }
779 }
780
781 if (num_tx_qs > MAX_TX_QS) {
782 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
783 num_tx_qs, MAX_TX_QS);
784 pr_err("Cannot do alloc_etherdev, aborting\n");
785 return -EINVAL;
786 }
787
788 if (num_rx_qs > MAX_RX_QS) {
789 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
790 num_rx_qs, MAX_RX_QS);
791 pr_err("Cannot do alloc_etherdev, aborting\n");
792 return -EINVAL;
793 }
794
795 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
796 dev = *pdev;
797 if (NULL == dev)
798 return -ENOMEM;
799
800 priv = netdev_priv(dev);
801 priv->ndev = dev;
802
803 priv->mode = mode;
804 priv->poll_mode = poll_mode;
805
806 priv->num_tx_queues = num_tx_qs;
807 netif_set_real_num_rx_queues(dev, num_rx_qs);
808 priv->num_rx_queues = num_rx_qs;
809
810 err = gfar_alloc_tx_queues(priv);
811 if (err)
812 goto tx_alloc_failed;
813
814 err = gfar_alloc_rx_queues(priv);
815 if (err)
816 goto rx_alloc_failed;
817
818 /* Init Rx queue filer rule set linked list */
819 INIT_LIST_HEAD(&priv->rx_list.list);
820 priv->rx_list.count = 0;
821 mutex_init(&priv->rx_queue_access);
822
823 model = of_get_property(np, "model", NULL);
824
825 for (i = 0; i < MAXGROUPS; i++)
826 priv->gfargrp[i].regs = NULL;
827
828 /* Parse and initialize group specific information */
829 if (priv->mode == MQ_MG_MODE) {
830 for_each_child_of_node(np, child) {
831 err = gfar_parse_group(child, priv, model);
832 if (err)
833 goto err_grp_init;
834 }
835 } else { /* SQ_SG_MODE */
836 err = gfar_parse_group(np, priv, model);
837 if (err)
838 goto err_grp_init;
839 }
840
841 stash = of_get_property(np, "bd-stash", NULL);
842
843 if (stash) {
844 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
845 priv->bd_stash_en = 1;
846 }
847
848 stash_len = of_get_property(np, "rx-stash-len", NULL);
849
850 if (stash_len)
851 priv->rx_stash_size = *stash_len;
852
853 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
854
855 if (stash_idx)
856 priv->rx_stash_index = *stash_idx;
857
858 if (stash_len || stash_idx)
859 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
860
861 mac_addr = of_get_mac_address(np);
862
863 if (mac_addr)
864 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
865
866 if (model && !strcasecmp(model, "TSEC"))
867 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
868 FSL_GIANFAR_DEV_HAS_COALESCE |
869 FSL_GIANFAR_DEV_HAS_RMON |
870 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
871
872 if (model && !strcasecmp(model, "eTSEC"))
873 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
874 FSL_GIANFAR_DEV_HAS_COALESCE |
875 FSL_GIANFAR_DEV_HAS_RMON |
876 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
877 FSL_GIANFAR_DEV_HAS_CSUM |
878 FSL_GIANFAR_DEV_HAS_VLAN |
879 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
880 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
881 FSL_GIANFAR_DEV_HAS_TIMER;
882
883 ctype = of_get_property(np, "phy-connection-type", NULL);
884
885 /* We only care about rgmii-id. The rest are autodetected */
886 if (ctype && !strcmp(ctype, "rgmii-id"))
887 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
888 else
889 priv->interface = PHY_INTERFACE_MODE_MII;
890
891 if (of_get_property(np, "fsl,magic-packet", NULL))
892 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
893
894 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
895
896 /* In the case of a fixed PHY, the DT node associated
897 * to the PHY is the Ethernet MAC DT node.
898 */
899 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
900 err = of_phy_register_fixed_link(np);
901 if (err)
902 goto err_grp_init;
903
904 priv->phy_node = of_node_get(np);
905 }
906
907 /* Find the TBI PHY. If it's not there, we don't support SGMII */
908 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
909
910 return 0;
911
912 err_grp_init:
913 unmap_group_regs(priv);
914 rx_alloc_failed:
915 gfar_free_rx_queues(priv);
916 tx_alloc_failed:
917 gfar_free_tx_queues(priv);
918 free_gfar_dev(priv);
919 return err;
920 }
921
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)922 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
923 {
924 struct hwtstamp_config config;
925 struct gfar_private *priv = netdev_priv(netdev);
926
927 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
928 return -EFAULT;
929
930 /* reserved for future extensions */
931 if (config.flags)
932 return -EINVAL;
933
934 switch (config.tx_type) {
935 case HWTSTAMP_TX_OFF:
936 priv->hwts_tx_en = 0;
937 break;
938 case HWTSTAMP_TX_ON:
939 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
940 return -ERANGE;
941 priv->hwts_tx_en = 1;
942 break;
943 default:
944 return -ERANGE;
945 }
946
947 switch (config.rx_filter) {
948 case HWTSTAMP_FILTER_NONE:
949 if (priv->hwts_rx_en) {
950 priv->hwts_rx_en = 0;
951 reset_gfar(netdev);
952 }
953 break;
954 default:
955 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 return -ERANGE;
957 if (!priv->hwts_rx_en) {
958 priv->hwts_rx_en = 1;
959 reset_gfar(netdev);
960 }
961 config.rx_filter = HWTSTAMP_FILTER_ALL;
962 break;
963 }
964
965 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
966 -EFAULT : 0;
967 }
968
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)969 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
970 {
971 struct hwtstamp_config config;
972 struct gfar_private *priv = netdev_priv(netdev);
973
974 config.flags = 0;
975 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
976 config.rx_filter = (priv->hwts_rx_en ?
977 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
978
979 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
980 -EFAULT : 0;
981 }
982
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)983 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
984 {
985 struct gfar_private *priv = netdev_priv(dev);
986
987 if (!netif_running(dev))
988 return -EINVAL;
989
990 if (cmd == SIOCSHWTSTAMP)
991 return gfar_hwtstamp_set(dev, rq);
992 if (cmd == SIOCGHWTSTAMP)
993 return gfar_hwtstamp_get(dev, rq);
994
995 if (!priv->phydev)
996 return -ENODEV;
997
998 return phy_mii_ioctl(priv->phydev, rq, cmd);
999 }
1000
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)1001 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1002 u32 class)
1003 {
1004 u32 rqfpr = FPR_FILER_MASK;
1005 u32 rqfcr = 0x0;
1006
1007 rqfar--;
1008 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1009 priv->ftp_rqfpr[rqfar] = rqfpr;
1010 priv->ftp_rqfcr[rqfar] = rqfcr;
1011 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1012
1013 rqfar--;
1014 rqfcr = RQFCR_CMP_NOMATCH;
1015 priv->ftp_rqfpr[rqfar] = rqfpr;
1016 priv->ftp_rqfcr[rqfar] = rqfcr;
1017 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1018
1019 rqfar--;
1020 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1021 rqfpr = class;
1022 priv->ftp_rqfcr[rqfar] = rqfcr;
1023 priv->ftp_rqfpr[rqfar] = rqfpr;
1024 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1025
1026 rqfar--;
1027 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1028 rqfpr = class;
1029 priv->ftp_rqfcr[rqfar] = rqfcr;
1030 priv->ftp_rqfpr[rqfar] = rqfpr;
1031 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1032
1033 return rqfar;
1034 }
1035
gfar_init_filer_table(struct gfar_private * priv)1036 static void gfar_init_filer_table(struct gfar_private *priv)
1037 {
1038 int i = 0x0;
1039 u32 rqfar = MAX_FILER_IDX;
1040 u32 rqfcr = 0x0;
1041 u32 rqfpr = FPR_FILER_MASK;
1042
1043 /* Default rule */
1044 rqfcr = RQFCR_CMP_MATCH;
1045 priv->ftp_rqfcr[rqfar] = rqfcr;
1046 priv->ftp_rqfpr[rqfar] = rqfpr;
1047 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048
1049 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1050 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1051 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1052 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1053 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1054 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1055
1056 /* cur_filer_idx indicated the first non-masked rule */
1057 priv->cur_filer_idx = rqfar;
1058
1059 /* Rest are masked rules */
1060 rqfcr = RQFCR_CMP_NOMATCH;
1061 for (i = 0; i < rqfar; i++) {
1062 priv->ftp_rqfcr[i] = rqfcr;
1063 priv->ftp_rqfpr[i] = rqfpr;
1064 gfar_write_filer(priv, i, rqfcr, rqfpr);
1065 }
1066 }
1067
1068 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)1069 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1070 {
1071 unsigned int pvr = mfspr(SPRN_PVR);
1072 unsigned int svr = mfspr(SPRN_SVR);
1073 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1074 unsigned int rev = svr & 0xffff;
1075
1076 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1077 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1078 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1079 priv->errata |= GFAR_ERRATA_74;
1080
1081 /* MPC8313 and MPC837x all rev */
1082 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1083 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1084 priv->errata |= GFAR_ERRATA_76;
1085
1086 /* MPC8313 Rev < 2.0 */
1087 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1088 priv->errata |= GFAR_ERRATA_12;
1089 }
1090
__gfar_detect_errata_85xx(struct gfar_private * priv)1091 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1092 {
1093 unsigned int svr = mfspr(SPRN_SVR);
1094
1095 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1096 priv->errata |= GFAR_ERRATA_12;
1097 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1098 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1099 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1100 }
1101 #endif
1102
gfar_detect_errata(struct gfar_private * priv)1103 static void gfar_detect_errata(struct gfar_private *priv)
1104 {
1105 struct device *dev = &priv->ofdev->dev;
1106
1107 /* no plans to fix */
1108 priv->errata |= GFAR_ERRATA_A002;
1109
1110 #ifdef CONFIG_PPC
1111 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1112 __gfar_detect_errata_85xx(priv);
1113 else /* non-mpc85xx parts, i.e. e300 core based */
1114 __gfar_detect_errata_83xx(priv);
1115 #endif
1116
1117 if (priv->errata)
1118 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1119 priv->errata);
1120 }
1121
gfar_mac_reset(struct gfar_private * priv)1122 void gfar_mac_reset(struct gfar_private *priv)
1123 {
1124 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1125 u32 tempval;
1126
1127 /* Reset MAC layer */
1128 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
1129
1130 /* We need to delay at least 3 TX clocks */
1131 udelay(3);
1132
1133 /* the soft reset bit is not self-resetting, so we need to
1134 * clear it before resuming normal operation
1135 */
1136 gfar_write(®s->maccfg1, 0);
1137
1138 udelay(3);
1139
1140 /* Compute rx_buff_size based on config flags */
1141 gfar_rx_buff_size_config(priv);
1142
1143 /* Initialize the max receive frame/buffer lengths */
1144 gfar_write(®s->maxfrm, priv->rx_buffer_size);
1145 gfar_write(®s->mrblr, priv->rx_buffer_size);
1146
1147 /* Initialize the Minimum Frame Length Register */
1148 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
1149
1150 /* Initialize MACCFG2. */
1151 tempval = MACCFG2_INIT_SETTINGS;
1152
1153 /* If the mtu is larger than the max size for standard
1154 * ethernet frames (ie, a jumbo frame), then set maccfg2
1155 * to allow huge frames, and to check the length
1156 */
1157 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1158 gfar_has_errata(priv, GFAR_ERRATA_74))
1159 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1160
1161 gfar_write(®s->maccfg2, tempval);
1162
1163 /* Clear mac addr hash registers */
1164 gfar_write(®s->igaddr0, 0);
1165 gfar_write(®s->igaddr1, 0);
1166 gfar_write(®s->igaddr2, 0);
1167 gfar_write(®s->igaddr3, 0);
1168 gfar_write(®s->igaddr4, 0);
1169 gfar_write(®s->igaddr5, 0);
1170 gfar_write(®s->igaddr6, 0);
1171 gfar_write(®s->igaddr7, 0);
1172
1173 gfar_write(®s->gaddr0, 0);
1174 gfar_write(®s->gaddr1, 0);
1175 gfar_write(®s->gaddr2, 0);
1176 gfar_write(®s->gaddr3, 0);
1177 gfar_write(®s->gaddr4, 0);
1178 gfar_write(®s->gaddr5, 0);
1179 gfar_write(®s->gaddr6, 0);
1180 gfar_write(®s->gaddr7, 0);
1181
1182 if (priv->extended_hash)
1183 gfar_clear_exact_match(priv->ndev);
1184
1185 gfar_mac_rx_config(priv);
1186
1187 gfar_mac_tx_config(priv);
1188
1189 gfar_set_mac_address(priv->ndev);
1190
1191 gfar_set_multi(priv->ndev);
1192
1193 /* clear ievent and imask before configuring coalescing */
1194 gfar_ints_disable(priv);
1195
1196 /* Configure the coalescing support */
1197 gfar_configure_coalescing_all(priv);
1198 }
1199
gfar_hw_init(struct gfar_private * priv)1200 static void gfar_hw_init(struct gfar_private *priv)
1201 {
1202 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1203 u32 attrs;
1204
1205 /* Stop the DMA engine now, in case it was running before
1206 * (The firmware could have used it, and left it running).
1207 */
1208 gfar_halt(priv);
1209
1210 gfar_mac_reset(priv);
1211
1212 /* Zero out the rmon mib registers if it has them */
1213 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1214 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1215
1216 /* Mask off the CAM interrupts */
1217 gfar_write(®s->rmon.cam1, 0xffffffff);
1218 gfar_write(®s->rmon.cam2, 0xffffffff);
1219 }
1220
1221 /* Initialize ECNTRL */
1222 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
1223
1224 /* Set the extraction length and index */
1225 attrs = ATTRELI_EL(priv->rx_stash_size) |
1226 ATTRELI_EI(priv->rx_stash_index);
1227
1228 gfar_write(®s->attreli, attrs);
1229
1230 /* Start with defaults, and add stashing
1231 * depending on driver parameters
1232 */
1233 attrs = ATTR_INIT_SETTINGS;
1234
1235 if (priv->bd_stash_en)
1236 attrs |= ATTR_BDSTASH;
1237
1238 if (priv->rx_stash_size != 0)
1239 attrs |= ATTR_BUFSTASH;
1240
1241 gfar_write(®s->attr, attrs);
1242
1243 /* FIFO configs */
1244 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1245 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1246 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1247
1248 /* Program the interrupt steering regs, only for MG devices */
1249 if (priv->num_grps > 1)
1250 gfar_write_isrg(priv);
1251 }
1252
gfar_init_addr_hash_table(struct gfar_private * priv)1253 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1254 {
1255 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1256
1257 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1258 priv->extended_hash = 1;
1259 priv->hash_width = 9;
1260
1261 priv->hash_regs[0] = ®s->igaddr0;
1262 priv->hash_regs[1] = ®s->igaddr1;
1263 priv->hash_regs[2] = ®s->igaddr2;
1264 priv->hash_regs[3] = ®s->igaddr3;
1265 priv->hash_regs[4] = ®s->igaddr4;
1266 priv->hash_regs[5] = ®s->igaddr5;
1267 priv->hash_regs[6] = ®s->igaddr6;
1268 priv->hash_regs[7] = ®s->igaddr7;
1269 priv->hash_regs[8] = ®s->gaddr0;
1270 priv->hash_regs[9] = ®s->gaddr1;
1271 priv->hash_regs[10] = ®s->gaddr2;
1272 priv->hash_regs[11] = ®s->gaddr3;
1273 priv->hash_regs[12] = ®s->gaddr4;
1274 priv->hash_regs[13] = ®s->gaddr5;
1275 priv->hash_regs[14] = ®s->gaddr6;
1276 priv->hash_regs[15] = ®s->gaddr7;
1277
1278 } else {
1279 priv->extended_hash = 0;
1280 priv->hash_width = 8;
1281
1282 priv->hash_regs[0] = ®s->gaddr0;
1283 priv->hash_regs[1] = ®s->gaddr1;
1284 priv->hash_regs[2] = ®s->gaddr2;
1285 priv->hash_regs[3] = ®s->gaddr3;
1286 priv->hash_regs[4] = ®s->gaddr4;
1287 priv->hash_regs[5] = ®s->gaddr5;
1288 priv->hash_regs[6] = ®s->gaddr6;
1289 priv->hash_regs[7] = ®s->gaddr7;
1290 }
1291 }
1292
1293 /* Set up the ethernet device structure, private data,
1294 * and anything else we need before we start
1295 */
gfar_probe(struct platform_device * ofdev)1296 static int gfar_probe(struct platform_device *ofdev)
1297 {
1298 struct net_device *dev = NULL;
1299 struct gfar_private *priv = NULL;
1300 int err = 0, i;
1301
1302 err = gfar_of_init(ofdev, &dev);
1303
1304 if (err)
1305 return err;
1306
1307 priv = netdev_priv(dev);
1308 priv->ndev = dev;
1309 priv->ofdev = ofdev;
1310 priv->dev = &ofdev->dev;
1311 SET_NETDEV_DEV(dev, &ofdev->dev);
1312
1313 spin_lock_init(&priv->bflock);
1314 INIT_WORK(&priv->reset_task, gfar_reset_task);
1315
1316 platform_set_drvdata(ofdev, priv);
1317
1318 gfar_detect_errata(priv);
1319
1320 /* Set the dev->base_addr to the gfar reg region */
1321 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1322
1323 /* Fill in the dev structure */
1324 dev->watchdog_timeo = TX_TIMEOUT;
1325 dev->mtu = 1500;
1326 dev->netdev_ops = &gfar_netdev_ops;
1327 dev->ethtool_ops = &gfar_ethtool_ops;
1328
1329 /* Register for napi ...We are registering NAPI for each grp */
1330 for (i = 0; i < priv->num_grps; i++) {
1331 if (priv->poll_mode == GFAR_SQ_POLLING) {
1332 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1333 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1334 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1335 gfar_poll_tx_sq, 2);
1336 } else {
1337 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1338 gfar_poll_rx, GFAR_DEV_WEIGHT);
1339 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1340 gfar_poll_tx, 2);
1341 }
1342 }
1343
1344 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1345 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1346 NETIF_F_RXCSUM;
1347 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1348 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1349 }
1350
1351 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1352 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1353 NETIF_F_HW_VLAN_CTAG_RX;
1354 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1355 }
1356
1357 gfar_init_addr_hash_table(priv);
1358
1359 /* Insert receive time stamps into padding alignment bytes */
1360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1361 priv->padding = 8;
1362
1363 if (dev->features & NETIF_F_IP_CSUM ||
1364 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1365 dev->needed_headroom = GMAC_FCB_LEN;
1366
1367 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1368
1369 /* Initializing some of the rx/tx queue level parameters */
1370 for (i = 0; i < priv->num_tx_queues; i++) {
1371 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1372 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1373 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1374 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1375 }
1376
1377 for (i = 0; i < priv->num_rx_queues; i++) {
1378 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1379 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1380 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1381 }
1382
1383 /* always enable rx filer */
1384 priv->rx_filer_enable = 1;
1385 /* Enable most messages by default */
1386 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1387 /* use pritority h/w tx queue scheduling for single queue devices */
1388 if (priv->num_tx_queues == 1)
1389 priv->prio_sched_en = 1;
1390
1391 set_bit(GFAR_DOWN, &priv->state);
1392
1393 gfar_hw_init(priv);
1394
1395 /* Carrier starts down, phylib will bring it up */
1396 netif_carrier_off(dev);
1397
1398 err = register_netdev(dev);
1399
1400 if (err) {
1401 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1402 goto register_fail;
1403 }
1404
1405 device_init_wakeup(&dev->dev,
1406 priv->device_flags &
1407 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1408
1409 /* fill out IRQ number and name fields */
1410 for (i = 0; i < priv->num_grps; i++) {
1411 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1412 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1413 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1414 dev->name, "_g", '0' + i, "_tx");
1415 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1416 dev->name, "_g", '0' + i, "_rx");
1417 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1418 dev->name, "_g", '0' + i, "_er");
1419 } else
1420 strcpy(gfar_irq(grp, TX)->name, dev->name);
1421 }
1422
1423 /* Initialize the filer table */
1424 gfar_init_filer_table(priv);
1425
1426 /* Print out the device info */
1427 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1428
1429 /* Even more device info helps when determining which kernel
1430 * provided which set of benchmarks.
1431 */
1432 netdev_info(dev, "Running with NAPI enabled\n");
1433 for (i = 0; i < priv->num_rx_queues; i++)
1434 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1435 i, priv->rx_queue[i]->rx_ring_size);
1436 for (i = 0; i < priv->num_tx_queues; i++)
1437 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1438 i, priv->tx_queue[i]->tx_ring_size);
1439
1440 return 0;
1441
1442 register_fail:
1443 unmap_group_regs(priv);
1444 gfar_free_rx_queues(priv);
1445 gfar_free_tx_queues(priv);
1446 of_node_put(priv->phy_node);
1447 of_node_put(priv->tbi_node);
1448 free_gfar_dev(priv);
1449 return err;
1450 }
1451
gfar_remove(struct platform_device * ofdev)1452 static int gfar_remove(struct platform_device *ofdev)
1453 {
1454 struct gfar_private *priv = platform_get_drvdata(ofdev);
1455
1456 of_node_put(priv->phy_node);
1457 of_node_put(priv->tbi_node);
1458
1459 unregister_netdev(priv->ndev);
1460 unmap_group_regs(priv);
1461 gfar_free_rx_queues(priv);
1462 gfar_free_tx_queues(priv);
1463 free_gfar_dev(priv);
1464
1465 return 0;
1466 }
1467
1468 #ifdef CONFIG_PM
1469
gfar_suspend(struct device * dev)1470 static int gfar_suspend(struct device *dev)
1471 {
1472 struct gfar_private *priv = dev_get_drvdata(dev);
1473 struct net_device *ndev = priv->ndev;
1474 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1475 unsigned long flags;
1476 u32 tempval;
1477
1478 int magic_packet = priv->wol_en &&
1479 (priv->device_flags &
1480 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1481
1482 netif_device_detach(ndev);
1483
1484 if (netif_running(ndev)) {
1485
1486 local_irq_save(flags);
1487 lock_tx_qs(priv);
1488
1489 gfar_halt_nodisable(priv);
1490
1491 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1492 tempval = gfar_read(®s->maccfg1);
1493
1494 tempval &= ~MACCFG1_TX_EN;
1495
1496 if (!magic_packet)
1497 tempval &= ~MACCFG1_RX_EN;
1498
1499 gfar_write(®s->maccfg1, tempval);
1500
1501 unlock_tx_qs(priv);
1502 local_irq_restore(flags);
1503
1504 disable_napi(priv);
1505
1506 if (magic_packet) {
1507 /* Enable interrupt on Magic Packet */
1508 gfar_write(®s->imask, IMASK_MAG);
1509
1510 /* Enable Magic Packet mode */
1511 tempval = gfar_read(®s->maccfg2);
1512 tempval |= MACCFG2_MPEN;
1513 gfar_write(®s->maccfg2, tempval);
1514 } else {
1515 phy_stop(priv->phydev);
1516 }
1517 }
1518
1519 return 0;
1520 }
1521
gfar_resume(struct device * dev)1522 static int gfar_resume(struct device *dev)
1523 {
1524 struct gfar_private *priv = dev_get_drvdata(dev);
1525 struct net_device *ndev = priv->ndev;
1526 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1527 unsigned long flags;
1528 u32 tempval;
1529 int magic_packet = priv->wol_en &&
1530 (priv->device_flags &
1531 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532
1533 if (!netif_running(ndev)) {
1534 netif_device_attach(ndev);
1535 return 0;
1536 }
1537
1538 if (!magic_packet && priv->phydev)
1539 phy_start(priv->phydev);
1540
1541 /* Disable Magic Packet mode, in case something
1542 * else woke us up.
1543 */
1544 local_irq_save(flags);
1545 lock_tx_qs(priv);
1546
1547 tempval = gfar_read(®s->maccfg2);
1548 tempval &= ~MACCFG2_MPEN;
1549 gfar_write(®s->maccfg2, tempval);
1550
1551 gfar_start(priv);
1552
1553 unlock_tx_qs(priv);
1554 local_irq_restore(flags);
1555
1556 netif_device_attach(ndev);
1557
1558 enable_napi(priv);
1559
1560 return 0;
1561 }
1562
gfar_restore(struct device * dev)1563 static int gfar_restore(struct device *dev)
1564 {
1565 struct gfar_private *priv = dev_get_drvdata(dev);
1566 struct net_device *ndev = priv->ndev;
1567
1568 if (!netif_running(ndev)) {
1569 netif_device_attach(ndev);
1570
1571 return 0;
1572 }
1573
1574 if (gfar_init_bds(ndev)) {
1575 free_skb_resources(priv);
1576 return -ENOMEM;
1577 }
1578
1579 gfar_mac_reset(priv);
1580
1581 gfar_init_tx_rx_base(priv);
1582
1583 gfar_start(priv);
1584
1585 priv->oldlink = 0;
1586 priv->oldspeed = 0;
1587 priv->oldduplex = -1;
1588
1589 if (priv->phydev)
1590 phy_start(priv->phydev);
1591
1592 netif_device_attach(ndev);
1593 enable_napi(priv);
1594
1595 return 0;
1596 }
1597
1598 static struct dev_pm_ops gfar_pm_ops = {
1599 .suspend = gfar_suspend,
1600 .resume = gfar_resume,
1601 .freeze = gfar_suspend,
1602 .thaw = gfar_resume,
1603 .restore = gfar_restore,
1604 };
1605
1606 #define GFAR_PM_OPS (&gfar_pm_ops)
1607
1608 #else
1609
1610 #define GFAR_PM_OPS NULL
1611
1612 #endif
1613
1614 /* Reads the controller's registers to determine what interface
1615 * connects it to the PHY.
1616 */
gfar_get_interface(struct net_device * dev)1617 static phy_interface_t gfar_get_interface(struct net_device *dev)
1618 {
1619 struct gfar_private *priv = netdev_priv(dev);
1620 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1621 u32 ecntrl;
1622
1623 ecntrl = gfar_read(®s->ecntrl);
1624
1625 if (ecntrl & ECNTRL_SGMII_MODE)
1626 return PHY_INTERFACE_MODE_SGMII;
1627
1628 if (ecntrl & ECNTRL_TBI_MODE) {
1629 if (ecntrl & ECNTRL_REDUCED_MODE)
1630 return PHY_INTERFACE_MODE_RTBI;
1631 else
1632 return PHY_INTERFACE_MODE_TBI;
1633 }
1634
1635 if (ecntrl & ECNTRL_REDUCED_MODE) {
1636 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1637 return PHY_INTERFACE_MODE_RMII;
1638 }
1639 else {
1640 phy_interface_t interface = priv->interface;
1641
1642 /* This isn't autodetected right now, so it must
1643 * be set by the device tree or platform code.
1644 */
1645 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1646 return PHY_INTERFACE_MODE_RGMII_ID;
1647
1648 return PHY_INTERFACE_MODE_RGMII;
1649 }
1650 }
1651
1652 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1653 return PHY_INTERFACE_MODE_GMII;
1654
1655 return PHY_INTERFACE_MODE_MII;
1656 }
1657
1658
1659 /* Initializes driver's PHY state, and attaches to the PHY.
1660 * Returns 0 on success.
1661 */
init_phy(struct net_device * dev)1662 static int init_phy(struct net_device *dev)
1663 {
1664 struct gfar_private *priv = netdev_priv(dev);
1665 uint gigabit_support =
1666 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1667 GFAR_SUPPORTED_GBIT : 0;
1668 phy_interface_t interface;
1669
1670 priv->oldlink = 0;
1671 priv->oldspeed = 0;
1672 priv->oldduplex = -1;
1673
1674 interface = gfar_get_interface(dev);
1675
1676 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1677 interface);
1678 if (!priv->phydev) {
1679 dev_err(&dev->dev, "could not attach to PHY\n");
1680 return -ENODEV;
1681 }
1682
1683 if (interface == PHY_INTERFACE_MODE_SGMII)
1684 gfar_configure_serdes(dev);
1685
1686 /* Remove any features not supported by the controller */
1687 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1688 priv->phydev->advertising = priv->phydev->supported;
1689
1690 return 0;
1691 }
1692
1693 /* Initialize TBI PHY interface for communicating with the
1694 * SERDES lynx PHY on the chip. We communicate with this PHY
1695 * through the MDIO bus on each controller, treating it as a
1696 * "normal" PHY at the address found in the TBIPA register. We assume
1697 * that the TBIPA register is valid. Either the MDIO bus code will set
1698 * it to a value that doesn't conflict with other PHYs on the bus, or the
1699 * value doesn't matter, as there are no other PHYs on the bus.
1700 */
gfar_configure_serdes(struct net_device * dev)1701 static void gfar_configure_serdes(struct net_device *dev)
1702 {
1703 struct gfar_private *priv = netdev_priv(dev);
1704 struct phy_device *tbiphy;
1705
1706 if (!priv->tbi_node) {
1707 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1708 "device tree specify a tbi-handle\n");
1709 return;
1710 }
1711
1712 tbiphy = of_phy_find_device(priv->tbi_node);
1713 if (!tbiphy) {
1714 dev_err(&dev->dev, "error: Could not get TBI device\n");
1715 return;
1716 }
1717
1718 /* If the link is already up, we must already be ok, and don't need to
1719 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1720 * everything for us? Resetting it takes the link down and requires
1721 * several seconds for it to come back.
1722 */
1723 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1724 return;
1725
1726 /* Single clk mode, mii mode off(for serdes communication) */
1727 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1728
1729 phy_write(tbiphy, MII_ADVERTISE,
1730 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1731 ADVERTISE_1000XPSE_ASYM);
1732
1733 phy_write(tbiphy, MII_BMCR,
1734 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1735 BMCR_SPEED1000);
1736 }
1737
__gfar_is_rx_idle(struct gfar_private * priv)1738 static int __gfar_is_rx_idle(struct gfar_private *priv)
1739 {
1740 u32 res;
1741
1742 /* Normaly TSEC should not hang on GRS commands, so we should
1743 * actually wait for IEVENT_GRSC flag.
1744 */
1745 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1746 return 0;
1747
1748 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1749 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1750 * and the Rx can be safely reset.
1751 */
1752 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1753 res &= 0x7f807f80;
1754 if ((res & 0xffff) == (res >> 16))
1755 return 1;
1756
1757 return 0;
1758 }
1759
1760 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1761 static void gfar_halt_nodisable(struct gfar_private *priv)
1762 {
1763 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1764 u32 tempval;
1765 unsigned int timeout;
1766 int stopped;
1767
1768 gfar_ints_disable(priv);
1769
1770 if (gfar_is_dma_stopped(priv))
1771 return;
1772
1773 /* Stop the DMA, and wait for it to stop */
1774 tempval = gfar_read(®s->dmactrl);
1775 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1776 gfar_write(®s->dmactrl, tempval);
1777
1778 retry:
1779 timeout = 1000;
1780 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1781 cpu_relax();
1782 timeout--;
1783 }
1784
1785 if (!timeout)
1786 stopped = gfar_is_dma_stopped(priv);
1787
1788 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1789 !__gfar_is_rx_idle(priv))
1790 goto retry;
1791 }
1792
1793 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1794 void gfar_halt(struct gfar_private *priv)
1795 {
1796 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1797 u32 tempval;
1798
1799 /* Dissable the Rx/Tx hw queues */
1800 gfar_write(®s->rqueue, 0);
1801 gfar_write(®s->tqueue, 0);
1802
1803 mdelay(10);
1804
1805 gfar_halt_nodisable(priv);
1806
1807 /* Disable Rx/Tx DMA */
1808 tempval = gfar_read(®s->maccfg1);
1809 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1810 gfar_write(®s->maccfg1, tempval);
1811 }
1812
stop_gfar(struct net_device * dev)1813 void stop_gfar(struct net_device *dev)
1814 {
1815 struct gfar_private *priv = netdev_priv(dev);
1816
1817 netif_tx_stop_all_queues(dev);
1818
1819 smp_mb__before_atomic();
1820 set_bit(GFAR_DOWN, &priv->state);
1821 smp_mb__after_atomic();
1822
1823 disable_napi(priv);
1824
1825 /* disable ints and gracefully shut down Rx/Tx DMA */
1826 gfar_halt(priv);
1827
1828 phy_stop(priv->phydev);
1829
1830 free_skb_resources(priv);
1831 }
1832
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1833 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1834 {
1835 struct txbd8 *txbdp;
1836 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1837 int i, j;
1838
1839 txbdp = tx_queue->tx_bd_base;
1840
1841 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1842 if (!tx_queue->tx_skbuff[i])
1843 continue;
1844
1845 dma_unmap_single(priv->dev, txbdp->bufPtr,
1846 txbdp->length, DMA_TO_DEVICE);
1847 txbdp->lstatus = 0;
1848 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1849 j++) {
1850 txbdp++;
1851 dma_unmap_page(priv->dev, txbdp->bufPtr,
1852 txbdp->length, DMA_TO_DEVICE);
1853 }
1854 txbdp++;
1855 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1856 tx_queue->tx_skbuff[i] = NULL;
1857 }
1858 kfree(tx_queue->tx_skbuff);
1859 tx_queue->tx_skbuff = NULL;
1860 }
1861
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1862 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1863 {
1864 struct rxbd8 *rxbdp;
1865 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1866 int i;
1867
1868 rxbdp = rx_queue->rx_bd_base;
1869
1870 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1871 if (rx_queue->rx_skbuff[i]) {
1872 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1873 priv->rx_buffer_size,
1874 DMA_FROM_DEVICE);
1875 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1876 rx_queue->rx_skbuff[i] = NULL;
1877 }
1878 rxbdp->lstatus = 0;
1879 rxbdp->bufPtr = 0;
1880 rxbdp++;
1881 }
1882 kfree(rx_queue->rx_skbuff);
1883 rx_queue->rx_skbuff = NULL;
1884 }
1885
1886 /* If there are any tx skbs or rx skbs still around, free them.
1887 * Then free tx_skbuff and rx_skbuff
1888 */
free_skb_resources(struct gfar_private * priv)1889 static void free_skb_resources(struct gfar_private *priv)
1890 {
1891 struct gfar_priv_tx_q *tx_queue = NULL;
1892 struct gfar_priv_rx_q *rx_queue = NULL;
1893 int i;
1894
1895 /* Go through all the buffer descriptors and free their data buffers */
1896 for (i = 0; i < priv->num_tx_queues; i++) {
1897 struct netdev_queue *txq;
1898
1899 tx_queue = priv->tx_queue[i];
1900 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1901 if (tx_queue->tx_skbuff)
1902 free_skb_tx_queue(tx_queue);
1903 netdev_tx_reset_queue(txq);
1904 }
1905
1906 for (i = 0; i < priv->num_rx_queues; i++) {
1907 rx_queue = priv->rx_queue[i];
1908 if (rx_queue->rx_skbuff)
1909 free_skb_rx_queue(rx_queue);
1910 }
1911
1912 dma_free_coherent(priv->dev,
1913 sizeof(struct txbd8) * priv->total_tx_ring_size +
1914 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1915 priv->tx_queue[0]->tx_bd_base,
1916 priv->tx_queue[0]->tx_bd_dma_base);
1917 }
1918
gfar_start(struct gfar_private * priv)1919 void gfar_start(struct gfar_private *priv)
1920 {
1921 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1922 u32 tempval;
1923 int i = 0;
1924
1925 /* Enable Rx/Tx hw queues */
1926 gfar_write(®s->rqueue, priv->rqueue);
1927 gfar_write(®s->tqueue, priv->tqueue);
1928
1929 /* Initialize DMACTRL to have WWR and WOP */
1930 tempval = gfar_read(®s->dmactrl);
1931 tempval |= DMACTRL_INIT_SETTINGS;
1932 gfar_write(®s->dmactrl, tempval);
1933
1934 /* Make sure we aren't stopped */
1935 tempval = gfar_read(®s->dmactrl);
1936 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1937 gfar_write(®s->dmactrl, tempval);
1938
1939 for (i = 0; i < priv->num_grps; i++) {
1940 regs = priv->gfargrp[i].regs;
1941 /* Clear THLT/RHLT, so that the DMA starts polling now */
1942 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1943 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1944 }
1945
1946 /* Enable Rx/Tx DMA */
1947 tempval = gfar_read(®s->maccfg1);
1948 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1949 gfar_write(®s->maccfg1, tempval);
1950
1951 gfar_ints_enable(priv);
1952
1953 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1954 }
1955
free_grp_irqs(struct gfar_priv_grp * grp)1956 static void free_grp_irqs(struct gfar_priv_grp *grp)
1957 {
1958 free_irq(gfar_irq(grp, TX)->irq, grp);
1959 free_irq(gfar_irq(grp, RX)->irq, grp);
1960 free_irq(gfar_irq(grp, ER)->irq, grp);
1961 }
1962
register_grp_irqs(struct gfar_priv_grp * grp)1963 static int register_grp_irqs(struct gfar_priv_grp *grp)
1964 {
1965 struct gfar_private *priv = grp->priv;
1966 struct net_device *dev = priv->ndev;
1967 int err;
1968
1969 /* If the device has multiple interrupts, register for
1970 * them. Otherwise, only register for the one
1971 */
1972 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1973 /* Install our interrupt handlers for Error,
1974 * Transmit, and Receive
1975 */
1976 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1977 gfar_irq(grp, ER)->name, grp);
1978 if (err < 0) {
1979 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1980 gfar_irq(grp, ER)->irq);
1981
1982 goto err_irq_fail;
1983 }
1984 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1985 gfar_irq(grp, TX)->name, grp);
1986 if (err < 0) {
1987 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1988 gfar_irq(grp, TX)->irq);
1989 goto tx_irq_fail;
1990 }
1991 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1992 gfar_irq(grp, RX)->name, grp);
1993 if (err < 0) {
1994 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1995 gfar_irq(grp, RX)->irq);
1996 goto rx_irq_fail;
1997 }
1998 } else {
1999 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2000 gfar_irq(grp, TX)->name, grp);
2001 if (err < 0) {
2002 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2003 gfar_irq(grp, TX)->irq);
2004 goto err_irq_fail;
2005 }
2006 }
2007
2008 return 0;
2009
2010 rx_irq_fail:
2011 free_irq(gfar_irq(grp, TX)->irq, grp);
2012 tx_irq_fail:
2013 free_irq(gfar_irq(grp, ER)->irq, grp);
2014 err_irq_fail:
2015 return err;
2016
2017 }
2018
gfar_free_irq(struct gfar_private * priv)2019 static void gfar_free_irq(struct gfar_private *priv)
2020 {
2021 int i;
2022
2023 /* Free the IRQs */
2024 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2025 for (i = 0; i < priv->num_grps; i++)
2026 free_grp_irqs(&priv->gfargrp[i]);
2027 } else {
2028 for (i = 0; i < priv->num_grps; i++)
2029 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2030 &priv->gfargrp[i]);
2031 }
2032 }
2033
gfar_request_irq(struct gfar_private * priv)2034 static int gfar_request_irq(struct gfar_private *priv)
2035 {
2036 int err, i, j;
2037
2038 for (i = 0; i < priv->num_grps; i++) {
2039 err = register_grp_irqs(&priv->gfargrp[i]);
2040 if (err) {
2041 for (j = 0; j < i; j++)
2042 free_grp_irqs(&priv->gfargrp[j]);
2043 return err;
2044 }
2045 }
2046
2047 return 0;
2048 }
2049
2050 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)2051 int startup_gfar(struct net_device *ndev)
2052 {
2053 struct gfar_private *priv = netdev_priv(ndev);
2054 int err;
2055
2056 gfar_mac_reset(priv);
2057
2058 err = gfar_alloc_skb_resources(ndev);
2059 if (err)
2060 return err;
2061
2062 gfar_init_tx_rx_base(priv);
2063
2064 smp_mb__before_atomic();
2065 clear_bit(GFAR_DOWN, &priv->state);
2066 smp_mb__after_atomic();
2067
2068 /* Start Rx/Tx DMA and enable the interrupts */
2069 gfar_start(priv);
2070
2071 phy_start(priv->phydev);
2072
2073 enable_napi(priv);
2074
2075 netif_tx_wake_all_queues(ndev);
2076
2077 return 0;
2078 }
2079
2080 /* Called when something needs to use the ethernet device
2081 * Returns 0 for success.
2082 */
gfar_enet_open(struct net_device * dev)2083 static int gfar_enet_open(struct net_device *dev)
2084 {
2085 struct gfar_private *priv = netdev_priv(dev);
2086 int err;
2087
2088 err = init_phy(dev);
2089 if (err)
2090 return err;
2091
2092 err = gfar_request_irq(priv);
2093 if (err)
2094 return err;
2095
2096 err = startup_gfar(dev);
2097 if (err)
2098 return err;
2099
2100 device_set_wakeup_enable(&dev->dev, priv->wol_en);
2101
2102 return err;
2103 }
2104
gfar_add_fcb(struct sk_buff * skb)2105 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2106 {
2107 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2108
2109 memset(fcb, 0, GMAC_FCB_LEN);
2110
2111 return fcb;
2112 }
2113
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)2114 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2115 int fcb_length)
2116 {
2117 /* If we're here, it's a IP packet with a TCP or UDP
2118 * payload. We set it to checksum, using a pseudo-header
2119 * we provide
2120 */
2121 u8 flags = TXFCB_DEFAULT;
2122
2123 /* Tell the controller what the protocol is
2124 * And provide the already calculated phcs
2125 */
2126 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2127 flags |= TXFCB_UDP;
2128 fcb->phcs = udp_hdr(skb)->check;
2129 } else
2130 fcb->phcs = tcp_hdr(skb)->check;
2131
2132 /* l3os is the distance between the start of the
2133 * frame (skb->data) and the start of the IP hdr.
2134 * l4os is the distance between the start of the
2135 * l3 hdr and the l4 hdr
2136 */
2137 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2138 fcb->l4os = skb_network_header_len(skb);
2139
2140 fcb->flags = flags;
2141 }
2142
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)2143 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2144 {
2145 fcb->flags |= TXFCB_VLN;
2146 fcb->vlctl = vlan_tx_tag_get(skb);
2147 }
2148
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)2149 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2150 struct txbd8 *base, int ring_size)
2151 {
2152 struct txbd8 *new_bd = bdp + stride;
2153
2154 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2155 }
2156
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)2157 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2158 int ring_size)
2159 {
2160 return skip_txbd(bdp, 1, base, ring_size);
2161 }
2162
2163 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)2164 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2165 unsigned long fcb_addr)
2166 {
2167 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2168 (fcb_addr % 0x20) > 0x18);
2169 }
2170
2171 /* eTSEC76: csum generation for frames larger than 2500 may
2172 * cause excess delays before start of transmission
2173 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)2174 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2175 unsigned int len)
2176 {
2177 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2178 (len > 2500));
2179 }
2180
2181 /* This is called by the kernel when a frame is ready for transmission.
2182 * It is pointed to by the dev->hard_start_xmit function pointer
2183 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)2184 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2185 {
2186 struct gfar_private *priv = netdev_priv(dev);
2187 struct gfar_priv_tx_q *tx_queue = NULL;
2188 struct netdev_queue *txq;
2189 struct gfar __iomem *regs = NULL;
2190 struct txfcb *fcb = NULL;
2191 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2192 u32 lstatus;
2193 int i, rq = 0;
2194 int do_tstamp, do_csum, do_vlan;
2195 u32 bufaddr;
2196 unsigned long flags;
2197 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2198
2199 rq = skb->queue_mapping;
2200 tx_queue = priv->tx_queue[rq];
2201 txq = netdev_get_tx_queue(dev, rq);
2202 base = tx_queue->tx_bd_base;
2203 regs = tx_queue->grp->regs;
2204
2205 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2206 do_vlan = vlan_tx_tag_present(skb);
2207 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2208 priv->hwts_tx_en;
2209
2210 if (do_csum || do_vlan)
2211 fcb_len = GMAC_FCB_LEN;
2212
2213 /* check if time stamp should be generated */
2214 if (unlikely(do_tstamp))
2215 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2216
2217 /* make space for additional header when fcb is needed */
2218 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2219 struct sk_buff *skb_new;
2220
2221 skb_new = skb_realloc_headroom(skb, fcb_len);
2222 if (!skb_new) {
2223 dev->stats.tx_errors++;
2224 dev_kfree_skb_any(skb);
2225 return NETDEV_TX_OK;
2226 }
2227
2228 if (skb->sk)
2229 skb_set_owner_w(skb_new, skb->sk);
2230 dev_consume_skb_any(skb);
2231 skb = skb_new;
2232 }
2233
2234 /* total number of fragments in the SKB */
2235 nr_frags = skb_shinfo(skb)->nr_frags;
2236
2237 /* calculate the required number of TxBDs for this skb */
2238 if (unlikely(do_tstamp))
2239 nr_txbds = nr_frags + 2;
2240 else
2241 nr_txbds = nr_frags + 1;
2242
2243 /* check if there is space to queue this packet */
2244 if (nr_txbds > tx_queue->num_txbdfree) {
2245 /* no space, stop the queue */
2246 netif_tx_stop_queue(txq);
2247 dev->stats.tx_fifo_errors++;
2248 return NETDEV_TX_BUSY;
2249 }
2250
2251 /* Update transmit stats */
2252 bytes_sent = skb->len;
2253 tx_queue->stats.tx_bytes += bytes_sent;
2254 /* keep Tx bytes on wire for BQL accounting */
2255 GFAR_CB(skb)->bytes_sent = bytes_sent;
2256 tx_queue->stats.tx_packets++;
2257
2258 txbdp = txbdp_start = tx_queue->cur_tx;
2259 lstatus = txbdp->lstatus;
2260
2261 /* Time stamp insertion requires one additional TxBD */
2262 if (unlikely(do_tstamp))
2263 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2264 tx_queue->tx_ring_size);
2265
2266 if (nr_frags == 0) {
2267 if (unlikely(do_tstamp))
2268 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2269 TXBD_INTERRUPT);
2270 else
2271 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2272 } else {
2273 /* Place the fragment addresses and lengths into the TxBDs */
2274 for (i = 0; i < nr_frags; i++) {
2275 unsigned int frag_len;
2276 /* Point at the next BD, wrapping as needed */
2277 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2278
2279 frag_len = skb_shinfo(skb)->frags[i].size;
2280
2281 lstatus = txbdp->lstatus | frag_len |
2282 BD_LFLAG(TXBD_READY);
2283
2284 /* Handle the last BD specially */
2285 if (i == nr_frags - 1)
2286 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2287
2288 bufaddr = skb_frag_dma_map(priv->dev,
2289 &skb_shinfo(skb)->frags[i],
2290 0,
2291 frag_len,
2292 DMA_TO_DEVICE);
2293
2294 /* set the TxBD length and buffer pointer */
2295 txbdp->bufPtr = bufaddr;
2296 txbdp->lstatus = lstatus;
2297 }
2298
2299 lstatus = txbdp_start->lstatus;
2300 }
2301
2302 /* Add TxPAL between FCB and frame if required */
2303 if (unlikely(do_tstamp)) {
2304 skb_push(skb, GMAC_TXPAL_LEN);
2305 memset(skb->data, 0, GMAC_TXPAL_LEN);
2306 }
2307
2308 /* Add TxFCB if required */
2309 if (fcb_len) {
2310 fcb = gfar_add_fcb(skb);
2311 lstatus |= BD_LFLAG(TXBD_TOE);
2312 }
2313
2314 /* Set up checksumming */
2315 if (do_csum) {
2316 gfar_tx_checksum(skb, fcb, fcb_len);
2317
2318 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2319 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2320 __skb_pull(skb, GMAC_FCB_LEN);
2321 skb_checksum_help(skb);
2322 if (do_vlan || do_tstamp) {
2323 /* put back a new fcb for vlan/tstamp TOE */
2324 fcb = gfar_add_fcb(skb);
2325 } else {
2326 /* Tx TOE not used */
2327 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2328 fcb = NULL;
2329 }
2330 }
2331 }
2332
2333 if (do_vlan)
2334 gfar_tx_vlan(skb, fcb);
2335
2336 /* Setup tx hardware time stamping if requested */
2337 if (unlikely(do_tstamp)) {
2338 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2339 fcb->ptp = 1;
2340 }
2341
2342 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2343 skb_headlen(skb), DMA_TO_DEVICE);
2344
2345 /* If time stamping is requested one additional TxBD must be set up. The
2346 * first TxBD points to the FCB and must have a data length of
2347 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2348 * the full frame length.
2349 */
2350 if (unlikely(do_tstamp)) {
2351 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2352 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2353 (skb_headlen(skb) - fcb_len);
2354 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2355 } else {
2356 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2357 }
2358
2359 netdev_tx_sent_queue(txq, bytes_sent);
2360
2361 /* We can work in parallel with gfar_clean_tx_ring(), except
2362 * when modifying num_txbdfree. Note that we didn't grab the lock
2363 * when we were reading the num_txbdfree and checking for available
2364 * space, that's because outside of this function it can only grow,
2365 * and once we've got needed space, it cannot suddenly disappear.
2366 *
2367 * The lock also protects us from gfar_error(), which can modify
2368 * regs->tstat and thus retrigger the transfers, which is why we
2369 * also must grab the lock before setting ready bit for the first
2370 * to be transmitted BD.
2371 */
2372 spin_lock_irqsave(&tx_queue->txlock, flags);
2373
2374 gfar_wmb();
2375
2376 txbdp_start->lstatus = lstatus;
2377
2378 gfar_wmb(); /* force lstatus write before tx_skbuff */
2379
2380 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2381
2382 /* Update the current skb pointer to the next entry we will use
2383 * (wrapping if necessary)
2384 */
2385 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2386 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2387
2388 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2389
2390 /* reduce TxBD free count */
2391 tx_queue->num_txbdfree -= (nr_txbds);
2392
2393 /* If the next BD still needs to be cleaned up, then the bds
2394 * are full. We need to tell the kernel to stop sending us stuff.
2395 */
2396 if (!tx_queue->num_txbdfree) {
2397 netif_tx_stop_queue(txq);
2398
2399 dev->stats.tx_fifo_errors++;
2400 }
2401
2402 /* Tell the DMA to go go go */
2403 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2404
2405 /* Unlock priv */
2406 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2407
2408 return NETDEV_TX_OK;
2409 }
2410
2411 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2412 static int gfar_close(struct net_device *dev)
2413 {
2414 struct gfar_private *priv = netdev_priv(dev);
2415
2416 cancel_work_sync(&priv->reset_task);
2417 stop_gfar(dev);
2418
2419 /* Disconnect from the PHY */
2420 phy_disconnect(priv->phydev);
2421 priv->phydev = NULL;
2422
2423 gfar_free_irq(priv);
2424
2425 return 0;
2426 }
2427
2428 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2429 static int gfar_set_mac_address(struct net_device *dev)
2430 {
2431 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2432
2433 return 0;
2434 }
2435
gfar_change_mtu(struct net_device * dev,int new_mtu)2436 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2437 {
2438 struct gfar_private *priv = netdev_priv(dev);
2439 int frame_size = new_mtu + ETH_HLEN;
2440
2441 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2442 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2443 return -EINVAL;
2444 }
2445
2446 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2447 cpu_relax();
2448
2449 if (dev->flags & IFF_UP)
2450 stop_gfar(dev);
2451
2452 dev->mtu = new_mtu;
2453
2454 if (dev->flags & IFF_UP)
2455 startup_gfar(dev);
2456
2457 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2458
2459 return 0;
2460 }
2461
reset_gfar(struct net_device * ndev)2462 void reset_gfar(struct net_device *ndev)
2463 {
2464 struct gfar_private *priv = netdev_priv(ndev);
2465
2466 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2467 cpu_relax();
2468
2469 stop_gfar(ndev);
2470 startup_gfar(ndev);
2471
2472 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2473 }
2474
2475 /* gfar_reset_task gets scheduled when a packet has not been
2476 * transmitted after a set amount of time.
2477 * For now, assume that clearing out all the structures, and
2478 * starting over will fix the problem.
2479 */
gfar_reset_task(struct work_struct * work)2480 static void gfar_reset_task(struct work_struct *work)
2481 {
2482 struct gfar_private *priv = container_of(work, struct gfar_private,
2483 reset_task);
2484 reset_gfar(priv->ndev);
2485 }
2486
gfar_timeout(struct net_device * dev)2487 static void gfar_timeout(struct net_device *dev)
2488 {
2489 struct gfar_private *priv = netdev_priv(dev);
2490
2491 dev->stats.tx_errors++;
2492 schedule_work(&priv->reset_task);
2493 }
2494
gfar_align_skb(struct sk_buff * skb)2495 static void gfar_align_skb(struct sk_buff *skb)
2496 {
2497 /* We need the data buffer to be aligned properly. We will reserve
2498 * as many bytes as needed to align the data properly
2499 */
2500 skb_reserve(skb, RXBUF_ALIGNMENT -
2501 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2502 }
2503
2504 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2505 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2506 {
2507 struct net_device *dev = tx_queue->dev;
2508 struct netdev_queue *txq;
2509 struct gfar_private *priv = netdev_priv(dev);
2510 struct txbd8 *bdp, *next = NULL;
2511 struct txbd8 *lbdp = NULL;
2512 struct txbd8 *base = tx_queue->tx_bd_base;
2513 struct sk_buff *skb;
2514 int skb_dirtytx;
2515 int tx_ring_size = tx_queue->tx_ring_size;
2516 int frags = 0, nr_txbds = 0;
2517 int i;
2518 int howmany = 0;
2519 int tqi = tx_queue->qindex;
2520 unsigned int bytes_sent = 0;
2521 u32 lstatus;
2522 size_t buflen;
2523
2524 txq = netdev_get_tx_queue(dev, tqi);
2525 bdp = tx_queue->dirty_tx;
2526 skb_dirtytx = tx_queue->skb_dirtytx;
2527
2528 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2529 unsigned long flags;
2530
2531 frags = skb_shinfo(skb)->nr_frags;
2532
2533 /* When time stamping, one additional TxBD must be freed.
2534 * Also, we need to dma_unmap_single() the TxPAL.
2535 */
2536 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2537 nr_txbds = frags + 2;
2538 else
2539 nr_txbds = frags + 1;
2540
2541 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2542
2543 lstatus = lbdp->lstatus;
2544
2545 /* Only clean completed frames */
2546 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2547 (lstatus & BD_LENGTH_MASK))
2548 break;
2549
2550 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2551 next = next_txbd(bdp, base, tx_ring_size);
2552 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2553 } else
2554 buflen = bdp->length;
2555
2556 dma_unmap_single(priv->dev, bdp->bufPtr,
2557 buflen, DMA_TO_DEVICE);
2558
2559 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2560 struct skb_shared_hwtstamps shhwtstamps;
2561 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2562
2563 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2564 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2565 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2566 skb_tstamp_tx(skb, &shhwtstamps);
2567 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2568 bdp = next;
2569 }
2570
2571 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2572 bdp = next_txbd(bdp, base, tx_ring_size);
2573
2574 for (i = 0; i < frags; i++) {
2575 dma_unmap_page(priv->dev, bdp->bufPtr,
2576 bdp->length, DMA_TO_DEVICE);
2577 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2578 bdp = next_txbd(bdp, base, tx_ring_size);
2579 }
2580
2581 bytes_sent += GFAR_CB(skb)->bytes_sent;
2582
2583 dev_kfree_skb_any(skb);
2584
2585 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2586
2587 skb_dirtytx = (skb_dirtytx + 1) &
2588 TX_RING_MOD_MASK(tx_ring_size);
2589
2590 howmany++;
2591 spin_lock_irqsave(&tx_queue->txlock, flags);
2592 tx_queue->num_txbdfree += nr_txbds;
2593 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2594 }
2595
2596 /* If we freed a buffer, we can restart transmission, if necessary */
2597 if (tx_queue->num_txbdfree &&
2598 netif_tx_queue_stopped(txq) &&
2599 !(test_bit(GFAR_DOWN, &priv->state)))
2600 netif_wake_subqueue(priv->ndev, tqi);
2601
2602 /* Update dirty indicators */
2603 tx_queue->skb_dirtytx = skb_dirtytx;
2604 tx_queue->dirty_tx = bdp;
2605
2606 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2607 }
2608
gfar_new_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,struct sk_buff * skb)2609 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2610 struct sk_buff *skb)
2611 {
2612 struct net_device *dev = rx_queue->dev;
2613 struct gfar_private *priv = netdev_priv(dev);
2614 dma_addr_t buf;
2615
2616 buf = dma_map_single(priv->dev, skb->data,
2617 priv->rx_buffer_size, DMA_FROM_DEVICE);
2618 gfar_init_rxbdp(rx_queue, bdp, buf);
2619 }
2620
gfar_alloc_skb(struct net_device * dev)2621 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2622 {
2623 struct gfar_private *priv = netdev_priv(dev);
2624 struct sk_buff *skb;
2625
2626 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2627 if (!skb)
2628 return NULL;
2629
2630 gfar_align_skb(skb);
2631
2632 return skb;
2633 }
2634
gfar_new_skb(struct net_device * dev)2635 struct sk_buff *gfar_new_skb(struct net_device *dev)
2636 {
2637 return gfar_alloc_skb(dev);
2638 }
2639
count_errors(unsigned short status,struct net_device * dev)2640 static inline void count_errors(unsigned short status, struct net_device *dev)
2641 {
2642 struct gfar_private *priv = netdev_priv(dev);
2643 struct net_device_stats *stats = &dev->stats;
2644 struct gfar_extra_stats *estats = &priv->extra_stats;
2645
2646 /* If the packet was truncated, none of the other errors matter */
2647 if (status & RXBD_TRUNCATED) {
2648 stats->rx_length_errors++;
2649
2650 atomic64_inc(&estats->rx_trunc);
2651
2652 return;
2653 }
2654 /* Count the errors, if there were any */
2655 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2656 stats->rx_length_errors++;
2657
2658 if (status & RXBD_LARGE)
2659 atomic64_inc(&estats->rx_large);
2660 else
2661 atomic64_inc(&estats->rx_short);
2662 }
2663 if (status & RXBD_NONOCTET) {
2664 stats->rx_frame_errors++;
2665 atomic64_inc(&estats->rx_nonoctet);
2666 }
2667 if (status & RXBD_CRCERR) {
2668 atomic64_inc(&estats->rx_crcerr);
2669 stats->rx_crc_errors++;
2670 }
2671 if (status & RXBD_OVERRUN) {
2672 atomic64_inc(&estats->rx_overrun);
2673 stats->rx_crc_errors++;
2674 }
2675 }
2676
gfar_receive(int irq,void * grp_id)2677 irqreturn_t gfar_receive(int irq, void *grp_id)
2678 {
2679 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2680 unsigned long flags;
2681 u32 imask;
2682
2683 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2684 spin_lock_irqsave(&grp->grplock, flags);
2685 imask = gfar_read(&grp->regs->imask);
2686 imask &= IMASK_RX_DISABLED;
2687 gfar_write(&grp->regs->imask, imask);
2688 spin_unlock_irqrestore(&grp->grplock, flags);
2689 __napi_schedule(&grp->napi_rx);
2690 } else {
2691 /* Clear IEVENT, so interrupts aren't called again
2692 * because of the packets that have already arrived.
2693 */
2694 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2695 }
2696
2697 return IRQ_HANDLED;
2698 }
2699
2700 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2701 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2702 {
2703 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2704 unsigned long flags;
2705 u32 imask;
2706
2707 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2708 spin_lock_irqsave(&grp->grplock, flags);
2709 imask = gfar_read(&grp->regs->imask);
2710 imask &= IMASK_TX_DISABLED;
2711 gfar_write(&grp->regs->imask, imask);
2712 spin_unlock_irqrestore(&grp->grplock, flags);
2713 __napi_schedule(&grp->napi_tx);
2714 } else {
2715 /* Clear IEVENT, so interrupts aren't called again
2716 * because of the packets that have already arrived.
2717 */
2718 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2719 }
2720
2721 return IRQ_HANDLED;
2722 }
2723
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2724 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2725 {
2726 /* If valid headers were found, and valid sums
2727 * were verified, then we tell the kernel that no
2728 * checksumming is necessary. Otherwise, it is [FIXME]
2729 */
2730 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2731 skb->ip_summed = CHECKSUM_UNNECESSARY;
2732 else
2733 skb_checksum_none_assert(skb);
2734 }
2735
2736
2737 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * dev,struct sk_buff * skb,int amount_pull,struct napi_struct * napi)2738 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2739 int amount_pull, struct napi_struct *napi)
2740 {
2741 struct gfar_private *priv = netdev_priv(dev);
2742 struct rxfcb *fcb = NULL;
2743
2744 /* fcb is at the beginning if exists */
2745 fcb = (struct rxfcb *)skb->data;
2746
2747 /* Remove the FCB from the skb
2748 * Remove the padded bytes, if there are any
2749 */
2750 if (amount_pull) {
2751 skb_record_rx_queue(skb, fcb->rq);
2752 skb_pull(skb, amount_pull);
2753 }
2754
2755 /* Get receive timestamp from the skb */
2756 if (priv->hwts_rx_en) {
2757 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2758 u64 *ns = (u64 *) skb->data;
2759
2760 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2761 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2762 }
2763
2764 if (priv->padding)
2765 skb_pull(skb, priv->padding);
2766
2767 if (dev->features & NETIF_F_RXCSUM)
2768 gfar_rx_checksum(skb, fcb);
2769
2770 /* Tell the skb what kind of packet this is */
2771 skb->protocol = eth_type_trans(skb, dev);
2772
2773 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2774 * Even if vlan rx accel is disabled, on some chips
2775 * RXFCB_VLN is pseudo randomly set.
2776 */
2777 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2778 fcb->flags & RXFCB_VLN)
2779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2780
2781 /* Send the packet up the stack */
2782 napi_gro_receive(napi, skb);
2783
2784 }
2785
2786 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2787 * until the budget/quota has been reached. Returns the number
2788 * of frames handled
2789 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2790 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2791 {
2792 struct net_device *dev = rx_queue->dev;
2793 struct rxbd8 *bdp, *base;
2794 struct sk_buff *skb;
2795 int pkt_len;
2796 int amount_pull;
2797 int howmany = 0;
2798 struct gfar_private *priv = netdev_priv(dev);
2799
2800 /* Get the first full descriptor */
2801 bdp = rx_queue->cur_rx;
2802 base = rx_queue->rx_bd_base;
2803
2804 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2805
2806 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2807 struct sk_buff *newskb;
2808
2809 rmb();
2810
2811 /* Add another skb for the future */
2812 newskb = gfar_new_skb(dev);
2813
2814 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2815
2816 dma_unmap_single(priv->dev, bdp->bufPtr,
2817 priv->rx_buffer_size, DMA_FROM_DEVICE);
2818
2819 if (unlikely(!(bdp->status & RXBD_ERR) &&
2820 bdp->length > priv->rx_buffer_size))
2821 bdp->status = RXBD_LARGE;
2822
2823 /* We drop the frame if we failed to allocate a new buffer */
2824 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2825 bdp->status & RXBD_ERR)) {
2826 count_errors(bdp->status, dev);
2827
2828 if (unlikely(!newskb))
2829 newskb = skb;
2830 else if (skb)
2831 dev_kfree_skb(skb);
2832 } else {
2833 /* Increment the number of packets */
2834 rx_queue->stats.rx_packets++;
2835 howmany++;
2836
2837 if (likely(skb)) {
2838 pkt_len = bdp->length - ETH_FCS_LEN;
2839 /* Remove the FCS from the packet length */
2840 skb_put(skb, pkt_len);
2841 rx_queue->stats.rx_bytes += pkt_len;
2842 skb_record_rx_queue(skb, rx_queue->qindex);
2843 gfar_process_frame(dev, skb, amount_pull,
2844 &rx_queue->grp->napi_rx);
2845
2846 } else {
2847 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2848 rx_queue->stats.rx_dropped++;
2849 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2850 }
2851
2852 }
2853
2854 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2855
2856 /* Setup the new bdp */
2857 gfar_new_rxbdp(rx_queue, bdp, newskb);
2858
2859 /* Update to the next pointer */
2860 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2861
2862 /* update to point at the next skb */
2863 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2864 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2865 }
2866
2867 /* Update the current rxbd pointer to be the next one */
2868 rx_queue->cur_rx = bdp;
2869
2870 return howmany;
2871 }
2872
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2873 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2874 {
2875 struct gfar_priv_grp *gfargrp =
2876 container_of(napi, struct gfar_priv_grp, napi_rx);
2877 struct gfar __iomem *regs = gfargrp->regs;
2878 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2879 int work_done = 0;
2880
2881 /* Clear IEVENT, so interrupts aren't called again
2882 * because of the packets that have already arrived
2883 */
2884 gfar_write(®s->ievent, IEVENT_RX_MASK);
2885
2886 work_done = gfar_clean_rx_ring(rx_queue, budget);
2887
2888 if (work_done < budget) {
2889 u32 imask;
2890 napi_complete(napi);
2891 /* Clear the halt bit in RSTAT */
2892 gfar_write(®s->rstat, gfargrp->rstat);
2893
2894 spin_lock_irq(&gfargrp->grplock);
2895 imask = gfar_read(®s->imask);
2896 imask |= IMASK_RX_DEFAULT;
2897 gfar_write(®s->imask, imask);
2898 spin_unlock_irq(&gfargrp->grplock);
2899 }
2900
2901 return work_done;
2902 }
2903
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2904 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2905 {
2906 struct gfar_priv_grp *gfargrp =
2907 container_of(napi, struct gfar_priv_grp, napi_tx);
2908 struct gfar __iomem *regs = gfargrp->regs;
2909 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2910 u32 imask;
2911
2912 /* Clear IEVENT, so interrupts aren't called again
2913 * because of the packets that have already arrived
2914 */
2915 gfar_write(®s->ievent, IEVENT_TX_MASK);
2916
2917 /* run Tx cleanup to completion */
2918 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2919 gfar_clean_tx_ring(tx_queue);
2920
2921 napi_complete(napi);
2922
2923 spin_lock_irq(&gfargrp->grplock);
2924 imask = gfar_read(®s->imask);
2925 imask |= IMASK_TX_DEFAULT;
2926 gfar_write(®s->imask, imask);
2927 spin_unlock_irq(&gfargrp->grplock);
2928
2929 return 0;
2930 }
2931
gfar_poll_rx(struct napi_struct * napi,int budget)2932 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2933 {
2934 struct gfar_priv_grp *gfargrp =
2935 container_of(napi, struct gfar_priv_grp, napi_rx);
2936 struct gfar_private *priv = gfargrp->priv;
2937 struct gfar __iomem *regs = gfargrp->regs;
2938 struct gfar_priv_rx_q *rx_queue = NULL;
2939 int work_done = 0, work_done_per_q = 0;
2940 int i, budget_per_q = 0;
2941 unsigned long rstat_rxf;
2942 int num_act_queues;
2943
2944 /* Clear IEVENT, so interrupts aren't called again
2945 * because of the packets that have already arrived
2946 */
2947 gfar_write(®s->ievent, IEVENT_RX_MASK);
2948
2949 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK;
2950
2951 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2952 if (num_act_queues)
2953 budget_per_q = budget/num_act_queues;
2954
2955 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2956 /* skip queue if not active */
2957 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2958 continue;
2959
2960 rx_queue = priv->rx_queue[i];
2961 work_done_per_q =
2962 gfar_clean_rx_ring(rx_queue, budget_per_q);
2963 work_done += work_done_per_q;
2964
2965 /* finished processing this queue */
2966 if (work_done_per_q < budget_per_q) {
2967 /* clear active queue hw indication */
2968 gfar_write(®s->rstat,
2969 RSTAT_CLEAR_RXF0 >> i);
2970 num_act_queues--;
2971
2972 if (!num_act_queues)
2973 break;
2974 }
2975 }
2976
2977 if (!num_act_queues) {
2978 u32 imask;
2979 napi_complete(napi);
2980
2981 /* Clear the halt bit in RSTAT */
2982 gfar_write(®s->rstat, gfargrp->rstat);
2983
2984 spin_lock_irq(&gfargrp->grplock);
2985 imask = gfar_read(®s->imask);
2986 imask |= IMASK_RX_DEFAULT;
2987 gfar_write(®s->imask, imask);
2988 spin_unlock_irq(&gfargrp->grplock);
2989 }
2990
2991 return work_done;
2992 }
2993
gfar_poll_tx(struct napi_struct * napi,int budget)2994 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2995 {
2996 struct gfar_priv_grp *gfargrp =
2997 container_of(napi, struct gfar_priv_grp, napi_tx);
2998 struct gfar_private *priv = gfargrp->priv;
2999 struct gfar __iomem *regs = gfargrp->regs;
3000 struct gfar_priv_tx_q *tx_queue = NULL;
3001 int has_tx_work = 0;
3002 int i;
3003
3004 /* Clear IEVENT, so interrupts aren't called again
3005 * because of the packets that have already arrived
3006 */
3007 gfar_write(®s->ievent, IEVENT_TX_MASK);
3008
3009 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3010 tx_queue = priv->tx_queue[i];
3011 /* run Tx cleanup to completion */
3012 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3013 gfar_clean_tx_ring(tx_queue);
3014 has_tx_work = 1;
3015 }
3016 }
3017
3018 if (!has_tx_work) {
3019 u32 imask;
3020 napi_complete(napi);
3021
3022 spin_lock_irq(&gfargrp->grplock);
3023 imask = gfar_read(®s->imask);
3024 imask |= IMASK_TX_DEFAULT;
3025 gfar_write(®s->imask, imask);
3026 spin_unlock_irq(&gfargrp->grplock);
3027 }
3028
3029 return 0;
3030 }
3031
3032
3033 #ifdef CONFIG_NET_POLL_CONTROLLER
3034 /* Polling 'interrupt' - used by things like netconsole to send skbs
3035 * without having to re-enable interrupts. It's not called while
3036 * the interrupt routine is executing.
3037 */
gfar_netpoll(struct net_device * dev)3038 static void gfar_netpoll(struct net_device *dev)
3039 {
3040 struct gfar_private *priv = netdev_priv(dev);
3041 int i;
3042
3043 /* If the device has multiple interrupts, run tx/rx */
3044 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3045 for (i = 0; i < priv->num_grps; i++) {
3046 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3047
3048 disable_irq(gfar_irq(grp, TX)->irq);
3049 disable_irq(gfar_irq(grp, RX)->irq);
3050 disable_irq(gfar_irq(grp, ER)->irq);
3051 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3052 enable_irq(gfar_irq(grp, ER)->irq);
3053 enable_irq(gfar_irq(grp, RX)->irq);
3054 enable_irq(gfar_irq(grp, TX)->irq);
3055 }
3056 } else {
3057 for (i = 0; i < priv->num_grps; i++) {
3058 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3059
3060 disable_irq(gfar_irq(grp, TX)->irq);
3061 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3062 enable_irq(gfar_irq(grp, TX)->irq);
3063 }
3064 }
3065 }
3066 #endif
3067
3068 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)3069 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3070 {
3071 struct gfar_priv_grp *gfargrp = grp_id;
3072
3073 /* Save ievent for future reference */
3074 u32 events = gfar_read(&gfargrp->regs->ievent);
3075
3076 /* Check for reception */
3077 if (events & IEVENT_RX_MASK)
3078 gfar_receive(irq, grp_id);
3079
3080 /* Check for transmit completion */
3081 if (events & IEVENT_TX_MASK)
3082 gfar_transmit(irq, grp_id);
3083
3084 /* Check for errors */
3085 if (events & IEVENT_ERR_MASK)
3086 gfar_error(irq, grp_id);
3087
3088 return IRQ_HANDLED;
3089 }
3090
3091 /* Called every time the controller might need to be made
3092 * aware of new link state. The PHY code conveys this
3093 * information through variables in the phydev structure, and this
3094 * function converts those variables into the appropriate
3095 * register values, and can bring down the device if needed.
3096 */
adjust_link(struct net_device * dev)3097 static void adjust_link(struct net_device *dev)
3098 {
3099 struct gfar_private *priv = netdev_priv(dev);
3100 struct phy_device *phydev = priv->phydev;
3101
3102 if (unlikely(phydev->link != priv->oldlink ||
3103 phydev->duplex != priv->oldduplex ||
3104 phydev->speed != priv->oldspeed))
3105 gfar_update_link_state(priv);
3106 }
3107
3108 /* Update the hash table based on the current list of multicast
3109 * addresses we subscribe to. Also, change the promiscuity of
3110 * the device based on the flags (this function is called
3111 * whenever dev->flags is changed
3112 */
gfar_set_multi(struct net_device * dev)3113 static void gfar_set_multi(struct net_device *dev)
3114 {
3115 struct netdev_hw_addr *ha;
3116 struct gfar_private *priv = netdev_priv(dev);
3117 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3118 u32 tempval;
3119
3120 if (dev->flags & IFF_PROMISC) {
3121 /* Set RCTRL to PROM */
3122 tempval = gfar_read(®s->rctrl);
3123 tempval |= RCTRL_PROM;
3124 gfar_write(®s->rctrl, tempval);
3125 } else {
3126 /* Set RCTRL to not PROM */
3127 tempval = gfar_read(®s->rctrl);
3128 tempval &= ~(RCTRL_PROM);
3129 gfar_write(®s->rctrl, tempval);
3130 }
3131
3132 if (dev->flags & IFF_ALLMULTI) {
3133 /* Set the hash to rx all multicast frames */
3134 gfar_write(®s->igaddr0, 0xffffffff);
3135 gfar_write(®s->igaddr1, 0xffffffff);
3136 gfar_write(®s->igaddr2, 0xffffffff);
3137 gfar_write(®s->igaddr3, 0xffffffff);
3138 gfar_write(®s->igaddr4, 0xffffffff);
3139 gfar_write(®s->igaddr5, 0xffffffff);
3140 gfar_write(®s->igaddr6, 0xffffffff);
3141 gfar_write(®s->igaddr7, 0xffffffff);
3142 gfar_write(®s->gaddr0, 0xffffffff);
3143 gfar_write(®s->gaddr1, 0xffffffff);
3144 gfar_write(®s->gaddr2, 0xffffffff);
3145 gfar_write(®s->gaddr3, 0xffffffff);
3146 gfar_write(®s->gaddr4, 0xffffffff);
3147 gfar_write(®s->gaddr5, 0xffffffff);
3148 gfar_write(®s->gaddr6, 0xffffffff);
3149 gfar_write(®s->gaddr7, 0xffffffff);
3150 } else {
3151 int em_num;
3152 int idx;
3153
3154 /* zero out the hash */
3155 gfar_write(®s->igaddr0, 0x0);
3156 gfar_write(®s->igaddr1, 0x0);
3157 gfar_write(®s->igaddr2, 0x0);
3158 gfar_write(®s->igaddr3, 0x0);
3159 gfar_write(®s->igaddr4, 0x0);
3160 gfar_write(®s->igaddr5, 0x0);
3161 gfar_write(®s->igaddr6, 0x0);
3162 gfar_write(®s->igaddr7, 0x0);
3163 gfar_write(®s->gaddr0, 0x0);
3164 gfar_write(®s->gaddr1, 0x0);
3165 gfar_write(®s->gaddr2, 0x0);
3166 gfar_write(®s->gaddr3, 0x0);
3167 gfar_write(®s->gaddr4, 0x0);
3168 gfar_write(®s->gaddr5, 0x0);
3169 gfar_write(®s->gaddr6, 0x0);
3170 gfar_write(®s->gaddr7, 0x0);
3171
3172 /* If we have extended hash tables, we need to
3173 * clear the exact match registers to prepare for
3174 * setting them
3175 */
3176 if (priv->extended_hash) {
3177 em_num = GFAR_EM_NUM + 1;
3178 gfar_clear_exact_match(dev);
3179 idx = 1;
3180 } else {
3181 idx = 0;
3182 em_num = 0;
3183 }
3184
3185 if (netdev_mc_empty(dev))
3186 return;
3187
3188 /* Parse the list, and set the appropriate bits */
3189 netdev_for_each_mc_addr(ha, dev) {
3190 if (idx < em_num) {
3191 gfar_set_mac_for_addr(dev, idx, ha->addr);
3192 idx++;
3193 } else
3194 gfar_set_hash_for_addr(dev, ha->addr);
3195 }
3196 }
3197 }
3198
3199
3200 /* Clears each of the exact match registers to zero, so they
3201 * don't interfere with normal reception
3202 */
gfar_clear_exact_match(struct net_device * dev)3203 static void gfar_clear_exact_match(struct net_device *dev)
3204 {
3205 int idx;
3206 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3207
3208 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3209 gfar_set_mac_for_addr(dev, idx, zero_arr);
3210 }
3211
3212 /* Set the appropriate hash bit for the given addr */
3213 /* The algorithm works like so:
3214 * 1) Take the Destination Address (ie the multicast address), and
3215 * do a CRC on it (little endian), and reverse the bits of the
3216 * result.
3217 * 2) Use the 8 most significant bits as a hash into a 256-entry
3218 * table. The table is controlled through 8 32-bit registers:
3219 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3220 * gaddr7. This means that the 3 most significant bits in the
3221 * hash index which gaddr register to use, and the 5 other bits
3222 * indicate which bit (assuming an IBM numbering scheme, which
3223 * for PowerPC (tm) is usually the case) in the register holds
3224 * the entry.
3225 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)3226 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3227 {
3228 u32 tempval;
3229 struct gfar_private *priv = netdev_priv(dev);
3230 u32 result = ether_crc(ETH_ALEN, addr);
3231 int width = priv->hash_width;
3232 u8 whichbit = (result >> (32 - width)) & 0x1f;
3233 u8 whichreg = result >> (32 - width + 5);
3234 u32 value = (1 << (31-whichbit));
3235
3236 tempval = gfar_read(priv->hash_regs[whichreg]);
3237 tempval |= value;
3238 gfar_write(priv->hash_regs[whichreg], tempval);
3239 }
3240
3241
3242 /* There are multiple MAC Address register pairs on some controllers
3243 * This function sets the numth pair to a given address
3244 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)3245 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3246 const u8 *addr)
3247 {
3248 struct gfar_private *priv = netdev_priv(dev);
3249 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3250 u32 tempval;
3251 u32 __iomem *macptr = ®s->macstnaddr1;
3252
3253 macptr += num*2;
3254
3255 /* For a station address of 0x12345678ABCD in transmission
3256 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3257 * MACnADDR2 is set to 0x34120000.
3258 */
3259 tempval = (addr[5] << 24) | (addr[4] << 16) |
3260 (addr[3] << 8) | addr[2];
3261
3262 gfar_write(macptr, tempval);
3263
3264 tempval = (addr[1] << 24) | (addr[0] << 16);
3265
3266 gfar_write(macptr+1, tempval);
3267 }
3268
3269 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)3270 static irqreturn_t gfar_error(int irq, void *grp_id)
3271 {
3272 struct gfar_priv_grp *gfargrp = grp_id;
3273 struct gfar __iomem *regs = gfargrp->regs;
3274 struct gfar_private *priv= gfargrp->priv;
3275 struct net_device *dev = priv->ndev;
3276
3277 /* Save ievent for future reference */
3278 u32 events = gfar_read(®s->ievent);
3279
3280 /* Clear IEVENT */
3281 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
3282
3283 /* Magic Packet is not an error. */
3284 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3285 (events & IEVENT_MAG))
3286 events &= ~IEVENT_MAG;
3287
3288 /* Hmm... */
3289 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3290 netdev_dbg(dev,
3291 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3292 events, gfar_read(®s->imask));
3293
3294 /* Update the error counters */
3295 if (events & IEVENT_TXE) {
3296 dev->stats.tx_errors++;
3297
3298 if (events & IEVENT_LC)
3299 dev->stats.tx_window_errors++;
3300 if (events & IEVENT_CRL)
3301 dev->stats.tx_aborted_errors++;
3302 if (events & IEVENT_XFUN) {
3303 unsigned long flags;
3304
3305 netif_dbg(priv, tx_err, dev,
3306 "TX FIFO underrun, packet dropped\n");
3307 dev->stats.tx_dropped++;
3308 atomic64_inc(&priv->extra_stats.tx_underrun);
3309
3310 local_irq_save(flags);
3311 lock_tx_qs(priv);
3312
3313 /* Reactivate the Tx Queues */
3314 gfar_write(®s->tstat, gfargrp->tstat);
3315
3316 unlock_tx_qs(priv);
3317 local_irq_restore(flags);
3318 }
3319 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3320 }
3321 if (events & IEVENT_BSY) {
3322 dev->stats.rx_errors++;
3323 atomic64_inc(&priv->extra_stats.rx_bsy);
3324
3325 gfar_receive(irq, grp_id);
3326
3327 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3328 gfar_read(®s->rstat));
3329 }
3330 if (events & IEVENT_BABR) {
3331 dev->stats.rx_errors++;
3332 atomic64_inc(&priv->extra_stats.rx_babr);
3333
3334 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3335 }
3336 if (events & IEVENT_EBERR) {
3337 atomic64_inc(&priv->extra_stats.eberr);
3338 netif_dbg(priv, rx_err, dev, "bus error\n");
3339 }
3340 if (events & IEVENT_RXC)
3341 netif_dbg(priv, rx_status, dev, "control frame\n");
3342
3343 if (events & IEVENT_BABT) {
3344 atomic64_inc(&priv->extra_stats.tx_babt);
3345 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3346 }
3347 return IRQ_HANDLED;
3348 }
3349
gfar_get_flowctrl_cfg(struct gfar_private * priv)3350 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3351 {
3352 struct phy_device *phydev = priv->phydev;
3353 u32 val = 0;
3354
3355 if (!phydev->duplex)
3356 return val;
3357
3358 if (!priv->pause_aneg_en) {
3359 if (priv->tx_pause_en)
3360 val |= MACCFG1_TX_FLOW;
3361 if (priv->rx_pause_en)
3362 val |= MACCFG1_RX_FLOW;
3363 } else {
3364 u16 lcl_adv, rmt_adv;
3365 u8 flowctrl;
3366 /* get link partner capabilities */
3367 rmt_adv = 0;
3368 if (phydev->pause)
3369 rmt_adv = LPA_PAUSE_CAP;
3370 if (phydev->asym_pause)
3371 rmt_adv |= LPA_PAUSE_ASYM;
3372
3373 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3374
3375 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3376 if (flowctrl & FLOW_CTRL_TX)
3377 val |= MACCFG1_TX_FLOW;
3378 if (flowctrl & FLOW_CTRL_RX)
3379 val |= MACCFG1_RX_FLOW;
3380 }
3381
3382 return val;
3383 }
3384
gfar_update_link_state(struct gfar_private * priv)3385 static noinline void gfar_update_link_state(struct gfar_private *priv)
3386 {
3387 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3388 struct phy_device *phydev = priv->phydev;
3389
3390 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3391 return;
3392
3393 if (phydev->link) {
3394 u32 tempval1 = gfar_read(®s->maccfg1);
3395 u32 tempval = gfar_read(®s->maccfg2);
3396 u32 ecntrl = gfar_read(®s->ecntrl);
3397
3398 if (phydev->duplex != priv->oldduplex) {
3399 if (!(phydev->duplex))
3400 tempval &= ~(MACCFG2_FULL_DUPLEX);
3401 else
3402 tempval |= MACCFG2_FULL_DUPLEX;
3403
3404 priv->oldduplex = phydev->duplex;
3405 }
3406
3407 if (phydev->speed != priv->oldspeed) {
3408 switch (phydev->speed) {
3409 case 1000:
3410 tempval =
3411 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3412
3413 ecntrl &= ~(ECNTRL_R100);
3414 break;
3415 case 100:
3416 case 10:
3417 tempval =
3418 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3419
3420 /* Reduced mode distinguishes
3421 * between 10 and 100
3422 */
3423 if (phydev->speed == SPEED_100)
3424 ecntrl |= ECNTRL_R100;
3425 else
3426 ecntrl &= ~(ECNTRL_R100);
3427 break;
3428 default:
3429 netif_warn(priv, link, priv->ndev,
3430 "Ack! Speed (%d) is not 10/100/1000!\n",
3431 phydev->speed);
3432 break;
3433 }
3434
3435 priv->oldspeed = phydev->speed;
3436 }
3437
3438 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3439 tempval1 |= gfar_get_flowctrl_cfg(priv);
3440
3441 gfar_write(®s->maccfg1, tempval1);
3442 gfar_write(®s->maccfg2, tempval);
3443 gfar_write(®s->ecntrl, ecntrl);
3444
3445 if (!priv->oldlink)
3446 priv->oldlink = 1;
3447
3448 } else if (priv->oldlink) {
3449 priv->oldlink = 0;
3450 priv->oldspeed = 0;
3451 priv->oldduplex = -1;
3452 }
3453
3454 if (netif_msg_link(priv))
3455 phy_print_status(phydev);
3456 }
3457
3458 static struct of_device_id gfar_match[] =
3459 {
3460 {
3461 .type = "network",
3462 .compatible = "gianfar",
3463 },
3464 {
3465 .compatible = "fsl,etsec2",
3466 },
3467 {},
3468 };
3469 MODULE_DEVICE_TABLE(of, gfar_match);
3470
3471 /* Structure for a device driver */
3472 static struct platform_driver gfar_driver = {
3473 .driver = {
3474 .name = "fsl-gianfar",
3475 .owner = THIS_MODULE,
3476 .pm = GFAR_PM_OPS,
3477 .of_match_table = gfar_match,
3478 },
3479 .probe = gfar_probe,
3480 .remove = gfar_remove,
3481 };
3482
3483 module_platform_driver(gfar_driver);
3484