• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
149 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
150 
__er16flash(struct e1000_hw * hw,unsigned long reg)151 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
152 {
153 	return readw(hw->flash_address + reg);
154 }
155 
__er32flash(struct e1000_hw * hw,unsigned long reg)156 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
157 {
158 	return readl(hw->flash_address + reg);
159 }
160 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)161 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
162 {
163 	writew(val, hw->flash_address + reg);
164 }
165 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)166 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
167 {
168 	writel(val, hw->flash_address + reg);
169 }
170 
171 #define er16flash(reg)		__er16flash(hw, (reg))
172 #define er32flash(reg)		__er32flash(hw, (reg))
173 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
174 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
175 
176 /**
177  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
178  *  @hw: pointer to the HW structure
179  *
180  *  Test access to the PHY registers by reading the PHY ID registers.  If
181  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
182  *  otherwise assume the read PHY ID is correct if it is valid.
183  *
184  *  Assumes the sw/fw/hw semaphore is already acquired.
185  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)186 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
187 {
188 	u16 phy_reg = 0;
189 	u32 phy_id = 0;
190 	s32 ret_val = 0;
191 	u16 retry_count;
192 	u32 mac_reg = 0;
193 
194 	for (retry_count = 0; retry_count < 2; retry_count++) {
195 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
196 		if (ret_val || (phy_reg == 0xFFFF))
197 			continue;
198 		phy_id = (u32)(phy_reg << 16);
199 
200 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
201 		if (ret_val || (phy_reg == 0xFFFF)) {
202 			phy_id = 0;
203 			continue;
204 		}
205 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
206 		break;
207 	}
208 
209 	if (hw->phy.id) {
210 		if (hw->phy.id == phy_id)
211 			goto out;
212 	} else if (phy_id) {
213 		hw->phy.id = phy_id;
214 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
215 		goto out;
216 	}
217 
218 	/* In case the PHY needs to be in mdio slow mode,
219 	 * set slow mode and try to get the PHY id again.
220 	 */
221 	if (hw->mac.type < e1000_pch_lpt) {
222 		hw->phy.ops.release(hw);
223 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
224 		if (!ret_val)
225 			ret_val = e1000e_get_phy_id(hw);
226 		hw->phy.ops.acquire(hw);
227 	}
228 
229 	if (ret_val)
230 		return false;
231 out:
232 	if (hw->mac.type == e1000_pch_lpt) {
233 		/* Unforce SMBus mode in PHY */
234 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
235 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
236 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
237 
238 		/* Unforce SMBus mode in MAC */
239 		mac_reg = er32(CTRL_EXT);
240 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
241 		ew32(CTRL_EXT, mac_reg);
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 10000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	e1000_disable_ulp_lpt_lp(hw, true);
311 
312 	ret_val = hw->phy.ops.acquire(hw);
313 	if (ret_val) {
314 		e_dbg("Failed to initialize PHY flow\n");
315 		goto out;
316 	}
317 
318 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
319 	 * inaccessible and resetting the PHY is not blocked, toggle the
320 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
321 	 */
322 	switch (hw->mac.type) {
323 	case e1000_pch_lpt:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		/* fall-through */
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		/* fall-through */
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 20000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			/* fall-through */
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 			/* In case the PHY needs to be in mdio slow mode,
465 			 * set slow mode and try to get the PHY id again.
466 			 */
467 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
468 			if (ret_val)
469 				return ret_val;
470 			ret_val = e1000e_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			break;
474 		}
475 	phy->type = e1000e_get_phy_type_from_id(phy->id);
476 
477 	switch (phy->type) {
478 	case e1000_phy_82577:
479 	case e1000_phy_82579:
480 	case e1000_phy_i217:
481 		phy->ops.check_polarity = e1000_check_polarity_82577;
482 		phy->ops.force_speed_duplex =
483 		    e1000_phy_force_speed_duplex_82577;
484 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
485 		phy->ops.get_info = e1000_get_phy_info_82577;
486 		phy->ops.commit = e1000e_phy_sw_reset;
487 		break;
488 	case e1000_phy_82578:
489 		phy->ops.check_polarity = e1000_check_polarity_m88;
490 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
491 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
492 		phy->ops.get_info = e1000e_get_phy_info_m88;
493 		break;
494 	default:
495 		ret_val = -E1000_ERR_PHY;
496 		break;
497 	}
498 
499 	return ret_val;
500 }
501 
502 /**
503  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
504  *  @hw: pointer to the HW structure
505  *
506  *  Initialize family-specific PHY parameters and function pointers.
507  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)508 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
509 {
510 	struct e1000_phy_info *phy = &hw->phy;
511 	s32 ret_val;
512 	u16 i = 0;
513 
514 	phy->addr = 1;
515 	phy->reset_delay_us = 100;
516 
517 	phy->ops.power_up = e1000_power_up_phy_copper;
518 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
519 
520 	/* We may need to do this twice - once for IGP and if that fails,
521 	 * we'll set BM func pointers and try again
522 	 */
523 	ret_val = e1000e_determine_phy_address(hw);
524 	if (ret_val) {
525 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
526 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
527 		ret_val = e1000e_determine_phy_address(hw);
528 		if (ret_val) {
529 			e_dbg("Cannot determine PHY addr. Erroring out\n");
530 			return ret_val;
531 		}
532 	}
533 
534 	phy->id = 0;
535 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
536 	       (i++ < 100)) {
537 		usleep_range(1000, 2000);
538 		ret_val = e1000e_get_phy_id(hw);
539 		if (ret_val)
540 			return ret_val;
541 	}
542 
543 	/* Verify phy id */
544 	switch (phy->id) {
545 	case IGP03E1000_E_PHY_ID:
546 		phy->type = e1000_phy_igp_3;
547 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
548 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
549 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
550 		phy->ops.get_info = e1000e_get_phy_info_igp;
551 		phy->ops.check_polarity = e1000_check_polarity_igp;
552 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
553 		break;
554 	case IFE_E_PHY_ID:
555 	case IFE_PLUS_E_PHY_ID:
556 	case IFE_C_E_PHY_ID:
557 		phy->type = e1000_phy_ife;
558 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
559 		phy->ops.get_info = e1000_get_phy_info_ife;
560 		phy->ops.check_polarity = e1000_check_polarity_ife;
561 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
562 		break;
563 	case BME1000_E_PHY_ID:
564 		phy->type = e1000_phy_bm;
565 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
566 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
567 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
568 		phy->ops.commit = e1000e_phy_sw_reset;
569 		phy->ops.get_info = e1000e_get_phy_info_m88;
570 		phy->ops.check_polarity = e1000_check_polarity_m88;
571 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
572 		break;
573 	default:
574 		return -E1000_ERR_PHY;
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
582  *  @hw: pointer to the HW structure
583  *
584  *  Initialize family-specific NVM parameters and function
585  *  pointers.
586  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)587 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
588 {
589 	struct e1000_nvm_info *nvm = &hw->nvm;
590 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
591 	u32 gfpreg, sector_base_addr, sector_end_addr;
592 	u16 i;
593 
594 	/* Can't read flash registers if the register set isn't mapped. */
595 	if (!hw->flash_address) {
596 		e_dbg("ERROR: Flash registers not mapped\n");
597 		return -E1000_ERR_CONFIG;
598 	}
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	gfpreg = er32flash(ICH_FLASH_GFPREG);
603 
604 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
605 	 * Add 1 to sector_end_addr since this sector is included in
606 	 * the overall size.
607 	 */
608 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
609 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
610 
611 	/* flash_base_addr is byte-aligned */
612 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
613 
614 	/* find total size of the NVM, then cut in half since the total
615 	 * size represents two separate NVM banks.
616 	 */
617 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
618 				<< FLASH_SECTOR_ADDR_SHIFT);
619 	nvm->flash_bank_size /= 2;
620 	/* Adjust to word count */
621 	nvm->flash_bank_size /= sizeof(u16);
622 
623 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
624 
625 	/* Clear shadow ram */
626 	for (i = 0; i < nvm->word_size; i++) {
627 		dev_spec->shadow_ram[i].modified = false;
628 		dev_spec->shadow_ram[i].value = 0xFFFF;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
636  *  @hw: pointer to the HW structure
637  *
638  *  Initialize family-specific MAC parameters and function
639  *  pointers.
640  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)641 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
642 {
643 	struct e1000_mac_info *mac = &hw->mac;
644 
645 	/* Set media type function pointer */
646 	hw->phy.media_type = e1000_media_type_copper;
647 
648 	/* Set mta register count */
649 	mac->mta_reg_count = 32;
650 	/* Set rar entry count */
651 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
652 	if (mac->type == e1000_ich8lan)
653 		mac->rar_entry_count--;
654 	/* FWSM register */
655 	mac->has_fwsm = true;
656 	/* ARC subsystem not supported */
657 	mac->arc_subsystem_valid = false;
658 	/* Adaptive IFS supported */
659 	mac->adaptive_ifs = true;
660 
661 	/* LED and other operations */
662 	switch (mac->type) {
663 	case e1000_ich8lan:
664 	case e1000_ich9lan:
665 	case e1000_ich10lan:
666 		/* check management mode */
667 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
668 		/* ID LED init */
669 		mac->ops.id_led_init = e1000e_id_led_init_generic;
670 		/* blink LED */
671 		mac->ops.blink_led = e1000e_blink_led_generic;
672 		/* setup LED */
673 		mac->ops.setup_led = e1000e_setup_led_generic;
674 		/* cleanup LED */
675 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
676 		/* turn on/off LED */
677 		mac->ops.led_on = e1000_led_on_ich8lan;
678 		mac->ops.led_off = e1000_led_off_ich8lan;
679 		break;
680 	case e1000_pch2lan:
681 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
682 		mac->ops.rar_set = e1000_rar_set_pch2lan;
683 		/* fall-through */
684 	case e1000_pch_lpt:
685 	case e1000_pchlan:
686 		/* check management mode */
687 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
688 		/* ID LED init */
689 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
690 		/* setup LED */
691 		mac->ops.setup_led = e1000_setup_led_pchlan;
692 		/* cleanup LED */
693 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
694 		/* turn on/off LED */
695 		mac->ops.led_on = e1000_led_on_pchlan;
696 		mac->ops.led_off = e1000_led_off_pchlan;
697 		break;
698 	default:
699 		break;
700 	}
701 
702 	if (mac->type == e1000_pch_lpt) {
703 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
704 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
705 		mac->ops.setup_physical_interface =
706 		    e1000_setup_copper_link_pch_lpt;
707 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
708 	}
709 
710 	/* Enable PCS Lock-loss workaround for ICH8 */
711 	if (mac->type == e1000_ich8lan)
712 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
713 
714 	return 0;
715 }
716 
717 /**
718  *  __e1000_access_emi_reg_locked - Read/write EMI register
719  *  @hw: pointer to the HW structure
720  *  @addr: EMI address to program
721  *  @data: pointer to value to read/write from/to the EMI address
722  *  @read: boolean flag to indicate read or write
723  *
724  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
725  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)726 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
727 					 u16 *data, bool read)
728 {
729 	s32 ret_val;
730 
731 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
732 	if (ret_val)
733 		return ret_val;
734 
735 	if (read)
736 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
737 	else
738 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
739 
740 	return ret_val;
741 }
742 
743 /**
744  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
745  *  @hw: pointer to the HW structure
746  *  @addr: EMI address to program
747  *  @data: value to be read from the EMI address
748  *
749  *  Assumes the SW/FW/HW Semaphore is already acquired.
750  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)751 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
752 {
753 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
754 }
755 
756 /**
757  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
758  *  @hw: pointer to the HW structure
759  *  @addr: EMI address to program
760  *  @data: value to be written to the EMI address
761  *
762  *  Assumes the SW/FW/HW Semaphore is already acquired.
763  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)764 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
765 {
766 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
767 }
768 
769 /**
770  *  e1000_set_eee_pchlan - Enable/disable EEE support
771  *  @hw: pointer to the HW structure
772  *
773  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
774  *  the link and the EEE capabilities of the link partner.  The LPI Control
775  *  register bits will remain set only if/when link is up.
776  *
777  *  EEE LPI must not be asserted earlier than one second after link is up.
778  *  On 82579, EEE LPI should not be enabled until such time otherwise there
779  *  can be link issues with some switches.  Other devices can have EEE LPI
780  *  enabled immediately upon link up since they have a timer in hardware which
781  *  prevents LPI from being asserted too early.
782  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)783 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
784 {
785 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
786 	s32 ret_val;
787 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
788 
789 	switch (hw->phy.type) {
790 	case e1000_phy_82579:
791 		lpa = I82579_EEE_LP_ABILITY;
792 		pcs_status = I82579_EEE_PCS_STATUS;
793 		adv_addr = I82579_EEE_ADVERTISEMENT;
794 		break;
795 	case e1000_phy_i217:
796 		lpa = I217_EEE_LP_ABILITY;
797 		pcs_status = I217_EEE_PCS_STATUS;
798 		adv_addr = I217_EEE_ADVERTISEMENT;
799 		break;
800 	default:
801 		return 0;
802 	}
803 
804 	ret_val = hw->phy.ops.acquire(hw);
805 	if (ret_val)
806 		return ret_val;
807 
808 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
809 	if (ret_val)
810 		goto release;
811 
812 	/* Clear bits that enable EEE in various speeds */
813 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
814 
815 	/* Enable EEE if not disabled by user */
816 	if (!dev_spec->eee_disable) {
817 		/* Save off link partner's EEE ability */
818 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
819 						    &dev_spec->eee_lp_ability);
820 		if (ret_val)
821 			goto release;
822 
823 		/* Read EEE advertisement */
824 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
825 		if (ret_val)
826 			goto release;
827 
828 		/* Enable EEE only for speeds in which the link partner is
829 		 * EEE capable and for which we advertise EEE.
830 		 */
831 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
832 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
833 
834 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
835 			e1e_rphy_locked(hw, MII_LPA, &data);
836 			if (data & LPA_100FULL)
837 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
838 			else
839 				/* EEE is not supported in 100Half, so ignore
840 				 * partner's EEE in 100 ability if full-duplex
841 				 * is not advertised.
842 				 */
843 				dev_spec->eee_lp_ability &=
844 				    ~I82579_EEE_100_SUPPORTED;
845 		}
846 	}
847 
848 	if (hw->phy.type == e1000_phy_82579) {
849 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
850 						    &data);
851 		if (ret_val)
852 			goto release;
853 
854 		data &= ~I82579_LPI_100_PLL_SHUT;
855 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
856 						     data);
857 	}
858 
859 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
860 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
861 	if (ret_val)
862 		goto release;
863 
864 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
865 release:
866 	hw->phy.ops.release(hw);
867 
868 	return ret_val;
869 }
870 
871 /**
872  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
873  *  @hw:   pointer to the HW structure
874  *  @link: link up bool flag
875  *
876  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
877  *  preventing further DMA write requests.  Workaround the issue by disabling
878  *  the de-assertion of the clock request when in 1Gpbs mode.
879  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
880  *  speeds in order to avoid Tx hangs.
881  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)882 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
883 {
884 	u32 fextnvm6 = er32(FEXTNVM6);
885 	u32 status = er32(STATUS);
886 	s32 ret_val = 0;
887 	u16 reg;
888 
889 	if (link && (status & E1000_STATUS_SPEED_1000)) {
890 		ret_val = hw->phy.ops.acquire(hw);
891 		if (ret_val)
892 			return ret_val;
893 
894 		ret_val =
895 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
896 						&reg);
897 		if (ret_val)
898 			goto release;
899 
900 		ret_val =
901 		    e1000e_write_kmrn_reg_locked(hw,
902 						 E1000_KMRNCTRLSTA_K1_CONFIG,
903 						 reg &
904 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
905 		if (ret_val)
906 			goto release;
907 
908 		usleep_range(10, 20);
909 
910 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
911 
912 		ret_val =
913 		    e1000e_write_kmrn_reg_locked(hw,
914 						 E1000_KMRNCTRLSTA_K1_CONFIG,
915 						 reg);
916 release:
917 		hw->phy.ops.release(hw);
918 	} else {
919 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
920 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
921 
922 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
923 			      (status & E1000_STATUS_FD)))
924 			goto update_fextnvm6;
925 
926 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
927 		if (ret_val)
928 			return ret_val;
929 
930 		/* Clear link status transmit timeout */
931 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
932 
933 		if (status & E1000_STATUS_SPEED_100) {
934 			/* Set inband Tx timeout to 5x10us for 100Half */
935 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
936 
937 			/* Do not extend the K1 entry latency for 100Half */
938 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
939 		} else {
940 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
941 			reg |= 50 <<
942 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
943 
944 			/* Extend the K1 entry latency for 10 Mbps */
945 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
946 		}
947 
948 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
949 		if (ret_val)
950 			return ret_val;
951 
952 update_fextnvm6:
953 		ew32(FEXTNVM6, fextnvm6);
954 	}
955 
956 	return ret_val;
957 }
958 
959 /**
960  *  e1000_platform_pm_pch_lpt - Set platform power management values
961  *  @hw: pointer to the HW structure
962  *  @link: bool indicating link status
963  *
964  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
965  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
966  *  when link is up (which must not exceed the maximum latency supported
967  *  by the platform), otherwise specify there is no LTR requirement.
968  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
969  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
970  *  Capability register set, on this device LTR is set by writing the
971  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
972  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
973  *  message to the PMC.
974  **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)975 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
976 {
977 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
978 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
979 	u16 lat_enc = 0;	/* latency encoded */
980 
981 	if (link) {
982 		u16 speed, duplex, scale = 0;
983 		u16 max_snoop, max_nosnoop;
984 		u16 max_ltr_enc;	/* max LTR latency encoded */
985 		s64 lat_ns;	/* latency (ns) */
986 		u64 value;
987 		u32 rxa;
988 
989 		if (!hw->adapter->max_frame_size) {
990 			e_dbg("max_frame_size not set.\n");
991 			return -E1000_ERR_CONFIG;
992 		}
993 
994 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
995 		if (!speed) {
996 			e_dbg("Speed not set.\n");
997 			return -E1000_ERR_CONFIG;
998 		}
999 
1000 		/* Rx Packet Buffer Allocation size (KB) */
1001 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1002 
1003 		/* Determine the maximum latency tolerated by the device.
1004 		 *
1005 		 * Per the PCIe spec, the tolerated latencies are encoded as
1006 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1007 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1008 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1009 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1010 		 */
1011 		lat_ns = ((s64)rxa * 1024 -
1012 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1013 		if (lat_ns < 0) {
1014 			value = 0;
1015 		} else {
1016 			value = lat_ns;
1017 			do_div(value, speed);
1018 		}
1019 
1020 		while (value > PCI_LTR_VALUE_MASK) {
1021 			scale++;
1022 			value = DIV_ROUND_UP(value, (1 << 5));
1023 		}
1024 		if (scale > E1000_LTRV_SCALE_MAX) {
1025 			e_dbg("Invalid LTR latency scale %d\n", scale);
1026 			return -E1000_ERR_CONFIG;
1027 		}
1028 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1029 
1030 		/* Determine the maximum latency tolerated by the platform */
1031 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1032 				     &max_snoop);
1033 		pci_read_config_word(hw->adapter->pdev,
1034 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1035 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1036 
1037 		if (lat_enc > max_ltr_enc)
1038 			lat_enc = max_ltr_enc;
1039 	}
1040 
1041 	/* Set Snoop and No-Snoop latencies the same */
1042 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1043 	ew32(LTRV, reg);
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1050  *  @hw: pointer to the HW structure
1051  *  @to_sx: boolean indicating a system power state transition to Sx
1052  *
1053  *  When link is down, configure ULP mode to significantly reduce the power
1054  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1055  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1056  *  system, configure the ULP mode by software.
1057  */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1058 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1059 {
1060 	u32 mac_reg;
1061 	s32 ret_val = 0;
1062 	u16 phy_reg;
1063 
1064 	if ((hw->mac.type < e1000_pch_lpt) ||
1065 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1066 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1067 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1068 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1069 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1070 		return 0;
1071 
1072 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1073 		/* Request ME configure ULP mode in the PHY */
1074 		mac_reg = er32(H2ME);
1075 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1076 		ew32(H2ME, mac_reg);
1077 
1078 		goto out;
1079 	}
1080 
1081 	if (!to_sx) {
1082 		int i = 0;
1083 
1084 		/* Poll up to 5 seconds for Cable Disconnected indication */
1085 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1086 			/* Bail if link is re-acquired */
1087 			if (er32(STATUS) & E1000_STATUS_LU)
1088 				return -E1000_ERR_PHY;
1089 
1090 			if (i++ == 100)
1091 				break;
1092 
1093 			msleep(50);
1094 		}
1095 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1096 		      (er32(FEXT) &
1097 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1098 	}
1099 
1100 	ret_val = hw->phy.ops.acquire(hw);
1101 	if (ret_val)
1102 		goto out;
1103 
1104 	/* Force SMBus mode in PHY */
1105 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1106 	if (ret_val)
1107 		goto release;
1108 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1109 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1110 
1111 	/* Force SMBus mode in MAC */
1112 	mac_reg = er32(CTRL_EXT);
1113 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1114 	ew32(CTRL_EXT, mac_reg);
1115 
1116 	/* Set Inband ULP Exit, Reset to SMBus mode and
1117 	 * Disable SMBus Release on PERST# in PHY
1118 	 */
1119 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1120 	if (ret_val)
1121 		goto release;
1122 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1123 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1124 	if (to_sx) {
1125 		if (er32(WUFC) & E1000_WUFC_LNKC)
1126 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1127 
1128 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1129 	} else {
1130 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1131 	}
1132 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1133 
1134 	/* Set Disable SMBus Release on PERST# in MAC */
1135 	mac_reg = er32(FEXTNVM7);
1136 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1137 	ew32(FEXTNVM7, mac_reg);
1138 
1139 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1140 	phy_reg |= I218_ULP_CONFIG1_START;
1141 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1142 release:
1143 	hw->phy.ops.release(hw);
1144 out:
1145 	if (ret_val)
1146 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1147 	else
1148 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1149 
1150 	return ret_val;
1151 }
1152 
1153 /**
1154  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1155  *  @hw: pointer to the HW structure
1156  *  @force: boolean indicating whether or not to force disabling ULP
1157  *
1158  *  Un-configure ULP mode when link is up, the system is transitioned from
1159  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1160  *  system, poll for an indication from ME that ULP has been un-configured.
1161  *  If not on an ME enabled system, un-configure the ULP mode by software.
1162  *
1163  *  During nominal operation, this function is called when link is acquired
1164  *  to disable ULP mode (force=false); otherwise, for example when unloading
1165  *  the driver or during Sx->S0 transitions, this is called with force=true
1166  *  to forcibly disable ULP.
1167  */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1168 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1169 {
1170 	s32 ret_val = 0;
1171 	u32 mac_reg;
1172 	u16 phy_reg;
1173 	int i = 0;
1174 
1175 	if ((hw->mac.type < e1000_pch_lpt) ||
1176 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1177 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1178 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1179 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1180 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1181 		return 0;
1182 
1183 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1184 		if (force) {
1185 			/* Request ME un-configure ULP mode in the PHY */
1186 			mac_reg = er32(H2ME);
1187 			mac_reg &= ~E1000_H2ME_ULP;
1188 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1189 			ew32(H2ME, mac_reg);
1190 		}
1191 
1192 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1193 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1194 			if (i++ == 10) {
1195 				ret_val = -E1000_ERR_PHY;
1196 				goto out;
1197 			}
1198 
1199 			usleep_range(10000, 20000);
1200 		}
1201 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1202 
1203 		if (force) {
1204 			mac_reg = er32(H2ME);
1205 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1206 			ew32(H2ME, mac_reg);
1207 		} else {
1208 			/* Clear H2ME.ULP after ME ULP configuration */
1209 			mac_reg = er32(H2ME);
1210 			mac_reg &= ~E1000_H2ME_ULP;
1211 			ew32(H2ME, mac_reg);
1212 		}
1213 
1214 		goto out;
1215 	}
1216 
1217 	ret_val = hw->phy.ops.acquire(hw);
1218 	if (ret_val)
1219 		goto out;
1220 
1221 	if (force)
1222 		/* Toggle LANPHYPC Value bit */
1223 		e1000_toggle_lanphypc_pch_lpt(hw);
1224 
1225 	/* Unforce SMBus mode in PHY */
1226 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1227 	if (ret_val) {
1228 		/* The MAC might be in PCIe mode, so temporarily force to
1229 		 * SMBus mode in order to access the PHY.
1230 		 */
1231 		mac_reg = er32(CTRL_EXT);
1232 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1233 		ew32(CTRL_EXT, mac_reg);
1234 
1235 		msleep(50);
1236 
1237 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1238 						       &phy_reg);
1239 		if (ret_val)
1240 			goto release;
1241 	}
1242 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1243 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1244 
1245 	/* Unforce SMBus mode in MAC */
1246 	mac_reg = er32(CTRL_EXT);
1247 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1248 	ew32(CTRL_EXT, mac_reg);
1249 
1250 	/* When ULP mode was previously entered, K1 was disabled by the
1251 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1252 	 */
1253 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1254 	if (ret_val)
1255 		goto release;
1256 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1257 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1258 
1259 	/* Clear ULP enabled configuration */
1260 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1261 	if (ret_val)
1262 		goto release;
1263 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1264 		     I218_ULP_CONFIG1_STICKY_ULP |
1265 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1266 		     I218_ULP_CONFIG1_WOL_HOST |
1267 		     I218_ULP_CONFIG1_INBAND_EXIT |
1268 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1269 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1270 
1271 	/* Commit ULP changes by starting auto ULP configuration */
1272 	phy_reg |= I218_ULP_CONFIG1_START;
1273 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1274 
1275 	/* Clear Disable SMBus Release on PERST# in MAC */
1276 	mac_reg = er32(FEXTNVM7);
1277 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1278 	ew32(FEXTNVM7, mac_reg);
1279 
1280 release:
1281 	hw->phy.ops.release(hw);
1282 	if (force) {
1283 		e1000_phy_hw_reset(hw);
1284 		msleep(50);
1285 	}
1286 out:
1287 	if (ret_val)
1288 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1289 	else
1290 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1291 
1292 	return ret_val;
1293 }
1294 
1295 /**
1296  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Checks to see of the link status of the hardware has changed.  If a
1300  *  change in link status has been detected, then we read the PHY registers
1301  *  to get the current speed/duplex if link exists.
1302  *
1303  *  Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
1304  *  up).
1305  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1306 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1307 {
1308 	struct e1000_mac_info *mac = &hw->mac;
1309 	s32 ret_val;
1310 	bool link;
1311 	u16 phy_reg;
1312 
1313 	/* We only want to go out to the PHY registers to see if Auto-Neg
1314 	 * has completed and/or if our link status has changed.  The
1315 	 * get_link_status flag is set upon receiving a Link Status
1316 	 * Change or Rx Sequence Error interrupt.
1317 	 */
1318 	if (!mac->get_link_status)
1319 		return 1;
1320 
1321 	/* First we want to see if the MII Status Register reports
1322 	 * link.  If so, then we want to get the current speed/duplex
1323 	 * of the PHY.
1324 	 */
1325 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1326 	if (ret_val)
1327 		return ret_val;
1328 
1329 	if (hw->mac.type == e1000_pchlan) {
1330 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1331 		if (ret_val)
1332 			return ret_val;
1333 	}
1334 
1335 	/* When connected at 10Mbps half-duplex, some parts are excessively
1336 	 * aggressive resulting in many collisions. To avoid this, increase
1337 	 * the IPG and reduce Rx latency in the PHY.
1338 	 */
1339 	if (((hw->mac.type == e1000_pch2lan) ||
1340 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1341 		u32 reg;
1342 
1343 		reg = er32(STATUS);
1344 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1345 			u16 emi_addr;
1346 
1347 			reg = er32(TIPG);
1348 			reg &= ~E1000_TIPG_IPGT_MASK;
1349 			reg |= 0xFF;
1350 			ew32(TIPG, reg);
1351 
1352 			/* Reduce Rx latency in analog PHY */
1353 			ret_val = hw->phy.ops.acquire(hw);
1354 			if (ret_val)
1355 				return ret_val;
1356 
1357 			if (hw->mac.type == e1000_pch2lan)
1358 				emi_addr = I82579_RX_CONFIG;
1359 			else
1360 				emi_addr = I217_RX_CONFIG;
1361 
1362 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1363 
1364 			hw->phy.ops.release(hw);
1365 
1366 			if (ret_val)
1367 				return ret_val;
1368 		}
1369 	}
1370 
1371 	/* Work-around I218 hang issue */
1372 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1373 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1374 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1375 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1376 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1377 		if (ret_val)
1378 			return ret_val;
1379 	}
1380 
1381 	if (hw->mac.type == e1000_pch_lpt) {
1382 		/* Set platform power management values for
1383 		 * Latency Tolerance Reporting (LTR)
1384 		 */
1385 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1386 		if (ret_val)
1387 			return ret_val;
1388 	}
1389 
1390 	/* Clear link partner's EEE ability */
1391 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1392 
1393 	if (!link)
1394 		return 0;	/* No link detected */
1395 
1396 	mac->get_link_status = false;
1397 
1398 	switch (hw->mac.type) {
1399 	case e1000_pch2lan:
1400 		ret_val = e1000_k1_workaround_lv(hw);
1401 		if (ret_val)
1402 			return ret_val;
1403 		/* fall-thru */
1404 	case e1000_pchlan:
1405 		if (hw->phy.type == e1000_phy_82578) {
1406 			ret_val = e1000_link_stall_workaround_hv(hw);
1407 			if (ret_val)
1408 				return ret_val;
1409 		}
1410 
1411 		/* Workaround for PCHx parts in half-duplex:
1412 		 * Set the number of preambles removed from the packet
1413 		 * when it is passed from the PHY to the MAC to prevent
1414 		 * the MAC from misinterpreting the packet type.
1415 		 */
1416 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1417 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1418 
1419 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1420 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1421 
1422 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1423 		break;
1424 	default:
1425 		break;
1426 	}
1427 
1428 	/* Check if there was DownShift, must be checked
1429 	 * immediately after link-up
1430 	 */
1431 	e1000e_check_downshift(hw);
1432 
1433 	/* Enable/Disable EEE after link up */
1434 	if (hw->phy.type > e1000_phy_82579) {
1435 		ret_val = e1000_set_eee_pchlan(hw);
1436 		if (ret_val)
1437 			return ret_val;
1438 	}
1439 
1440 	/* If we are forcing speed/duplex, then we simply return since
1441 	 * we have already determined whether we have link or not.
1442 	 */
1443 	if (!mac->autoneg)
1444 		return -E1000_ERR_CONFIG;
1445 
1446 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1447 	 * of MAC speed/duplex configuration.  So we only need to
1448 	 * configure Collision Distance in the MAC.
1449 	 */
1450 	mac->ops.config_collision_dist(hw);
1451 
1452 	/* Configure Flow Control now that Auto-Neg has completed.
1453 	 * First, we need to restore the desired flow control
1454 	 * settings because we may have had to re-autoneg with a
1455 	 * different link partner.
1456 	 */
1457 	ret_val = e1000e_config_fc_after_link_up(hw);
1458 	if (ret_val) {
1459 		e_dbg("Error configuring flow control\n");
1460 		return ret_val;
1461 	}
1462 
1463 	return 1;
1464 }
1465 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1466 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1467 {
1468 	struct e1000_hw *hw = &adapter->hw;
1469 	s32 rc;
1470 
1471 	rc = e1000_init_mac_params_ich8lan(hw);
1472 	if (rc)
1473 		return rc;
1474 
1475 	rc = e1000_init_nvm_params_ich8lan(hw);
1476 	if (rc)
1477 		return rc;
1478 
1479 	switch (hw->mac.type) {
1480 	case e1000_ich8lan:
1481 	case e1000_ich9lan:
1482 	case e1000_ich10lan:
1483 		rc = e1000_init_phy_params_ich8lan(hw);
1484 		break;
1485 	case e1000_pchlan:
1486 	case e1000_pch2lan:
1487 	case e1000_pch_lpt:
1488 		rc = e1000_init_phy_params_pchlan(hw);
1489 		break;
1490 	default:
1491 		break;
1492 	}
1493 	if (rc)
1494 		return rc;
1495 
1496 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1497 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1498 	 */
1499 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1500 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1501 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1502 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1503 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1504 
1505 		hw->mac.ops.blink_led = NULL;
1506 	}
1507 
1508 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1509 	    (adapter->hw.phy.type != e1000_phy_ife))
1510 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1511 
1512 	/* Enable workaround for 82579 w/ ME enabled */
1513 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1514 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1515 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1516 
1517 	return 0;
1518 }
1519 
1520 static DEFINE_MUTEX(nvm_mutex);
1521 
1522 /**
1523  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1524  *  @hw: pointer to the HW structure
1525  *
1526  *  Acquires the mutex for performing NVM operations.
1527  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1528 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1529 {
1530 	mutex_lock(&nvm_mutex);
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  *  e1000_release_nvm_ich8lan - Release NVM mutex
1537  *  @hw: pointer to the HW structure
1538  *
1539  *  Releases the mutex used while performing NVM operations.
1540  **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1541 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1542 {
1543 	mutex_unlock(&nvm_mutex);
1544 }
1545 
1546 /**
1547  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1548  *  @hw: pointer to the HW structure
1549  *
1550  *  Acquires the software control flag for performing PHY and select
1551  *  MAC CSR accesses.
1552  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1553 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1554 {
1555 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1556 	s32 ret_val = 0;
1557 
1558 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1559 			     &hw->adapter->state)) {
1560 		e_dbg("contention for Phy access\n");
1561 		return -E1000_ERR_PHY;
1562 	}
1563 
1564 	while (timeout) {
1565 		extcnf_ctrl = er32(EXTCNF_CTRL);
1566 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1567 			break;
1568 
1569 		mdelay(1);
1570 		timeout--;
1571 	}
1572 
1573 	if (!timeout) {
1574 		e_dbg("SW has already locked the resource.\n");
1575 		ret_val = -E1000_ERR_CONFIG;
1576 		goto out;
1577 	}
1578 
1579 	timeout = SW_FLAG_TIMEOUT;
1580 
1581 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1582 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1583 
1584 	while (timeout) {
1585 		extcnf_ctrl = er32(EXTCNF_CTRL);
1586 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1587 			break;
1588 
1589 		mdelay(1);
1590 		timeout--;
1591 	}
1592 
1593 	if (!timeout) {
1594 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1595 		      er32(FWSM), extcnf_ctrl);
1596 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1597 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1598 		ret_val = -E1000_ERR_CONFIG;
1599 		goto out;
1600 	}
1601 
1602 out:
1603 	if (ret_val)
1604 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1605 
1606 	return ret_val;
1607 }
1608 
1609 /**
1610  *  e1000_release_swflag_ich8lan - Release software control flag
1611  *  @hw: pointer to the HW structure
1612  *
1613  *  Releases the software control flag for performing PHY and select
1614  *  MAC CSR accesses.
1615  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1616 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1617 {
1618 	u32 extcnf_ctrl;
1619 
1620 	extcnf_ctrl = er32(EXTCNF_CTRL);
1621 
1622 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1623 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1624 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1625 	} else {
1626 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1627 	}
1628 
1629 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1630 }
1631 
1632 /**
1633  *  e1000_check_mng_mode_ich8lan - Checks management mode
1634  *  @hw: pointer to the HW structure
1635  *
1636  *  This checks if the adapter has any manageability enabled.
1637  *  This is a function pointer entry point only called by read/write
1638  *  routines for the PHY and NVM parts.
1639  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1640 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1641 {
1642 	u32 fwsm;
1643 
1644 	fwsm = er32(FWSM);
1645 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1646 		((fwsm & E1000_FWSM_MODE_MASK) ==
1647 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1648 }
1649 
1650 /**
1651  *  e1000_check_mng_mode_pchlan - Checks management mode
1652  *  @hw: pointer to the HW structure
1653  *
1654  *  This checks if the adapter has iAMT enabled.
1655  *  This is a function pointer entry point only called by read/write
1656  *  routines for the PHY and NVM parts.
1657  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1658 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1659 {
1660 	u32 fwsm;
1661 
1662 	fwsm = er32(FWSM);
1663 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1664 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1665 }
1666 
1667 /**
1668  *  e1000_rar_set_pch2lan - Set receive address register
1669  *  @hw: pointer to the HW structure
1670  *  @addr: pointer to the receive address
1671  *  @index: receive address array register
1672  *
1673  *  Sets the receive address array register at index to the address passed
1674  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1675  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1676  *  Use SHRA[0-3] in place of those reserved for ME.
1677  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1678 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1679 {
1680 	u32 rar_low, rar_high;
1681 
1682 	/* HW expects these in little endian so we reverse the byte order
1683 	 * from network order (big endian) to little endian
1684 	 */
1685 	rar_low = ((u32)addr[0] |
1686 		   ((u32)addr[1] << 8) |
1687 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1688 
1689 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1690 
1691 	/* If MAC address zero, no need to set the AV bit */
1692 	if (rar_low || rar_high)
1693 		rar_high |= E1000_RAH_AV;
1694 
1695 	if (index == 0) {
1696 		ew32(RAL(index), rar_low);
1697 		e1e_flush();
1698 		ew32(RAH(index), rar_high);
1699 		e1e_flush();
1700 		return 0;
1701 	}
1702 
1703 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1704 	 * next address into the SHRA register array.
1705 	 */
1706 	if (index < (u32)(hw->mac.rar_entry_count)) {
1707 		s32 ret_val;
1708 
1709 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1710 		if (ret_val)
1711 			goto out;
1712 
1713 		ew32(SHRAL(index - 1), rar_low);
1714 		e1e_flush();
1715 		ew32(SHRAH(index - 1), rar_high);
1716 		e1e_flush();
1717 
1718 		e1000_release_swflag_ich8lan(hw);
1719 
1720 		/* verify the register updates */
1721 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1722 		    (er32(SHRAH(index - 1)) == rar_high))
1723 			return 0;
1724 
1725 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1726 		      (index - 1), er32(FWSM));
1727 	}
1728 
1729 out:
1730 	e_dbg("Failed to write receive address at index %d\n", index);
1731 	return -E1000_ERR_CONFIG;
1732 }
1733 
1734 /**
1735  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1736  *  @hw: pointer to the HW structure
1737  *
1738  *  Get the number of available receive registers that the Host can
1739  *  program. SHRA[0-10] are the shared receive address registers
1740  *  that are shared between the Host and manageability engine (ME).
1741  *  ME can reserve any number of addresses and the host needs to be
1742  *  able to tell how many available registers it has access to.
1743  **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1744 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1745 {
1746 	u32 wlock_mac;
1747 	u32 num_entries;
1748 
1749 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1750 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1751 
1752 	switch (wlock_mac) {
1753 	case 0:
1754 		/* All SHRA[0..10] and RAR[0] available */
1755 		num_entries = hw->mac.rar_entry_count;
1756 		break;
1757 	case 1:
1758 		/* Only RAR[0] available */
1759 		num_entries = 1;
1760 		break;
1761 	default:
1762 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1763 		num_entries = wlock_mac + 1;
1764 		break;
1765 	}
1766 
1767 	return num_entries;
1768 }
1769 
1770 /**
1771  *  e1000_rar_set_pch_lpt - Set receive address registers
1772  *  @hw: pointer to the HW structure
1773  *  @addr: pointer to the receive address
1774  *  @index: receive address array register
1775  *
1776  *  Sets the receive address register array at index to the address passed
1777  *  in by addr. For LPT, RAR[0] is the base address register that is to
1778  *  contain the MAC address. SHRA[0-10] are the shared receive address
1779  *  registers that are shared between the Host and manageability engine (ME).
1780  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1781 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1782 {
1783 	u32 rar_low, rar_high;
1784 	u32 wlock_mac;
1785 
1786 	/* HW expects these in little endian so we reverse the byte order
1787 	 * from network order (big endian) to little endian
1788 	 */
1789 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1790 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1791 
1792 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1793 
1794 	/* If MAC address zero, no need to set the AV bit */
1795 	if (rar_low || rar_high)
1796 		rar_high |= E1000_RAH_AV;
1797 
1798 	if (index == 0) {
1799 		ew32(RAL(index), rar_low);
1800 		e1e_flush();
1801 		ew32(RAH(index), rar_high);
1802 		e1e_flush();
1803 		return 0;
1804 	}
1805 
1806 	/* The manageability engine (ME) can lock certain SHRAR registers that
1807 	 * it is using - those registers are unavailable for use.
1808 	 */
1809 	if (index < hw->mac.rar_entry_count) {
1810 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1811 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1812 
1813 		/* Check if all SHRAR registers are locked */
1814 		if (wlock_mac == 1)
1815 			goto out;
1816 
1817 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1818 			s32 ret_val;
1819 
1820 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1821 
1822 			if (ret_val)
1823 				goto out;
1824 
1825 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1826 			e1e_flush();
1827 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1828 			e1e_flush();
1829 
1830 			e1000_release_swflag_ich8lan(hw);
1831 
1832 			/* verify the register updates */
1833 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1834 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1835 				return 0;
1836 		}
1837 	}
1838 
1839 out:
1840 	e_dbg("Failed to write receive address at index %d\n", index);
1841 	return -E1000_ERR_CONFIG;
1842 }
1843 
1844 /**
1845  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1846  *  @hw: pointer to the HW structure
1847  *
1848  *  Checks if firmware is blocking the reset of the PHY.
1849  *  This is a function pointer entry point only called by
1850  *  reset routines.
1851  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)1852 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1853 {
1854 	bool blocked = false;
1855 	int i = 0;
1856 
1857 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1858 	       (i++ < 10))
1859 		usleep_range(10000, 20000);
1860 	return blocked ? E1000_BLK_PHY_RESET : 0;
1861 }
1862 
1863 /**
1864  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1865  *  @hw: pointer to the HW structure
1866  *
1867  *  Assumes semaphore already acquired.
1868  *
1869  **/
e1000_write_smbus_addr(struct e1000_hw * hw)1870 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1871 {
1872 	u16 phy_data;
1873 	u32 strap = er32(STRAP);
1874 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1875 	    E1000_STRAP_SMT_FREQ_SHIFT;
1876 	s32 ret_val;
1877 
1878 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1879 
1880 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1881 	if (ret_val)
1882 		return ret_val;
1883 
1884 	phy_data &= ~HV_SMB_ADDR_MASK;
1885 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1886 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1887 
1888 	if (hw->phy.type == e1000_phy_i217) {
1889 		/* Restore SMBus frequency */
1890 		if (freq--) {
1891 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1892 			phy_data |= (freq & (1 << 0)) <<
1893 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1894 			phy_data |= (freq & (1 << 1)) <<
1895 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1896 		} else {
1897 			e_dbg("Unsupported SMB frequency in PHY\n");
1898 		}
1899 	}
1900 
1901 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1902 }
1903 
1904 /**
1905  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1906  *  @hw:   pointer to the HW structure
1907  *
1908  *  SW should configure the LCD from the NVM extended configuration region
1909  *  as a workaround for certain parts.
1910  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)1911 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1912 {
1913 	struct e1000_phy_info *phy = &hw->phy;
1914 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1915 	s32 ret_val = 0;
1916 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1917 
1918 	/* Initialize the PHY from the NVM on ICH platforms.  This
1919 	 * is needed due to an issue where the NVM configuration is
1920 	 * not properly autoloaded after power transitions.
1921 	 * Therefore, after each PHY reset, we will load the
1922 	 * configuration data out of the NVM manually.
1923 	 */
1924 	switch (hw->mac.type) {
1925 	case e1000_ich8lan:
1926 		if (phy->type != e1000_phy_igp_3)
1927 			return ret_val;
1928 
1929 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1930 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1931 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1932 			break;
1933 		}
1934 		/* Fall-thru */
1935 	case e1000_pchlan:
1936 	case e1000_pch2lan:
1937 	case e1000_pch_lpt:
1938 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1939 		break;
1940 	default:
1941 		return ret_val;
1942 	}
1943 
1944 	ret_val = hw->phy.ops.acquire(hw);
1945 	if (ret_val)
1946 		return ret_val;
1947 
1948 	data = er32(FEXTNVM);
1949 	if (!(data & sw_cfg_mask))
1950 		goto release;
1951 
1952 	/* Make sure HW does not configure LCD from PHY
1953 	 * extended configuration before SW configuration
1954 	 */
1955 	data = er32(EXTCNF_CTRL);
1956 	if ((hw->mac.type < e1000_pch2lan) &&
1957 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1958 		goto release;
1959 
1960 	cnf_size = er32(EXTCNF_SIZE);
1961 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1962 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1963 	if (!cnf_size)
1964 		goto release;
1965 
1966 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1967 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1968 
1969 	if (((hw->mac.type == e1000_pchlan) &&
1970 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1971 	    (hw->mac.type > e1000_pchlan)) {
1972 		/* HW configures the SMBus address and LEDs when the
1973 		 * OEM and LCD Write Enable bits are set in the NVM.
1974 		 * When both NVM bits are cleared, SW will configure
1975 		 * them instead.
1976 		 */
1977 		ret_val = e1000_write_smbus_addr(hw);
1978 		if (ret_val)
1979 			goto release;
1980 
1981 		data = er32(LEDCTL);
1982 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1983 							(u16)data);
1984 		if (ret_val)
1985 			goto release;
1986 	}
1987 
1988 	/* Configure LCD from extended configuration region. */
1989 
1990 	/* cnf_base_addr is in DWORD */
1991 	word_addr = (u16)(cnf_base_addr << 1);
1992 
1993 	for (i = 0; i < cnf_size; i++) {
1994 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1995 		if (ret_val)
1996 			goto release;
1997 
1998 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1999 					 1, &reg_addr);
2000 		if (ret_val)
2001 			goto release;
2002 
2003 		/* Save off the PHY page for future writes. */
2004 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2005 			phy_page = reg_data;
2006 			continue;
2007 		}
2008 
2009 		reg_addr &= PHY_REG_MASK;
2010 		reg_addr |= phy_page;
2011 
2012 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2013 		if (ret_val)
2014 			goto release;
2015 	}
2016 
2017 release:
2018 	hw->phy.ops.release(hw);
2019 	return ret_val;
2020 }
2021 
2022 /**
2023  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2024  *  @hw:   pointer to the HW structure
2025  *  @link: link up bool flag
2026  *
2027  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2028  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2029  *  If link is down, the function will restore the default K1 setting located
2030  *  in the NVM.
2031  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2032 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2033 {
2034 	s32 ret_val = 0;
2035 	u16 status_reg = 0;
2036 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2037 
2038 	if (hw->mac.type != e1000_pchlan)
2039 		return 0;
2040 
2041 	/* Wrap the whole flow with the sw flag */
2042 	ret_val = hw->phy.ops.acquire(hw);
2043 	if (ret_val)
2044 		return ret_val;
2045 
2046 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2047 	if (link) {
2048 		if (hw->phy.type == e1000_phy_82578) {
2049 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2050 						  &status_reg);
2051 			if (ret_val)
2052 				goto release;
2053 
2054 			status_reg &= (BM_CS_STATUS_LINK_UP |
2055 				       BM_CS_STATUS_RESOLVED |
2056 				       BM_CS_STATUS_SPEED_MASK);
2057 
2058 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2059 					   BM_CS_STATUS_RESOLVED |
2060 					   BM_CS_STATUS_SPEED_1000))
2061 				k1_enable = false;
2062 		}
2063 
2064 		if (hw->phy.type == e1000_phy_82577) {
2065 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2066 			if (ret_val)
2067 				goto release;
2068 
2069 			status_reg &= (HV_M_STATUS_LINK_UP |
2070 				       HV_M_STATUS_AUTONEG_COMPLETE |
2071 				       HV_M_STATUS_SPEED_MASK);
2072 
2073 			if (status_reg == (HV_M_STATUS_LINK_UP |
2074 					   HV_M_STATUS_AUTONEG_COMPLETE |
2075 					   HV_M_STATUS_SPEED_1000))
2076 				k1_enable = false;
2077 		}
2078 
2079 		/* Link stall fix for link up */
2080 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2081 		if (ret_val)
2082 			goto release;
2083 
2084 	} else {
2085 		/* Link stall fix for link down */
2086 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2087 		if (ret_val)
2088 			goto release;
2089 	}
2090 
2091 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2092 
2093 release:
2094 	hw->phy.ops.release(hw);
2095 
2096 	return ret_val;
2097 }
2098 
2099 /**
2100  *  e1000_configure_k1_ich8lan - Configure K1 power state
2101  *  @hw: pointer to the HW structure
2102  *  @enable: K1 state to configure
2103  *
2104  *  Configure the K1 power state based on the provided parameter.
2105  *  Assumes semaphore already acquired.
2106  *
2107  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2108  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2109 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2110 {
2111 	s32 ret_val;
2112 	u32 ctrl_reg = 0;
2113 	u32 ctrl_ext = 0;
2114 	u32 reg = 0;
2115 	u16 kmrn_reg = 0;
2116 
2117 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2118 					      &kmrn_reg);
2119 	if (ret_val)
2120 		return ret_val;
2121 
2122 	if (k1_enable)
2123 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2124 	else
2125 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2126 
2127 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2128 					       kmrn_reg);
2129 	if (ret_val)
2130 		return ret_val;
2131 
2132 	usleep_range(20, 40);
2133 	ctrl_ext = er32(CTRL_EXT);
2134 	ctrl_reg = er32(CTRL);
2135 
2136 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2137 	reg |= E1000_CTRL_FRCSPD;
2138 	ew32(CTRL, reg);
2139 
2140 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2141 	e1e_flush();
2142 	usleep_range(20, 40);
2143 	ew32(CTRL, ctrl_reg);
2144 	ew32(CTRL_EXT, ctrl_ext);
2145 	e1e_flush();
2146 	usleep_range(20, 40);
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2153  *  @hw:       pointer to the HW structure
2154  *  @d0_state: boolean if entering d0 or d3 device state
2155  *
2156  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2157  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2158  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2159  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2160 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2161 {
2162 	s32 ret_val = 0;
2163 	u32 mac_reg;
2164 	u16 oem_reg;
2165 
2166 	if (hw->mac.type < e1000_pchlan)
2167 		return ret_val;
2168 
2169 	ret_val = hw->phy.ops.acquire(hw);
2170 	if (ret_val)
2171 		return ret_val;
2172 
2173 	if (hw->mac.type == e1000_pchlan) {
2174 		mac_reg = er32(EXTCNF_CTRL);
2175 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2176 			goto release;
2177 	}
2178 
2179 	mac_reg = er32(FEXTNVM);
2180 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2181 		goto release;
2182 
2183 	mac_reg = er32(PHY_CTRL);
2184 
2185 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2186 	if (ret_val)
2187 		goto release;
2188 
2189 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2190 
2191 	if (d0_state) {
2192 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2193 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2194 
2195 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2196 			oem_reg |= HV_OEM_BITS_LPLU;
2197 	} else {
2198 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2199 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2200 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2201 
2202 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2203 			       E1000_PHY_CTRL_NOND0A_LPLU))
2204 			oem_reg |= HV_OEM_BITS_LPLU;
2205 	}
2206 
2207 	/* Set Restart auto-neg to activate the bits */
2208 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2209 	    !hw->phy.ops.check_reset_block(hw))
2210 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2211 
2212 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2213 
2214 release:
2215 	hw->phy.ops.release(hw);
2216 
2217 	return ret_val;
2218 }
2219 
2220 /**
2221  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2222  *  @hw:   pointer to the HW structure
2223  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2224 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2225 {
2226 	s32 ret_val;
2227 	u16 data;
2228 
2229 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2230 	if (ret_val)
2231 		return ret_val;
2232 
2233 	data |= HV_KMRN_MDIO_SLOW;
2234 
2235 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2236 
2237 	return ret_val;
2238 }
2239 
2240 /**
2241  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2242  *  done after every PHY reset.
2243  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2244 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2245 {
2246 	s32 ret_val = 0;
2247 	u16 phy_data;
2248 
2249 	if (hw->mac.type != e1000_pchlan)
2250 		return 0;
2251 
2252 	/* Set MDIO slow mode before any other MDIO access */
2253 	if (hw->phy.type == e1000_phy_82577) {
2254 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2255 		if (ret_val)
2256 			return ret_val;
2257 	}
2258 
2259 	if (((hw->phy.type == e1000_phy_82577) &&
2260 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2261 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2262 		/* Disable generation of early preamble */
2263 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2264 		if (ret_val)
2265 			return ret_val;
2266 
2267 		/* Preamble tuning for SSC */
2268 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2269 		if (ret_val)
2270 			return ret_val;
2271 	}
2272 
2273 	if (hw->phy.type == e1000_phy_82578) {
2274 		/* Return registers to default by doing a soft reset then
2275 		 * writing 0x3140 to the control register.
2276 		 */
2277 		if (hw->phy.revision < 2) {
2278 			e1000e_phy_sw_reset(hw);
2279 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2280 		}
2281 	}
2282 
2283 	/* Select page 0 */
2284 	ret_val = hw->phy.ops.acquire(hw);
2285 	if (ret_val)
2286 		return ret_val;
2287 
2288 	hw->phy.addr = 1;
2289 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2290 	hw->phy.ops.release(hw);
2291 	if (ret_val)
2292 		return ret_val;
2293 
2294 	/* Configure the K1 Si workaround during phy reset assuming there is
2295 	 * link so that it disables K1 if link is in 1Gbps.
2296 	 */
2297 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2298 	if (ret_val)
2299 		return ret_val;
2300 
2301 	/* Workaround for link disconnects on a busy hub in half duplex */
2302 	ret_val = hw->phy.ops.acquire(hw);
2303 	if (ret_val)
2304 		return ret_val;
2305 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2306 	if (ret_val)
2307 		goto release;
2308 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2309 	if (ret_val)
2310 		goto release;
2311 
2312 	/* set MSE higher to enable link to stay up when noise is high */
2313 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2314 release:
2315 	hw->phy.ops.release(hw);
2316 
2317 	return ret_val;
2318 }
2319 
2320 /**
2321  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2322  *  @hw:   pointer to the HW structure
2323  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2324 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2325 {
2326 	u32 mac_reg;
2327 	u16 i, phy_reg = 0;
2328 	s32 ret_val;
2329 
2330 	ret_val = hw->phy.ops.acquire(hw);
2331 	if (ret_val)
2332 		return;
2333 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2334 	if (ret_val)
2335 		goto release;
2336 
2337 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2338 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2339 		mac_reg = er32(RAL(i));
2340 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2341 					   (u16)(mac_reg & 0xFFFF));
2342 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2343 					   (u16)((mac_reg >> 16) & 0xFFFF));
2344 
2345 		mac_reg = er32(RAH(i));
2346 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2347 					   (u16)(mac_reg & 0xFFFF));
2348 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2349 					   (u16)((mac_reg & E1000_RAH_AV)
2350 						 >> 16));
2351 	}
2352 
2353 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2354 
2355 release:
2356 	hw->phy.ops.release(hw);
2357 }
2358 
2359 /**
2360  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2361  *  with 82579 PHY
2362  *  @hw: pointer to the HW structure
2363  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2364  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2365 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2366 {
2367 	s32 ret_val = 0;
2368 	u16 phy_reg, data;
2369 	u32 mac_reg;
2370 	u16 i;
2371 
2372 	if (hw->mac.type < e1000_pch2lan)
2373 		return 0;
2374 
2375 	/* disable Rx path while enabling/disabling workaround */
2376 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2377 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2378 	if (ret_val)
2379 		return ret_val;
2380 
2381 	if (enable) {
2382 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2383 		 * SHRAL/H) and initial CRC values to the MAC
2384 		 */
2385 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2386 			u8 mac_addr[ETH_ALEN] = { 0 };
2387 			u32 addr_high, addr_low;
2388 
2389 			addr_high = er32(RAH(i));
2390 			if (!(addr_high & E1000_RAH_AV))
2391 				continue;
2392 			addr_low = er32(RAL(i));
2393 			mac_addr[0] = (addr_low & 0xFF);
2394 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2395 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2396 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2397 			mac_addr[4] = (addr_high & 0xFF);
2398 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2399 
2400 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2401 		}
2402 
2403 		/* Write Rx addresses to the PHY */
2404 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2405 
2406 		/* Enable jumbo frame workaround in the MAC */
2407 		mac_reg = er32(FFLT_DBG);
2408 		mac_reg &= ~(1 << 14);
2409 		mac_reg |= (7 << 15);
2410 		ew32(FFLT_DBG, mac_reg);
2411 
2412 		mac_reg = er32(RCTL);
2413 		mac_reg |= E1000_RCTL_SECRC;
2414 		ew32(RCTL, mac_reg);
2415 
2416 		ret_val = e1000e_read_kmrn_reg(hw,
2417 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2418 					       &data);
2419 		if (ret_val)
2420 			return ret_val;
2421 		ret_val = e1000e_write_kmrn_reg(hw,
2422 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2423 						data | (1 << 0));
2424 		if (ret_val)
2425 			return ret_val;
2426 		ret_val = e1000e_read_kmrn_reg(hw,
2427 					       E1000_KMRNCTRLSTA_HD_CTRL,
2428 					       &data);
2429 		if (ret_val)
2430 			return ret_val;
2431 		data &= ~(0xF << 8);
2432 		data |= (0xB << 8);
2433 		ret_val = e1000e_write_kmrn_reg(hw,
2434 						E1000_KMRNCTRLSTA_HD_CTRL,
2435 						data);
2436 		if (ret_val)
2437 			return ret_val;
2438 
2439 		/* Enable jumbo frame workaround in the PHY */
2440 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2441 		data &= ~(0x7F << 5);
2442 		data |= (0x37 << 5);
2443 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2444 		if (ret_val)
2445 			return ret_val;
2446 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2447 		data &= ~(1 << 13);
2448 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2449 		if (ret_val)
2450 			return ret_val;
2451 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2452 		data &= ~(0x3FF << 2);
2453 		data |= (E1000_TX_PTR_GAP << 2);
2454 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2455 		if (ret_val)
2456 			return ret_val;
2457 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2458 		if (ret_val)
2459 			return ret_val;
2460 		e1e_rphy(hw, HV_PM_CTRL, &data);
2461 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2462 		if (ret_val)
2463 			return ret_val;
2464 	} else {
2465 		/* Write MAC register values back to h/w defaults */
2466 		mac_reg = er32(FFLT_DBG);
2467 		mac_reg &= ~(0xF << 14);
2468 		ew32(FFLT_DBG, mac_reg);
2469 
2470 		mac_reg = er32(RCTL);
2471 		mac_reg &= ~E1000_RCTL_SECRC;
2472 		ew32(RCTL, mac_reg);
2473 
2474 		ret_val = e1000e_read_kmrn_reg(hw,
2475 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2476 					       &data);
2477 		if (ret_val)
2478 			return ret_val;
2479 		ret_val = e1000e_write_kmrn_reg(hw,
2480 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2481 						data & ~(1 << 0));
2482 		if (ret_val)
2483 			return ret_val;
2484 		ret_val = e1000e_read_kmrn_reg(hw,
2485 					       E1000_KMRNCTRLSTA_HD_CTRL,
2486 					       &data);
2487 		if (ret_val)
2488 			return ret_val;
2489 		data &= ~(0xF << 8);
2490 		data |= (0xB << 8);
2491 		ret_val = e1000e_write_kmrn_reg(hw,
2492 						E1000_KMRNCTRLSTA_HD_CTRL,
2493 						data);
2494 		if (ret_val)
2495 			return ret_val;
2496 
2497 		/* Write PHY register values back to h/w defaults */
2498 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2499 		data &= ~(0x7F << 5);
2500 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2501 		if (ret_val)
2502 			return ret_val;
2503 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2504 		data |= (1 << 13);
2505 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2506 		if (ret_val)
2507 			return ret_val;
2508 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2509 		data &= ~(0x3FF << 2);
2510 		data |= (0x8 << 2);
2511 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2512 		if (ret_val)
2513 			return ret_val;
2514 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2515 		if (ret_val)
2516 			return ret_val;
2517 		e1e_rphy(hw, HV_PM_CTRL, &data);
2518 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2519 		if (ret_val)
2520 			return ret_val;
2521 	}
2522 
2523 	/* re-enable Rx path after enabling/disabling workaround */
2524 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2525 }
2526 
2527 /**
2528  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2529  *  done after every PHY reset.
2530  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2531 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2532 {
2533 	s32 ret_val = 0;
2534 
2535 	if (hw->mac.type != e1000_pch2lan)
2536 		return 0;
2537 
2538 	/* Set MDIO slow mode before any other MDIO access */
2539 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2540 	if (ret_val)
2541 		return ret_val;
2542 
2543 	ret_val = hw->phy.ops.acquire(hw);
2544 	if (ret_val)
2545 		return ret_val;
2546 	/* set MSE higher to enable link to stay up when noise is high */
2547 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2548 	if (ret_val)
2549 		goto release;
2550 	/* drop link after 5 times MSE threshold was reached */
2551 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2552 release:
2553 	hw->phy.ops.release(hw);
2554 
2555 	return ret_val;
2556 }
2557 
2558 /**
2559  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2560  *  @hw:   pointer to the HW structure
2561  *
2562  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2563  *  Disable K1 in 1000Mbps and 100Mbps
2564  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2565 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2566 {
2567 	s32 ret_val = 0;
2568 	u16 status_reg = 0;
2569 
2570 	if (hw->mac.type != e1000_pch2lan)
2571 		return 0;
2572 
2573 	/* Set K1 beacon duration based on 10Mbs speed */
2574 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2575 	if (ret_val)
2576 		return ret_val;
2577 
2578 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2579 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2580 		if (status_reg &
2581 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2582 			u16 pm_phy_reg;
2583 
2584 			/* LV 1G/100 Packet drop issue wa  */
2585 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2586 			if (ret_val)
2587 				return ret_val;
2588 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2589 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2590 			if (ret_val)
2591 				return ret_val;
2592 		} else {
2593 			u32 mac_reg;
2594 
2595 			mac_reg = er32(FEXTNVM4);
2596 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2597 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2598 			ew32(FEXTNVM4, mac_reg);
2599 		}
2600 	}
2601 
2602 	return ret_val;
2603 }
2604 
2605 /**
2606  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2607  *  @hw:   pointer to the HW structure
2608  *  @gate: boolean set to true to gate, false to ungate
2609  *
2610  *  Gate/ungate the automatic PHY configuration via hardware; perform
2611  *  the configuration via software instead.
2612  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2613 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2614 {
2615 	u32 extcnf_ctrl;
2616 
2617 	if (hw->mac.type < e1000_pch2lan)
2618 		return;
2619 
2620 	extcnf_ctrl = er32(EXTCNF_CTRL);
2621 
2622 	if (gate)
2623 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2624 	else
2625 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2626 
2627 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2628 }
2629 
2630 /**
2631  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2632  *  @hw: pointer to the HW structure
2633  *
2634  *  Check the appropriate indication the MAC has finished configuring the
2635  *  PHY after a software reset.
2636  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2637 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2638 {
2639 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2640 
2641 	/* Wait for basic configuration completes before proceeding */
2642 	do {
2643 		data = er32(STATUS);
2644 		data &= E1000_STATUS_LAN_INIT_DONE;
2645 		usleep_range(100, 200);
2646 	} while ((!data) && --loop);
2647 
2648 	/* If basic configuration is incomplete before the above loop
2649 	 * count reaches 0, loading the configuration from NVM will
2650 	 * leave the PHY in a bad state possibly resulting in no link.
2651 	 */
2652 	if (loop == 0)
2653 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2654 
2655 	/* Clear the Init Done bit for the next init event */
2656 	data = er32(STATUS);
2657 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2658 	ew32(STATUS, data);
2659 }
2660 
2661 /**
2662  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2663  *  @hw: pointer to the HW structure
2664  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2665 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2666 {
2667 	s32 ret_val = 0;
2668 	u16 reg;
2669 
2670 	if (hw->phy.ops.check_reset_block(hw))
2671 		return 0;
2672 
2673 	/* Allow time for h/w to get to quiescent state after reset */
2674 	usleep_range(10000, 20000);
2675 
2676 	/* Perform any necessary post-reset workarounds */
2677 	switch (hw->mac.type) {
2678 	case e1000_pchlan:
2679 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2680 		if (ret_val)
2681 			return ret_val;
2682 		break;
2683 	case e1000_pch2lan:
2684 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2685 		if (ret_val)
2686 			return ret_val;
2687 		break;
2688 	default:
2689 		break;
2690 	}
2691 
2692 	/* Clear the host wakeup bit after lcd reset */
2693 	if (hw->mac.type >= e1000_pchlan) {
2694 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2695 		reg &= ~BM_WUC_HOST_WU_BIT;
2696 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2697 	}
2698 
2699 	/* Configure the LCD with the extended configuration region in NVM */
2700 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2701 	if (ret_val)
2702 		return ret_val;
2703 
2704 	/* Configure the LCD with the OEM bits in NVM */
2705 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2706 
2707 	if (hw->mac.type == e1000_pch2lan) {
2708 		/* Ungate automatic PHY configuration on non-managed 82579 */
2709 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2710 			usleep_range(10000, 20000);
2711 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2712 		}
2713 
2714 		/* Set EEE LPI Update Timer to 200usec */
2715 		ret_val = hw->phy.ops.acquire(hw);
2716 		if (ret_val)
2717 			return ret_val;
2718 		ret_val = e1000_write_emi_reg_locked(hw,
2719 						     I82579_LPI_UPDATE_TIMER,
2720 						     0x1387);
2721 		hw->phy.ops.release(hw);
2722 	}
2723 
2724 	return ret_val;
2725 }
2726 
2727 /**
2728  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2729  *  @hw: pointer to the HW structure
2730  *
2731  *  Resets the PHY
2732  *  This is a function pointer entry point called by drivers
2733  *  or other shared routines.
2734  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2735 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2736 {
2737 	s32 ret_val = 0;
2738 
2739 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2740 	if ((hw->mac.type == e1000_pch2lan) &&
2741 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2742 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2743 
2744 	ret_val = e1000e_phy_hw_reset_generic(hw);
2745 	if (ret_val)
2746 		return ret_val;
2747 
2748 	return e1000_post_phy_reset_ich8lan(hw);
2749 }
2750 
2751 /**
2752  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2753  *  @hw: pointer to the HW structure
2754  *  @active: true to enable LPLU, false to disable
2755  *
2756  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2757  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2758  *  the phy speed. This function will manually set the LPLU bit and restart
2759  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2760  *  since it configures the same bit.
2761  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2762 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2763 {
2764 	s32 ret_val;
2765 	u16 oem_reg;
2766 
2767 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2768 	if (ret_val)
2769 		return ret_val;
2770 
2771 	if (active)
2772 		oem_reg |= HV_OEM_BITS_LPLU;
2773 	else
2774 		oem_reg &= ~HV_OEM_BITS_LPLU;
2775 
2776 	if (!hw->phy.ops.check_reset_block(hw))
2777 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2778 
2779 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2780 }
2781 
2782 /**
2783  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2784  *  @hw: pointer to the HW structure
2785  *  @active: true to enable LPLU, false to disable
2786  *
2787  *  Sets the LPLU D0 state according to the active flag.  When
2788  *  activating LPLU this function also disables smart speed
2789  *  and vice versa.  LPLU will not be activated unless the
2790  *  device autonegotiation advertisement meets standards of
2791  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2792  *  This is a function pointer entry point only called by
2793  *  PHY setup routines.
2794  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2795 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2796 {
2797 	struct e1000_phy_info *phy = &hw->phy;
2798 	u32 phy_ctrl;
2799 	s32 ret_val = 0;
2800 	u16 data;
2801 
2802 	if (phy->type == e1000_phy_ife)
2803 		return 0;
2804 
2805 	phy_ctrl = er32(PHY_CTRL);
2806 
2807 	if (active) {
2808 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2809 		ew32(PHY_CTRL, phy_ctrl);
2810 
2811 		if (phy->type != e1000_phy_igp_3)
2812 			return 0;
2813 
2814 		/* Call gig speed drop workaround on LPLU before accessing
2815 		 * any PHY registers
2816 		 */
2817 		if (hw->mac.type == e1000_ich8lan)
2818 			e1000e_gig_downshift_workaround_ich8lan(hw);
2819 
2820 		/* When LPLU is enabled, we should disable SmartSpeed */
2821 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2822 		if (ret_val)
2823 			return ret_val;
2824 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2825 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2826 		if (ret_val)
2827 			return ret_val;
2828 	} else {
2829 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2830 		ew32(PHY_CTRL, phy_ctrl);
2831 
2832 		if (phy->type != e1000_phy_igp_3)
2833 			return 0;
2834 
2835 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2836 		 * during Dx states where the power conservation is most
2837 		 * important.  During driver activity we should enable
2838 		 * SmartSpeed, so performance is maintained.
2839 		 */
2840 		if (phy->smart_speed == e1000_smart_speed_on) {
2841 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2842 					   &data);
2843 			if (ret_val)
2844 				return ret_val;
2845 
2846 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2847 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2848 					   data);
2849 			if (ret_val)
2850 				return ret_val;
2851 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2852 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2853 					   &data);
2854 			if (ret_val)
2855 				return ret_val;
2856 
2857 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2858 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2859 					   data);
2860 			if (ret_val)
2861 				return ret_val;
2862 		}
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 /**
2869  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2870  *  @hw: pointer to the HW structure
2871  *  @active: true to enable LPLU, false to disable
2872  *
2873  *  Sets the LPLU D3 state according to the active flag.  When
2874  *  activating LPLU this function also disables smart speed
2875  *  and vice versa.  LPLU will not be activated unless the
2876  *  device autonegotiation advertisement meets standards of
2877  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2878  *  This is a function pointer entry point only called by
2879  *  PHY setup routines.
2880  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2881 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2882 {
2883 	struct e1000_phy_info *phy = &hw->phy;
2884 	u32 phy_ctrl;
2885 	s32 ret_val = 0;
2886 	u16 data;
2887 
2888 	phy_ctrl = er32(PHY_CTRL);
2889 
2890 	if (!active) {
2891 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2892 		ew32(PHY_CTRL, phy_ctrl);
2893 
2894 		if (phy->type != e1000_phy_igp_3)
2895 			return 0;
2896 
2897 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2898 		 * during Dx states where the power conservation is most
2899 		 * important.  During driver activity we should enable
2900 		 * SmartSpeed, so performance is maintained.
2901 		 */
2902 		if (phy->smart_speed == e1000_smart_speed_on) {
2903 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2904 					   &data);
2905 			if (ret_val)
2906 				return ret_val;
2907 
2908 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2909 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2910 					   data);
2911 			if (ret_val)
2912 				return ret_val;
2913 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2914 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2915 					   &data);
2916 			if (ret_val)
2917 				return ret_val;
2918 
2919 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2920 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2921 					   data);
2922 			if (ret_val)
2923 				return ret_val;
2924 		}
2925 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2926 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2927 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2928 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2929 		ew32(PHY_CTRL, phy_ctrl);
2930 
2931 		if (phy->type != e1000_phy_igp_3)
2932 			return 0;
2933 
2934 		/* Call gig speed drop workaround on LPLU before accessing
2935 		 * any PHY registers
2936 		 */
2937 		if (hw->mac.type == e1000_ich8lan)
2938 			e1000e_gig_downshift_workaround_ich8lan(hw);
2939 
2940 		/* When LPLU is enabled, we should disable SmartSpeed */
2941 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2942 		if (ret_val)
2943 			return ret_val;
2944 
2945 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2946 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2947 	}
2948 
2949 	return ret_val;
2950 }
2951 
2952 /**
2953  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2954  *  @hw: pointer to the HW structure
2955  *  @bank:  pointer to the variable that returns the active bank
2956  *
2957  *  Reads signature byte from the NVM using the flash access registers.
2958  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2959  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)2960 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2961 {
2962 	u32 eecd;
2963 	struct e1000_nvm_info *nvm = &hw->nvm;
2964 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2965 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2966 	u8 sig_byte = 0;
2967 	s32 ret_val;
2968 
2969 	switch (hw->mac.type) {
2970 	case e1000_ich8lan:
2971 	case e1000_ich9lan:
2972 		eecd = er32(EECD);
2973 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2974 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2975 			if (eecd & E1000_EECD_SEC1VAL)
2976 				*bank = 1;
2977 			else
2978 				*bank = 0;
2979 
2980 			return 0;
2981 		}
2982 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2983 		/* fall-thru */
2984 	default:
2985 		/* set bank to 0 in case flash read fails */
2986 		*bank = 0;
2987 
2988 		/* Check bank 0 */
2989 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2990 							&sig_byte);
2991 		if (ret_val)
2992 			return ret_val;
2993 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2994 		    E1000_ICH_NVM_SIG_VALUE) {
2995 			*bank = 0;
2996 			return 0;
2997 		}
2998 
2999 		/* Check bank 1 */
3000 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3001 							bank1_offset,
3002 							&sig_byte);
3003 		if (ret_val)
3004 			return ret_val;
3005 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3006 		    E1000_ICH_NVM_SIG_VALUE) {
3007 			*bank = 1;
3008 			return 0;
3009 		}
3010 
3011 		e_dbg("ERROR: No valid NVM bank present\n");
3012 		return -E1000_ERR_NVM;
3013 	}
3014 }
3015 
3016 /**
3017  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3018  *  @hw: pointer to the HW structure
3019  *  @offset: The offset (in bytes) of the word(s) to read.
3020  *  @words: Size of data to read in words
3021  *  @data: Pointer to the word(s) to read at offset.
3022  *
3023  *  Reads a word(s) from the NVM using the flash access registers.
3024  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3025 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3026 				  u16 *data)
3027 {
3028 	struct e1000_nvm_info *nvm = &hw->nvm;
3029 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3030 	u32 act_offset;
3031 	s32 ret_val = 0;
3032 	u32 bank = 0;
3033 	u16 i, word;
3034 
3035 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3036 	    (words == 0)) {
3037 		e_dbg("nvm parameter(s) out of bounds\n");
3038 		ret_val = -E1000_ERR_NVM;
3039 		goto out;
3040 	}
3041 
3042 	nvm->ops.acquire(hw);
3043 
3044 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3045 	if (ret_val) {
3046 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3047 		bank = 0;
3048 	}
3049 
3050 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3051 	act_offset += offset;
3052 
3053 	ret_val = 0;
3054 	for (i = 0; i < words; i++) {
3055 		if (dev_spec->shadow_ram[offset + i].modified) {
3056 			data[i] = dev_spec->shadow_ram[offset + i].value;
3057 		} else {
3058 			ret_val = e1000_read_flash_word_ich8lan(hw,
3059 								act_offset + i,
3060 								&word);
3061 			if (ret_val)
3062 				break;
3063 			data[i] = word;
3064 		}
3065 	}
3066 
3067 	nvm->ops.release(hw);
3068 
3069 out:
3070 	if (ret_val)
3071 		e_dbg("NVM read error: %d\n", ret_val);
3072 
3073 	return ret_val;
3074 }
3075 
3076 /**
3077  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3078  *  @hw: pointer to the HW structure
3079  *
3080  *  This function does initial flash setup so that a new read/write/erase cycle
3081  *  can be started.
3082  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3083 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3084 {
3085 	union ich8_hws_flash_status hsfsts;
3086 	s32 ret_val = -E1000_ERR_NVM;
3087 
3088 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3089 
3090 	/* Check if the flash descriptor is valid */
3091 	if (!hsfsts.hsf_status.fldesvalid) {
3092 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3093 		return -E1000_ERR_NVM;
3094 	}
3095 
3096 	/* Clear FCERR and DAEL in hw status by writing 1 */
3097 	hsfsts.hsf_status.flcerr = 1;
3098 	hsfsts.hsf_status.dael = 1;
3099 
3100 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3101 
3102 	/* Either we should have a hardware SPI cycle in progress
3103 	 * bit to check against, in order to start a new cycle or
3104 	 * FDONE bit should be changed in the hardware so that it
3105 	 * is 1 after hardware reset, which can then be used as an
3106 	 * indication whether a cycle is in progress or has been
3107 	 * completed.
3108 	 */
3109 
3110 	if (!hsfsts.hsf_status.flcinprog) {
3111 		/* There is no cycle running at present,
3112 		 * so we can start a cycle.
3113 		 * Begin by setting Flash Cycle Done.
3114 		 */
3115 		hsfsts.hsf_status.flcdone = 1;
3116 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3117 		ret_val = 0;
3118 	} else {
3119 		s32 i;
3120 
3121 		/* Otherwise poll for sometime so the current
3122 		 * cycle has a chance to end before giving up.
3123 		 */
3124 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3125 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3126 			if (!hsfsts.hsf_status.flcinprog) {
3127 				ret_val = 0;
3128 				break;
3129 			}
3130 			udelay(1);
3131 		}
3132 		if (!ret_val) {
3133 			/* Successful in waiting for previous cycle to timeout,
3134 			 * now set the Flash Cycle Done.
3135 			 */
3136 			hsfsts.hsf_status.flcdone = 1;
3137 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3138 		} else {
3139 			e_dbg("Flash controller busy, cannot get access\n");
3140 		}
3141 	}
3142 
3143 	return ret_val;
3144 }
3145 
3146 /**
3147  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3148  *  @hw: pointer to the HW structure
3149  *  @timeout: maximum time to wait for completion
3150  *
3151  *  This function starts a flash cycle and waits for its completion.
3152  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3153 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3154 {
3155 	union ich8_hws_flash_ctrl hsflctl;
3156 	union ich8_hws_flash_status hsfsts;
3157 	u32 i = 0;
3158 
3159 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3160 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3161 	hsflctl.hsf_ctrl.flcgo = 1;
3162 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3163 
3164 	/* wait till FDONE bit is set to 1 */
3165 	do {
3166 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3167 		if (hsfsts.hsf_status.flcdone)
3168 			break;
3169 		udelay(1);
3170 	} while (i++ < timeout);
3171 
3172 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3173 		return 0;
3174 
3175 	return -E1000_ERR_NVM;
3176 }
3177 
3178 /**
3179  *  e1000_read_flash_word_ich8lan - Read word from flash
3180  *  @hw: pointer to the HW structure
3181  *  @offset: offset to data location
3182  *  @data: pointer to the location for storing the data
3183  *
3184  *  Reads the flash word at offset into data.  Offset is converted
3185  *  to bytes before read.
3186  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3187 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3188 					 u16 *data)
3189 {
3190 	/* Must convert offset into bytes. */
3191 	offset <<= 1;
3192 
3193 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3194 }
3195 
3196 /**
3197  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3198  *  @hw: pointer to the HW structure
3199  *  @offset: The offset of the byte to read.
3200  *  @data: Pointer to a byte to store the value read.
3201  *
3202  *  Reads a single byte from the NVM using the flash access registers.
3203  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3204 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3205 					 u8 *data)
3206 {
3207 	s32 ret_val;
3208 	u16 word = 0;
3209 
3210 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3211 	if (ret_val)
3212 		return ret_val;
3213 
3214 	*data = (u8)word;
3215 
3216 	return 0;
3217 }
3218 
3219 /**
3220  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3221  *  @hw: pointer to the HW structure
3222  *  @offset: The offset (in bytes) of the byte or word to read.
3223  *  @size: Size of data to read, 1=byte 2=word
3224  *  @data: Pointer to the word to store the value read.
3225  *
3226  *  Reads a byte or word from the NVM using the flash access registers.
3227  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3228 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3229 					 u8 size, u16 *data)
3230 {
3231 	union ich8_hws_flash_status hsfsts;
3232 	union ich8_hws_flash_ctrl hsflctl;
3233 	u32 flash_linear_addr;
3234 	u32 flash_data = 0;
3235 	s32 ret_val = -E1000_ERR_NVM;
3236 	u8 count = 0;
3237 
3238 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3239 		return -E1000_ERR_NVM;
3240 
3241 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3242 			     hw->nvm.flash_base_addr);
3243 
3244 	do {
3245 		udelay(1);
3246 		/* Steps */
3247 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3248 		if (ret_val)
3249 			break;
3250 
3251 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3252 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3253 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3254 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3255 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3256 
3257 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3258 
3259 		ret_val =
3260 		    e1000_flash_cycle_ich8lan(hw,
3261 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3262 
3263 		/* Check if FCERR is set to 1, if set to 1, clear it
3264 		 * and try the whole sequence a few more times, else
3265 		 * read in (shift in) the Flash Data0, the order is
3266 		 * least significant byte first msb to lsb
3267 		 */
3268 		if (!ret_val) {
3269 			flash_data = er32flash(ICH_FLASH_FDATA0);
3270 			if (size == 1)
3271 				*data = (u8)(flash_data & 0x000000FF);
3272 			else if (size == 2)
3273 				*data = (u16)(flash_data & 0x0000FFFF);
3274 			break;
3275 		} else {
3276 			/* If we've gotten here, then things are probably
3277 			 * completely hosed, but if the error condition is
3278 			 * detected, it won't hurt to give it another try...
3279 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3280 			 */
3281 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3282 			if (hsfsts.hsf_status.flcerr) {
3283 				/* Repeat for some time before giving up. */
3284 				continue;
3285 			} else if (!hsfsts.hsf_status.flcdone) {
3286 				e_dbg("Timeout error - flash cycle did not complete.\n");
3287 				break;
3288 			}
3289 		}
3290 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3291 
3292 	return ret_val;
3293 }
3294 
3295 /**
3296  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3297  *  @hw: pointer to the HW structure
3298  *  @offset: The offset (in bytes) of the word(s) to write.
3299  *  @words: Size of data to write in words
3300  *  @data: Pointer to the word(s) to write at offset.
3301  *
3302  *  Writes a byte or word to the NVM using the flash access registers.
3303  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3304 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3305 				   u16 *data)
3306 {
3307 	struct e1000_nvm_info *nvm = &hw->nvm;
3308 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3309 	u16 i;
3310 
3311 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3312 	    (words == 0)) {
3313 		e_dbg("nvm parameter(s) out of bounds\n");
3314 		return -E1000_ERR_NVM;
3315 	}
3316 
3317 	nvm->ops.acquire(hw);
3318 
3319 	for (i = 0; i < words; i++) {
3320 		dev_spec->shadow_ram[offset + i].modified = true;
3321 		dev_spec->shadow_ram[offset + i].value = data[i];
3322 	}
3323 
3324 	nvm->ops.release(hw);
3325 
3326 	return 0;
3327 }
3328 
3329 /**
3330  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3331  *  @hw: pointer to the HW structure
3332  *
3333  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3334  *  which writes the checksum to the shadow ram.  The changes in the shadow
3335  *  ram are then committed to the EEPROM by processing each bank at a time
3336  *  checking for the modified bit and writing only the pending changes.
3337  *  After a successful commit, the shadow ram is cleared and is ready for
3338  *  future writes.
3339  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)3340 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3341 {
3342 	struct e1000_nvm_info *nvm = &hw->nvm;
3343 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3344 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3345 	s32 ret_val;
3346 	u16 data;
3347 
3348 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3349 	if (ret_val)
3350 		goto out;
3351 
3352 	if (nvm->type != e1000_nvm_flash_sw)
3353 		goto out;
3354 
3355 	nvm->ops.acquire(hw);
3356 
3357 	/* We're writing to the opposite bank so if we're on bank 1,
3358 	 * write to bank 0 etc.  We also need to erase the segment that
3359 	 * is going to be written
3360 	 */
3361 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3362 	if (ret_val) {
3363 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3364 		bank = 0;
3365 	}
3366 
3367 	if (bank == 0) {
3368 		new_bank_offset = nvm->flash_bank_size;
3369 		old_bank_offset = 0;
3370 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3371 		if (ret_val)
3372 			goto release;
3373 	} else {
3374 		old_bank_offset = nvm->flash_bank_size;
3375 		new_bank_offset = 0;
3376 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3377 		if (ret_val)
3378 			goto release;
3379 	}
3380 
3381 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3382 		/* Determine whether to write the value stored
3383 		 * in the other NVM bank or a modified value stored
3384 		 * in the shadow RAM
3385 		 */
3386 		if (dev_spec->shadow_ram[i].modified) {
3387 			data = dev_spec->shadow_ram[i].value;
3388 		} else {
3389 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3390 								old_bank_offset,
3391 								&data);
3392 			if (ret_val)
3393 				break;
3394 		}
3395 
3396 		/* If the word is 0x13, then make sure the signature bits
3397 		 * (15:14) are 11b until the commit has completed.
3398 		 * This will allow us to write 10b which indicates the
3399 		 * signature is valid.  We want to do this after the write
3400 		 * has completed so that we don't mark the segment valid
3401 		 * while the write is still in progress
3402 		 */
3403 		if (i == E1000_ICH_NVM_SIG_WORD)
3404 			data |= E1000_ICH_NVM_SIG_MASK;
3405 
3406 		/* Convert offset to bytes. */
3407 		act_offset = (i + new_bank_offset) << 1;
3408 
3409 		usleep_range(100, 200);
3410 		/* Write the bytes to the new bank. */
3411 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3412 							       act_offset,
3413 							       (u8)data);
3414 		if (ret_val)
3415 			break;
3416 
3417 		usleep_range(100, 200);
3418 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3419 							       act_offset + 1,
3420 							       (u8)(data >> 8));
3421 		if (ret_val)
3422 			break;
3423 	}
3424 
3425 	/* Don't bother writing the segment valid bits if sector
3426 	 * programming failed.
3427 	 */
3428 	if (ret_val) {
3429 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3430 		e_dbg("Flash commit failed.\n");
3431 		goto release;
3432 	}
3433 
3434 	/* Finally validate the new segment by setting bit 15:14
3435 	 * to 10b in word 0x13 , this can be done without an
3436 	 * erase as well since these bits are 11 to start with
3437 	 * and we need to change bit 14 to 0b
3438 	 */
3439 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3440 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3441 	if (ret_val)
3442 		goto release;
3443 
3444 	data &= 0xBFFF;
3445 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3446 						       act_offset * 2 + 1,
3447 						       (u8)(data >> 8));
3448 	if (ret_val)
3449 		goto release;
3450 
3451 	/* And invalidate the previously valid segment by setting
3452 	 * its signature word (0x13) high_byte to 0b. This can be
3453 	 * done without an erase because flash erase sets all bits
3454 	 * to 1's. We can write 1's to 0's without an erase
3455 	 */
3456 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3457 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3458 	if (ret_val)
3459 		goto release;
3460 
3461 	/* Great!  Everything worked, we can now clear the cached entries. */
3462 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3463 		dev_spec->shadow_ram[i].modified = false;
3464 		dev_spec->shadow_ram[i].value = 0xFFFF;
3465 	}
3466 
3467 release:
3468 	nvm->ops.release(hw);
3469 
3470 	/* Reload the EEPROM, or else modifications will not appear
3471 	 * until after the next adapter reset.
3472 	 */
3473 	if (!ret_val) {
3474 		nvm->ops.reload(hw);
3475 		usleep_range(10000, 20000);
3476 	}
3477 
3478 out:
3479 	if (ret_val)
3480 		e_dbg("NVM update error: %d\n", ret_val);
3481 
3482 	return ret_val;
3483 }
3484 
3485 /**
3486  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3487  *  @hw: pointer to the HW structure
3488  *
3489  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3490  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3491  *  calculated, in which case we need to calculate the checksum and set bit 6.
3492  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)3493 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3494 {
3495 	s32 ret_val;
3496 	u16 data;
3497 	u16 word;
3498 	u16 valid_csum_mask;
3499 
3500 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3501 	 * the checksum needs to be fixed.  This bit is an indication that
3502 	 * the NVM was prepared by OEM software and did not calculate
3503 	 * the checksum...a likely scenario.
3504 	 */
3505 	switch (hw->mac.type) {
3506 	case e1000_pch_lpt:
3507 		word = NVM_COMPAT;
3508 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3509 		break;
3510 	default:
3511 		word = NVM_FUTURE_INIT_WORD1;
3512 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3513 		break;
3514 	}
3515 
3516 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3517 	if (ret_val)
3518 		return ret_val;
3519 
3520 	if (!(data & valid_csum_mask)) {
3521 		data |= valid_csum_mask;
3522 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3523 		if (ret_val)
3524 			return ret_val;
3525 		ret_val = e1000e_update_nvm_checksum(hw);
3526 		if (ret_val)
3527 			return ret_val;
3528 	}
3529 
3530 	return e1000e_validate_nvm_checksum_generic(hw);
3531 }
3532 
3533 /**
3534  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3535  *  @hw: pointer to the HW structure
3536  *
3537  *  To prevent malicious write/erase of the NVM, set it to be read-only
3538  *  so that the hardware ignores all write/erase cycles of the NVM via
3539  *  the flash control registers.  The shadow-ram copy of the NVM will
3540  *  still be updated, however any updates to this copy will not stick
3541  *  across driver reloads.
3542  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)3543 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3544 {
3545 	struct e1000_nvm_info *nvm = &hw->nvm;
3546 	union ich8_flash_protected_range pr0;
3547 	union ich8_hws_flash_status hsfsts;
3548 	u32 gfpreg;
3549 
3550 	nvm->ops.acquire(hw);
3551 
3552 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3553 
3554 	/* Write-protect GbE Sector of NVM */
3555 	pr0.regval = er32flash(ICH_FLASH_PR0);
3556 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3557 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3558 	pr0.range.wpe = true;
3559 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3560 
3561 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3562 	 * PR0 to prevent the write-protection from being lifted.
3563 	 * Once FLOCKDN is set, the registers protected by it cannot
3564 	 * be written until FLOCKDN is cleared by a hardware reset.
3565 	 */
3566 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3567 	hsfsts.hsf_status.flockdn = true;
3568 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3569 
3570 	nvm->ops.release(hw);
3571 }
3572 
3573 /**
3574  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3575  *  @hw: pointer to the HW structure
3576  *  @offset: The offset (in bytes) of the byte/word to read.
3577  *  @size: Size of data to read, 1=byte 2=word
3578  *  @data: The byte(s) to write to the NVM.
3579  *
3580  *  Writes one/two bytes to the NVM using the flash access registers.
3581  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)3582 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3583 					  u8 size, u16 data)
3584 {
3585 	union ich8_hws_flash_status hsfsts;
3586 	union ich8_hws_flash_ctrl hsflctl;
3587 	u32 flash_linear_addr;
3588 	u32 flash_data = 0;
3589 	s32 ret_val;
3590 	u8 count = 0;
3591 
3592 	if (size < 1 || size > 2 || data > size * 0xff ||
3593 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3594 		return -E1000_ERR_NVM;
3595 
3596 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3597 			     hw->nvm.flash_base_addr);
3598 
3599 	do {
3600 		udelay(1);
3601 		/* Steps */
3602 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3603 		if (ret_val)
3604 			break;
3605 
3606 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3607 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3608 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3609 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3610 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3611 
3612 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3613 
3614 		if (size == 1)
3615 			flash_data = (u32)data & 0x00FF;
3616 		else
3617 			flash_data = (u32)data;
3618 
3619 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3620 
3621 		/* check if FCERR is set to 1 , if set to 1, clear it
3622 		 * and try the whole sequence a few more times else done
3623 		 */
3624 		ret_val =
3625 		    e1000_flash_cycle_ich8lan(hw,
3626 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3627 		if (!ret_val)
3628 			break;
3629 
3630 		/* If we're here, then things are most likely
3631 		 * completely hosed, but if the error condition
3632 		 * is detected, it won't hurt to give it another
3633 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3634 		 */
3635 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3636 		if (hsfsts.hsf_status.flcerr)
3637 			/* Repeat for some time before giving up. */
3638 			continue;
3639 		if (!hsfsts.hsf_status.flcdone) {
3640 			e_dbg("Timeout error - flash cycle did not complete.\n");
3641 			break;
3642 		}
3643 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3644 
3645 	return ret_val;
3646 }
3647 
3648 /**
3649  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3650  *  @hw: pointer to the HW structure
3651  *  @offset: The index of the byte to read.
3652  *  @data: The byte to write to the NVM.
3653  *
3654  *  Writes a single byte to the NVM using the flash access registers.
3655  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)3656 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3657 					  u8 data)
3658 {
3659 	u16 word = (u16)data;
3660 
3661 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3662 }
3663 
3664 /**
3665  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3666  *  @hw: pointer to the HW structure
3667  *  @offset: The offset of the byte to write.
3668  *  @byte: The byte to write to the NVM.
3669  *
3670  *  Writes a single byte to the NVM using the flash access registers.
3671  *  Goes through a retry algorithm before giving up.
3672  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)3673 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3674 						u32 offset, u8 byte)
3675 {
3676 	s32 ret_val;
3677 	u16 program_retries;
3678 
3679 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3680 	if (!ret_val)
3681 		return ret_val;
3682 
3683 	for (program_retries = 0; program_retries < 100; program_retries++) {
3684 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3685 		usleep_range(100, 200);
3686 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3687 		if (!ret_val)
3688 			break;
3689 	}
3690 	if (program_retries == 100)
3691 		return -E1000_ERR_NVM;
3692 
3693 	return 0;
3694 }
3695 
3696 /**
3697  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3698  *  @hw: pointer to the HW structure
3699  *  @bank: 0 for first bank, 1 for second bank, etc.
3700  *
3701  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3702  *  bank N is 4096 * N + flash_reg_addr.
3703  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)3704 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3705 {
3706 	struct e1000_nvm_info *nvm = &hw->nvm;
3707 	union ich8_hws_flash_status hsfsts;
3708 	union ich8_hws_flash_ctrl hsflctl;
3709 	u32 flash_linear_addr;
3710 	/* bank size is in 16bit words - adjust to bytes */
3711 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3712 	s32 ret_val;
3713 	s32 count = 0;
3714 	s32 j, iteration, sector_size;
3715 
3716 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3717 
3718 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3719 	 * register
3720 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3721 	 *     consecutive sectors.  The start index for the nth Hw sector
3722 	 *     can be calculated as = bank * 4096 + n * 256
3723 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3724 	 *     The start index for the nth Hw sector can be calculated
3725 	 *     as = bank * 4096
3726 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3727 	 *     (ich9 only, otherwise error condition)
3728 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3729 	 */
3730 	switch (hsfsts.hsf_status.berasesz) {
3731 	case 0:
3732 		/* Hw sector size 256 */
3733 		sector_size = ICH_FLASH_SEG_SIZE_256;
3734 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3735 		break;
3736 	case 1:
3737 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3738 		iteration = 1;
3739 		break;
3740 	case 2:
3741 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3742 		iteration = 1;
3743 		break;
3744 	case 3:
3745 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3746 		iteration = 1;
3747 		break;
3748 	default:
3749 		return -E1000_ERR_NVM;
3750 	}
3751 
3752 	/* Start with the base address, then add the sector offset. */
3753 	flash_linear_addr = hw->nvm.flash_base_addr;
3754 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3755 
3756 	for (j = 0; j < iteration; j++) {
3757 		do {
3758 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3759 
3760 			/* Steps */
3761 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3762 			if (ret_val)
3763 				return ret_val;
3764 
3765 			/* Write a value 11 (block Erase) in Flash
3766 			 * Cycle field in hw flash control
3767 			 */
3768 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3769 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3770 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3771 
3772 			/* Write the last 24 bits of an index within the
3773 			 * block into Flash Linear address field in Flash
3774 			 * Address.
3775 			 */
3776 			flash_linear_addr += (j * sector_size);
3777 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3778 
3779 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3780 			if (!ret_val)
3781 				break;
3782 
3783 			/* Check if FCERR is set to 1.  If 1,
3784 			 * clear it and try the whole sequence
3785 			 * a few more times else Done
3786 			 */
3787 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3788 			if (hsfsts.hsf_status.flcerr)
3789 				/* repeat for some time before giving up */
3790 				continue;
3791 			else if (!hsfsts.hsf_status.flcdone)
3792 				return ret_val;
3793 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3794 	}
3795 
3796 	return 0;
3797 }
3798 
3799 /**
3800  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3801  *  @hw: pointer to the HW structure
3802  *  @data: Pointer to the LED settings
3803  *
3804  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3805  *  settings is all 0's or F's, set the LED default to a valid LED default
3806  *  setting.
3807  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)3808 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3809 {
3810 	s32 ret_val;
3811 
3812 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3813 	if (ret_val) {
3814 		e_dbg("NVM Read Error\n");
3815 		return ret_val;
3816 	}
3817 
3818 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3819 		*data = ID_LED_DEFAULT_ICH8LAN;
3820 
3821 	return 0;
3822 }
3823 
3824 /**
3825  *  e1000_id_led_init_pchlan - store LED configurations
3826  *  @hw: pointer to the HW structure
3827  *
3828  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3829  *  the PHY LED configuration register.
3830  *
3831  *  PCH also does not have an "always on" or "always off" mode which
3832  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3833  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3834  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3835  *  link based on logic in e1000_led_[on|off]_pchlan().
3836  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)3837 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3838 {
3839 	struct e1000_mac_info *mac = &hw->mac;
3840 	s32 ret_val;
3841 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3842 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3843 	u16 data, i, temp, shift;
3844 
3845 	/* Get default ID LED modes */
3846 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3847 	if (ret_val)
3848 		return ret_val;
3849 
3850 	mac->ledctl_default = er32(LEDCTL);
3851 	mac->ledctl_mode1 = mac->ledctl_default;
3852 	mac->ledctl_mode2 = mac->ledctl_default;
3853 
3854 	for (i = 0; i < 4; i++) {
3855 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3856 		shift = (i * 5);
3857 		switch (temp) {
3858 		case ID_LED_ON1_DEF2:
3859 		case ID_LED_ON1_ON2:
3860 		case ID_LED_ON1_OFF2:
3861 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3862 			mac->ledctl_mode1 |= (ledctl_on << shift);
3863 			break;
3864 		case ID_LED_OFF1_DEF2:
3865 		case ID_LED_OFF1_ON2:
3866 		case ID_LED_OFF1_OFF2:
3867 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3868 			mac->ledctl_mode1 |= (ledctl_off << shift);
3869 			break;
3870 		default:
3871 			/* Do nothing */
3872 			break;
3873 		}
3874 		switch (temp) {
3875 		case ID_LED_DEF1_ON2:
3876 		case ID_LED_ON1_ON2:
3877 		case ID_LED_OFF1_ON2:
3878 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3879 			mac->ledctl_mode2 |= (ledctl_on << shift);
3880 			break;
3881 		case ID_LED_DEF1_OFF2:
3882 		case ID_LED_ON1_OFF2:
3883 		case ID_LED_OFF1_OFF2:
3884 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3885 			mac->ledctl_mode2 |= (ledctl_off << shift);
3886 			break;
3887 		default:
3888 			/* Do nothing */
3889 			break;
3890 		}
3891 	}
3892 
3893 	return 0;
3894 }
3895 
3896 /**
3897  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3898  *  @hw: pointer to the HW structure
3899  *
3900  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3901  *  register, so the the bus width is hard coded.
3902  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)3903 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3904 {
3905 	struct e1000_bus_info *bus = &hw->bus;
3906 	s32 ret_val;
3907 
3908 	ret_val = e1000e_get_bus_info_pcie(hw);
3909 
3910 	/* ICH devices are "PCI Express"-ish.  They have
3911 	 * a configuration space, but do not contain
3912 	 * PCI Express Capability registers, so bus width
3913 	 * must be hardcoded.
3914 	 */
3915 	if (bus->width == e1000_bus_width_unknown)
3916 		bus->width = e1000_bus_width_pcie_x1;
3917 
3918 	return ret_val;
3919 }
3920 
3921 /**
3922  *  e1000_reset_hw_ich8lan - Reset the hardware
3923  *  @hw: pointer to the HW structure
3924  *
3925  *  Does a full reset of the hardware which includes a reset of the PHY and
3926  *  MAC.
3927  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)3928 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3929 {
3930 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3931 	u16 kum_cfg;
3932 	u32 ctrl, reg;
3933 	s32 ret_val;
3934 
3935 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3936 	 * on the last TLP read/write transaction when MAC is reset.
3937 	 */
3938 	ret_val = e1000e_disable_pcie_master(hw);
3939 	if (ret_val)
3940 		e_dbg("PCI-E Master disable polling has failed.\n");
3941 
3942 	e_dbg("Masking off all interrupts\n");
3943 	ew32(IMC, 0xffffffff);
3944 
3945 	/* Disable the Transmit and Receive units.  Then delay to allow
3946 	 * any pending transactions to complete before we hit the MAC
3947 	 * with the global reset.
3948 	 */
3949 	ew32(RCTL, 0);
3950 	ew32(TCTL, E1000_TCTL_PSP);
3951 	e1e_flush();
3952 
3953 	usleep_range(10000, 20000);
3954 
3955 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3956 	if (hw->mac.type == e1000_ich8lan) {
3957 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3958 		ew32(PBA, E1000_PBA_8K);
3959 		/* Set Packet Buffer Size to 16k. */
3960 		ew32(PBS, E1000_PBS_16K);
3961 	}
3962 
3963 	if (hw->mac.type == e1000_pchlan) {
3964 		/* Save the NVM K1 bit setting */
3965 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3966 		if (ret_val)
3967 			return ret_val;
3968 
3969 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3970 			dev_spec->nvm_k1_enabled = true;
3971 		else
3972 			dev_spec->nvm_k1_enabled = false;
3973 	}
3974 
3975 	ctrl = er32(CTRL);
3976 
3977 	if (!hw->phy.ops.check_reset_block(hw)) {
3978 		/* Full-chip reset requires MAC and PHY reset at the same
3979 		 * time to make sure the interface between MAC and the
3980 		 * external PHY is reset.
3981 		 */
3982 		ctrl |= E1000_CTRL_PHY_RST;
3983 
3984 		/* Gate automatic PHY configuration by hardware on
3985 		 * non-managed 82579
3986 		 */
3987 		if ((hw->mac.type == e1000_pch2lan) &&
3988 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3989 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3990 	}
3991 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3992 	e_dbg("Issuing a global reset to ich8lan\n");
3993 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3994 	/* cannot issue a flush here because it hangs the hardware */
3995 	msleep(20);
3996 
3997 	/* Set Phy Config Counter to 50msec */
3998 	if (hw->mac.type == e1000_pch2lan) {
3999 		reg = er32(FEXTNVM3);
4000 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4001 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4002 		ew32(FEXTNVM3, reg);
4003 	}
4004 
4005 	if (!ret_val)
4006 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4007 
4008 	if (ctrl & E1000_CTRL_PHY_RST) {
4009 		ret_val = hw->phy.ops.get_cfg_done(hw);
4010 		if (ret_val)
4011 			return ret_val;
4012 
4013 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4014 		if (ret_val)
4015 			return ret_val;
4016 	}
4017 
4018 	/* For PCH, this write will make sure that any noise
4019 	 * will be detected as a CRC error and be dropped rather than show up
4020 	 * as a bad packet to the DMA engine.
4021 	 */
4022 	if (hw->mac.type == e1000_pchlan)
4023 		ew32(CRC_OFFSET, 0x65656565);
4024 
4025 	ew32(IMC, 0xffffffff);
4026 	er32(ICR);
4027 
4028 	reg = er32(KABGTXD);
4029 	reg |= E1000_KABGTXD_BGSQLBIAS;
4030 	ew32(KABGTXD, reg);
4031 
4032 	return 0;
4033 }
4034 
4035 /**
4036  *  e1000_init_hw_ich8lan - Initialize the hardware
4037  *  @hw: pointer to the HW structure
4038  *
4039  *  Prepares the hardware for transmit and receive by doing the following:
4040  *   - initialize hardware bits
4041  *   - initialize LED identification
4042  *   - setup receive address registers
4043  *   - setup flow control
4044  *   - setup transmit descriptors
4045  *   - clear statistics
4046  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4047 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4048 {
4049 	struct e1000_mac_info *mac = &hw->mac;
4050 	u32 ctrl_ext, txdctl, snoop;
4051 	s32 ret_val;
4052 	u16 i;
4053 
4054 	e1000_initialize_hw_bits_ich8lan(hw);
4055 
4056 	/* Initialize identification LED */
4057 	ret_val = mac->ops.id_led_init(hw);
4058 	/* An error is not fatal and we should not stop init due to this */
4059 	if (ret_val)
4060 		e_dbg("Error initializing identification LED\n");
4061 
4062 	/* Setup the receive address. */
4063 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4064 
4065 	/* Zero out the Multicast HASH table */
4066 	e_dbg("Zeroing the MTA\n");
4067 	for (i = 0; i < mac->mta_reg_count; i++)
4068 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4069 
4070 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4071 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4072 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4073 	 */
4074 	if (hw->phy.type == e1000_phy_82578) {
4075 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4076 		i &= ~BM_WUC_HOST_WU_BIT;
4077 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4078 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4079 		if (ret_val)
4080 			return ret_val;
4081 	}
4082 
4083 	/* Setup link and flow control */
4084 	ret_val = mac->ops.setup_link(hw);
4085 
4086 	/* Set the transmit descriptor write-back policy for both queues */
4087 	txdctl = er32(TXDCTL(0));
4088 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4089 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4090 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4091 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4092 	ew32(TXDCTL(0), txdctl);
4093 	txdctl = er32(TXDCTL(1));
4094 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4095 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4096 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4097 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4098 	ew32(TXDCTL(1), txdctl);
4099 
4100 	/* ICH8 has opposite polarity of no_snoop bits.
4101 	 * By default, we should use snoop behavior.
4102 	 */
4103 	if (mac->type == e1000_ich8lan)
4104 		snoop = PCIE_ICH8_SNOOP_ALL;
4105 	else
4106 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4107 	e1000e_set_pcie_no_snoop(hw, snoop);
4108 
4109 	ctrl_ext = er32(CTRL_EXT);
4110 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4111 	ew32(CTRL_EXT, ctrl_ext);
4112 
4113 	/* Clear all of the statistics registers (clear on read).  It is
4114 	 * important that we do this after we have tried to establish link
4115 	 * because the symbol error count will increment wildly if there
4116 	 * is no link.
4117 	 */
4118 	e1000_clear_hw_cntrs_ich8lan(hw);
4119 
4120 	return ret_val;
4121 }
4122 
4123 /**
4124  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4125  *  @hw: pointer to the HW structure
4126  *
4127  *  Sets/Clears required hardware bits necessary for correctly setting up the
4128  *  hardware for transmit and receive.
4129  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4130 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4131 {
4132 	u32 reg;
4133 
4134 	/* Extended Device Control */
4135 	reg = er32(CTRL_EXT);
4136 	reg |= (1 << 22);
4137 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4138 	if (hw->mac.type >= e1000_pchlan)
4139 		reg |= E1000_CTRL_EXT_PHYPDEN;
4140 	ew32(CTRL_EXT, reg);
4141 
4142 	/* Transmit Descriptor Control 0 */
4143 	reg = er32(TXDCTL(0));
4144 	reg |= (1 << 22);
4145 	ew32(TXDCTL(0), reg);
4146 
4147 	/* Transmit Descriptor Control 1 */
4148 	reg = er32(TXDCTL(1));
4149 	reg |= (1 << 22);
4150 	ew32(TXDCTL(1), reg);
4151 
4152 	/* Transmit Arbitration Control 0 */
4153 	reg = er32(TARC(0));
4154 	if (hw->mac.type == e1000_ich8lan)
4155 		reg |= (1 << 28) | (1 << 29);
4156 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4157 	ew32(TARC(0), reg);
4158 
4159 	/* Transmit Arbitration Control 1 */
4160 	reg = er32(TARC(1));
4161 	if (er32(TCTL) & E1000_TCTL_MULR)
4162 		reg &= ~(1 << 28);
4163 	else
4164 		reg |= (1 << 28);
4165 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4166 	ew32(TARC(1), reg);
4167 
4168 	/* Device Status */
4169 	if (hw->mac.type == e1000_ich8lan) {
4170 		reg = er32(STATUS);
4171 		reg &= ~(1 << 31);
4172 		ew32(STATUS, reg);
4173 	}
4174 
4175 	/* work-around descriptor data corruption issue during nfs v2 udp
4176 	 * traffic, just disable the nfs filtering capability
4177 	 */
4178 	reg = er32(RFCTL);
4179 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4180 
4181 	/* Disable IPv6 extension header parsing because some malformed
4182 	 * IPv6 headers can hang the Rx.
4183 	 */
4184 	if (hw->mac.type == e1000_ich8lan)
4185 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4186 	ew32(RFCTL, reg);
4187 
4188 	/* Enable ECC on Lynxpoint */
4189 	if (hw->mac.type == e1000_pch_lpt) {
4190 		reg = er32(PBECCSTS);
4191 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4192 		ew32(PBECCSTS, reg);
4193 
4194 		reg = er32(CTRL);
4195 		reg |= E1000_CTRL_MEHE;
4196 		ew32(CTRL, reg);
4197 	}
4198 }
4199 
4200 /**
4201  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4202  *  @hw: pointer to the HW structure
4203  *
4204  *  Determines which flow control settings to use, then configures flow
4205  *  control.  Calls the appropriate media-specific link configuration
4206  *  function.  Assuming the adapter has a valid link partner, a valid link
4207  *  should be established.  Assumes the hardware has previously been reset
4208  *  and the transmitter and receiver are not enabled.
4209  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)4210 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4211 {
4212 	s32 ret_val;
4213 
4214 	if (hw->phy.ops.check_reset_block(hw))
4215 		return 0;
4216 
4217 	/* ICH parts do not have a word in the NVM to determine
4218 	 * the default flow control setting, so we explicitly
4219 	 * set it to full.
4220 	 */
4221 	if (hw->fc.requested_mode == e1000_fc_default) {
4222 		/* Workaround h/w hang when Tx flow control enabled */
4223 		if (hw->mac.type == e1000_pchlan)
4224 			hw->fc.requested_mode = e1000_fc_rx_pause;
4225 		else
4226 			hw->fc.requested_mode = e1000_fc_full;
4227 	}
4228 
4229 	/* Save off the requested flow control mode for use later.  Depending
4230 	 * on the link partner's capabilities, we may or may not use this mode.
4231 	 */
4232 	hw->fc.current_mode = hw->fc.requested_mode;
4233 
4234 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4235 
4236 	/* Continue to configure the copper link. */
4237 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4238 	if (ret_val)
4239 		return ret_val;
4240 
4241 	ew32(FCTTV, hw->fc.pause_time);
4242 	if ((hw->phy.type == e1000_phy_82578) ||
4243 	    (hw->phy.type == e1000_phy_82579) ||
4244 	    (hw->phy.type == e1000_phy_i217) ||
4245 	    (hw->phy.type == e1000_phy_82577)) {
4246 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4247 
4248 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4249 				   hw->fc.pause_time);
4250 		if (ret_val)
4251 			return ret_val;
4252 	}
4253 
4254 	return e1000e_set_fc_watermarks(hw);
4255 }
4256 
4257 /**
4258  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4259  *  @hw: pointer to the HW structure
4260  *
4261  *  Configures the kumeran interface to the PHY to wait the appropriate time
4262  *  when polling the PHY, then call the generic setup_copper_link to finish
4263  *  configuring the copper link.
4264  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)4265 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4266 {
4267 	u32 ctrl;
4268 	s32 ret_val;
4269 	u16 reg_data;
4270 
4271 	ctrl = er32(CTRL);
4272 	ctrl |= E1000_CTRL_SLU;
4273 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4274 	ew32(CTRL, ctrl);
4275 
4276 	/* Set the mac to wait the maximum time between each iteration
4277 	 * and increase the max iterations when polling the phy;
4278 	 * this fixes erroneous timeouts at 10Mbps.
4279 	 */
4280 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4281 	if (ret_val)
4282 		return ret_val;
4283 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4284 				       &reg_data);
4285 	if (ret_val)
4286 		return ret_val;
4287 	reg_data |= 0x3F;
4288 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4289 					reg_data);
4290 	if (ret_val)
4291 		return ret_val;
4292 
4293 	switch (hw->phy.type) {
4294 	case e1000_phy_igp_3:
4295 		ret_val = e1000e_copper_link_setup_igp(hw);
4296 		if (ret_val)
4297 			return ret_val;
4298 		break;
4299 	case e1000_phy_bm:
4300 	case e1000_phy_82578:
4301 		ret_val = e1000e_copper_link_setup_m88(hw);
4302 		if (ret_val)
4303 			return ret_val;
4304 		break;
4305 	case e1000_phy_82577:
4306 	case e1000_phy_82579:
4307 		ret_val = e1000_copper_link_setup_82577(hw);
4308 		if (ret_val)
4309 			return ret_val;
4310 		break;
4311 	case e1000_phy_ife:
4312 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4313 		if (ret_val)
4314 			return ret_val;
4315 
4316 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4317 
4318 		switch (hw->phy.mdix) {
4319 		case 1:
4320 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4321 			break;
4322 		case 2:
4323 			reg_data |= IFE_PMC_FORCE_MDIX;
4324 			break;
4325 		case 0:
4326 		default:
4327 			reg_data |= IFE_PMC_AUTO_MDIX;
4328 			break;
4329 		}
4330 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4331 		if (ret_val)
4332 			return ret_val;
4333 		break;
4334 	default:
4335 		break;
4336 	}
4337 
4338 	return e1000e_setup_copper_link(hw);
4339 }
4340 
4341 /**
4342  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4343  *  @hw: pointer to the HW structure
4344  *
4345  *  Calls the PHY specific link setup function and then calls the
4346  *  generic setup_copper_link to finish configuring the link for
4347  *  Lynxpoint PCH devices
4348  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)4349 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4350 {
4351 	u32 ctrl;
4352 	s32 ret_val;
4353 
4354 	ctrl = er32(CTRL);
4355 	ctrl |= E1000_CTRL_SLU;
4356 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4357 	ew32(CTRL, ctrl);
4358 
4359 	ret_val = e1000_copper_link_setup_82577(hw);
4360 	if (ret_val)
4361 		return ret_val;
4362 
4363 	return e1000e_setup_copper_link(hw);
4364 }
4365 
4366 /**
4367  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4368  *  @hw: pointer to the HW structure
4369  *  @speed: pointer to store current link speed
4370  *  @duplex: pointer to store the current link duplex
4371  *
4372  *  Calls the generic get_speed_and_duplex to retrieve the current link
4373  *  information and then calls the Kumeran lock loss workaround for links at
4374  *  gigabit speeds.
4375  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)4376 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4377 					  u16 *duplex)
4378 {
4379 	s32 ret_val;
4380 
4381 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4382 	if (ret_val)
4383 		return ret_val;
4384 
4385 	if ((hw->mac.type == e1000_ich8lan) &&
4386 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4387 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4388 	}
4389 
4390 	return ret_val;
4391 }
4392 
4393 /**
4394  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4395  *  @hw: pointer to the HW structure
4396  *
4397  *  Work-around for 82566 Kumeran PCS lock loss:
4398  *  On link status change (i.e. PCI reset, speed change) and link is up and
4399  *  speed is gigabit-
4400  *    0) if workaround is optionally disabled do nothing
4401  *    1) wait 1ms for Kumeran link to come up
4402  *    2) check Kumeran Diagnostic register PCS lock loss bit
4403  *    3) if not set the link is locked (all is good), otherwise...
4404  *    4) reset the PHY
4405  *    5) repeat up to 10 times
4406  *  Note: this is only called for IGP3 copper when speed is 1gb.
4407  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)4408 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4409 {
4410 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4411 	u32 phy_ctrl;
4412 	s32 ret_val;
4413 	u16 i, data;
4414 	bool link;
4415 
4416 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4417 		return 0;
4418 
4419 	/* Make sure link is up before proceeding.  If not just return.
4420 	 * Attempting this while link is negotiating fouled up link
4421 	 * stability
4422 	 */
4423 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4424 	if (!link)
4425 		return 0;
4426 
4427 	for (i = 0; i < 10; i++) {
4428 		/* read once to clear */
4429 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4430 		if (ret_val)
4431 			return ret_val;
4432 		/* and again to get new status */
4433 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4434 		if (ret_val)
4435 			return ret_val;
4436 
4437 		/* check for PCS lock */
4438 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4439 			return 0;
4440 
4441 		/* Issue PHY reset */
4442 		e1000_phy_hw_reset(hw);
4443 		mdelay(5);
4444 	}
4445 	/* Disable GigE link negotiation */
4446 	phy_ctrl = er32(PHY_CTRL);
4447 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4448 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4449 	ew32(PHY_CTRL, phy_ctrl);
4450 
4451 	/* Call gig speed drop workaround on Gig disable before accessing
4452 	 * any PHY registers
4453 	 */
4454 	e1000e_gig_downshift_workaround_ich8lan(hw);
4455 
4456 	/* unable to acquire PCS lock */
4457 	return -E1000_ERR_PHY;
4458 }
4459 
4460 /**
4461  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4462  *  @hw: pointer to the HW structure
4463  *  @state: boolean value used to set the current Kumeran workaround state
4464  *
4465  *  If ICH8, set the current Kumeran workaround state (enabled - true
4466  *  /disabled - false).
4467  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)4468 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4469 						  bool state)
4470 {
4471 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4472 
4473 	if (hw->mac.type != e1000_ich8lan) {
4474 		e_dbg("Workaround applies to ICH8 only.\n");
4475 		return;
4476 	}
4477 
4478 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4479 }
4480 
4481 /**
4482  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4483  *  @hw: pointer to the HW structure
4484  *
4485  *  Workaround for 82566 power-down on D3 entry:
4486  *    1) disable gigabit link
4487  *    2) write VR power-down enable
4488  *    3) read it back
4489  *  Continue if successful, else issue LCD reset and repeat
4490  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)4491 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4492 {
4493 	u32 reg;
4494 	u16 data;
4495 	u8 retry = 0;
4496 
4497 	if (hw->phy.type != e1000_phy_igp_3)
4498 		return;
4499 
4500 	/* Try the workaround twice (if needed) */
4501 	do {
4502 		/* Disable link */
4503 		reg = er32(PHY_CTRL);
4504 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4505 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4506 		ew32(PHY_CTRL, reg);
4507 
4508 		/* Call gig speed drop workaround on Gig disable before
4509 		 * accessing any PHY registers
4510 		 */
4511 		if (hw->mac.type == e1000_ich8lan)
4512 			e1000e_gig_downshift_workaround_ich8lan(hw);
4513 
4514 		/* Write VR power-down enable */
4515 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4516 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4517 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4518 
4519 		/* Read it back and test */
4520 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4521 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4522 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4523 			break;
4524 
4525 		/* Issue PHY reset and repeat at most one more time */
4526 		reg = er32(CTRL);
4527 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4528 		retry++;
4529 	} while (retry);
4530 }
4531 
4532 /**
4533  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4534  *  @hw: pointer to the HW structure
4535  *
4536  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4537  *  LPLU, Gig disable, MDIC PHY reset):
4538  *    1) Set Kumeran Near-end loopback
4539  *    2) Clear Kumeran Near-end loopback
4540  *  Should only be called for ICH8[m] devices with any 1G Phy.
4541  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)4542 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4543 {
4544 	s32 ret_val;
4545 	u16 reg_data;
4546 
4547 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4548 		return;
4549 
4550 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4551 				       &reg_data);
4552 	if (ret_val)
4553 		return;
4554 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4555 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4556 					reg_data);
4557 	if (ret_val)
4558 		return;
4559 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4560 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4561 }
4562 
4563 /**
4564  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4565  *  @hw: pointer to the HW structure
4566  *
4567  *  During S0 to Sx transition, it is possible the link remains at gig
4568  *  instead of negotiating to a lower speed.  Before going to Sx, set
4569  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4570  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4571  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4572  *  needs to be written.
4573  *  Parts that support (and are linked to a partner which support) EEE in
4574  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4575  *  than 10Mbps w/o EEE.
4576  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)4577 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4578 {
4579 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4580 	u32 phy_ctrl;
4581 	s32 ret_val;
4582 
4583 	phy_ctrl = er32(PHY_CTRL);
4584 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4585 
4586 	if (hw->phy.type == e1000_phy_i217) {
4587 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4588 
4589 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4590 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4591 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4592 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4593 			u32 fextnvm6 = er32(FEXTNVM6);
4594 
4595 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4596 		}
4597 
4598 		ret_val = hw->phy.ops.acquire(hw);
4599 		if (ret_val)
4600 			goto out;
4601 
4602 		if (!dev_spec->eee_disable) {
4603 			u16 eee_advert;
4604 
4605 			ret_val =
4606 			    e1000_read_emi_reg_locked(hw,
4607 						      I217_EEE_ADVERTISEMENT,
4608 						      &eee_advert);
4609 			if (ret_val)
4610 				goto release;
4611 
4612 			/* Disable LPLU if both link partners support 100BaseT
4613 			 * EEE and 100Full is advertised on both ends of the
4614 			 * link, and enable Auto Enable LPI since there will
4615 			 * be no driver to enable LPI while in Sx.
4616 			 */
4617 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4618 			    (dev_spec->eee_lp_ability &
4619 			     I82579_EEE_100_SUPPORTED) &&
4620 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4621 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4622 					      E1000_PHY_CTRL_NOND0A_LPLU);
4623 
4624 				/* Set Auto Enable LPI after link up */
4625 				e1e_rphy_locked(hw,
4626 						I217_LPI_GPIO_CTRL, &phy_reg);
4627 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4628 				e1e_wphy_locked(hw,
4629 						I217_LPI_GPIO_CTRL, phy_reg);
4630 			}
4631 		}
4632 
4633 		/* For i217 Intel Rapid Start Technology support,
4634 		 * when the system is going into Sx and no manageability engine
4635 		 * is present, the driver must configure proxy to reset only on
4636 		 * power good.  LPI (Low Power Idle) state must also reset only
4637 		 * on power good, as well as the MTA (Multicast table array).
4638 		 * The SMBus release must also be disabled on LCD reset.
4639 		 */
4640 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4641 			/* Enable proxy to reset only on power good. */
4642 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4643 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4644 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4645 
4646 			/* Set bit enable LPI (EEE) to reset only on
4647 			 * power good.
4648 			 */
4649 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4650 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4651 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4652 
4653 			/* Disable the SMB release on LCD reset. */
4654 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4655 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4656 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4657 		}
4658 
4659 		/* Enable MTA to reset for Intel Rapid Start Technology
4660 		 * Support
4661 		 */
4662 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4663 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4664 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4665 
4666 release:
4667 		hw->phy.ops.release(hw);
4668 	}
4669 out:
4670 	ew32(PHY_CTRL, phy_ctrl);
4671 
4672 	if (hw->mac.type == e1000_ich8lan)
4673 		e1000e_gig_downshift_workaround_ich8lan(hw);
4674 
4675 	if (hw->mac.type >= e1000_pchlan) {
4676 		e1000_oem_bits_config_ich8lan(hw, false);
4677 
4678 		/* Reset PHY to activate OEM bits on 82577/8 */
4679 		if (hw->mac.type == e1000_pchlan)
4680 			e1000e_phy_hw_reset_generic(hw);
4681 
4682 		ret_val = hw->phy.ops.acquire(hw);
4683 		if (ret_val)
4684 			return;
4685 		e1000_write_smbus_addr(hw);
4686 		hw->phy.ops.release(hw);
4687 	}
4688 }
4689 
4690 /**
4691  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4692  *  @hw: pointer to the HW structure
4693  *
4694  *  During Sx to S0 transitions on non-managed devices or managed devices
4695  *  on which PHY resets are not blocked, if the PHY registers cannot be
4696  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4697  *  the PHY.
4698  *  On i217, setup Intel Rapid Start Technology.
4699  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)4700 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4701 {
4702 	s32 ret_val;
4703 
4704 	if (hw->mac.type < e1000_pch2lan)
4705 		return;
4706 
4707 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4708 	if (ret_val) {
4709 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4710 		return;
4711 	}
4712 
4713 	/* For i217 Intel Rapid Start Technology support when the system
4714 	 * is transitioning from Sx and no manageability engine is present
4715 	 * configure SMBus to restore on reset, disable proxy, and enable
4716 	 * the reset on MTA (Multicast table array).
4717 	 */
4718 	if (hw->phy.type == e1000_phy_i217) {
4719 		u16 phy_reg;
4720 
4721 		ret_val = hw->phy.ops.acquire(hw);
4722 		if (ret_val) {
4723 			e_dbg("Failed to setup iRST\n");
4724 			return;
4725 		}
4726 
4727 		/* Clear Auto Enable LPI after link up */
4728 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
4729 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4730 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
4731 
4732 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4733 			/* Restore clear on SMB if no manageability engine
4734 			 * is present
4735 			 */
4736 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4737 			if (ret_val)
4738 				goto release;
4739 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4740 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4741 
4742 			/* Disable Proxy */
4743 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4744 		}
4745 		/* Enable reset on MTA */
4746 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4747 		if (ret_val)
4748 			goto release;
4749 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4750 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4751 release:
4752 		if (ret_val)
4753 			e_dbg("Error %d in resume workarounds\n", ret_val);
4754 		hw->phy.ops.release(hw);
4755 	}
4756 }
4757 
4758 /**
4759  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4760  *  @hw: pointer to the HW structure
4761  *
4762  *  Return the LED back to the default configuration.
4763  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)4764 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4765 {
4766 	if (hw->phy.type == e1000_phy_ife)
4767 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4768 
4769 	ew32(LEDCTL, hw->mac.ledctl_default);
4770 	return 0;
4771 }
4772 
4773 /**
4774  *  e1000_led_on_ich8lan - Turn LEDs on
4775  *  @hw: pointer to the HW structure
4776  *
4777  *  Turn on the LEDs.
4778  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)4779 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4780 {
4781 	if (hw->phy.type == e1000_phy_ife)
4782 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4783 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4784 
4785 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4786 	return 0;
4787 }
4788 
4789 /**
4790  *  e1000_led_off_ich8lan - Turn LEDs off
4791  *  @hw: pointer to the HW structure
4792  *
4793  *  Turn off the LEDs.
4794  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)4795 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4796 {
4797 	if (hw->phy.type == e1000_phy_ife)
4798 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4799 				(IFE_PSCL_PROBE_MODE |
4800 				 IFE_PSCL_PROBE_LEDS_OFF));
4801 
4802 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4803 	return 0;
4804 }
4805 
4806 /**
4807  *  e1000_setup_led_pchlan - Configures SW controllable LED
4808  *  @hw: pointer to the HW structure
4809  *
4810  *  This prepares the SW controllable LED for use.
4811  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)4812 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4813 {
4814 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4815 }
4816 
4817 /**
4818  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4819  *  @hw: pointer to the HW structure
4820  *
4821  *  Return the LED back to the default configuration.
4822  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)4823 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4824 {
4825 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4826 }
4827 
4828 /**
4829  *  e1000_led_on_pchlan - Turn LEDs on
4830  *  @hw: pointer to the HW structure
4831  *
4832  *  Turn on the LEDs.
4833  **/
e1000_led_on_pchlan(struct e1000_hw * hw)4834 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4835 {
4836 	u16 data = (u16)hw->mac.ledctl_mode2;
4837 	u32 i, led;
4838 
4839 	/* If no link, then turn LED on by setting the invert bit
4840 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4841 	 */
4842 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4843 		for (i = 0; i < 3; i++) {
4844 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4845 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4846 			    E1000_LEDCTL_MODE_LINK_UP)
4847 				continue;
4848 			if (led & E1000_PHY_LED0_IVRT)
4849 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4850 			else
4851 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4852 		}
4853 	}
4854 
4855 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4856 }
4857 
4858 /**
4859  *  e1000_led_off_pchlan - Turn LEDs off
4860  *  @hw: pointer to the HW structure
4861  *
4862  *  Turn off the LEDs.
4863  **/
e1000_led_off_pchlan(struct e1000_hw * hw)4864 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4865 {
4866 	u16 data = (u16)hw->mac.ledctl_mode1;
4867 	u32 i, led;
4868 
4869 	/* If no link, then turn LED off by clearing the invert bit
4870 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4871 	 */
4872 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4873 		for (i = 0; i < 3; i++) {
4874 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4875 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4876 			    E1000_LEDCTL_MODE_LINK_UP)
4877 				continue;
4878 			if (led & E1000_PHY_LED0_IVRT)
4879 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4880 			else
4881 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4882 		}
4883 	}
4884 
4885 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4886 }
4887 
4888 /**
4889  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4890  *  @hw: pointer to the HW structure
4891  *
4892  *  Read appropriate register for the config done bit for completion status
4893  *  and configure the PHY through s/w for EEPROM-less parts.
4894  *
4895  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4896  *  config done bit, so only an error is logged and continues.  If we were
4897  *  to return with error, EEPROM-less silicon would not be able to be reset
4898  *  or change link.
4899  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)4900 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4901 {
4902 	s32 ret_val = 0;
4903 	u32 bank = 0;
4904 	u32 status;
4905 
4906 	e1000e_get_cfg_done_generic(hw);
4907 
4908 	/* Wait for indication from h/w that it has completed basic config */
4909 	if (hw->mac.type >= e1000_ich10lan) {
4910 		e1000_lan_init_done_ich8lan(hw);
4911 	} else {
4912 		ret_val = e1000e_get_auto_rd_done(hw);
4913 		if (ret_val) {
4914 			/* When auto config read does not complete, do not
4915 			 * return with an error. This can happen in situations
4916 			 * where there is no eeprom and prevents getting link.
4917 			 */
4918 			e_dbg("Auto Read Done did not complete\n");
4919 			ret_val = 0;
4920 		}
4921 	}
4922 
4923 	/* Clear PHY Reset Asserted bit */
4924 	status = er32(STATUS);
4925 	if (status & E1000_STATUS_PHYRA)
4926 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4927 	else
4928 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4929 
4930 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4931 	if (hw->mac.type <= e1000_ich9lan) {
4932 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4933 		    (hw->phy.type == e1000_phy_igp_3)) {
4934 			e1000e_phy_init_script_igp3(hw);
4935 		}
4936 	} else {
4937 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4938 			/* Maybe we should do a basic PHY config */
4939 			e_dbg("EEPROM not present\n");
4940 			ret_val = -E1000_ERR_CONFIG;
4941 		}
4942 	}
4943 
4944 	return ret_val;
4945 }
4946 
4947 /**
4948  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4949  * @hw: pointer to the HW structure
4950  *
4951  * In the case of a PHY power down to save power, or to turn off link during a
4952  * driver unload, or wake on lan is not enabled, remove the link.
4953  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)4954 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4955 {
4956 	/* If the management interface is not enabled, then power down */
4957 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4958 	      hw->phy.ops.check_reset_block(hw)))
4959 		e1000_power_down_phy_copper(hw);
4960 }
4961 
4962 /**
4963  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4964  *  @hw: pointer to the HW structure
4965  *
4966  *  Clears hardware counters specific to the silicon family and calls
4967  *  clear_hw_cntrs_generic to clear all general purpose counters.
4968  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)4969 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4970 {
4971 	u16 phy_data;
4972 	s32 ret_val;
4973 
4974 	e1000e_clear_hw_cntrs_base(hw);
4975 
4976 	er32(ALGNERRC);
4977 	er32(RXERRC);
4978 	er32(TNCRS);
4979 	er32(CEXTERR);
4980 	er32(TSCTC);
4981 	er32(TSCTFC);
4982 
4983 	er32(MGTPRC);
4984 	er32(MGTPDC);
4985 	er32(MGTPTC);
4986 
4987 	er32(IAC);
4988 	er32(ICRXOC);
4989 
4990 	/* Clear PHY statistics registers */
4991 	if ((hw->phy.type == e1000_phy_82578) ||
4992 	    (hw->phy.type == e1000_phy_82579) ||
4993 	    (hw->phy.type == e1000_phy_i217) ||
4994 	    (hw->phy.type == e1000_phy_82577)) {
4995 		ret_val = hw->phy.ops.acquire(hw);
4996 		if (ret_val)
4997 			return;
4998 		ret_val = hw->phy.ops.set_page(hw,
4999 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5000 		if (ret_val)
5001 			goto release;
5002 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5003 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5004 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5005 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5006 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5007 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5008 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5009 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5010 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5011 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5012 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5013 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5014 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5015 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5016 release:
5017 		hw->phy.ops.release(hw);
5018 	}
5019 }
5020 
5021 static const struct e1000_mac_operations ich8_mac_ops = {
5022 	/* check_mng_mode dependent on mac type */
5023 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5024 	/* cleanup_led dependent on mac type */
5025 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5026 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5027 	.set_lan_id		= e1000_set_lan_id_single_port,
5028 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5029 	/* led_on dependent on mac type */
5030 	/* led_off dependent on mac type */
5031 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5032 	.reset_hw		= e1000_reset_hw_ich8lan,
5033 	.init_hw		= e1000_init_hw_ich8lan,
5034 	.setup_link		= e1000_setup_link_ich8lan,
5035 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5036 	/* id_led_init dependent on mac type */
5037 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5038 	.rar_set		= e1000e_rar_set_generic,
5039 	.rar_get_count		= e1000e_rar_get_count_generic,
5040 };
5041 
5042 static const struct e1000_phy_operations ich8_phy_ops = {
5043 	.acquire		= e1000_acquire_swflag_ich8lan,
5044 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5045 	.commit			= NULL,
5046 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5047 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5048 	.read_reg		= e1000e_read_phy_reg_igp,
5049 	.release		= e1000_release_swflag_ich8lan,
5050 	.reset			= e1000_phy_hw_reset_ich8lan,
5051 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5052 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5053 	.write_reg		= e1000e_write_phy_reg_igp,
5054 };
5055 
5056 static const struct e1000_nvm_operations ich8_nvm_ops = {
5057 	.acquire		= e1000_acquire_nvm_ich8lan,
5058 	.read			= e1000_read_nvm_ich8lan,
5059 	.release		= e1000_release_nvm_ich8lan,
5060 	.reload			= e1000e_reload_nvm_generic,
5061 	.update			= e1000_update_nvm_checksum_ich8lan,
5062 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5063 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5064 	.write			= e1000_write_nvm_ich8lan,
5065 };
5066 
5067 const struct e1000_info e1000_ich8_info = {
5068 	.mac			= e1000_ich8lan,
5069 	.flags			= FLAG_HAS_WOL
5070 				  | FLAG_IS_ICH
5071 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5072 				  | FLAG_HAS_AMT
5073 				  | FLAG_HAS_FLASH
5074 				  | FLAG_APME_IN_WUC,
5075 	.pba			= 8,
5076 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5077 	.get_variants		= e1000_get_variants_ich8lan,
5078 	.mac_ops		= &ich8_mac_ops,
5079 	.phy_ops		= &ich8_phy_ops,
5080 	.nvm_ops		= &ich8_nvm_ops,
5081 };
5082 
5083 const struct e1000_info e1000_ich9_info = {
5084 	.mac			= e1000_ich9lan,
5085 	.flags			= FLAG_HAS_JUMBO_FRAMES
5086 				  | FLAG_IS_ICH
5087 				  | FLAG_HAS_WOL
5088 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5089 				  | FLAG_HAS_AMT
5090 				  | FLAG_HAS_FLASH
5091 				  | FLAG_APME_IN_WUC,
5092 	.pba			= 18,
5093 	.max_hw_frame_size	= DEFAULT_JUMBO,
5094 	.get_variants		= e1000_get_variants_ich8lan,
5095 	.mac_ops		= &ich8_mac_ops,
5096 	.phy_ops		= &ich8_phy_ops,
5097 	.nvm_ops		= &ich8_nvm_ops,
5098 };
5099 
5100 const struct e1000_info e1000_ich10_info = {
5101 	.mac			= e1000_ich10lan,
5102 	.flags			= FLAG_HAS_JUMBO_FRAMES
5103 				  | FLAG_IS_ICH
5104 				  | FLAG_HAS_WOL
5105 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5106 				  | FLAG_HAS_AMT
5107 				  | FLAG_HAS_FLASH
5108 				  | FLAG_APME_IN_WUC,
5109 	.pba			= 18,
5110 	.max_hw_frame_size	= DEFAULT_JUMBO,
5111 	.get_variants		= e1000_get_variants_ich8lan,
5112 	.mac_ops		= &ich8_mac_ops,
5113 	.phy_ops		= &ich8_phy_ops,
5114 	.nvm_ops		= &ich8_nvm_ops,
5115 };
5116 
5117 const struct e1000_info e1000_pch_info = {
5118 	.mac			= e1000_pchlan,
5119 	.flags			= FLAG_IS_ICH
5120 				  | FLAG_HAS_WOL
5121 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5122 				  | FLAG_HAS_AMT
5123 				  | FLAG_HAS_FLASH
5124 				  | FLAG_HAS_JUMBO_FRAMES
5125 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5126 				  | FLAG_APME_IN_WUC,
5127 	.flags2			= FLAG2_HAS_PHY_STATS,
5128 	.pba			= 26,
5129 	.max_hw_frame_size	= 4096,
5130 	.get_variants		= e1000_get_variants_ich8lan,
5131 	.mac_ops		= &ich8_mac_ops,
5132 	.phy_ops		= &ich8_phy_ops,
5133 	.nvm_ops		= &ich8_nvm_ops,
5134 };
5135 
5136 const struct e1000_info e1000_pch2_info = {
5137 	.mac			= e1000_pch2lan,
5138 	.flags			= FLAG_IS_ICH
5139 				  | FLAG_HAS_WOL
5140 				  | FLAG_HAS_HW_TIMESTAMP
5141 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5142 				  | FLAG_HAS_AMT
5143 				  | FLAG_HAS_FLASH
5144 				  | FLAG_HAS_JUMBO_FRAMES
5145 				  | FLAG_APME_IN_WUC,
5146 	.flags2			= FLAG2_HAS_PHY_STATS
5147 				  | FLAG2_HAS_EEE,
5148 	.pba			= 26,
5149 	.max_hw_frame_size	= 9018,
5150 	.get_variants		= e1000_get_variants_ich8lan,
5151 	.mac_ops		= &ich8_mac_ops,
5152 	.phy_ops		= &ich8_phy_ops,
5153 	.nvm_ops		= &ich8_nvm_ops,
5154 };
5155 
5156 const struct e1000_info e1000_pch_lpt_info = {
5157 	.mac			= e1000_pch_lpt,
5158 	.flags			= FLAG_IS_ICH
5159 				  | FLAG_HAS_WOL
5160 				  | FLAG_HAS_HW_TIMESTAMP
5161 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5162 				  | FLAG_HAS_AMT
5163 				  | FLAG_HAS_FLASH
5164 				  | FLAG_HAS_JUMBO_FRAMES
5165 				  | FLAG_APME_IN_WUC,
5166 	.flags2			= FLAG2_HAS_PHY_STATS
5167 				  | FLAG2_HAS_EEE,
5168 	.pba			= 26,
5169 	.max_hw_frame_size	= 9018,
5170 	.get_variants		= e1000_get_variants_ich8lan,
5171 	.mac_ops		= &ich8_mac_ops,
5172 	.phy_ops		= &ich8_phy_ops,
5173 	.nvm_ops		= &ich8_nvm_ops,
5174 };
5175