• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
29 
30 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32 					     u16 *phy_ctrl);
33 static s32  igb_wait_autoneg(struct e1000_hw *hw);
34 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
35 
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table[] = {
38 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
40 	(sizeof(e1000_m88_cable_length_table) / \
41 	sizeof(e1000_m88_cable_length_table[0]))
42 
43 static const u16 e1000_igp_2_cable_length_table[] = {
44 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
45 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
46 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
47 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
48 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
49 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
50 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
51 	104, 109, 114, 118, 121, 124};
52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
53 	(sizeof(e1000_igp_2_cable_length_table) / \
54 	 sizeof(e1000_igp_2_cable_length_table[0]))
55 
56 /**
57  *  igb_check_reset_block - Check if PHY reset is blocked
58  *  @hw: pointer to the HW structure
59  *
60  *  Read the PHY management control register and check whether a PHY reset
61  *  is blocked.  If a reset is not blocked return 0, otherwise
62  *  return E1000_BLK_PHY_RESET (12).
63  **/
igb_check_reset_block(struct e1000_hw * hw)64 s32 igb_check_reset_block(struct e1000_hw *hw)
65 {
66 	u32 manc;
67 
68 	manc = rd32(E1000_MANC);
69 
70 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
71 }
72 
73 /**
74  *  igb_get_phy_id - Retrieve the PHY ID and revision
75  *  @hw: pointer to the HW structure
76  *
77  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
78  *  revision in the hardware structure.
79  **/
igb_get_phy_id(struct e1000_hw * hw)80 s32 igb_get_phy_id(struct e1000_hw *hw)
81 {
82 	struct e1000_phy_info *phy = &hw->phy;
83 	s32 ret_val = 0;
84 	u16 phy_id;
85 
86 	/* ensure PHY page selection to fix misconfigured i210 */
87 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
88 		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
igb_phy_reset_dsp(struct e1000_hw * hw)113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/* Set up Op-code, Phy Address, and register offset in the MDI
152 	 * Control register.  The MAC will take care of interfacing with the
153 	 * PHY to retrieve the desired data.
154 	 */
155 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
157 		(E1000_MDIC_OP_READ));
158 
159 	wr32(E1000_MDIC, mdic);
160 
161 	/* Poll the ready bit to see if the MDI read completed
162 	 * Increasing the time out as testing showed failures with
163 	 * the lower time out
164 	 */
165 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 		udelay(50);
167 		mdic = rd32(E1000_MDIC);
168 		if (mdic & E1000_MDIC_READY)
169 			break;
170 	}
171 	if (!(mdic & E1000_MDIC_READY)) {
172 		hw_dbg("MDI Read did not complete\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	if (mdic & E1000_MDIC_ERROR) {
177 		hw_dbg("MDI Error\n");
178 		ret_val = -E1000_ERR_PHY;
179 		goto out;
180 	}
181 	*data = (u16) mdic;
182 
183 out:
184 	return ret_val;
185 }
186 
187 /**
188  *  igb_write_phy_reg_mdic - Write MDI control register
189  *  @hw: pointer to the HW structure
190  *  @offset: register offset to write to
191  *  @data: data to write to register at offset
192  *
193  *  Writes data to MDI control register in the PHY at offset.
194  **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
196 {
197 	struct e1000_phy_info *phy = &hw->phy;
198 	u32 i, mdic = 0;
199 	s32 ret_val = 0;
200 
201 	if (offset > MAX_PHY_REG_ADDRESS) {
202 		hw_dbg("PHY Address %d is out of range\n", offset);
203 		ret_val = -E1000_ERR_PARAM;
204 		goto out;
205 	}
206 
207 	/* Set up Op-code, Phy Address, and register offset in the MDI
208 	 * Control register.  The MAC will take care of interfacing with the
209 	 * PHY to retrieve the desired data.
210 	 */
211 	mdic = (((u32)data) |
212 		(offset << E1000_MDIC_REG_SHIFT) |
213 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
214 		(E1000_MDIC_OP_WRITE));
215 
216 	wr32(E1000_MDIC, mdic);
217 
218 	/* Poll the ready bit to see if the MDI read completed
219 	 * Increasing the time out as testing showed failures with
220 	 * the lower time out
221 	 */
222 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 		udelay(50);
224 		mdic = rd32(E1000_MDIC);
225 		if (mdic & E1000_MDIC_READY)
226 			break;
227 	}
228 	if (!(mdic & E1000_MDIC_READY)) {
229 		hw_dbg("MDI Write did not complete\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 	if (mdic & E1000_MDIC_ERROR) {
234 		hw_dbg("MDI Error\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 
239 out:
240 	return ret_val;
241 }
242 
243 /**
244  *  igb_read_phy_reg_i2c - Read PHY register using i2c
245  *  @hw: pointer to the HW structure
246  *  @offset: register offset to be read
247  *  @data: pointer to the read data
248  *
249  *  Reads the PHY register at offset using the i2c interface and stores the
250  *  retrieved information in data.
251  **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253 {
254 	struct e1000_phy_info *phy = &hw->phy;
255 	u32 i, i2ccmd = 0;
256 
257 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
258 	 * register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 		  (E1000_I2CCMD_OPCODE_READ));
264 
265 	wr32(E1000_I2CCMD, i2ccmd);
266 
267 	/* Poll the ready bit to see if the I2C read completed */
268 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 		udelay(50);
270 		i2ccmd = rd32(E1000_I2CCMD);
271 		if (i2ccmd & E1000_I2CCMD_READY)
272 			break;
273 	}
274 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 		hw_dbg("I2CCMD Read did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (i2ccmd & E1000_I2CCMD_ERROR) {
279 		hw_dbg("I2CCMD Error bit set\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Need to byte-swap the 16-bit value. */
284 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285 
286 	return 0;
287 }
288 
289 /**
290  *  igb_write_phy_reg_i2c - Write PHY register using i2c
291  *  @hw: pointer to the HW structure
292  *  @offset: register offset to write to
293  *  @data: data to write at register offset
294  *
295  *  Writes the data to PHY register at the offset using the i2c interface.
296  **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298 {
299 	struct e1000_phy_info *phy = &hw->phy;
300 	u32 i, i2ccmd = 0;
301 	u16 phy_data_swapped;
302 
303 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 		hw_dbg("PHY I2C Address %d is out of range.\n",
306 			  hw->phy.addr);
307 		return -E1000_ERR_CONFIG;
308 	}
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
314 	 * register.  The MAC will take care of interfacing with the
315 	 * PHY to retrieve the desired data.
316 	 */
317 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 		  E1000_I2CCMD_OPCODE_WRITE |
320 		  phy_data_swapped);
321 
322 	wr32(E1000_I2CCMD, i2ccmd);
323 
324 	/* Poll the ready bit to see if the I2C read completed */
325 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 		udelay(50);
327 		i2ccmd = rd32(E1000_I2CCMD);
328 		if (i2ccmd & E1000_I2CCMD_READY)
329 			break;
330 	}
331 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 		hw_dbg("I2CCMD Write did not complete\n");
333 		return -E1000_ERR_PHY;
334 	}
335 	if (i2ccmd & E1000_I2CCMD_ERROR) {
336 		hw_dbg("I2CCMD Error bit set\n");
337 		return -E1000_ERR_PHY;
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  *  igb_read_sfp_data_byte - Reads SFP module data.
345  *  @hw: pointer to the HW structure
346  *  @offset: byte location offset to be read
347  *  @data: read data buffer pointer
348  *
349  *  Reads one byte from SFP module data stored
350  *  in SFP resided EEPROM memory or SFP diagnostic area.
351  *  Function should be called with
352  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
354  *  access
355  **/
igb_read_sfp_data_byte(struct e1000_hw * hw,u16 offset,u8 * data)356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
357 {
358 	u32 i = 0;
359 	u32 i2ccmd = 0;
360 	u32 data_local = 0;
361 
362 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 		hw_dbg("I2CCMD command address exceeds upper limit\n");
364 		return -E1000_ERR_PHY;
365 	}
366 
367 	/* Set up Op-code, EEPROM Address,in the I2CCMD
368 	 * register. The MAC will take care of interfacing with the
369 	 * EEPROM to retrieve the desired data.
370 	 */
371 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
372 		  E1000_I2CCMD_OPCODE_READ);
373 
374 	wr32(E1000_I2CCMD, i2ccmd);
375 
376 	/* Poll the ready bit to see if the I2C read completed */
377 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
378 		udelay(50);
379 		data_local = rd32(E1000_I2CCMD);
380 		if (data_local & E1000_I2CCMD_READY)
381 			break;
382 	}
383 	if (!(data_local & E1000_I2CCMD_READY)) {
384 		hw_dbg("I2CCMD Read did not complete\n");
385 		return -E1000_ERR_PHY;
386 	}
387 	if (data_local & E1000_I2CCMD_ERROR) {
388 		hw_dbg("I2CCMD Error bit set\n");
389 		return -E1000_ERR_PHY;
390 	}
391 	*data = (u8) data_local & 0xFF;
392 
393 	return 0;
394 }
395 
396 /**
397  *  igb_read_phy_reg_igp - Read igp PHY register
398  *  @hw: pointer to the HW structure
399  *  @offset: register offset to be read
400  *  @data: pointer to the read data
401  *
402  *  Acquires semaphore, if necessary, then reads the PHY register at offset
403  *  and storing the retrieved information in data.  Release any acquired
404  *  semaphores before exiting.
405  **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)406 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
407 {
408 	s32 ret_val = 0;
409 
410 	if (!(hw->phy.ops.acquire))
411 		goto out;
412 
413 	ret_val = hw->phy.ops.acquire(hw);
414 	if (ret_val)
415 		goto out;
416 
417 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
418 		ret_val = igb_write_phy_reg_mdic(hw,
419 						 IGP01E1000_PHY_PAGE_SELECT,
420 						 (u16)offset);
421 		if (ret_val) {
422 			hw->phy.ops.release(hw);
423 			goto out;
424 		}
425 	}
426 
427 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
428 					data);
429 
430 	hw->phy.ops.release(hw);
431 
432 out:
433 	return ret_val;
434 }
435 
436 /**
437  *  igb_write_phy_reg_igp - Write igp PHY register
438  *  @hw: pointer to the HW structure
439  *  @offset: register offset to write to
440  *  @data: data to write at register offset
441  *
442  *  Acquires semaphore, if necessary, then writes the data to PHY register
443  *  at the offset.  Release any acquired semaphores before exiting.
444  **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)445 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
446 {
447 	s32 ret_val = 0;
448 
449 	if (!(hw->phy.ops.acquire))
450 		goto out;
451 
452 	ret_val = hw->phy.ops.acquire(hw);
453 	if (ret_val)
454 		goto out;
455 
456 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
457 		ret_val = igb_write_phy_reg_mdic(hw,
458 						 IGP01E1000_PHY_PAGE_SELECT,
459 						 (u16)offset);
460 		if (ret_val) {
461 			hw->phy.ops.release(hw);
462 			goto out;
463 		}
464 	}
465 
466 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
467 					 data);
468 
469 	hw->phy.ops.release(hw);
470 
471 out:
472 	return ret_val;
473 }
474 
475 /**
476  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
477  *  @hw: pointer to the HW structure
478  *
479  *  Sets up Carrier-sense on Transmit and downshift values.
480  **/
igb_copper_link_setup_82580(struct e1000_hw * hw)481 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
482 {
483 	struct e1000_phy_info *phy = &hw->phy;
484 	s32 ret_val;
485 	u16 phy_data;
486 
487 	if (phy->reset_disable) {
488 		ret_val = 0;
489 		goto out;
490 	}
491 
492 	if (phy->type == e1000_phy_82580) {
493 		ret_val = hw->phy.ops.reset(hw);
494 		if (ret_val) {
495 			hw_dbg("Error resetting the PHY.\n");
496 			goto out;
497 		}
498 	}
499 
500 	/* Enable CRS on TX. This must be set for half-duplex operation. */
501 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
502 	if (ret_val)
503 		goto out;
504 
505 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
506 
507 	/* Enable downshift */
508 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
509 
510 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
511 	if (ret_val)
512 		goto out;
513 
514 	/* Set MDI/MDIX mode */
515 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
516 	if (ret_val)
517 		goto out;
518 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
519 	/* Options:
520 	 *   0 - Auto (default)
521 	 *   1 - MDI mode
522 	 *   2 - MDI-X mode
523 	 */
524 	switch (hw->phy.mdix) {
525 	case 1:
526 		break;
527 	case 2:
528 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
529 		break;
530 	case 0:
531 	default:
532 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
533 		break;
534 	}
535 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
536 
537 out:
538 	return ret_val;
539 }
540 
541 /**
542  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
543  *  @hw: pointer to the HW structure
544  *
545  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
546  *  and downshift values are set also.
547  **/
igb_copper_link_setup_m88(struct e1000_hw * hw)548 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
549 {
550 	struct e1000_phy_info *phy = &hw->phy;
551 	s32 ret_val;
552 	u16 phy_data;
553 
554 	if (phy->reset_disable) {
555 		ret_val = 0;
556 		goto out;
557 	}
558 
559 	/* Enable CRS on TX. This must be set for half-duplex operation. */
560 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
561 	if (ret_val)
562 		goto out;
563 
564 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
565 
566 	/* Options:
567 	 *   MDI/MDI-X = 0 (default)
568 	 *   0 - Auto for all speeds
569 	 *   1 - MDI mode
570 	 *   2 - MDI-X mode
571 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
572 	 */
573 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
574 
575 	switch (phy->mdix) {
576 	case 1:
577 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
578 		break;
579 	case 2:
580 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
581 		break;
582 	case 3:
583 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
584 		break;
585 	case 0:
586 	default:
587 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
588 		break;
589 	}
590 
591 	/* Options:
592 	 *   disable_polarity_correction = 0 (default)
593 	 *       Automatic Correction for Reversed Cable Polarity
594 	 *   0 - Disabled
595 	 *   1 - Enabled
596 	 */
597 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
598 	if (phy->disable_polarity_correction == 1)
599 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
600 
601 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
602 	if (ret_val)
603 		goto out;
604 
605 	if (phy->revision < E1000_REVISION_4) {
606 		/* Force TX_CLK in the Extended PHY Specific Control Register
607 		 * to 25MHz clock.
608 		 */
609 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
610 					    &phy_data);
611 		if (ret_val)
612 			goto out;
613 
614 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
615 
616 		if ((phy->revision == E1000_REVISION_2) &&
617 		    (phy->id == M88E1111_I_PHY_ID)) {
618 			/* 82573L PHY - set the downshift counter to 5x. */
619 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
620 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
621 		} else {
622 			/* Configure Master and Slave downshift values */
623 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
624 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
625 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
626 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
627 		}
628 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
629 					     phy_data);
630 		if (ret_val)
631 			goto out;
632 	}
633 
634 	/* Commit the changes. */
635 	ret_val = igb_phy_sw_reset(hw);
636 	if (ret_val) {
637 		hw_dbg("Error committing the PHY changes\n");
638 		goto out;
639 	}
640 
641 out:
642 	return ret_val;
643 }
644 
645 /**
646  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
647  *  @hw: pointer to the HW structure
648  *
649  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
650  *  Also enables and sets the downshift parameters.
651  **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)652 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
653 {
654 	struct e1000_phy_info *phy = &hw->phy;
655 	s32 ret_val;
656 	u16 phy_data;
657 
658 	if (phy->reset_disable)
659 		return 0;
660 
661 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
662 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
663 	if (ret_val)
664 		return ret_val;
665 
666 	/* Options:
667 	 *   MDI/MDI-X = 0 (default)
668 	 *   0 - Auto for all speeds
669 	 *   1 - MDI mode
670 	 *   2 - MDI-X mode
671 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
672 	 */
673 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
674 
675 	switch (phy->mdix) {
676 	case 1:
677 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
678 		break;
679 	case 2:
680 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
681 		break;
682 	case 3:
683 		/* M88E1112 does not support this mode) */
684 		if (phy->id != M88E1112_E_PHY_ID) {
685 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
686 			break;
687 		}
688 	case 0:
689 	default:
690 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
691 		break;
692 	}
693 
694 	/* Options:
695 	 *   disable_polarity_correction = 0 (default)
696 	 *       Automatic Correction for Reversed Cable Polarity
697 	 *   0 - Disabled
698 	 *   1 - Enabled
699 	 */
700 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
701 	if (phy->disable_polarity_correction == 1)
702 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
703 
704 	/* Enable downshift and setting it to X6 */
705 	if (phy->id == M88E1543_E_PHY_ID) {
706 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
707 		ret_val =
708 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
709 		if (ret_val)
710 			return ret_val;
711 
712 		ret_val = igb_phy_sw_reset(hw);
713 		if (ret_val) {
714 			hw_dbg("Error committing the PHY changes\n");
715 			return ret_val;
716 		}
717 	}
718 
719 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
720 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
721 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
722 
723 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
724 	if (ret_val)
725 		return ret_val;
726 
727 	/* Commit the changes. */
728 	ret_val = igb_phy_sw_reset(hw);
729 	if (ret_val) {
730 		hw_dbg("Error committing the PHY changes\n");
731 		return ret_val;
732 	}
733 	ret_val = igb_set_master_slave_mode(hw);
734 	if (ret_val)
735 		return ret_val;
736 
737 	return 0;
738 }
739 
740 /**
741  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
742  *  @hw: pointer to the HW structure
743  *
744  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
745  *  igp PHY's.
746  **/
igb_copper_link_setup_igp(struct e1000_hw * hw)747 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
748 {
749 	struct e1000_phy_info *phy = &hw->phy;
750 	s32 ret_val;
751 	u16 data;
752 
753 	if (phy->reset_disable) {
754 		ret_val = 0;
755 		goto out;
756 	}
757 
758 	ret_val = phy->ops.reset(hw);
759 	if (ret_val) {
760 		hw_dbg("Error resetting the PHY.\n");
761 		goto out;
762 	}
763 
764 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
765 	 * timeout issues when LFS is enabled.
766 	 */
767 	msleep(100);
768 
769 	/* The NVM settings will configure LPLU in D3 for
770 	 * non-IGP1 PHYs.
771 	 */
772 	if (phy->type == e1000_phy_igp) {
773 		/* disable lplu d3 during driver init */
774 		if (phy->ops.set_d3_lplu_state)
775 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
776 		if (ret_val) {
777 			hw_dbg("Error Disabling LPLU D3\n");
778 			goto out;
779 		}
780 	}
781 
782 	/* disable lplu d0 during driver init */
783 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
784 	if (ret_val) {
785 		hw_dbg("Error Disabling LPLU D0\n");
786 		goto out;
787 	}
788 	/* Configure mdi-mdix settings */
789 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
790 	if (ret_val)
791 		goto out;
792 
793 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
794 
795 	switch (phy->mdix) {
796 	case 1:
797 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
798 		break;
799 	case 2:
800 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
801 		break;
802 	case 0:
803 	default:
804 		data |= IGP01E1000_PSCR_AUTO_MDIX;
805 		break;
806 	}
807 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
808 	if (ret_val)
809 		goto out;
810 
811 	/* set auto-master slave resolution settings */
812 	if (hw->mac.autoneg) {
813 		/* when autonegotiation advertisement is only 1000Mbps then we
814 		 * should disable SmartSpeed and enable Auto MasterSlave
815 		 * resolution as hardware default.
816 		 */
817 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
818 			/* Disable SmartSpeed */
819 			ret_val = phy->ops.read_reg(hw,
820 						    IGP01E1000_PHY_PORT_CONFIG,
821 						    &data);
822 			if (ret_val)
823 				goto out;
824 
825 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
826 			ret_val = phy->ops.write_reg(hw,
827 						     IGP01E1000_PHY_PORT_CONFIG,
828 						     data);
829 			if (ret_val)
830 				goto out;
831 
832 			/* Set auto Master/Slave resolution process */
833 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
834 			if (ret_val)
835 				goto out;
836 
837 			data &= ~CR_1000T_MS_ENABLE;
838 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
839 			if (ret_val)
840 				goto out;
841 		}
842 
843 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
844 		if (ret_val)
845 			goto out;
846 
847 		/* load defaults for future use */
848 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
849 			((data & CR_1000T_MS_VALUE) ?
850 			e1000_ms_force_master :
851 			e1000_ms_force_slave) :
852 			e1000_ms_auto;
853 
854 		switch (phy->ms_type) {
855 		case e1000_ms_force_master:
856 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
857 			break;
858 		case e1000_ms_force_slave:
859 			data |= CR_1000T_MS_ENABLE;
860 			data &= ~(CR_1000T_MS_VALUE);
861 			break;
862 		case e1000_ms_auto:
863 			data &= ~CR_1000T_MS_ENABLE;
864 		default:
865 			break;
866 		}
867 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
868 		if (ret_val)
869 			goto out;
870 	}
871 
872 out:
873 	return ret_val;
874 }
875 
876 /**
877  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
878  *  @hw: pointer to the HW structure
879  *
880  *  Performs initial bounds checking on autoneg advertisement parameter, then
881  *  configure to advertise the full capability.  Setup the PHY to autoneg
882  *  and restart the negotiation process between the link partner.  If
883  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
884  **/
igb_copper_link_autoneg(struct e1000_hw * hw)885 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
886 {
887 	struct e1000_phy_info *phy = &hw->phy;
888 	s32 ret_val;
889 	u16 phy_ctrl;
890 
891 	/* Perform some bounds checking on the autoneg advertisement
892 	 * parameter.
893 	 */
894 	phy->autoneg_advertised &= phy->autoneg_mask;
895 
896 	/* If autoneg_advertised is zero, we assume it was not defaulted
897 	 * by the calling code so we set to advertise full capability.
898 	 */
899 	if (phy->autoneg_advertised == 0)
900 		phy->autoneg_advertised = phy->autoneg_mask;
901 
902 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
903 	ret_val = igb_phy_setup_autoneg(hw);
904 	if (ret_val) {
905 		hw_dbg("Error Setting up Auto-Negotiation\n");
906 		goto out;
907 	}
908 	hw_dbg("Restarting Auto-Neg\n");
909 
910 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
911 	 * the Auto Neg Restart bit in the PHY control register.
912 	 */
913 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
914 	if (ret_val)
915 		goto out;
916 
917 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
918 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
919 	if (ret_val)
920 		goto out;
921 
922 	/* Does the user want to wait for Auto-Neg to complete here, or
923 	 * check at a later time (for example, callback routine).
924 	 */
925 	if (phy->autoneg_wait_to_complete) {
926 		ret_val = igb_wait_autoneg(hw);
927 		if (ret_val) {
928 			hw_dbg("Error while waiting for autoneg to complete\n");
929 			goto out;
930 		}
931 	}
932 
933 	hw->mac.get_link_status = true;
934 
935 out:
936 	return ret_val;
937 }
938 
939 /**
940  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
941  *  @hw: pointer to the HW structure
942  *
943  *  Reads the MII auto-neg advertisement register and/or the 1000T control
944  *  register and if the PHY is already setup for auto-negotiation, then
945  *  return successful.  Otherwise, setup advertisement and flow control to
946  *  the appropriate values for the wanted auto-negotiation.
947  **/
igb_phy_setup_autoneg(struct e1000_hw * hw)948 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
949 {
950 	struct e1000_phy_info *phy = &hw->phy;
951 	s32 ret_val;
952 	u16 mii_autoneg_adv_reg;
953 	u16 mii_1000t_ctrl_reg = 0;
954 
955 	phy->autoneg_advertised &= phy->autoneg_mask;
956 
957 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
958 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
959 	if (ret_val)
960 		goto out;
961 
962 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
963 		/* Read the MII 1000Base-T Control Register (Address 9). */
964 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
965 					    &mii_1000t_ctrl_reg);
966 		if (ret_val)
967 			goto out;
968 	}
969 
970 	/* Need to parse both autoneg_advertised and fc and set up
971 	 * the appropriate PHY registers.  First we will parse for
972 	 * autoneg_advertised software override.  Since we can advertise
973 	 * a plethora of combinations, we need to check each bit
974 	 * individually.
975 	 */
976 
977 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
978 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
979 	 * the  1000Base-T Control Register (Address 9).
980 	 */
981 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
982 				 NWAY_AR_100TX_HD_CAPS |
983 				 NWAY_AR_10T_FD_CAPS   |
984 				 NWAY_AR_10T_HD_CAPS);
985 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
986 
987 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
988 
989 	/* Do we want to advertise 10 Mb Half Duplex? */
990 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
991 		hw_dbg("Advertise 10mb Half duplex\n");
992 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
993 	}
994 
995 	/* Do we want to advertise 10 Mb Full Duplex? */
996 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
997 		hw_dbg("Advertise 10mb Full duplex\n");
998 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
999 	}
1000 
1001 	/* Do we want to advertise 100 Mb Half Duplex? */
1002 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1003 		hw_dbg("Advertise 100mb Half duplex\n");
1004 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1005 	}
1006 
1007 	/* Do we want to advertise 100 Mb Full Duplex? */
1008 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1009 		hw_dbg("Advertise 100mb Full duplex\n");
1010 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1011 	}
1012 
1013 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1014 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1015 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1016 
1017 	/* Do we want to advertise 1000 Mb Full Duplex? */
1018 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1019 		hw_dbg("Advertise 1000mb Full duplex\n");
1020 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1021 	}
1022 
1023 	/* Check for a software override of the flow control settings, and
1024 	 * setup the PHY advertisement registers accordingly.  If
1025 	 * auto-negotiation is enabled, then software will have to set the
1026 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1027 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1028 	 * negotiation.
1029 	 *
1030 	 * The possible values of the "fc" parameter are:
1031 	 *      0:  Flow control is completely disabled
1032 	 *      1:  Rx flow control is enabled (we can receive pause frames
1033 	 *          but not send pause frames).
1034 	 *      2:  Tx flow control is enabled (we can send pause frames
1035 	 *          but we do not support receiving pause frames).
1036 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1037 	 *  other:  No software override.  The flow control configuration
1038 	 *          in the EEPROM is used.
1039 	 */
1040 	switch (hw->fc.current_mode) {
1041 	case e1000_fc_none:
1042 		/* Flow control (RX & TX) is completely disabled by a
1043 		 * software over-ride.
1044 		 */
1045 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1046 		break;
1047 	case e1000_fc_rx_pause:
1048 		/* RX Flow control is enabled, and TX Flow control is
1049 		 * disabled, by a software over-ride.
1050 		 *
1051 		 * Since there really isn't a way to advertise that we are
1052 		 * capable of RX Pause ONLY, we will advertise that we
1053 		 * support both symmetric and asymmetric RX PAUSE.  Later
1054 		 * (in e1000_config_fc_after_link_up) we will disable the
1055 		 * hw's ability to send PAUSE frames.
1056 		 */
1057 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1058 		break;
1059 	case e1000_fc_tx_pause:
1060 		/* TX Flow control is enabled, and RX Flow control is
1061 		 * disabled, by a software over-ride.
1062 		 */
1063 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1064 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1065 		break;
1066 	case e1000_fc_full:
1067 		/* Flow control (both RX and TX) is enabled by a software
1068 		 * over-ride.
1069 		 */
1070 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1071 		break;
1072 	default:
1073 		hw_dbg("Flow control param set incorrectly\n");
1074 		ret_val = -E1000_ERR_CONFIG;
1075 		goto out;
1076 	}
1077 
1078 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1079 	if (ret_val)
1080 		goto out;
1081 
1082 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1083 
1084 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1085 		ret_val = phy->ops.write_reg(hw,
1086 					     PHY_1000T_CTRL,
1087 					     mii_1000t_ctrl_reg);
1088 		if (ret_val)
1089 			goto out;
1090 	}
1091 
1092 out:
1093 	return ret_val;
1094 }
1095 
1096 /**
1097  *  igb_setup_copper_link - Configure copper link settings
1098  *  @hw: pointer to the HW structure
1099  *
1100  *  Calls the appropriate function to configure the link for auto-neg or forced
1101  *  speed and duplex.  Then we check for link, once link is established calls
1102  *  to configure collision distance and flow control are called.  If link is
1103  *  not established, we return -E1000_ERR_PHY (-2).
1104  **/
igb_setup_copper_link(struct e1000_hw * hw)1105 s32 igb_setup_copper_link(struct e1000_hw *hw)
1106 {
1107 	s32 ret_val;
1108 	bool link;
1109 
1110 	if (hw->mac.autoneg) {
1111 		/* Setup autoneg and flow control advertisement and perform
1112 		 * autonegotiation.
1113 		 */
1114 		ret_val = igb_copper_link_autoneg(hw);
1115 		if (ret_val)
1116 			goto out;
1117 	} else {
1118 		/* PHY will be set to 10H, 10F, 100H or 100F
1119 		 * depending on user settings.
1120 		 */
1121 		hw_dbg("Forcing Speed and Duplex\n");
1122 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1123 		if (ret_val) {
1124 			hw_dbg("Error Forcing Speed and Duplex\n");
1125 			goto out;
1126 		}
1127 	}
1128 
1129 	/* Check link status. Wait up to 100 microseconds for link to become
1130 	 * valid.
1131 	 */
1132 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1133 	if (ret_val)
1134 		goto out;
1135 
1136 	if (link) {
1137 		hw_dbg("Valid link established!!!\n");
1138 		igb_config_collision_dist(hw);
1139 		ret_val = igb_config_fc_after_link_up(hw);
1140 	} else {
1141 		hw_dbg("Unable to establish link!!!\n");
1142 	}
1143 
1144 out:
1145 	return ret_val;
1146 }
1147 
1148 /**
1149  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1150  *  @hw: pointer to the HW structure
1151  *
1152  *  Calls the PHY setup function to force speed and duplex.  Clears the
1153  *  auto-crossover to force MDI manually.  Waits for link and returns
1154  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1155  **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1156 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1157 {
1158 	struct e1000_phy_info *phy = &hw->phy;
1159 	s32 ret_val;
1160 	u16 phy_data;
1161 	bool link;
1162 
1163 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1164 	if (ret_val)
1165 		goto out;
1166 
1167 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1168 
1169 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1170 	if (ret_val)
1171 		goto out;
1172 
1173 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1174 	 * forced whenever speed and duplex are forced.
1175 	 */
1176 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1177 	if (ret_val)
1178 		goto out;
1179 
1180 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1181 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1182 
1183 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1184 	if (ret_val)
1185 		goto out;
1186 
1187 	hw_dbg("IGP PSCR: %X\n", phy_data);
1188 
1189 	udelay(1);
1190 
1191 	if (phy->autoneg_wait_to_complete) {
1192 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1193 
1194 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1195 		if (ret_val)
1196 			goto out;
1197 
1198 		if (!link)
1199 			hw_dbg("Link taking longer than expected.\n");
1200 
1201 		/* Try once more */
1202 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1203 		if (ret_val)
1204 			goto out;
1205 	}
1206 
1207 out:
1208 	return ret_val;
1209 }
1210 
1211 /**
1212  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1213  *  @hw: pointer to the HW structure
1214  *
1215  *  Calls the PHY setup function to force speed and duplex.  Clears the
1216  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1217  *  changes.  If time expires while waiting for link up, we reset the DSP.
1218  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1219  *  successful completion, else return corresponding error code.
1220  **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1221 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1222 {
1223 	struct e1000_phy_info *phy = &hw->phy;
1224 	s32 ret_val;
1225 	u16 phy_data;
1226 	bool link;
1227 
1228 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1229 	if (phy->type != e1000_phy_i210) {
1230 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1231 		 * requires MDI forced whenever speed and duplex are forced.
1232 		 */
1233 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1234 					    &phy_data);
1235 		if (ret_val)
1236 			goto out;
1237 
1238 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1239 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1240 					     phy_data);
1241 		if (ret_val)
1242 			goto out;
1243 
1244 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1245 	}
1246 
1247 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1248 	if (ret_val)
1249 		goto out;
1250 
1251 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1252 
1253 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1254 	if (ret_val)
1255 		goto out;
1256 
1257 	/* Reset the phy to commit changes. */
1258 	ret_val = igb_phy_sw_reset(hw);
1259 	if (ret_val)
1260 		goto out;
1261 
1262 	if (phy->autoneg_wait_to_complete) {
1263 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1264 
1265 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1266 		if (ret_val)
1267 			goto out;
1268 
1269 		if (!link) {
1270 			bool reset_dsp = true;
1271 
1272 			switch (hw->phy.id) {
1273 			case I347AT4_E_PHY_ID:
1274 			case M88E1112_E_PHY_ID:
1275 			case I210_I_PHY_ID:
1276 				reset_dsp = false;
1277 				break;
1278 			default:
1279 				if (hw->phy.type != e1000_phy_m88)
1280 					reset_dsp = false;
1281 				break;
1282 			}
1283 			if (!reset_dsp)
1284 				hw_dbg("Link taking longer than expected.\n");
1285 			else {
1286 				/* We didn't get link.
1287 				 * Reset the DSP and cross our fingers.
1288 				 */
1289 				ret_val = phy->ops.write_reg(hw,
1290 						M88E1000_PHY_PAGE_SELECT,
1291 						0x001d);
1292 				if (ret_val)
1293 					goto out;
1294 				ret_val = igb_phy_reset_dsp(hw);
1295 				if (ret_val)
1296 					goto out;
1297 			}
1298 		}
1299 
1300 		/* Try once more */
1301 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1302 					   100000, &link);
1303 		if (ret_val)
1304 			goto out;
1305 	}
1306 
1307 	if (hw->phy.type != e1000_phy_m88 ||
1308 	    hw->phy.id == I347AT4_E_PHY_ID ||
1309 	    hw->phy.id == M88E1112_E_PHY_ID ||
1310 	    hw->phy.id == I210_I_PHY_ID)
1311 		goto out;
1312 
1313 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1314 	if (ret_val)
1315 		goto out;
1316 
1317 	/* Resetting the phy means we need to re-force TX_CLK in the
1318 	 * Extended PHY Specific Control Register to 25MHz clock from
1319 	 * the reset value of 2.5MHz.
1320 	 */
1321 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1322 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1323 	if (ret_val)
1324 		goto out;
1325 
1326 	/* In addition, we must re-enable CRS on Tx for both half and full
1327 	 * duplex.
1328 	 */
1329 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1330 	if (ret_val)
1331 		goto out;
1332 
1333 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1334 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1335 
1336 out:
1337 	return ret_val;
1338 }
1339 
1340 /**
1341  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1342  *  @hw: pointer to the HW structure
1343  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1344  *
1345  *  Forces speed and duplex on the PHY by doing the following: disable flow
1346  *  control, force speed/duplex on the MAC, disable auto speed detection,
1347  *  disable auto-negotiation, configure duplex, configure speed, configure
1348  *  the collision distance, write configuration to CTRL register.  The
1349  *  caller must write to the PHY_CONTROL register for these settings to
1350  *  take affect.
1351  **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1352 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1353 					     u16 *phy_ctrl)
1354 {
1355 	struct e1000_mac_info *mac = &hw->mac;
1356 	u32 ctrl;
1357 
1358 	/* Turn off flow control when forcing speed/duplex */
1359 	hw->fc.current_mode = e1000_fc_none;
1360 
1361 	/* Force speed/duplex on the mac */
1362 	ctrl = rd32(E1000_CTRL);
1363 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1364 	ctrl &= ~E1000_CTRL_SPD_SEL;
1365 
1366 	/* Disable Auto Speed Detection */
1367 	ctrl &= ~E1000_CTRL_ASDE;
1368 
1369 	/* Disable autoneg on the phy */
1370 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1371 
1372 	/* Forcing Full or Half Duplex? */
1373 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1374 		ctrl &= ~E1000_CTRL_FD;
1375 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1376 		hw_dbg("Half Duplex\n");
1377 	} else {
1378 		ctrl |= E1000_CTRL_FD;
1379 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1380 		hw_dbg("Full Duplex\n");
1381 	}
1382 
1383 	/* Forcing 10mb or 100mb? */
1384 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1385 		ctrl |= E1000_CTRL_SPD_100;
1386 		*phy_ctrl |= MII_CR_SPEED_100;
1387 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1388 		hw_dbg("Forcing 100mb\n");
1389 	} else {
1390 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1391 		*phy_ctrl |= MII_CR_SPEED_10;
1392 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1393 		hw_dbg("Forcing 10mb\n");
1394 	}
1395 
1396 	igb_config_collision_dist(hw);
1397 
1398 	wr32(E1000_CTRL, ctrl);
1399 }
1400 
1401 /**
1402  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1403  *  @hw: pointer to the HW structure
1404  *  @active: boolean used to enable/disable lplu
1405  *
1406  *  Success returns 0, Failure returns 1
1407  *
1408  *  The low power link up (lplu) state is set to the power management level D3
1409  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1410  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1411  *  is used during Dx states where the power conservation is most important.
1412  *  During driver activity, SmartSpeed should be enabled so performance is
1413  *  maintained.
1414  **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1415 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1416 {
1417 	struct e1000_phy_info *phy = &hw->phy;
1418 	s32 ret_val = 0;
1419 	u16 data;
1420 
1421 	if (!(hw->phy.ops.read_reg))
1422 		goto out;
1423 
1424 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1425 	if (ret_val)
1426 		goto out;
1427 
1428 	if (!active) {
1429 		data &= ~IGP02E1000_PM_D3_LPLU;
1430 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1431 					     data);
1432 		if (ret_val)
1433 			goto out;
1434 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1435 		 * during Dx states where the power conservation is most
1436 		 * important.  During driver activity we should enable
1437 		 * SmartSpeed, so performance is maintained.
1438 		 */
1439 		if (phy->smart_speed == e1000_smart_speed_on) {
1440 			ret_val = phy->ops.read_reg(hw,
1441 						    IGP01E1000_PHY_PORT_CONFIG,
1442 						    &data);
1443 			if (ret_val)
1444 				goto out;
1445 
1446 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1447 			ret_val = phy->ops.write_reg(hw,
1448 						     IGP01E1000_PHY_PORT_CONFIG,
1449 						     data);
1450 			if (ret_val)
1451 				goto out;
1452 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1453 			ret_val = phy->ops.read_reg(hw,
1454 						     IGP01E1000_PHY_PORT_CONFIG,
1455 						     &data);
1456 			if (ret_val)
1457 				goto out;
1458 
1459 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1460 			ret_val = phy->ops.write_reg(hw,
1461 						     IGP01E1000_PHY_PORT_CONFIG,
1462 						     data);
1463 			if (ret_val)
1464 				goto out;
1465 		}
1466 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1467 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1468 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1469 		data |= IGP02E1000_PM_D3_LPLU;
1470 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1471 					      data);
1472 		if (ret_val)
1473 			goto out;
1474 
1475 		/* When LPLU is enabled, we should disable SmartSpeed */
1476 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477 					    &data);
1478 		if (ret_val)
1479 			goto out;
1480 
1481 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1482 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1483 					     data);
1484 	}
1485 
1486 out:
1487 	return ret_val;
1488 }
1489 
1490 /**
1491  *  igb_check_downshift - Checks whether a downshift in speed occurred
1492  *  @hw: pointer to the HW structure
1493  *
1494  *  Success returns 0, Failure returns 1
1495  *
1496  *  A downshift is detected by querying the PHY link health.
1497  **/
igb_check_downshift(struct e1000_hw * hw)1498 s32 igb_check_downshift(struct e1000_hw *hw)
1499 {
1500 	struct e1000_phy_info *phy = &hw->phy;
1501 	s32 ret_val;
1502 	u16 phy_data, offset, mask;
1503 
1504 	switch (phy->type) {
1505 	case e1000_phy_i210:
1506 	case e1000_phy_m88:
1507 	case e1000_phy_gg82563:
1508 		offset	= M88E1000_PHY_SPEC_STATUS;
1509 		mask	= M88E1000_PSSR_DOWNSHIFT;
1510 		break;
1511 	case e1000_phy_igp_2:
1512 	case e1000_phy_igp:
1513 	case e1000_phy_igp_3:
1514 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1515 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1516 		break;
1517 	default:
1518 		/* speed downshift not supported */
1519 		phy->speed_downgraded = false;
1520 		ret_val = 0;
1521 		goto out;
1522 	}
1523 
1524 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1525 
1526 	if (!ret_val)
1527 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1528 
1529 out:
1530 	return ret_val;
1531 }
1532 
1533 /**
1534  *  igb_check_polarity_m88 - Checks the polarity.
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1538  *
1539  *  Polarity is determined based on the PHY specific status register.
1540  **/
igb_check_polarity_m88(struct e1000_hw * hw)1541 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1542 {
1543 	struct e1000_phy_info *phy = &hw->phy;
1544 	s32 ret_val;
1545 	u16 data;
1546 
1547 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1548 
1549 	if (!ret_val)
1550 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1551 				      ? e1000_rev_polarity_reversed
1552 				      : e1000_rev_polarity_normal;
1553 
1554 	return ret_val;
1555 }
1556 
1557 /**
1558  *  igb_check_polarity_igp - Checks the polarity.
1559  *  @hw: pointer to the HW structure
1560  *
1561  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1562  *
1563  *  Polarity is determined based on the PHY port status register, and the
1564  *  current speed (since there is no polarity at 100Mbps).
1565  **/
igb_check_polarity_igp(struct e1000_hw * hw)1566 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1567 {
1568 	struct e1000_phy_info *phy = &hw->phy;
1569 	s32 ret_val;
1570 	u16 data, offset, mask;
1571 
1572 	/* Polarity is determined based on the speed of
1573 	 * our connection.
1574 	 */
1575 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1576 	if (ret_val)
1577 		goto out;
1578 
1579 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1580 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1581 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1582 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1583 	} else {
1584 		/* This really only applies to 10Mbps since
1585 		 * there is no polarity for 100Mbps (always 0).
1586 		 */
1587 		offset	= IGP01E1000_PHY_PORT_STATUS;
1588 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1589 	}
1590 
1591 	ret_val = phy->ops.read_reg(hw, offset, &data);
1592 
1593 	if (!ret_val)
1594 		phy->cable_polarity = (data & mask)
1595 				      ? e1000_rev_polarity_reversed
1596 				      : e1000_rev_polarity_normal;
1597 
1598 out:
1599 	return ret_val;
1600 }
1601 
1602 /**
1603  *  igb_wait_autoneg - Wait for auto-neg completion
1604  *  @hw: pointer to the HW structure
1605  *
1606  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1607  *  limit to expire, which ever happens first.
1608  **/
igb_wait_autoneg(struct e1000_hw * hw)1609 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1610 {
1611 	s32 ret_val = 0;
1612 	u16 i, phy_status;
1613 
1614 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1615 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1616 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1617 		if (ret_val)
1618 			break;
1619 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1620 		if (ret_val)
1621 			break;
1622 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1623 			break;
1624 		msleep(100);
1625 	}
1626 
1627 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1628 	 * has completed.
1629 	 */
1630 	return ret_val;
1631 }
1632 
1633 /**
1634  *  igb_phy_has_link - Polls PHY for link
1635  *  @hw: pointer to the HW structure
1636  *  @iterations: number of times to poll for link
1637  *  @usec_interval: delay between polling attempts
1638  *  @success: pointer to whether polling was successful or not
1639  *
1640  *  Polls the PHY status register for link, 'iterations' number of times.
1641  **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1642 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1643 		     u32 usec_interval, bool *success)
1644 {
1645 	s32 ret_val = 0;
1646 	u16 i, phy_status;
1647 
1648 	for (i = 0; i < iterations; i++) {
1649 		/* Some PHYs require the PHY_STATUS register to be read
1650 		 * twice due to the link bit being sticky.  No harm doing
1651 		 * it across the board.
1652 		 */
1653 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1654 		if (ret_val && usec_interval > 0) {
1655 			/* If the first read fails, another entity may have
1656 			 * ownership of the resources, wait and try again to
1657 			 * see if they have relinquished the resources yet.
1658 			 */
1659 			if (usec_interval >= 1000)
1660 				mdelay(usec_interval/1000);
1661 			else
1662 				udelay(usec_interval);
1663 		}
1664 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1665 		if (ret_val)
1666 			break;
1667 		if (phy_status & MII_SR_LINK_STATUS)
1668 			break;
1669 		if (usec_interval >= 1000)
1670 			mdelay(usec_interval/1000);
1671 		else
1672 			udelay(usec_interval);
1673 	}
1674 
1675 	*success = (i < iterations) ? true : false;
1676 
1677 	return ret_val;
1678 }
1679 
1680 /**
1681  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1682  *  @hw: pointer to the HW structure
1683  *
1684  *  Reads the PHY specific status register to retrieve the cable length
1685  *  information.  The cable length is determined by averaging the minimum and
1686  *  maximum values to get the "average" cable length.  The m88 PHY has four
1687  *  possible cable length values, which are:
1688  *	Register Value		Cable Length
1689  *	0			< 50 meters
1690  *	1			50 - 80 meters
1691  *	2			80 - 110 meters
1692  *	3			110 - 140 meters
1693  *	4			> 140 meters
1694  **/
igb_get_cable_length_m88(struct e1000_hw * hw)1695 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1696 {
1697 	struct e1000_phy_info *phy = &hw->phy;
1698 	s32 ret_val;
1699 	u16 phy_data, index;
1700 
1701 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1702 	if (ret_val)
1703 		goto out;
1704 
1705 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1706 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1707 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1708 		ret_val = -E1000_ERR_PHY;
1709 		goto out;
1710 	}
1711 
1712 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1713 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1714 
1715 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1716 
1717 out:
1718 	return ret_val;
1719 }
1720 
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1721 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1722 {
1723 	struct e1000_phy_info *phy = &hw->phy;
1724 	s32 ret_val;
1725 	u16 phy_data, phy_data2, index, default_page, is_cm;
1726 
1727 	switch (hw->phy.id) {
1728 	case I210_I_PHY_ID:
1729 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1730 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1731 					    (I347AT4_PCDL + phy->addr),
1732 					    &phy_data);
1733 		if (ret_val)
1734 			return ret_val;
1735 
1736 		/* Check if the unit of cable length is meters or cm */
1737 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1738 					    I347AT4_PCDC, &phy_data2);
1739 		if (ret_val)
1740 			return ret_val;
1741 
1742 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1743 
1744 		/* Populate the phy structure with cable length in meters */
1745 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1746 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1747 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1748 		break;
1749 	case M88E1543_E_PHY_ID:
1750 	case I347AT4_E_PHY_ID:
1751 		/* Remember the original page select and set it to 7 */
1752 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1753 					    &default_page);
1754 		if (ret_val)
1755 			goto out;
1756 
1757 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1758 		if (ret_val)
1759 			goto out;
1760 
1761 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1762 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1763 					    &phy_data);
1764 		if (ret_val)
1765 			goto out;
1766 
1767 		/* Check if the unit of cable length is meters or cm */
1768 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1769 		if (ret_val)
1770 			goto out;
1771 
1772 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1773 
1774 		/* Populate the phy structure with cable length in meters */
1775 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1776 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1777 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1778 
1779 		/* Reset the page selec to its original value */
1780 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1781 					     default_page);
1782 		if (ret_val)
1783 			goto out;
1784 		break;
1785 	case M88E1112_E_PHY_ID:
1786 		/* Remember the original page select and set it to 5 */
1787 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1788 					    &default_page);
1789 		if (ret_val)
1790 			goto out;
1791 
1792 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1793 		if (ret_val)
1794 			goto out;
1795 
1796 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1797 					    &phy_data);
1798 		if (ret_val)
1799 			goto out;
1800 
1801 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1802 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1803 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1804 			ret_val = -E1000_ERR_PHY;
1805 			goto out;
1806 		}
1807 
1808 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1809 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1810 
1811 		phy->cable_length = (phy->min_cable_length +
1812 				     phy->max_cable_length) / 2;
1813 
1814 		/* Reset the page select to its original value */
1815 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1816 					     default_page);
1817 		if (ret_val)
1818 			goto out;
1819 
1820 		break;
1821 	default:
1822 		ret_val = -E1000_ERR_PHY;
1823 		goto out;
1824 	}
1825 
1826 out:
1827 	return ret_val;
1828 }
1829 
1830 /**
1831  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1832  *  @hw: pointer to the HW structure
1833  *
1834  *  The automatic gain control (agc) normalizes the amplitude of the
1835  *  received signal, adjusting for the attenuation produced by the
1836  *  cable.  By reading the AGC registers, which represent the
1837  *  combination of coarse and fine gain value, the value can be put
1838  *  into a lookup table to obtain the approximate cable length
1839  *  for each channel.
1840  **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1841 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1842 {
1843 	struct e1000_phy_info *phy = &hw->phy;
1844 	s32 ret_val = 0;
1845 	u16 phy_data, i, agc_value = 0;
1846 	u16 cur_agc_index, max_agc_index = 0;
1847 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1848 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1849 		IGP02E1000_PHY_AGC_A,
1850 		IGP02E1000_PHY_AGC_B,
1851 		IGP02E1000_PHY_AGC_C,
1852 		IGP02E1000_PHY_AGC_D
1853 	};
1854 
1855 	/* Read the AGC registers for all channels */
1856 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1857 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1858 		if (ret_val)
1859 			goto out;
1860 
1861 		/* Getting bits 15:9, which represent the combination of
1862 		 * coarse and fine gain values.  The result is a number
1863 		 * that can be put into the lookup table to obtain the
1864 		 * approximate cable length.
1865 		 */
1866 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1867 				IGP02E1000_AGC_LENGTH_MASK;
1868 
1869 		/* Array index bound check. */
1870 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1871 		    (cur_agc_index == 0)) {
1872 			ret_val = -E1000_ERR_PHY;
1873 			goto out;
1874 		}
1875 
1876 		/* Remove min & max AGC values from calculation. */
1877 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1878 		    e1000_igp_2_cable_length_table[cur_agc_index])
1879 			min_agc_index = cur_agc_index;
1880 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1881 		    e1000_igp_2_cable_length_table[cur_agc_index])
1882 			max_agc_index = cur_agc_index;
1883 
1884 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1885 	}
1886 
1887 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1888 		      e1000_igp_2_cable_length_table[max_agc_index]);
1889 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1890 
1891 	/* Calculate cable length with the error range of +/- 10 meters. */
1892 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1893 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1894 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1895 
1896 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1897 
1898 out:
1899 	return ret_val;
1900 }
1901 
1902 /**
1903  *  igb_get_phy_info_m88 - Retrieve PHY information
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  Valid for only copper links.  Read the PHY status register (sticky read)
1907  *  to verify that link is up.  Read the PHY special control register to
1908  *  determine the polarity and 10base-T extended distance.  Read the PHY
1909  *  special status register to determine MDI/MDIx and current speed.  If
1910  *  speed is 1000, then determine cable length, local and remote receiver.
1911  **/
igb_get_phy_info_m88(struct e1000_hw * hw)1912 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1913 {
1914 	struct e1000_phy_info *phy = &hw->phy;
1915 	s32  ret_val;
1916 	u16 phy_data;
1917 	bool link;
1918 
1919 	if (phy->media_type != e1000_media_type_copper) {
1920 		hw_dbg("Phy info is only valid for copper media\n");
1921 		ret_val = -E1000_ERR_CONFIG;
1922 		goto out;
1923 	}
1924 
1925 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1926 	if (ret_val)
1927 		goto out;
1928 
1929 	if (!link) {
1930 		hw_dbg("Phy info is only valid if link is up\n");
1931 		ret_val = -E1000_ERR_CONFIG;
1932 		goto out;
1933 	}
1934 
1935 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1936 	if (ret_val)
1937 		goto out;
1938 
1939 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1940 				   ? true : false;
1941 
1942 	ret_val = igb_check_polarity_m88(hw);
1943 	if (ret_val)
1944 		goto out;
1945 
1946 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1947 	if (ret_val)
1948 		goto out;
1949 
1950 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1951 
1952 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1953 		ret_val = phy->ops.get_cable_length(hw);
1954 		if (ret_val)
1955 			goto out;
1956 
1957 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1958 		if (ret_val)
1959 			goto out;
1960 
1961 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1962 				? e1000_1000t_rx_status_ok
1963 				: e1000_1000t_rx_status_not_ok;
1964 
1965 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1966 				 ? e1000_1000t_rx_status_ok
1967 				 : e1000_1000t_rx_status_not_ok;
1968 	} else {
1969 		/* Set values to "undefined" */
1970 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1971 		phy->local_rx = e1000_1000t_rx_status_undefined;
1972 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1973 	}
1974 
1975 out:
1976 	return ret_val;
1977 }
1978 
1979 /**
1980  *  igb_get_phy_info_igp - Retrieve igp PHY information
1981  *  @hw: pointer to the HW structure
1982  *
1983  *  Read PHY status to determine if link is up.  If link is up, then
1984  *  set/determine 10base-T extended distance and polarity correction.  Read
1985  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1986  *  determine on the cable length, local and remote receiver.
1987  **/
igb_get_phy_info_igp(struct e1000_hw * hw)1988 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1989 {
1990 	struct e1000_phy_info *phy = &hw->phy;
1991 	s32 ret_val;
1992 	u16 data;
1993 	bool link;
1994 
1995 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1996 	if (ret_val)
1997 		goto out;
1998 
1999 	if (!link) {
2000 		hw_dbg("Phy info is only valid if link is up\n");
2001 		ret_val = -E1000_ERR_CONFIG;
2002 		goto out;
2003 	}
2004 
2005 	phy->polarity_correction = true;
2006 
2007 	ret_val = igb_check_polarity_igp(hw);
2008 	if (ret_val)
2009 		goto out;
2010 
2011 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2012 	if (ret_val)
2013 		goto out;
2014 
2015 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2016 
2017 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2018 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2019 		ret_val = phy->ops.get_cable_length(hw);
2020 		if (ret_val)
2021 			goto out;
2022 
2023 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2024 		if (ret_val)
2025 			goto out;
2026 
2027 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2028 				? e1000_1000t_rx_status_ok
2029 				: e1000_1000t_rx_status_not_ok;
2030 
2031 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2032 				 ? e1000_1000t_rx_status_ok
2033 				 : e1000_1000t_rx_status_not_ok;
2034 	} else {
2035 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2036 		phy->local_rx = e1000_1000t_rx_status_undefined;
2037 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2038 	}
2039 
2040 out:
2041 	return ret_val;
2042 }
2043 
2044 /**
2045  *  igb_phy_sw_reset - PHY software reset
2046  *  @hw: pointer to the HW structure
2047  *
2048  *  Does a software reset of the PHY by reading the PHY control register and
2049  *  setting/write the control register reset bit to the PHY.
2050  **/
igb_phy_sw_reset(struct e1000_hw * hw)2051 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2052 {
2053 	s32 ret_val = 0;
2054 	u16 phy_ctrl;
2055 
2056 	if (!(hw->phy.ops.read_reg))
2057 		goto out;
2058 
2059 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2060 	if (ret_val)
2061 		goto out;
2062 
2063 	phy_ctrl |= MII_CR_RESET;
2064 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2065 	if (ret_val)
2066 		goto out;
2067 
2068 	udelay(1);
2069 
2070 out:
2071 	return ret_val;
2072 }
2073 
2074 /**
2075  *  igb_phy_hw_reset - PHY hardware reset
2076  *  @hw: pointer to the HW structure
2077  *
2078  *  Verify the reset block is not blocking us from resetting.  Acquire
2079  *  semaphore (if necessary) and read/set/write the device control reset
2080  *  bit in the PHY.  Wait the appropriate delay time for the device to
2081  *  reset and release the semaphore (if necessary).
2082  **/
igb_phy_hw_reset(struct e1000_hw * hw)2083 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2084 {
2085 	struct e1000_phy_info *phy = &hw->phy;
2086 	s32  ret_val;
2087 	u32 ctrl;
2088 
2089 	ret_val = igb_check_reset_block(hw);
2090 	if (ret_val) {
2091 		ret_val = 0;
2092 		goto out;
2093 	}
2094 
2095 	ret_val = phy->ops.acquire(hw);
2096 	if (ret_val)
2097 		goto out;
2098 
2099 	ctrl = rd32(E1000_CTRL);
2100 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2101 	wrfl();
2102 
2103 	udelay(phy->reset_delay_us);
2104 
2105 	wr32(E1000_CTRL, ctrl);
2106 	wrfl();
2107 
2108 	udelay(150);
2109 
2110 	phy->ops.release(hw);
2111 
2112 	ret_val = phy->ops.get_cfg_done(hw);
2113 
2114 out:
2115 	return ret_val;
2116 }
2117 
2118 /**
2119  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2120  *  @hw: pointer to the HW structure
2121  *
2122  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2123  **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2124 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2125 {
2126 	hw_dbg("Running IGP 3 PHY init script\n");
2127 
2128 	/* PHY init IGP 3 */
2129 	/* Enable rise/fall, 10-mode work in class-A */
2130 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2131 	/* Remove all caps from Replica path filter */
2132 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2133 	/* Bias trimming for ADC, AFE and Driver (Default) */
2134 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2135 	/* Increase Hybrid poly bias */
2136 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2137 	/* Add 4% to TX amplitude in Giga mode */
2138 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2139 	/* Disable trimming (TTT) */
2140 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2141 	/* Poly DC correction to 94.6% + 2% for all channels */
2142 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2143 	/* ABS DC correction to 95.9% */
2144 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2145 	/* BG temp curve trim */
2146 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2147 	/* Increasing ADC OPAMP stage 1 currents to max */
2148 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2149 	/* Force 1000 ( required for enabling PHY regs configuration) */
2150 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2151 	/* Set upd_freq to 6 */
2152 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2153 	/* Disable NPDFE */
2154 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2155 	/* Disable adaptive fixed FFE (Default) */
2156 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2157 	/* Enable FFE hysteresis */
2158 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2159 	/* Fixed FFE for short cable lengths */
2160 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2161 	/* Fixed FFE for medium cable lengths */
2162 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2163 	/* Fixed FFE for long cable lengths */
2164 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2165 	/* Enable Adaptive Clip Threshold */
2166 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2167 	/* AHT reset limit to 1 */
2168 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2169 	/* Set AHT master delay to 127 msec */
2170 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2171 	/* Set scan bits for AHT */
2172 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2173 	/* Set AHT Preset bits */
2174 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2175 	/* Change integ_factor of channel A to 3 */
2176 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2177 	/* Change prop_factor of channels BCD to 8 */
2178 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2179 	/* Change cg_icount + enable integbp for channels BCD */
2180 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2181 	/* Change cg_icount + enable integbp + change prop_factor_master
2182 	 * to 8 for channel A
2183 	 */
2184 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2185 	/* Disable AHT in Slave mode on channel A */
2186 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2187 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2188 	 * Enable SPD+B2B
2189 	 */
2190 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2191 	/* Enable restart AN on an1000_dis change */
2192 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2193 	/* Enable wh_fifo read clock in 10/100 modes */
2194 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2195 	/* Restart AN, Speed selection is 1000 */
2196 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2197 
2198 	return 0;
2199 }
2200 
2201 /**
2202  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2203  * @hw: pointer to the HW structure
2204  *
2205  * In the case of a PHY power down to save power, or to turn off link during a
2206  * driver unload, restore the link to previous settings.
2207  **/
igb_power_up_phy_copper(struct e1000_hw * hw)2208 void igb_power_up_phy_copper(struct e1000_hw *hw)
2209 {
2210 	u16 mii_reg = 0;
2211 
2212 	/* The PHY will retain its settings across a power down/up cycle */
2213 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2214 	mii_reg &= ~MII_CR_POWER_DOWN;
2215 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2216 }
2217 
2218 /**
2219  * igb_power_down_phy_copper - Power down copper PHY
2220  * @hw: pointer to the HW structure
2221  *
2222  * Power down PHY to save power when interface is down and wake on lan
2223  * is not enabled.
2224  **/
igb_power_down_phy_copper(struct e1000_hw * hw)2225 void igb_power_down_phy_copper(struct e1000_hw *hw)
2226 {
2227 	u16 mii_reg = 0;
2228 
2229 	/* The PHY will retain its settings across a power down/up cycle */
2230 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2231 	mii_reg |= MII_CR_POWER_DOWN;
2232 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2233 	usleep_range(1000, 2000);
2234 }
2235 
2236 /**
2237  *  igb_check_polarity_82580 - Checks the polarity.
2238  *  @hw: pointer to the HW structure
2239  *
2240  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2241  *
2242  *  Polarity is determined based on the PHY specific status register.
2243  **/
igb_check_polarity_82580(struct e1000_hw * hw)2244 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2245 {
2246 	struct e1000_phy_info *phy = &hw->phy;
2247 	s32 ret_val;
2248 	u16 data;
2249 
2250 
2251 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2252 
2253 	if (!ret_val)
2254 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2255 				      ? e1000_rev_polarity_reversed
2256 				      : e1000_rev_polarity_normal;
2257 
2258 	return ret_val;
2259 }
2260 
2261 /**
2262  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2263  *  @hw: pointer to the HW structure
2264  *
2265  *  Calls the PHY setup function to force speed and duplex.  Clears the
2266  *  auto-crossover to force MDI manually.  Waits for link and returns
2267  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2268  **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2269 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2270 {
2271 	struct e1000_phy_info *phy = &hw->phy;
2272 	s32 ret_val;
2273 	u16 phy_data;
2274 	bool link;
2275 
2276 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2277 	if (ret_val)
2278 		goto out;
2279 
2280 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2281 
2282 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2283 	if (ret_val)
2284 		goto out;
2285 
2286 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2287 	 * forced whenever speed and duplex are forced.
2288 	 */
2289 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2290 	if (ret_val)
2291 		goto out;
2292 
2293 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2294 
2295 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2296 	if (ret_val)
2297 		goto out;
2298 
2299 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2300 
2301 	udelay(1);
2302 
2303 	if (phy->autoneg_wait_to_complete) {
2304 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2305 
2306 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2307 		if (ret_val)
2308 			goto out;
2309 
2310 		if (!link)
2311 			hw_dbg("Link taking longer than expected.\n");
2312 
2313 		/* Try once more */
2314 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2315 		if (ret_val)
2316 			goto out;
2317 	}
2318 
2319 out:
2320 	return ret_val;
2321 }
2322 
2323 /**
2324  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2325  *  @hw: pointer to the HW structure
2326  *
2327  *  Read PHY status to determine if link is up.  If link is up, then
2328  *  set/determine 10base-T extended distance and polarity correction.  Read
2329  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2330  *  determine on the cable length, local and remote receiver.
2331  **/
igb_get_phy_info_82580(struct e1000_hw * hw)2332 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2333 {
2334 	struct e1000_phy_info *phy = &hw->phy;
2335 	s32 ret_val;
2336 	u16 data;
2337 	bool link;
2338 
2339 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2340 	if (ret_val)
2341 		goto out;
2342 
2343 	if (!link) {
2344 		hw_dbg("Phy info is only valid if link is up\n");
2345 		ret_val = -E1000_ERR_CONFIG;
2346 		goto out;
2347 	}
2348 
2349 	phy->polarity_correction = true;
2350 
2351 	ret_val = igb_check_polarity_82580(hw);
2352 	if (ret_val)
2353 		goto out;
2354 
2355 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2356 	if (ret_val)
2357 		goto out;
2358 
2359 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2360 
2361 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2362 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2363 		ret_val = hw->phy.ops.get_cable_length(hw);
2364 		if (ret_val)
2365 			goto out;
2366 
2367 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2368 		if (ret_val)
2369 			goto out;
2370 
2371 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2372 				? e1000_1000t_rx_status_ok
2373 				: e1000_1000t_rx_status_not_ok;
2374 
2375 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2376 				 ? e1000_1000t_rx_status_ok
2377 				 : e1000_1000t_rx_status_not_ok;
2378 	} else {
2379 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2380 		phy->local_rx = e1000_1000t_rx_status_undefined;
2381 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2382 	}
2383 
2384 out:
2385 	return ret_val;
2386 }
2387 
2388 /**
2389  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2390  *  @hw: pointer to the HW structure
2391  *
2392  * Reads the diagnostic status register and verifies result is valid before
2393  * placing it in the phy_cable_length field.
2394  **/
igb_get_cable_length_82580(struct e1000_hw * hw)2395 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2396 {
2397 	struct e1000_phy_info *phy = &hw->phy;
2398 	s32 ret_val;
2399 	u16 phy_data, length;
2400 
2401 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2402 	if (ret_val)
2403 		goto out;
2404 
2405 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2406 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2407 
2408 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2409 		ret_val = -E1000_ERR_PHY;
2410 
2411 	phy->cable_length = length;
2412 
2413 out:
2414 	return ret_val;
2415 }
2416 
2417 /**
2418  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2419  *  @hw: pointer to the HW structure
2420  *  @offset: lower half is register offset to write to
2421  *     upper half is page to use.
2422  *  @data: data to write at register offset
2423  *
2424  *  Acquires semaphore, if necessary, then writes the data to PHY register
2425  *  at the offset.  Release any acquired semaphores before exiting.
2426  **/
igb_write_phy_reg_gs40g(struct e1000_hw * hw,u32 offset,u16 data)2427 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2428 {
2429 	s32 ret_val;
2430 	u16 page = offset >> GS40G_PAGE_SHIFT;
2431 
2432 	offset = offset & GS40G_OFFSET_MASK;
2433 	ret_val = hw->phy.ops.acquire(hw);
2434 	if (ret_val)
2435 		return ret_val;
2436 
2437 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2438 	if (ret_val)
2439 		goto release;
2440 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2441 
2442 release:
2443 	hw->phy.ops.release(hw);
2444 	return ret_val;
2445 }
2446 
2447 /**
2448  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2449  *  @hw: pointer to the HW structure
2450  *  @offset: lower half is register offset to read to
2451  *     upper half is page to use.
2452  *  @data: data to read at register offset
2453  *
2454  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2455  *  at the offset.  Release any acquired semaphores before exiting.
2456  **/
igb_read_phy_reg_gs40g(struct e1000_hw * hw,u32 offset,u16 * data)2457 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2458 {
2459 	s32 ret_val;
2460 	u16 page = offset >> GS40G_PAGE_SHIFT;
2461 
2462 	offset = offset & GS40G_OFFSET_MASK;
2463 	ret_val = hw->phy.ops.acquire(hw);
2464 	if (ret_val)
2465 		return ret_val;
2466 
2467 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2468 	if (ret_val)
2469 		goto release;
2470 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2471 
2472 release:
2473 	hw->phy.ops.release(hw);
2474 	return ret_val;
2475 }
2476 
2477 /**
2478  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2479  *  @hw: pointer to the HW structure
2480  *
2481  *  Sets up Master/slave mode
2482  **/
igb_set_master_slave_mode(struct e1000_hw * hw)2483 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2484 {
2485 	s32 ret_val;
2486 	u16 phy_data;
2487 
2488 	/* Resolve Master/Slave mode */
2489 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2490 	if (ret_val)
2491 		return ret_val;
2492 
2493 	/* load defaults for future use */
2494 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2495 				   ((phy_data & CR_1000T_MS_VALUE) ?
2496 				    e1000_ms_force_master :
2497 				    e1000_ms_force_slave) : e1000_ms_auto;
2498 
2499 	switch (hw->phy.ms_type) {
2500 	case e1000_ms_force_master:
2501 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2502 		break;
2503 	case e1000_ms_force_slave:
2504 		phy_data |= CR_1000T_MS_ENABLE;
2505 		phy_data &= ~(CR_1000T_MS_VALUE);
2506 		break;
2507 	case e1000_ms_auto:
2508 		phy_data &= ~CR_1000T_MS_ENABLE;
2509 		/* fall-through */
2510 	default:
2511 		break;
2512 	}
2513 
2514 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2515 }
2516