• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 
29 #include "i40evf.h"
30 #include "i40e_prototype.h"
31 
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 				u32 td_tag)
34 {
35 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41 
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 
44 /**
45  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46  * @ring:      the ring that owns the buffer
47  * @tx_buffer: the buffer to free
48  **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)49 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50 					    struct i40e_tx_buffer *tx_buffer)
51 {
52 	if (tx_buffer->skb) {
53 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54 			kfree(tx_buffer->raw_buf);
55 		else
56 			dev_kfree_skb_any(tx_buffer->skb);
57 
58 		if (dma_unmap_len(tx_buffer, len))
59 			dma_unmap_single(ring->dev,
60 					 dma_unmap_addr(tx_buffer, dma),
61 					 dma_unmap_len(tx_buffer, len),
62 					 DMA_TO_DEVICE);
63 	} else if (dma_unmap_len(tx_buffer, len)) {
64 		dma_unmap_page(ring->dev,
65 			       dma_unmap_addr(tx_buffer, dma),
66 			       dma_unmap_len(tx_buffer, len),
67 			       DMA_TO_DEVICE);
68 	}
69 	tx_buffer->next_to_watch = NULL;
70 	tx_buffer->skb = NULL;
71 	dma_unmap_len_set(tx_buffer, len, 0);
72 	/* tx_buffer must be completely set up in the transmit path */
73 }
74 
75 /**
76  * i40evf_clean_tx_ring - Free any empty Tx buffers
77  * @tx_ring: ring to be cleaned
78  **/
i40evf_clean_tx_ring(struct i40e_ring * tx_ring)79 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80 {
81 	unsigned long bi_size;
82 	u16 i;
83 
84 	/* ring already cleared, nothing to do */
85 	if (!tx_ring->tx_bi)
86 		return;
87 
88 	/* Free all the Tx ring sk_buffs */
89 	for (i = 0; i < tx_ring->count; i++)
90 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91 
92 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93 	memset(tx_ring->tx_bi, 0, bi_size);
94 
95 	/* Zero out the descriptor ring */
96 	memset(tx_ring->desc, 0, tx_ring->size);
97 
98 	tx_ring->next_to_use = 0;
99 	tx_ring->next_to_clean = 0;
100 
101 	if (!tx_ring->netdev)
102 		return;
103 
104 	/* cleanup Tx queue statistics */
105 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106 						  tx_ring->queue_index));
107 }
108 
109 /**
110  * i40evf_free_tx_resources - Free Tx resources per queue
111  * @tx_ring: Tx descriptor ring for a specific queue
112  *
113  * Free all transmit software resources
114  **/
i40evf_free_tx_resources(struct i40e_ring * tx_ring)115 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116 {
117 	i40evf_clean_tx_ring(tx_ring);
118 	kfree(tx_ring->tx_bi);
119 	tx_ring->tx_bi = NULL;
120 
121 	if (tx_ring->desc) {
122 		dma_free_coherent(tx_ring->dev, tx_ring->size,
123 				  tx_ring->desc, tx_ring->dma);
124 		tx_ring->desc = NULL;
125 	}
126 }
127 
128 /**
129  * i40e_get_tx_pending - how many tx descriptors not processed
130  * @tx_ring: the ring of descriptors
131  *
132  * Since there is no access to the ring head register
133  * in XL710, we need to use our local copies
134  **/
i40e_get_tx_pending(struct i40e_ring * ring)135 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136 {
137 	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138 			? ring->next_to_use
139 			: ring->next_to_use + ring->count);
140 	return ntu - ring->next_to_clean;
141 }
142 
143 /**
144  * i40e_check_tx_hang - Is there a hang in the Tx queue
145  * @tx_ring: the ring of descriptors
146  **/
i40e_check_tx_hang(struct i40e_ring * tx_ring)147 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148 {
149 	u32 tx_pending = i40e_get_tx_pending(tx_ring);
150 	bool ret = false;
151 
152 	clear_check_for_tx_hang(tx_ring);
153 
154 	/* Check for a hung queue, but be thorough. This verifies
155 	 * that a transmit has been completed since the previous
156 	 * check AND there is at least one packet pending. The
157 	 * ARMED bit is set to indicate a potential hang. The
158 	 * bit is cleared if a pause frame is received to remove
159 	 * false hang detection due to PFC or 802.3x frames. By
160 	 * requiring this to fail twice we avoid races with
161 	 * PFC clearing the ARMED bit and conditions where we
162 	 * run the check_tx_hang logic with a transmit completion
163 	 * pending but without time to complete it yet.
164 	 */
165 	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
166 	    (tx_pending >= I40E_MIN_DESC_PENDING)) {
167 		/* make sure it is true for two checks in a row */
168 		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169 				       &tx_ring->state);
170 	} else if (!(tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) ||
171 		   !(tx_pending < I40E_MIN_DESC_PENDING) ||
172 		   !(tx_pending > 0)) {
173 		/* update completed stats and disarm the hang check */
174 		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
175 		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
176 	}
177 
178 	return ret;
179 }
180 
181 /**
182  * i40e_get_head - Retrieve head from head writeback
183  * @tx_ring:  tx ring to fetch head of
184  *
185  * Returns value of Tx ring head based on value stored
186  * in head write-back location
187  **/
i40e_get_head(struct i40e_ring * tx_ring)188 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
189 {
190 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
191 
192 	return le32_to_cpu(*(volatile __le32 *)head);
193 }
194 
195 /**
196  * i40e_clean_tx_irq - Reclaim resources after transmit completes
197  * @tx_ring:  tx ring to clean
198  * @budget:   how many cleans we're allowed
199  *
200  * Returns true if there's any budget left (e.g. the clean is finished)
201  **/
i40e_clean_tx_irq(struct i40e_ring * tx_ring,int budget)202 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
203 {
204 	u16 i = tx_ring->next_to_clean;
205 	struct i40e_tx_buffer *tx_buf;
206 	struct i40e_tx_desc *tx_head;
207 	struct i40e_tx_desc *tx_desc;
208 	unsigned int total_packets = 0;
209 	unsigned int total_bytes = 0;
210 
211 	tx_buf = &tx_ring->tx_bi[i];
212 	tx_desc = I40E_TX_DESC(tx_ring, i);
213 	i -= tx_ring->count;
214 
215 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
216 
217 	do {
218 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
219 
220 		/* if next_to_watch is not set then there is no work pending */
221 		if (!eop_desc)
222 			break;
223 
224 		/* prevent any other reads prior to eop_desc */
225 		smp_rmb();
226 
227 		/* we have caught up to head, no work left to do */
228 		if (tx_head == tx_desc)
229 			break;
230 
231 		/* clear next_to_watch to prevent false hangs */
232 		tx_buf->next_to_watch = NULL;
233 
234 		/* update the statistics for this packet */
235 		total_bytes += tx_buf->bytecount;
236 		total_packets += tx_buf->gso_segs;
237 
238 		/* free the skb */
239 		dev_kfree_skb_any(tx_buf->skb);
240 
241 		/* unmap skb header data */
242 		dma_unmap_single(tx_ring->dev,
243 				 dma_unmap_addr(tx_buf, dma),
244 				 dma_unmap_len(tx_buf, len),
245 				 DMA_TO_DEVICE);
246 
247 		/* clear tx_buffer data */
248 		tx_buf->skb = NULL;
249 		dma_unmap_len_set(tx_buf, len, 0);
250 
251 		/* unmap remaining buffers */
252 		while (tx_desc != eop_desc) {
253 
254 			tx_buf++;
255 			tx_desc++;
256 			i++;
257 			if (unlikely(!i)) {
258 				i -= tx_ring->count;
259 				tx_buf = tx_ring->tx_bi;
260 				tx_desc = I40E_TX_DESC(tx_ring, 0);
261 			}
262 
263 			/* unmap any remaining paged data */
264 			if (dma_unmap_len(tx_buf, len)) {
265 				dma_unmap_page(tx_ring->dev,
266 					       dma_unmap_addr(tx_buf, dma),
267 					       dma_unmap_len(tx_buf, len),
268 					       DMA_TO_DEVICE);
269 				dma_unmap_len_set(tx_buf, len, 0);
270 			}
271 		}
272 
273 		/* move us one more past the eop_desc for start of next pkt */
274 		tx_buf++;
275 		tx_desc++;
276 		i++;
277 		if (unlikely(!i)) {
278 			i -= tx_ring->count;
279 			tx_buf = tx_ring->tx_bi;
280 			tx_desc = I40E_TX_DESC(tx_ring, 0);
281 		}
282 
283 		/* update budget accounting */
284 		budget--;
285 	} while (likely(budget));
286 
287 	i += tx_ring->count;
288 	tx_ring->next_to_clean = i;
289 	u64_stats_update_begin(&tx_ring->syncp);
290 	tx_ring->stats.bytes += total_bytes;
291 	tx_ring->stats.packets += total_packets;
292 	u64_stats_update_end(&tx_ring->syncp);
293 	tx_ring->q_vector->tx.total_bytes += total_bytes;
294 	tx_ring->q_vector->tx.total_packets += total_packets;
295 
296 	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
297 		/* schedule immediate reset if we believe we hung */
298 		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
299 			 "  VSI                  <%d>\n"
300 			 "  Tx Queue             <%d>\n"
301 			 "  next_to_use          <%x>\n"
302 			 "  next_to_clean        <%x>\n",
303 			 tx_ring->vsi->seid,
304 			 tx_ring->queue_index,
305 			 tx_ring->next_to_use, i);
306 		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
307 			 "  time_stamp           <%lx>\n"
308 			 "  jiffies              <%lx>\n",
309 			 tx_ring->tx_bi[i].time_stamp, jiffies);
310 
311 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
312 
313 		dev_info(tx_ring->dev,
314 			 "tx hang detected on queue %d, resetting adapter\n",
315 			 tx_ring->queue_index);
316 
317 		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
318 
319 		/* the adapter is about to reset, no point in enabling stuff */
320 		return true;
321 	}
322 
323 	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
324 						      tx_ring->queue_index),
325 				  total_packets, total_bytes);
326 
327 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
328 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
329 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
330 		/* Make sure that anybody stopping the queue after this
331 		 * sees the new next_to_clean.
332 		 */
333 		smp_mb();
334 		if (__netif_subqueue_stopped(tx_ring->netdev,
335 					     tx_ring->queue_index) &&
336 		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
337 			netif_wake_subqueue(tx_ring->netdev,
338 					    tx_ring->queue_index);
339 			++tx_ring->tx_stats.restart_queue;
340 		}
341 	}
342 
343 	return budget > 0;
344 }
345 
346 /**
347  * i40e_set_new_dynamic_itr - Find new ITR level
348  * @rc: structure containing ring performance data
349  *
350  * Stores a new ITR value based on packets and byte counts during
351  * the last interrupt.  The advantage of per interrupt computation
352  * is faster updates and more accurate ITR for the current traffic
353  * pattern.  Constants in this function were computed based on
354  * theoretical maximum wire speed and thresholds were set based on
355  * testing data as well as attempting to minimize response time
356  * while increasing bulk throughput.
357  **/
i40e_set_new_dynamic_itr(struct i40e_ring_container * rc)358 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359 {
360 	enum i40e_latency_range new_latency_range = rc->latency_range;
361 	u32 new_itr = rc->itr;
362 	int bytes_per_int;
363 
364 	if (rc->total_packets == 0 || !rc->itr)
365 		return;
366 
367 	/* simple throttlerate management
368 	 *   0-10MB/s   lowest (100000 ints/s)
369 	 *  10-20MB/s   low    (20000 ints/s)
370 	 *  20-1249MB/s bulk   (8000 ints/s)
371 	 */
372 	bytes_per_int = rc->total_bytes / rc->itr;
373 	switch (rc->itr) {
374 	case I40E_LOWEST_LATENCY:
375 		if (bytes_per_int > 10)
376 			new_latency_range = I40E_LOW_LATENCY;
377 		break;
378 	case I40E_LOW_LATENCY:
379 		if (bytes_per_int > 20)
380 			new_latency_range = I40E_BULK_LATENCY;
381 		else if (bytes_per_int <= 10)
382 			new_latency_range = I40E_LOWEST_LATENCY;
383 		break;
384 	case I40E_BULK_LATENCY:
385 		if (bytes_per_int <= 20)
386 			rc->latency_range = I40E_LOW_LATENCY;
387 		break;
388 	}
389 
390 	switch (new_latency_range) {
391 	case I40E_LOWEST_LATENCY:
392 		new_itr = I40E_ITR_100K;
393 		break;
394 	case I40E_LOW_LATENCY:
395 		new_itr = I40E_ITR_20K;
396 		break;
397 	case I40E_BULK_LATENCY:
398 		new_itr = I40E_ITR_8K;
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	if (new_itr != rc->itr) {
405 		/* do an exponential smoothing */
406 		new_itr = (10 * new_itr * rc->itr) /
407 			  ((9 * new_itr) + rc->itr);
408 		rc->itr = new_itr & I40E_MAX_ITR;
409 	}
410 
411 	rc->total_bytes = 0;
412 	rc->total_packets = 0;
413 }
414 
415 /**
416  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
417  * @q_vector: the vector to adjust
418  **/
i40e_update_dynamic_itr(struct i40e_q_vector * q_vector)419 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
420 {
421 	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
422 	struct i40e_hw *hw = &q_vector->vsi->back->hw;
423 	u32 reg_addr;
424 	u16 old_itr;
425 
426 	reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
427 	old_itr = q_vector->rx.itr;
428 	i40e_set_new_dynamic_itr(&q_vector->rx);
429 	if (old_itr != q_vector->rx.itr)
430 		wr32(hw, reg_addr, q_vector->rx.itr);
431 
432 	reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
433 	old_itr = q_vector->tx.itr;
434 	i40e_set_new_dynamic_itr(&q_vector->tx);
435 	if (old_itr != q_vector->tx.itr)
436 		wr32(hw, reg_addr, q_vector->tx.itr);
437 }
438 
439 /**
440  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
441  * @tx_ring: the tx ring to set up
442  *
443  * Return 0 on success, negative on error
444  **/
i40evf_setup_tx_descriptors(struct i40e_ring * tx_ring)445 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
446 {
447 	struct device *dev = tx_ring->dev;
448 	int bi_size;
449 
450 	if (!dev)
451 		return -ENOMEM;
452 
453 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
454 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
455 	if (!tx_ring->tx_bi)
456 		goto err;
457 
458 	/* round up to nearest 4K */
459 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
460 	/* add u32 for head writeback, align after this takes care of
461 	 * guaranteeing this is at least one cache line in size
462 	 */
463 	tx_ring->size += sizeof(u32);
464 	tx_ring->size = ALIGN(tx_ring->size, 4096);
465 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
466 					   &tx_ring->dma, GFP_KERNEL);
467 	if (!tx_ring->desc) {
468 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
469 			 tx_ring->size);
470 		goto err;
471 	}
472 
473 	tx_ring->next_to_use = 0;
474 	tx_ring->next_to_clean = 0;
475 	return 0;
476 
477 err:
478 	kfree(tx_ring->tx_bi);
479 	tx_ring->tx_bi = NULL;
480 	return -ENOMEM;
481 }
482 
483 /**
484  * i40evf_clean_rx_ring - Free Rx buffers
485  * @rx_ring: ring to be cleaned
486  **/
i40evf_clean_rx_ring(struct i40e_ring * rx_ring)487 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
488 {
489 	struct device *dev = rx_ring->dev;
490 	struct i40e_rx_buffer *rx_bi;
491 	unsigned long bi_size;
492 	u16 i;
493 
494 	/* ring already cleared, nothing to do */
495 	if (!rx_ring->rx_bi)
496 		return;
497 
498 	/* Free all the Rx ring sk_buffs */
499 	for (i = 0; i < rx_ring->count; i++) {
500 		rx_bi = &rx_ring->rx_bi[i];
501 		if (rx_bi->dma) {
502 			dma_unmap_single(dev,
503 					 rx_bi->dma,
504 					 rx_ring->rx_buf_len,
505 					 DMA_FROM_DEVICE);
506 			rx_bi->dma = 0;
507 		}
508 		if (rx_bi->skb) {
509 			dev_kfree_skb(rx_bi->skb);
510 			rx_bi->skb = NULL;
511 		}
512 		if (rx_bi->page) {
513 			if (rx_bi->page_dma) {
514 				dma_unmap_page(dev,
515 					       rx_bi->page_dma,
516 					       PAGE_SIZE / 2,
517 					       DMA_FROM_DEVICE);
518 				rx_bi->page_dma = 0;
519 			}
520 			__free_page(rx_bi->page);
521 			rx_bi->page = NULL;
522 			rx_bi->page_offset = 0;
523 		}
524 	}
525 
526 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
527 	memset(rx_ring->rx_bi, 0, bi_size);
528 
529 	/* Zero out the descriptor ring */
530 	memset(rx_ring->desc, 0, rx_ring->size);
531 
532 	rx_ring->next_to_clean = 0;
533 	rx_ring->next_to_use = 0;
534 }
535 
536 /**
537  * i40evf_free_rx_resources - Free Rx resources
538  * @rx_ring: ring to clean the resources from
539  *
540  * Free all receive software resources
541  **/
i40evf_free_rx_resources(struct i40e_ring * rx_ring)542 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
543 {
544 	i40evf_clean_rx_ring(rx_ring);
545 	kfree(rx_ring->rx_bi);
546 	rx_ring->rx_bi = NULL;
547 
548 	if (rx_ring->desc) {
549 		dma_free_coherent(rx_ring->dev, rx_ring->size,
550 				  rx_ring->desc, rx_ring->dma);
551 		rx_ring->desc = NULL;
552 	}
553 }
554 
555 /**
556  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
557  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
558  *
559  * Returns 0 on success, negative on failure
560  **/
i40evf_setup_rx_descriptors(struct i40e_ring * rx_ring)561 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
562 {
563 	struct device *dev = rx_ring->dev;
564 	int bi_size;
565 
566 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
567 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
568 	if (!rx_ring->rx_bi)
569 		goto err;
570 
571 	/* Round up to nearest 4K */
572 	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
573 		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
574 		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
575 	rx_ring->size = ALIGN(rx_ring->size, 4096);
576 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
577 					   &rx_ring->dma, GFP_KERNEL);
578 
579 	if (!rx_ring->desc) {
580 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
581 			 rx_ring->size);
582 		goto err;
583 	}
584 
585 	rx_ring->next_to_clean = 0;
586 	rx_ring->next_to_use = 0;
587 
588 	return 0;
589 err:
590 	kfree(rx_ring->rx_bi);
591 	rx_ring->rx_bi = NULL;
592 	return -ENOMEM;
593 }
594 
595 /**
596  * i40e_release_rx_desc - Store the new tail and head values
597  * @rx_ring: ring to bump
598  * @val: new head index
599  **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)600 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
601 {
602 	rx_ring->next_to_use = val;
603 	/* Force memory writes to complete before letting h/w
604 	 * know there are new descriptors to fetch.  (Only
605 	 * applicable for weak-ordered memory model archs,
606 	 * such as IA-64).
607 	 */
608 	wmb();
609 	writel(val, rx_ring->tail);
610 }
611 
612 /**
613  * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
614  * @rx_ring: ring to place buffers on
615  * @cleaned_count: number of buffers to replace
616  **/
i40evf_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)617 void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
618 {
619 	u16 i = rx_ring->next_to_use;
620 	union i40e_rx_desc *rx_desc;
621 	struct i40e_rx_buffer *bi;
622 	struct sk_buff *skb;
623 
624 	/* do nothing if no valid netdev defined */
625 	if (!rx_ring->netdev || !cleaned_count)
626 		return;
627 
628 	while (cleaned_count--) {
629 		rx_desc = I40E_RX_DESC(rx_ring, i);
630 		bi = &rx_ring->rx_bi[i];
631 		skb = bi->skb;
632 
633 		if (!skb) {
634 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
635 							rx_ring->rx_buf_len);
636 			if (!skb) {
637 				rx_ring->rx_stats.alloc_buff_failed++;
638 				goto no_buffers;
639 			}
640 			/* initialize queue mapping */
641 			skb_record_rx_queue(skb, rx_ring->queue_index);
642 			bi->skb = skb;
643 		}
644 
645 		if (!bi->dma) {
646 			bi->dma = dma_map_single(rx_ring->dev,
647 						 skb->data,
648 						 rx_ring->rx_buf_len,
649 						 DMA_FROM_DEVICE);
650 			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
651 				rx_ring->rx_stats.alloc_buff_failed++;
652 				bi->dma = 0;
653 				goto no_buffers;
654 			}
655 		}
656 
657 		if (ring_is_ps_enabled(rx_ring)) {
658 			if (!bi->page) {
659 				bi->page = alloc_page(GFP_ATOMIC);
660 				if (!bi->page) {
661 					rx_ring->rx_stats.alloc_page_failed++;
662 					goto no_buffers;
663 				}
664 			}
665 
666 			if (!bi->page_dma) {
667 				/* use a half page if we're re-using */
668 				bi->page_offset ^= PAGE_SIZE / 2;
669 				bi->page_dma = dma_map_page(rx_ring->dev,
670 							    bi->page,
671 							    bi->page_offset,
672 							    PAGE_SIZE / 2,
673 							    DMA_FROM_DEVICE);
674 				if (dma_mapping_error(rx_ring->dev,
675 						      bi->page_dma)) {
676 					rx_ring->rx_stats.alloc_page_failed++;
677 					bi->page_dma = 0;
678 					goto no_buffers;
679 				}
680 			}
681 
682 			/* Refresh the desc even if buffer_addrs didn't change
683 			 * because each write-back erases this info.
684 			 */
685 			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
686 			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
687 		} else {
688 			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
689 			rx_desc->read.hdr_addr = 0;
690 		}
691 		i++;
692 		if (i == rx_ring->count)
693 			i = 0;
694 	}
695 
696 no_buffers:
697 	if (rx_ring->next_to_use != i)
698 		i40e_release_rx_desc(rx_ring, i);
699 }
700 
701 /**
702  * i40e_receive_skb - Send a completed packet up the stack
703  * @rx_ring:  rx ring in play
704  * @skb: packet to send up
705  * @vlan_tag: vlan tag for packet
706  **/
i40e_receive_skb(struct i40e_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)707 static void i40e_receive_skb(struct i40e_ring *rx_ring,
708 			     struct sk_buff *skb, u16 vlan_tag)
709 {
710 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
711 	struct i40e_vsi *vsi = rx_ring->vsi;
712 	u64 flags = vsi->back->flags;
713 
714 	if (vlan_tag & VLAN_VID_MASK)
715 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
716 
717 	if (flags & I40E_FLAG_IN_NETPOLL)
718 		netif_rx(skb);
719 	else
720 		napi_gro_receive(&q_vector->napi, skb);
721 }
722 
723 /**
724  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
725  * @vsi: the VSI we care about
726  * @skb: skb currently being received and modified
727  * @rx_status: status value of last descriptor in packet
728  * @rx_error: error value of last descriptor in packet
729  * @rx_ptype: ptype value of last descriptor in packet
730  **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,u32 rx_status,u32 rx_error,u16 rx_ptype)731 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
732 				    struct sk_buff *skb,
733 				    u32 rx_status,
734 				    u32 rx_error,
735 				    u16 rx_ptype)
736 {
737 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
738 	bool ipv4 = false, ipv6 = false;
739 	bool ipv4_tunnel, ipv6_tunnel;
740 	__wsum rx_udp_csum;
741 	struct iphdr *iph;
742 	__sum16 csum;
743 
744 	ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
745 		      (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
746 	ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
747 		      (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
748 
749 	skb->ip_summed = CHECKSUM_NONE;
750 
751 	/* Rx csum enabled and ip headers found? */
752 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
753 		return;
754 
755 	/* did the hardware decode the packet and checksum? */
756 	if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
757 		return;
758 
759 	/* both known and outer_ip must be set for the below code to work */
760 	if (!(decoded.known && decoded.outer_ip))
761 		return;
762 
763 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
764 	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
765 		ipv4 = true;
766 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
767 		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
768 		ipv6 = true;
769 
770 	if (ipv4 &&
771 	    (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
772 			 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
773 		goto checksum_fail;
774 
775 	/* likely incorrect csum if alternate IP extension headers found */
776 	if (ipv6 &&
777 	    rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
778 		/* don't increment checksum err here, non-fatal err */
779 		return;
780 
781 	/* there was some L4 error, count error and punt packet to the stack */
782 	if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
783 		goto checksum_fail;
784 
785 	/* handle packets that were not able to be checksummed due
786 	 * to arrival speed, in this case the stack can compute
787 	 * the csum.
788 	 */
789 	if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
790 		return;
791 
792 	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
793 	 * it in the driver, hardware does not do it for us.
794 	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
795 	 * so the total length of IPv4 header is IHL*4 bytes
796 	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
797 	 */
798 	if (ipv4_tunnel &&
799 	    (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
800 	    !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
801 		skb->transport_header = skb->mac_header +
802 					sizeof(struct ethhdr) +
803 					(ip_hdr(skb)->ihl * 4);
804 
805 		/* Add 4 bytes for VLAN tagged packets */
806 		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
807 					  skb->protocol == htons(ETH_P_8021AD))
808 					  ? VLAN_HLEN : 0;
809 
810 		rx_udp_csum = udp_csum(skb);
811 		iph = ip_hdr(skb);
812 		csum = csum_tcpudp_magic(
813 				iph->saddr, iph->daddr,
814 				(skb->len - skb_transport_offset(skb)),
815 				IPPROTO_UDP, rx_udp_csum);
816 
817 		if (udp_hdr(skb)->check != csum)
818 			goto checksum_fail;
819 	}
820 
821 	skb->ip_summed = CHECKSUM_UNNECESSARY;
822 	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
823 
824 	return;
825 
826 checksum_fail:
827 	vsi->back->hw_csum_rx_error++;
828 }
829 
830 /**
831  * i40e_rx_hash - returns the hash value from the Rx descriptor
832  * @ring: descriptor ring
833  * @rx_desc: specific descriptor
834  **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc)835 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
836 			       union i40e_rx_desc *rx_desc)
837 {
838 	const __le64 rss_mask =
839 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
840 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
841 
842 	if ((ring->netdev->features & NETIF_F_RXHASH) &&
843 	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
844 		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
845 	else
846 		return 0;
847 }
848 
849 /**
850  * i40e_ptype_to_hash - get a hash type
851  * @ptype: the ptype value from the descriptor
852  *
853  * Returns a hash type to be used by skb_set_hash
854  **/
i40e_ptype_to_hash(u8 ptype)855 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
856 {
857 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
858 
859 	if (!decoded.known)
860 		return PKT_HASH_TYPE_NONE;
861 
862 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
863 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
864 		return PKT_HASH_TYPE_L4;
865 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
866 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
867 		return PKT_HASH_TYPE_L3;
868 	else
869 		return PKT_HASH_TYPE_L2;
870 }
871 
872 /**
873  * i40e_clean_rx_irq - Reclaim resources after receive completes
874  * @rx_ring:  rx ring to clean
875  * @budget:   how many cleans we're allowed
876  *
877  * Returns true if there's any budget left (e.g. the clean is finished)
878  **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)879 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
880 {
881 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
882 	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
883 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
884 	const int current_node = numa_node_id();
885 	struct i40e_vsi *vsi = rx_ring->vsi;
886 	u16 i = rx_ring->next_to_clean;
887 	union i40e_rx_desc *rx_desc;
888 	u32 rx_error, rx_status;
889 	u8 rx_ptype;
890 	u64 qword;
891 
892 	rx_desc = I40E_RX_DESC(rx_ring, i);
893 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
894 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
895 		    I40E_RXD_QW1_STATUS_SHIFT;
896 
897 	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
898 		union i40e_rx_desc *next_rxd;
899 		struct i40e_rx_buffer *rx_bi;
900 		struct sk_buff *skb;
901 		u16 vlan_tag;
902 		rx_bi = &rx_ring->rx_bi[i];
903 		skb = rx_bi->skb;
904 		prefetch(skb->data);
905 
906 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
907 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
908 		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
909 				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
910 		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
911 			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
912 
913 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
914 			   I40E_RXD_QW1_ERROR_SHIFT;
915 		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
916 		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
917 
918 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
919 			   I40E_RXD_QW1_PTYPE_SHIFT;
920 		rx_bi->skb = NULL;
921 
922 		/* This memory barrier is needed to keep us from reading
923 		 * any other fields out of the rx_desc until we know the
924 		 * STATUS_DD bit is set
925 		 */
926 		rmb();
927 
928 		/* Get the header and possibly the whole packet
929 		 * If this is an skb from previous receive dma will be 0
930 		 */
931 		if (rx_bi->dma) {
932 			u16 len;
933 
934 			if (rx_hbo)
935 				len = I40E_RX_HDR_SIZE;
936 			else if (rx_sph)
937 				len = rx_header_len;
938 			else if (rx_packet_len)
939 				len = rx_packet_len;   /* 1buf/no split found */
940 			else
941 				len = rx_header_len;   /* split always mode */
942 
943 			skb_put(skb, len);
944 			dma_unmap_single(rx_ring->dev,
945 					 rx_bi->dma,
946 					 rx_ring->rx_buf_len,
947 					 DMA_FROM_DEVICE);
948 			rx_bi->dma = 0;
949 		}
950 
951 		/* Get the rest of the data if this was a header split */
952 		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
953 
954 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
955 					   rx_bi->page,
956 					   rx_bi->page_offset,
957 					   rx_packet_len);
958 
959 			skb->len += rx_packet_len;
960 			skb->data_len += rx_packet_len;
961 			skb->truesize += rx_packet_len;
962 
963 			if ((page_count(rx_bi->page) == 1) &&
964 			    (page_to_nid(rx_bi->page) == current_node))
965 				get_page(rx_bi->page);
966 			else
967 				rx_bi->page = NULL;
968 
969 			dma_unmap_page(rx_ring->dev,
970 				       rx_bi->page_dma,
971 				       PAGE_SIZE / 2,
972 				       DMA_FROM_DEVICE);
973 			rx_bi->page_dma = 0;
974 		}
975 		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
976 
977 		if (unlikely(
978 		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
979 			struct i40e_rx_buffer *next_buffer;
980 
981 			next_buffer = &rx_ring->rx_bi[i];
982 
983 			if (ring_is_ps_enabled(rx_ring)) {
984 				rx_bi->skb = next_buffer->skb;
985 				rx_bi->dma = next_buffer->dma;
986 				next_buffer->skb = skb;
987 				next_buffer->dma = 0;
988 			}
989 			rx_ring->rx_stats.non_eop_descs++;
990 			goto next_desc;
991 		}
992 
993 		/* ERR_MASK will only have valid bits if EOP set */
994 		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
995 			dev_kfree_skb_any(skb);
996 			/* TODO: shouldn't we increment a counter indicating the
997 			 * drop?
998 			 */
999 			goto next_desc;
1000 		}
1001 
1002 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1003 			     i40e_ptype_to_hash(rx_ptype));
1004 		/* probably a little skewed due to removing CRC */
1005 		total_rx_bytes += skb->len;
1006 		total_rx_packets++;
1007 
1008 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1009 
1010 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1011 
1012 		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1013 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1014 			 : 0;
1015 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1016 
1017 		rx_ring->netdev->last_rx = jiffies;
1018 		budget--;
1019 next_desc:
1020 		rx_desc->wb.qword1.status_error_len = 0;
1021 		if (!budget)
1022 			break;
1023 
1024 		cleaned_count++;
1025 		/* return some buffers to hardware, one at a time is too slow */
1026 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1027 			i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1028 			cleaned_count = 0;
1029 		}
1030 
1031 		/* use prefetched values */
1032 		rx_desc = next_rxd;
1033 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1034 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1035 			    I40E_RXD_QW1_STATUS_SHIFT;
1036 	}
1037 
1038 	rx_ring->next_to_clean = i;
1039 	u64_stats_update_begin(&rx_ring->syncp);
1040 	rx_ring->stats.packets += total_rx_packets;
1041 	rx_ring->stats.bytes += total_rx_bytes;
1042 	u64_stats_update_end(&rx_ring->syncp);
1043 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1044 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1045 
1046 	if (cleaned_count)
1047 		i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1048 
1049 	return budget > 0;
1050 }
1051 
1052 /**
1053  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1054  * @napi: napi struct with our devices info in it
1055  * @budget: amount of work driver is allowed to do this pass, in packets
1056  *
1057  * This function will clean all queues associated with a q_vector.
1058  *
1059  * Returns the amount of work done
1060  **/
i40evf_napi_poll(struct napi_struct * napi,int budget)1061 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1062 {
1063 	struct i40e_q_vector *q_vector =
1064 			       container_of(napi, struct i40e_q_vector, napi);
1065 	struct i40e_vsi *vsi = q_vector->vsi;
1066 	struct i40e_ring *ring;
1067 	bool clean_complete = true;
1068 	int budget_per_ring;
1069 
1070 	if (test_bit(__I40E_DOWN, &vsi->state)) {
1071 		napi_complete(napi);
1072 		return 0;
1073 	}
1074 
1075 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1076 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1077 	 */
1078 	i40e_for_each_ring(ring, q_vector->tx)
1079 		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1080 
1081 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1082 	 * allow the budget to go below 1 because that would exit polling early.
1083 	 */
1084 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1085 
1086 	i40e_for_each_ring(ring, q_vector->rx)
1087 		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1088 
1089 	/* If work not completed, return budget and polling will return */
1090 	if (!clean_complete)
1091 		return budget;
1092 
1093 	/* Work is done so exit the polling mode and re-enable the interrupt */
1094 	napi_complete(napi);
1095 	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1096 	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1097 		i40e_update_dynamic_itr(q_vector);
1098 
1099 	if (!test_bit(__I40E_DOWN, &vsi->state))
1100 		i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1107  * @skb:     send buffer
1108  * @tx_ring: ring to send buffer on
1109  * @flags:   the tx flags to be set
1110  *
1111  * Checks the skb and set up correspondingly several generic transmit flags
1112  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1113  *
1114  * Returns error code indicate the frame should be dropped upon error and the
1115  * otherwise  returns 0 to indicate the flags has been set properly.
1116  **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)1117 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1118 				      struct i40e_ring *tx_ring,
1119 				      u32 *flags)
1120 {
1121 	__be16 protocol = skb->protocol;
1122 	u32  tx_flags = 0;
1123 
1124 	/* if we have a HW VLAN tag being added, default to the HW one */
1125 	if (vlan_tx_tag_present(skb)) {
1126 		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1127 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1128 	/* else if it is a SW VLAN, check the next protocol and store the tag */
1129 	} else if (protocol == htons(ETH_P_8021Q)) {
1130 		struct vlan_hdr *vhdr, _vhdr;
1131 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1132 		if (!vhdr)
1133 			return -EINVAL;
1134 
1135 		protocol = vhdr->h_vlan_encapsulated_proto;
1136 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1137 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1138 	}
1139 
1140 	*flags = tx_flags;
1141 	return 0;
1142 }
1143 
1144 /**
1145  * i40e_tso - set up the tso context descriptor
1146  * @tx_ring:  ptr to the ring to send
1147  * @skb:      ptr to the skb we're sending
1148  * @tx_flags: the collected send information
1149  * @protocol: the send protocol
1150  * @hdr_len:  ptr to the size of the packet header
1151  * @cd_tunneling: ptr to context descriptor bits
1152  *
1153  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1154  **/
i40e_tso(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol,u8 * hdr_len,u64 * cd_type_cmd_tso_mss,u32 * cd_tunneling)1155 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1156 		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1157 		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1158 {
1159 	u32 cd_cmd, cd_tso_len, cd_mss;
1160 	struct ipv6hdr *ipv6h;
1161 	struct tcphdr *tcph;
1162 	struct iphdr *iph;
1163 	u32 l4len;
1164 	int err;
1165 
1166 	if (!skb_is_gso(skb))
1167 		return 0;
1168 
1169 	err = skb_cow_head(skb, 0);
1170 	if (err < 0)
1171 		return err;
1172 
1173 	if (protocol == htons(ETH_P_IP)) {
1174 		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1175 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1176 		iph->tot_len = 0;
1177 		iph->check = 0;
1178 		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1179 						 0, IPPROTO_TCP, 0);
1180 	} else if (skb_is_gso_v6(skb)) {
1181 
1182 		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1183 					   : ipv6_hdr(skb);
1184 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1185 		ipv6h->payload_len = 0;
1186 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1187 					       0, IPPROTO_TCP, 0);
1188 	}
1189 
1190 	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1191 	*hdr_len = (skb->encapsulation
1192 		    ? (skb_inner_transport_header(skb) - skb->data)
1193 		    : skb_transport_offset(skb)) + l4len;
1194 
1195 	/* find the field values */
1196 	cd_cmd = I40E_TX_CTX_DESC_TSO;
1197 	cd_tso_len = skb->len - *hdr_len;
1198 	cd_mss = skb_shinfo(skb)->gso_size;
1199 	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1200 				((u64)cd_tso_len <<
1201 				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1202 				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1203 	return 1;
1204 }
1205 
1206 /**
1207  * i40e_tx_enable_csum - Enable Tx checksum offloads
1208  * @skb: send buffer
1209  * @tx_flags: Tx flags currently set
1210  * @td_cmd: Tx descriptor command bits to set
1211  * @td_offset: Tx descriptor header offsets to set
1212  * @cd_tunneling: ptr to context desc bits
1213  **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)1214 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1215 				u32 *td_cmd, u32 *td_offset,
1216 				struct i40e_ring *tx_ring,
1217 				u32 *cd_tunneling)
1218 {
1219 	struct ipv6hdr *this_ipv6_hdr;
1220 	unsigned int this_tcp_hdrlen;
1221 	struct iphdr *this_ip_hdr;
1222 	u32 network_hdr_len;
1223 	u8 l4_hdr = 0;
1224 
1225 	if (skb->encapsulation) {
1226 		network_hdr_len = skb_inner_network_header_len(skb);
1227 		this_ip_hdr = inner_ip_hdr(skb);
1228 		this_ipv6_hdr = inner_ipv6_hdr(skb);
1229 		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1230 
1231 		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1232 
1233 			if (tx_flags & I40E_TX_FLAGS_TSO) {
1234 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1235 				ip_hdr(skb)->check = 0;
1236 			} else {
1237 				*cd_tunneling |=
1238 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1239 			}
1240 		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1241 			if (tx_flags & I40E_TX_FLAGS_TSO) {
1242 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1243 				ip_hdr(skb)->check = 0;
1244 			} else {
1245 				*cd_tunneling |=
1246 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1247 			}
1248 		}
1249 
1250 		/* Now set the ctx descriptor fields */
1251 		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1252 					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1253 				   I40E_TXD_CTX_UDP_TUNNELING            |
1254 				   ((skb_inner_network_offset(skb) -
1255 					skb_transport_offset(skb)) >> 1) <<
1256 				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1257 
1258 	} else {
1259 		network_hdr_len = skb_network_header_len(skb);
1260 		this_ip_hdr = ip_hdr(skb);
1261 		this_ipv6_hdr = ipv6_hdr(skb);
1262 		this_tcp_hdrlen = tcp_hdrlen(skb);
1263 	}
1264 
1265 	/* Enable IP checksum offloads */
1266 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1267 		l4_hdr = this_ip_hdr->protocol;
1268 		/* the stack computes the IP header already, the only time we
1269 		 * need the hardware to recompute it is in the case of TSO.
1270 		 */
1271 		if (tx_flags & I40E_TX_FLAGS_TSO) {
1272 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1273 			this_ip_hdr->check = 0;
1274 		} else {
1275 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1276 		}
1277 		/* Now set the td_offset for IP header length */
1278 		*td_offset = (network_hdr_len >> 2) <<
1279 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1280 	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1281 		l4_hdr = this_ipv6_hdr->nexthdr;
1282 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1283 		/* Now set the td_offset for IP header length */
1284 		*td_offset = (network_hdr_len >> 2) <<
1285 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1286 	}
1287 	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1288 	*td_offset |= (skb_network_offset(skb) >> 1) <<
1289 		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1290 
1291 	/* Enable L4 checksum offloads */
1292 	switch (l4_hdr) {
1293 	case IPPROTO_TCP:
1294 		/* enable checksum offloads */
1295 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1296 		*td_offset |= (this_tcp_hdrlen >> 2) <<
1297 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1298 		break;
1299 	case IPPROTO_SCTP:
1300 		/* enable SCTP checksum offload */
1301 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1302 		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1303 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1304 		break;
1305 	case IPPROTO_UDP:
1306 		/* enable UDP checksum offload */
1307 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1308 		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1309 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1310 		break;
1311 	default:
1312 		break;
1313 	}
1314 }
1315 
1316 /**
1317  * i40e_create_tx_ctx Build the Tx context descriptor
1318  * @tx_ring:  ring to create the descriptor on
1319  * @cd_type_cmd_tso_mss: Quad Word 1
1320  * @cd_tunneling: Quad Word 0 - bits 0-31
1321  * @cd_l2tag2: Quad Word 0 - bits 32-63
1322  **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)1323 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1324 			       const u64 cd_type_cmd_tso_mss,
1325 			       const u32 cd_tunneling, const u32 cd_l2tag2)
1326 {
1327 	struct i40e_tx_context_desc *context_desc;
1328 	int i = tx_ring->next_to_use;
1329 
1330 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1331 	    !cd_tunneling && !cd_l2tag2)
1332 		return;
1333 
1334 	/* grab the next descriptor */
1335 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1336 
1337 	i++;
1338 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1339 
1340 	/* cpu_to_le32 and assign to struct fields */
1341 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1342 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1343 	context_desc->rsvd = cpu_to_le16(0);
1344 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1345 }
1346 
1347 /**
1348  * i40e_tx_map - Build the Tx descriptor
1349  * @tx_ring:  ring to send buffer on
1350  * @skb:      send buffer
1351  * @first:    first buffer info buffer to use
1352  * @tx_flags: collected send information
1353  * @hdr_len:  size of the packet header
1354  * @td_cmd:   the command field in the descriptor
1355  * @td_offset: offset for checksum or crc
1356  **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)1357 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1358 			struct i40e_tx_buffer *first, u32 tx_flags,
1359 			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1360 {
1361 	unsigned int data_len = skb->data_len;
1362 	unsigned int size = skb_headlen(skb);
1363 	struct skb_frag_struct *frag;
1364 	struct i40e_tx_buffer *tx_bi;
1365 	struct i40e_tx_desc *tx_desc;
1366 	u16 i = tx_ring->next_to_use;
1367 	u32 td_tag = 0;
1368 	dma_addr_t dma;
1369 	u16 gso_segs;
1370 
1371 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1372 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1373 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1374 			 I40E_TX_FLAGS_VLAN_SHIFT;
1375 	}
1376 
1377 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1378 		gso_segs = skb_shinfo(skb)->gso_segs;
1379 	else
1380 		gso_segs = 1;
1381 
1382 	/* multiply data chunks by size of headers */
1383 	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1384 	first->gso_segs = gso_segs;
1385 	first->skb = skb;
1386 	first->tx_flags = tx_flags;
1387 
1388 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1389 
1390 	tx_desc = I40E_TX_DESC(tx_ring, i);
1391 	tx_bi = first;
1392 
1393 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1394 		if (dma_mapping_error(tx_ring->dev, dma))
1395 			goto dma_error;
1396 
1397 		/* record length, and DMA address */
1398 		dma_unmap_len_set(tx_bi, len, size);
1399 		dma_unmap_addr_set(tx_bi, dma, dma);
1400 
1401 		tx_desc->buffer_addr = cpu_to_le64(dma);
1402 
1403 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1404 			tx_desc->cmd_type_offset_bsz =
1405 				build_ctob(td_cmd, td_offset,
1406 					   I40E_MAX_DATA_PER_TXD, td_tag);
1407 
1408 			tx_desc++;
1409 			i++;
1410 			if (i == tx_ring->count) {
1411 				tx_desc = I40E_TX_DESC(tx_ring, 0);
1412 				i = 0;
1413 			}
1414 
1415 			dma += I40E_MAX_DATA_PER_TXD;
1416 			size -= I40E_MAX_DATA_PER_TXD;
1417 
1418 			tx_desc->buffer_addr = cpu_to_le64(dma);
1419 		}
1420 
1421 		if (likely(!data_len))
1422 			break;
1423 
1424 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1425 							  size, td_tag);
1426 
1427 		tx_desc++;
1428 		i++;
1429 		if (i == tx_ring->count) {
1430 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1431 			i = 0;
1432 		}
1433 
1434 		size = skb_frag_size(frag);
1435 		data_len -= size;
1436 
1437 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1438 				       DMA_TO_DEVICE);
1439 
1440 		tx_bi = &tx_ring->tx_bi[i];
1441 	}
1442 
1443 	/* Place RS bit on last descriptor of any packet that spans across the
1444 	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1445 	 */
1446 #define WB_STRIDE 0x3
1447 	if (((i & WB_STRIDE) != WB_STRIDE) &&
1448 	    (first <= &tx_ring->tx_bi[i]) &&
1449 	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1450 		tx_desc->cmd_type_offset_bsz =
1451 			build_ctob(td_cmd, td_offset, size, td_tag) |
1452 			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1453 					 I40E_TXD_QW1_CMD_SHIFT);
1454 	} else {
1455 		tx_desc->cmd_type_offset_bsz =
1456 			build_ctob(td_cmd, td_offset, size, td_tag) |
1457 			cpu_to_le64((u64)I40E_TXD_CMD <<
1458 					 I40E_TXD_QW1_CMD_SHIFT);
1459 	}
1460 
1461 	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1462 						 tx_ring->queue_index),
1463 			     first->bytecount);
1464 
1465 	/* set the timestamp */
1466 	first->time_stamp = jiffies;
1467 
1468 	/* Force memory writes to complete before letting h/w
1469 	 * know there are new descriptors to fetch.  (Only
1470 	 * applicable for weak-ordered memory model archs,
1471 	 * such as IA-64).
1472 	 */
1473 	wmb();
1474 
1475 	/* set next_to_watch value indicating a packet is present */
1476 	first->next_to_watch = tx_desc;
1477 
1478 	i++;
1479 	if (i == tx_ring->count)
1480 		i = 0;
1481 
1482 	tx_ring->next_to_use = i;
1483 
1484 	/* notify HW of packet */
1485 	writel(i, tx_ring->tail);
1486 
1487 	return;
1488 
1489 dma_error:
1490 	dev_info(tx_ring->dev, "TX DMA map failed\n");
1491 
1492 	/* clear dma mappings for failed tx_bi map */
1493 	for (;;) {
1494 		tx_bi = &tx_ring->tx_bi[i];
1495 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1496 		if (tx_bi == first)
1497 			break;
1498 		if (i == 0)
1499 			i = tx_ring->count;
1500 		i--;
1501 	}
1502 
1503 	tx_ring->next_to_use = i;
1504 }
1505 
1506 /**
1507  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1508  * @tx_ring: the ring to be checked
1509  * @size:    the size buffer we want to assure is available
1510  *
1511  * Returns -EBUSY if a stop is needed, else 0
1512  **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1513 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1514 {
1515 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1516 	/* Memory barrier before checking head and tail */
1517 	smp_mb();
1518 
1519 	/* Check again in a case another CPU has just made room available. */
1520 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1521 		return -EBUSY;
1522 
1523 	/* A reprieve! - use start_queue because it doesn't call schedule */
1524 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1525 	++tx_ring->tx_stats.restart_queue;
1526 	return 0;
1527 }
1528 
1529 /**
1530  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1531  * @tx_ring: the ring to be checked
1532  * @size:    the size buffer we want to assure is available
1533  *
1534  * Returns 0 if stop is not needed
1535  **/
i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1536 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1537 {
1538 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1539 		return 0;
1540 	return __i40e_maybe_stop_tx(tx_ring, size);
1541 }
1542 
1543 /**
1544  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1545  * @skb:     send buffer
1546  * @tx_ring: ring to send buffer on
1547  *
1548  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1549  * there is not enough descriptors available in this ring since we need at least
1550  * one descriptor.
1551  **/
i40e_xmit_descriptor_count(struct sk_buff * skb,struct i40e_ring * tx_ring)1552 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1553 				      struct i40e_ring *tx_ring)
1554 {
1555 	unsigned int f;
1556 	int count = 0;
1557 
1558 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1559 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1560 	 *       + 4 desc gap to avoid the cache line where head is,
1561 	 *       + 1 desc for context descriptor,
1562 	 * otherwise try next time
1563 	 */
1564 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1565 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1566 
1567 	count += TXD_USE_COUNT(skb_headlen(skb));
1568 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1569 		tx_ring->tx_stats.tx_busy++;
1570 		return 0;
1571 	}
1572 	return count;
1573 }
1574 
1575 /**
1576  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1577  * @skb:     send buffer
1578  * @tx_ring: ring to send buffer on
1579  *
1580  * Returns NETDEV_TX_OK if sent, else an error code
1581  **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)1582 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1583 					struct i40e_ring *tx_ring)
1584 {
1585 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1586 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
1587 	struct i40e_tx_buffer *first;
1588 	u32 td_offset = 0;
1589 	u32 tx_flags = 0;
1590 	__be16 protocol;
1591 	u32 td_cmd = 0;
1592 	u8 hdr_len = 0;
1593 	int tso;
1594 	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1595 		return NETDEV_TX_BUSY;
1596 
1597 	/* prepare the xmit flags */
1598 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1599 		goto out_drop;
1600 
1601 	/* obtain protocol of skb */
1602 	protocol = vlan_get_protocol(skb);
1603 
1604 	/* record the location of the first descriptor for this packet */
1605 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
1606 
1607 	/* setup IPv4/IPv6 offloads */
1608 	if (protocol == htons(ETH_P_IP))
1609 		tx_flags |= I40E_TX_FLAGS_IPV4;
1610 	else if (protocol == htons(ETH_P_IPV6))
1611 		tx_flags |= I40E_TX_FLAGS_IPV6;
1612 
1613 	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1614 		       &cd_type_cmd_tso_mss, &cd_tunneling);
1615 
1616 	if (tso < 0)
1617 		goto out_drop;
1618 	else if (tso)
1619 		tx_flags |= I40E_TX_FLAGS_TSO;
1620 
1621 	skb_tx_timestamp(skb);
1622 
1623 	/* always enable CRC insertion offload */
1624 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
1625 
1626 	/* Always offload the checksum, since it's in the data descriptor */
1627 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1628 		tx_flags |= I40E_TX_FLAGS_CSUM;
1629 
1630 		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1631 				    tx_ring, &cd_tunneling);
1632 	}
1633 
1634 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1635 			   cd_tunneling, cd_l2tag2);
1636 
1637 	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1638 		    td_cmd, td_offset);
1639 
1640 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1641 
1642 	return NETDEV_TX_OK;
1643 
1644 out_drop:
1645 	dev_kfree_skb_any(skb);
1646 	return NETDEV_TX_OK;
1647 }
1648 
1649 /**
1650  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1651  * @skb:    send buffer
1652  * @netdev: network interface device structure
1653  *
1654  * Returns NETDEV_TX_OK if sent, else an error code
1655  **/
i40evf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1656 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1657 {
1658 	struct i40evf_adapter *adapter = netdev_priv(netdev);
1659 	struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1660 
1661 	/* hardware can't handle really short frames, hardware padding works
1662 	 * beyond this point
1663 	 */
1664 	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1665 		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1666 			return NETDEV_TX_OK;
1667 		skb->len = I40E_MIN_TX_LEN;
1668 		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1669 	}
1670 
1671 	return i40e_xmit_frame_ring(skb, tx_ring);
1672 }
1673