• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * This file is licensed under the terms of the GNU General Public
9  * License version 2. This program is licensed "as is" without any
10  * warranty of any kind, whether express or implied.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <uapi/linux/ppp_defs.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 
34 /* RX Fifo Registers */
35 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
36 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
37 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
38 #define MVPP2_RX_FIFO_INIT_REG			0x64
39 
40 /* RX DMA Top Registers */
41 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
42 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
43 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
44 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
45 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
46 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
47 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
48 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
49 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
50 #define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
51 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
52 #define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
53 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
54 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
55 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
56 
57 /* Parser Registers */
58 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
59 #define     MVPP2_PRS_PORT_LU_MAX		0xf
60 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
61 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
62 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
63 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
64 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
65 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
66 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
67 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
68 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
69 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
70 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
71 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
72 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
73 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
74 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
75 
76 /* Classifier Registers */
77 #define MVPP2_CLS_MODE_REG			0x1800
78 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
79 #define MVPP2_CLS_PORT_WAY_REG			0x1810
80 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
81 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
82 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
83 #define MVPP2_CLS_LKP_TBL_REG			0x1818
84 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
85 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
86 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
87 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
88 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
89 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
90 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
91 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
92 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
93 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
94 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
95 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
96 
97 /* Descriptor Manager Top Registers */
98 #define MVPP2_RXQ_NUM_REG			0x2040
99 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
100 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
101 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
102 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
103 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
104 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
105 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
106 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
107 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
108 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
109 #define MVPP2_RXQ_THRESH_REG			0x204c
110 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
111 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
112 #define MVPP2_RXQ_INDEX_REG			0x2050
113 #define MVPP2_TXQ_NUM_REG			0x2080
114 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
115 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
116 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
117 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
118 #define MVPP2_TXQ_THRESH_REG			0x2094
119 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
120 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
121 #define MVPP2_TXQ_INDEX_REG			0x2098
122 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
123 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
124 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
125 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
126 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
127 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
128 #define MVPP2_TXQ_PENDING_REG			0x20a0
129 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
130 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
131 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
132 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
133 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
134 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
135 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
136 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
137 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
138 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
139 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
140 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
141 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
142 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
143 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
144 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
145 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
146 
147 /* MBUS bridge registers */
148 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
149 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
150 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
151 #define MVPP2_BASE_ADDR_ENABLE			0x4060
152 
153 /* Interrupt Cause and Mask registers */
154 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
155 #define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
156 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
157 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
158 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
159 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
160 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
161 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
162 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
163 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
164 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
165 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
166 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
167 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
168 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
169 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
170 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
171 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
172 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
173 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
174 
175 /* Buffer Manager registers */
176 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
177 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
178 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
179 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
180 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
181 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
182 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
183 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
184 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
185 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
186 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
187 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
188 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
189 #define     MVPP2_BM_START_MASK			BIT(0)
190 #define     MVPP2_BM_STOP_MASK			BIT(1)
191 #define     MVPP2_BM_STATE_MASK			BIT(4)
192 #define     MVPP2_BM_LOW_THRESH_OFFS		8
193 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
194 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
195 						MVPP2_BM_LOW_THRESH_OFFS)
196 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
197 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
198 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
199 						MVPP2_BM_HIGH_THRESH_OFFS)
200 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
201 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
202 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
203 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
204 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
205 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
206 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
207 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
208 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
209 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
210 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
211 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
212 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
213 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
214 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
215 #define MVPP2_BM_MC_RLS_REG			0x64c4
216 #define     MVPP2_BM_MC_ID_MASK			0xfff
217 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
218 
219 /* TX Scheduler registers */
220 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
221 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
222 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
223 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
224 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
225 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
226 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
227 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
228 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
229 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
230 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
231 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
232 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
233 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
234 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
235 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
236 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
237 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
238 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
239 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
240 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
241 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
242 
243 /* TX general registers */
244 #define MVPP2_TX_SNOOP_REG			0x8800
245 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
246 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
247 
248 /* LMS registers */
249 #define MVPP2_SRC_ADDR_MIDDLE			0x24
250 #define MVPP2_SRC_ADDR_HIGH			0x28
251 #define MVPP2_PHY_AN_CFG0_REG			0x34
252 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
253 #define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
254 						0x400 + (port) * 0x400)
255 #define     MVPP2_MIB_LATE_COLLISION		0x7c
256 #define MVPP2_ISR_SUM_MASK_REG			0x220c
257 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
258 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
259 
260 /* Per-port registers */
261 #define MVPP2_GMAC_CTRL_0_REG			0x0
262 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
263 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
264 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
265 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
266 #define MVPP2_GMAC_CTRL_1_REG			0x4
267 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
268 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
269 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
270 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
271 #define      MVPP2_GMAC_SA_LOW_OFFS		7
272 #define MVPP2_GMAC_CTRL_2_REG			0x8
273 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
274 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
275 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
276 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
277 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
278 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
279 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
280 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
281 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
282 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
283 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
284 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
285 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
286 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
287 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
288 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
289 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
290 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
291 
292 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
293 
294 /* Descriptor ring Macros */
295 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
296 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
297 
298 /* Various constants */
299 
300 /* Coalescing */
301 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
302 #define MVPP2_RX_COAL_PKTS		32
303 #define MVPP2_RX_COAL_USEC		100
304 
305 /* The two bytes Marvell header. Either contains a special value used
306  * by Marvell switches when a specific hardware mode is enabled (not
307  * supported by this driver) or is filled automatically by zeroes on
308  * the RX side. Those two bytes being at the front of the Ethernet
309  * header, they allow to have the IP header aligned on a 4 bytes
310  * boundary automatically: the hardware skips those two bytes on its
311  * own.
312  */
313 #define MVPP2_MH_SIZE			2
314 #define MVPP2_ETH_TYPE_LEN		2
315 #define MVPP2_PPPOE_HDR_SIZE		8
316 #define MVPP2_VLAN_TAG_LEN		4
317 
318 /* Lbtd 802.3 type */
319 #define MVPP2_IP_LBDT_TYPE		0xfffa
320 
321 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
322 #define MVPP2_TX_CSUM_MAX_SIZE		9800
323 
324 /* Timeout constants */
325 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
326 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
327 
328 #define MVPP2_TX_MTU_MAX		0x7ffff
329 
330 /* Maximum number of T-CONTs of PON port */
331 #define MVPP2_MAX_TCONT			16
332 
333 /* Maximum number of supported ports */
334 #define MVPP2_MAX_PORTS			4
335 
336 /* Maximum number of TXQs used by single port */
337 #define MVPP2_MAX_TXQ			8
338 
339 /* Maximum number of RXQs used by single port */
340 #define MVPP2_MAX_RXQ			8
341 
342 /* Dfault number of RXQs in use */
343 #define MVPP2_DEFAULT_RXQ		4
344 
345 /* Total number of RXQs available to all ports */
346 #define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
347 
348 /* Max number of Rx descriptors */
349 #define MVPP2_MAX_RXD			128
350 
351 /* Max number of Tx descriptors */
352 #define MVPP2_MAX_TXD			1024
353 
354 /* Amount of Tx descriptors that can be reserved at once by CPU */
355 #define MVPP2_CPU_DESC_CHUNK		64
356 
357 /* Max number of Tx descriptors in each aggregated queue */
358 #define MVPP2_AGGR_TXQ_SIZE		256
359 
360 /* Descriptor aligned size */
361 #define MVPP2_DESC_ALIGNED_SIZE		32
362 
363 /* Descriptor alignment mask */
364 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
365 
366 /* RX FIFO constants */
367 #define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
368 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
369 #define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
370 
371 /* RX buffer constants */
372 #define MVPP2_SKB_SHINFO_SIZE \
373 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
374 
375 #define MVPP2_RX_PKT_SIZE(mtu) \
376 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
377 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
378 
379 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
380 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
381 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
382 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
383 
384 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
385 
386 /* IPv6 max L3 address size */
387 #define MVPP2_MAX_L3_ADDR_SIZE		16
388 
389 /* Port flags */
390 #define MVPP2_F_LOOPBACK		BIT(0)
391 
392 /* Marvell tag types */
393 enum mvpp2_tag_type {
394 	MVPP2_TAG_TYPE_NONE = 0,
395 	MVPP2_TAG_TYPE_MH   = 1,
396 	MVPP2_TAG_TYPE_DSA  = 2,
397 	MVPP2_TAG_TYPE_EDSA = 3,
398 	MVPP2_TAG_TYPE_VLAN = 4,
399 	MVPP2_TAG_TYPE_LAST = 5
400 };
401 
402 /* Parser constants */
403 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
404 #define MVPP2_PRS_TCAM_WORDS		6
405 #define MVPP2_PRS_SRAM_WORDS		4
406 #define MVPP2_PRS_FLOW_ID_SIZE		64
407 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
408 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
409 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
410 #define MVPP2_PRS_IPV4_HEAD		0x40
411 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
412 #define MVPP2_PRS_IPV4_MC		0xe0
413 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
414 #define MVPP2_PRS_IPV4_BC_MASK		0xff
415 #define MVPP2_PRS_IPV4_IHL		0x5
416 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
417 #define MVPP2_PRS_IPV6_MC		0xff
418 #define MVPP2_PRS_IPV6_MC_MASK		0xff
419 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
420 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
421 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
422 #define MVPP2_PRS_DBL_VLANS_MAX		100
423 
424 /* Tcam structure:
425  * - lookup ID - 4 bits
426  * - port ID - 1 byte
427  * - additional information - 1 byte
428  * - header data - 8 bytes
429  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
430  */
431 #define MVPP2_PRS_AI_BITS			8
432 #define MVPP2_PRS_PORT_MASK			0xff
433 #define MVPP2_PRS_LU_MASK			0xf
434 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
435 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
436 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
437 					      (((offs) * 2) - ((offs) % 2)  + 2)
438 #define MVPP2_PRS_TCAM_AI_BYTE			16
439 #define MVPP2_PRS_TCAM_PORT_BYTE		17
440 #define MVPP2_PRS_TCAM_LU_BYTE			20
441 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
442 #define MVPP2_PRS_TCAM_INV_WORD			5
443 /* Tcam entries ID */
444 #define MVPP2_PE_DROP_ALL		0
445 #define MVPP2_PE_FIRST_FREE_TID		1
446 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
447 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
448 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
449 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
450 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
451 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
452 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
453 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
454 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
455 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
456 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
457 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
458 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
459 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
460 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
461 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
462 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
463 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
464 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
465 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
466 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
467 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
468 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
469 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
470 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
471 
472 /* Sram structure
473  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
474  */
475 #define MVPP2_PRS_SRAM_RI_OFFS			0
476 #define MVPP2_PRS_SRAM_RI_WORD			0
477 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
478 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
479 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
480 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
481 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
482 #define MVPP2_PRS_SRAM_UDF_OFFS			73
483 #define MVPP2_PRS_SRAM_UDF_BITS			8
484 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
485 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
486 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
487 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
488 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
489 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
490 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
491 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
492 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
495 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
496 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
497 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
501 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
502 #define MVPP2_PRS_SRAM_AI_OFFS			90
503 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
504 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
505 #define MVPP2_PRS_SRAM_AI_MASK			0xff
506 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
507 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
508 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
509 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
510 
511 /* Sram result info bits assignment */
512 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
513 #define MVPP2_PRS_RI_DSA_MASK			0x2
514 #define MVPP2_PRS_RI_VLAN_MASK			0xc
515 #define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
516 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
517 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
518 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
519 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
520 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
521 #define MVPP2_PRS_RI_L2_CAST_MASK		0x600
522 #define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
523 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
524 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
525 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
526 #define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
527 #define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
528 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
529 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
530 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
531 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
532 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
533 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
534 #define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
535 #define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
536 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
537 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
538 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
539 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
540 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
541 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
542 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
543 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
544 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
545 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
546 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
547 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
548 
549 /* Sram additional info bits assignment */
550 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
551 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
552 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
553 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
554 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
555 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
556 #define MVPP2_PRS_SINGLE_VLAN_AI		0
557 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
558 
559 /* DSA/EDSA type */
560 #define MVPP2_PRS_TAGGED		true
561 #define MVPP2_PRS_UNTAGGED		false
562 #define MVPP2_PRS_EDSA			true
563 #define MVPP2_PRS_DSA			false
564 
565 /* MAC entries, shadow udf */
566 enum mvpp2_prs_udf {
567 	MVPP2_PRS_UDF_MAC_DEF,
568 	MVPP2_PRS_UDF_MAC_RANGE,
569 	MVPP2_PRS_UDF_L2_DEF,
570 	MVPP2_PRS_UDF_L2_DEF_COPY,
571 	MVPP2_PRS_UDF_L2_USER,
572 };
573 
574 /* Lookup ID */
575 enum mvpp2_prs_lookup {
576 	MVPP2_PRS_LU_MH,
577 	MVPP2_PRS_LU_MAC,
578 	MVPP2_PRS_LU_DSA,
579 	MVPP2_PRS_LU_VLAN,
580 	MVPP2_PRS_LU_L2,
581 	MVPP2_PRS_LU_PPPOE,
582 	MVPP2_PRS_LU_IP4,
583 	MVPP2_PRS_LU_IP6,
584 	MVPP2_PRS_LU_FLOWS,
585 	MVPP2_PRS_LU_LAST,
586 };
587 
588 /* L3 cast enum */
589 enum mvpp2_prs_l3_cast {
590 	MVPP2_PRS_L3_UNI_CAST,
591 	MVPP2_PRS_L3_MULTI_CAST,
592 	MVPP2_PRS_L3_BROAD_CAST
593 };
594 
595 /* Classifier constants */
596 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
597 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
598 #define MVPP2_CLS_LKP_TBL_SIZE		64
599 
600 /* BM constants */
601 #define MVPP2_BM_POOLS_NUM		8
602 #define MVPP2_BM_LONG_BUF_NUM		1024
603 #define MVPP2_BM_SHORT_BUF_NUM		2048
604 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
605 #define MVPP2_BM_POOL_PTR_ALIGN		128
606 #define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
607 #define MVPP2_BM_SWF_SHORT_POOL		3
608 
609 /* BM cookie (32 bits) definition */
610 #define MVPP2_BM_COOKIE_POOL_OFFS	8
611 #define MVPP2_BM_COOKIE_CPU_OFFS	24
612 
613 /* BM short pool packet size
614  * These value assure that for SWF the total number
615  * of bytes allocated for each buffer will be 512
616  */
617 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
618 
619 enum mvpp2_bm_type {
620 	MVPP2_BM_FREE,
621 	MVPP2_BM_SWF_LONG,
622 	MVPP2_BM_SWF_SHORT
623 };
624 
625 /* Definitions */
626 
627 /* Shared Packet Processor resources */
628 struct mvpp2 {
629 	/* Shared registers' base addresses */
630 	void __iomem *base;
631 	void __iomem *lms_base;
632 
633 	/* Common clocks */
634 	struct clk *pp_clk;
635 	struct clk *gop_clk;
636 
637 	/* List of pointers to port structures */
638 	struct mvpp2_port **port_list;
639 
640 	/* Aggregated TXQs */
641 	struct mvpp2_tx_queue *aggr_txqs;
642 
643 	/* BM pools */
644 	struct mvpp2_bm_pool *bm_pools;
645 
646 	/* PRS shadow table */
647 	struct mvpp2_prs_shadow *prs_shadow;
648 	/* PRS auxiliary table for double vlan entries control */
649 	bool *prs_double_vlans;
650 
651 	/* Tclk value */
652 	u32 tclk;
653 };
654 
655 struct mvpp2_pcpu_stats {
656 	struct	u64_stats_sync syncp;
657 	u64	rx_packets;
658 	u64	rx_bytes;
659 	u64	tx_packets;
660 	u64	tx_bytes;
661 };
662 
663 struct mvpp2_port {
664 	u8 id;
665 
666 	int irq;
667 
668 	struct mvpp2 *priv;
669 
670 	/* Per-port registers' base address */
671 	void __iomem *base;
672 
673 	struct mvpp2_rx_queue **rxqs;
674 	struct mvpp2_tx_queue **txqs;
675 	struct net_device *dev;
676 
677 	int pkt_size;
678 
679 	u32 pending_cause_rx;
680 	struct napi_struct napi;
681 
682 	/* Flags */
683 	unsigned long flags;
684 
685 	u16 tx_ring_size;
686 	u16 rx_ring_size;
687 	struct mvpp2_pcpu_stats __percpu *stats;
688 
689 	struct phy_device *phy_dev;
690 	phy_interface_t phy_interface;
691 	struct device_node *phy_node;
692 	unsigned int link;
693 	unsigned int duplex;
694 	unsigned int speed;
695 
696 	struct mvpp2_bm_pool *pool_long;
697 	struct mvpp2_bm_pool *pool_short;
698 
699 	/* Index of first port's physical RXQ */
700 	u8 first_rxq;
701 };
702 
703 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
704  * layout of the transmit and reception DMA descriptors, and their
705  * layout is therefore defined by the hardware design
706  */
707 
708 #define MVPP2_TXD_L3_OFF_SHIFT		0
709 #define MVPP2_TXD_IP_HLEN_SHIFT		8
710 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
711 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
712 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
713 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
714 #define MVPP2_TXD_L4_UDP		BIT(24)
715 #define MVPP2_TXD_L3_IP6		BIT(26)
716 #define MVPP2_TXD_L_DESC		BIT(28)
717 #define MVPP2_TXD_F_DESC		BIT(29)
718 
719 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
720 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
721 #define MVPP2_RXD_ERR_CRC		0x0
722 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
723 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
724 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
725 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
726 #define MVPP2_RXD_HWF_SYNC		BIT(21)
727 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
728 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
729 #define MVPP2_RXD_L4_TCP		BIT(25)
730 #define MVPP2_RXD_L4_UDP		BIT(26)
731 #define MVPP2_RXD_L3_IP4		BIT(28)
732 #define MVPP2_RXD_L3_IP6		BIT(30)
733 #define MVPP2_RXD_BUF_HDR		BIT(31)
734 
735 struct mvpp2_tx_desc {
736 	u32 command;		/* Options used by HW for packet transmitting.*/
737 	u8  packet_offset;	/* the offset from the buffer beginning	*/
738 	u8  phys_txq;		/* destination queue ID			*/
739 	u16 data_size;		/* data size of transmitted packet in bytes */
740 	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
741 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
742 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
743 	u32 reserved2;		/* reserved (for future use)		*/
744 };
745 
746 struct mvpp2_rx_desc {
747 	u32 status;		/* info about received packet		*/
748 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
749 	u16 data_size;		/* size of received packet in bytes	*/
750 	u32 buf_phys_addr;	/* physical address of the buffer	*/
751 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
752 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
753 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
754 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
755 	u8  reserved5;
756 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
757 	u32 reserved7;		/* flow_id (for future use, PnC) */
758 	u32 reserved8;
759 };
760 
761 /* Per-CPU Tx queue control */
762 struct mvpp2_txq_pcpu {
763 	int cpu;
764 
765 	/* Number of Tx DMA descriptors in the descriptor ring */
766 	int size;
767 
768 	/* Number of currently used Tx DMA descriptor in the
769 	 * descriptor ring
770 	 */
771 	int count;
772 
773 	/* Number of Tx DMA descriptors reserved for each CPU */
774 	int reserved_num;
775 
776 	/* Array of transmitted skb */
777 	struct sk_buff **tx_skb;
778 
779 	/* Index of last TX DMA descriptor that was inserted */
780 	int txq_put_index;
781 
782 	/* Index of the TX DMA descriptor to be cleaned up */
783 	int txq_get_index;
784 };
785 
786 struct mvpp2_tx_queue {
787 	/* Physical number of this Tx queue */
788 	u8 id;
789 
790 	/* Logical number of this Tx queue */
791 	u8 log_id;
792 
793 	/* Number of Tx DMA descriptors in the descriptor ring */
794 	int size;
795 
796 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
797 	int count;
798 
799 	/* Per-CPU control of physical Tx queues */
800 	struct mvpp2_txq_pcpu __percpu *pcpu;
801 
802 	/* Array of transmitted skb */
803 	struct sk_buff **tx_skb;
804 
805 	u32 done_pkts_coal;
806 
807 	/* Virtual address of thex Tx DMA descriptors array */
808 	struct mvpp2_tx_desc *descs;
809 
810 	/* DMA address of the Tx DMA descriptors array */
811 	dma_addr_t descs_phys;
812 
813 	/* Index of the last Tx DMA descriptor */
814 	int last_desc;
815 
816 	/* Index of the next Tx DMA descriptor to process */
817 	int next_desc_to_proc;
818 };
819 
820 struct mvpp2_rx_queue {
821 	/* RX queue number, in the range 0-31 for physical RXQs */
822 	u8 id;
823 
824 	/* Num of rx descriptors in the rx descriptor ring */
825 	int size;
826 
827 	u32 pkts_coal;
828 	u32 time_coal;
829 
830 	/* Virtual address of the RX DMA descriptors array */
831 	struct mvpp2_rx_desc *descs;
832 
833 	/* DMA address of the RX DMA descriptors array */
834 	dma_addr_t descs_phys;
835 
836 	/* Index of the last RX DMA descriptor */
837 	int last_desc;
838 
839 	/* Index of the next RX DMA descriptor to process */
840 	int next_desc_to_proc;
841 
842 	/* ID of port to which physical RXQ is mapped */
843 	int port;
844 
845 	/* Port's logic RXQ number to which physical RXQ is mapped */
846 	int logic_rxq;
847 };
848 
849 union mvpp2_prs_tcam_entry {
850 	u32 word[MVPP2_PRS_TCAM_WORDS];
851 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
852 };
853 
854 union mvpp2_prs_sram_entry {
855 	u32 word[MVPP2_PRS_SRAM_WORDS];
856 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
857 };
858 
859 struct mvpp2_prs_entry {
860 	u32 index;
861 	union mvpp2_prs_tcam_entry tcam;
862 	union mvpp2_prs_sram_entry sram;
863 };
864 
865 struct mvpp2_prs_shadow {
866 	bool valid;
867 	bool finish;
868 
869 	/* Lookup ID */
870 	int lu;
871 
872 	/* User defined offset */
873 	int udf;
874 
875 	/* Result info */
876 	u32 ri;
877 	u32 ri_mask;
878 };
879 
880 struct mvpp2_cls_flow_entry {
881 	u32 index;
882 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
883 };
884 
885 struct mvpp2_cls_lookup_entry {
886 	u32 lkpid;
887 	u32 way;
888 	u32 data;
889 };
890 
891 struct mvpp2_bm_pool {
892 	/* Pool number in the range 0-7 */
893 	int id;
894 	enum mvpp2_bm_type type;
895 
896 	/* Buffer Pointers Pool External (BPPE) size */
897 	int size;
898 	/* Number of buffers for this pool */
899 	int buf_num;
900 	/* Pool buffer size */
901 	int buf_size;
902 	/* Packet size */
903 	int pkt_size;
904 
905 	/* BPPE virtual base address */
906 	u32 *virt_addr;
907 	/* BPPE physical base address */
908 	dma_addr_t phys_addr;
909 
910 	/* Ports using BM pool */
911 	u32 port_map;
912 
913 	/* Occupied buffers indicator */
914 	atomic_t in_use;
915 	int in_use_thresh;
916 
917 	spinlock_t lock;
918 };
919 
920 struct mvpp2_buff_hdr {
921 	u32 next_buff_phys_addr;
922 	u32 next_buff_virt_addr;
923 	u16 byte_count;
924 	u16 info;
925 	u8  reserved1;		/* bm_qset (for future use, BM)		*/
926 };
927 
928 /* Buffer header info bits */
929 #define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
930 #define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
931 #define MVPP2_B_HDR_INFO_LAST_OFFS	12
932 #define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
933 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
934 	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
935 
936 /* Static declaractions */
937 
938 /* Number of RXQs used by single port */
939 static int rxq_number = MVPP2_DEFAULT_RXQ;
940 /* Number of TXQs used by single port */
941 static int txq_number = MVPP2_MAX_TXQ;
942 
943 #define MVPP2_DRIVER_NAME "mvpp2"
944 #define MVPP2_DRIVER_VERSION "1.0"
945 
946 /* Utility/helper methods */
947 
mvpp2_write(struct mvpp2 * priv,u32 offset,u32 data)948 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
949 {
950 	writel(data, priv->base + offset);
951 }
952 
mvpp2_read(struct mvpp2 * priv,u32 offset)953 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
954 {
955 	return readl(priv->base + offset);
956 }
957 
mvpp2_txq_inc_get(struct mvpp2_txq_pcpu * txq_pcpu)958 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
959 {
960 	txq_pcpu->txq_get_index++;
961 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
962 		txq_pcpu->txq_get_index = 0;
963 }
964 
mvpp2_txq_inc_put(struct mvpp2_txq_pcpu * txq_pcpu,struct sk_buff * skb)965 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
966 			      struct sk_buff *skb)
967 {
968 	txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
969 	txq_pcpu->txq_put_index++;
970 	if (txq_pcpu->txq_put_index == txq_pcpu->size)
971 		txq_pcpu->txq_put_index = 0;
972 }
973 
974 /* Get number of physical egress port */
mvpp2_egress_port(struct mvpp2_port * port)975 static inline int mvpp2_egress_port(struct mvpp2_port *port)
976 {
977 	return MVPP2_MAX_TCONT + port->id;
978 }
979 
980 /* Get number of physical TXQ */
mvpp2_txq_phys(int port,int txq)981 static inline int mvpp2_txq_phys(int port, int txq)
982 {
983 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
984 }
985 
986 /* Parser configuration routines */
987 
988 /* Update parser tcam and sram hw entries */
mvpp2_prs_hw_write(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)989 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
990 {
991 	int i;
992 
993 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
994 		return -EINVAL;
995 
996 	/* Clear entry invalidation bit */
997 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
998 
999 	/* Write tcam index - indirect access */
1000 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1001 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1002 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1003 
1004 	/* Write sram index - indirect access */
1005 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1006 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1007 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1008 
1009 	return 0;
1010 }
1011 
1012 /* Read tcam entry from hw */
mvpp2_prs_hw_read(struct mvpp2 * priv,struct mvpp2_prs_entry * pe)1013 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1014 {
1015 	int i;
1016 
1017 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1018 		return -EINVAL;
1019 
1020 	/* Write tcam index - indirect access */
1021 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1022 
1023 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1024 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1025 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1026 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1027 
1028 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1029 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1030 
1031 	/* Write sram index - indirect access */
1032 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1033 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1034 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1035 
1036 	return 0;
1037 }
1038 
1039 /* Invalidate tcam hw entry */
mvpp2_prs_hw_inv(struct mvpp2 * priv,int index)1040 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1041 {
1042 	/* Write index - indirect access */
1043 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1044 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1045 		    MVPP2_PRS_TCAM_INV_MASK);
1046 }
1047 
1048 /* Enable shadow table entry and set its lookup ID */
mvpp2_prs_shadow_set(struct mvpp2 * priv,int index,int lu)1049 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1050 {
1051 	priv->prs_shadow[index].valid = true;
1052 	priv->prs_shadow[index].lu = lu;
1053 }
1054 
1055 /* Update ri fields in shadow table entry */
mvpp2_prs_shadow_ri_set(struct mvpp2 * priv,int index,unsigned int ri,unsigned int ri_mask)1056 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1057 				    unsigned int ri, unsigned int ri_mask)
1058 {
1059 	priv->prs_shadow[index].ri_mask = ri_mask;
1060 	priv->prs_shadow[index].ri = ri;
1061 }
1062 
1063 /* Update lookup field in tcam sw entry */
mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1064 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1065 {
1066 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1067 
1068 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1069 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1070 }
1071 
1072 /* Update mask for single port in tcam sw entry */
mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry * pe,unsigned int port,bool add)1073 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1074 				    unsigned int port, bool add)
1075 {
1076 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1077 
1078 	if (add)
1079 		pe->tcam.byte[enable_off] &= ~(1 << port);
1080 	else
1081 		pe->tcam.byte[enable_off] |= 1 << port;
1082 }
1083 
1084 /* Update port map in tcam sw entry */
mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry * pe,unsigned int ports)1085 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1086 					unsigned int ports)
1087 {
1088 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1089 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1090 
1091 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1092 	pe->tcam.byte[enable_off] &= ~port_mask;
1093 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1094 }
1095 
1096 /* Obtain port map from tcam sw entry */
mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry * pe)1097 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1098 {
1099 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1100 
1101 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1102 }
1103 
1104 /* Set byte of data and its enable bits in tcam sw entry */
mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char byte,unsigned char enable)1105 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1106 					 unsigned int offs, unsigned char byte,
1107 					 unsigned char enable)
1108 {
1109 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1110 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1111 }
1112 
1113 /* Get byte of data and its enable bits from tcam sw entry */
mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry * pe,unsigned int offs,unsigned char * byte,unsigned char * enable)1114 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1115 					 unsigned int offs, unsigned char *byte,
1116 					 unsigned char *enable)
1117 {
1118 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1119 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1120 }
1121 
1122 /* Compare tcam data bytes with a pattern */
mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry * pe,int offs,u16 data)1123 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1124 				    u16 data)
1125 {
1126 	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1127 	u16 tcam_data;
1128 
1129 	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1130 	if (tcam_data != data)
1131 		return false;
1132 	return true;
1133 }
1134 
1135 /* Update ai bits in tcam sw entry */
mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int enable)1136 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1137 				     unsigned int bits, unsigned int enable)
1138 {
1139 	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1140 
1141 	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1142 
1143 		if (!(enable & BIT(i)))
1144 			continue;
1145 
1146 		if (bits & BIT(i))
1147 			pe->tcam.byte[ai_idx] |= 1 << i;
1148 		else
1149 			pe->tcam.byte[ai_idx] &= ~(1 << i);
1150 	}
1151 
1152 	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1153 }
1154 
1155 /* Get ai bits from tcam sw entry */
mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry * pe)1156 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1157 {
1158 	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1159 }
1160 
1161 /* Set ethertype in tcam sw entry */
mvpp2_prs_match_etype(struct mvpp2_prs_entry * pe,int offset,unsigned short ethertype)1162 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1163 				  unsigned short ethertype)
1164 {
1165 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1166 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1167 }
1168 
1169 /* Set bits in sram sw entry */
mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry * pe,int bit_num,int val)1170 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1171 				    int val)
1172 {
1173 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1174 }
1175 
1176 /* Clear bits in sram sw entry */
mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry * pe,int bit_num,int val)1177 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1178 				      int val)
1179 {
1180 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1181 }
1182 
1183 /* Update ri bits in sram sw entry */
mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1184 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1185 				     unsigned int bits, unsigned int mask)
1186 {
1187 	unsigned int i;
1188 
1189 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1190 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1191 
1192 		if (!(mask & BIT(i)))
1193 			continue;
1194 
1195 		if (bits & BIT(i))
1196 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1197 		else
1198 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1199 
1200 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1201 	}
1202 }
1203 
1204 /* Obtain ri bits from sram sw entry */
mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry * pe)1205 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1206 {
1207 	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1208 }
1209 
1210 /* Update ai bits in sram sw entry */
mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry * pe,unsigned int bits,unsigned int mask)1211 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1212 				     unsigned int bits, unsigned int mask)
1213 {
1214 	unsigned int i;
1215 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1216 
1217 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1218 
1219 		if (!(mask & BIT(i)))
1220 			continue;
1221 
1222 		if (bits & BIT(i))
1223 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1224 		else
1225 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1226 
1227 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1228 	}
1229 }
1230 
1231 /* Read ai bits from sram sw entry */
mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry * pe)1232 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1233 {
1234 	u8 bits;
1235 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1236 	int ai_en_off = ai_off + 1;
1237 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1238 
1239 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1240 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1241 
1242 	return bits;
1243 }
1244 
1245 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1246  * lookup interation
1247  */
mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry * pe,unsigned int lu)1248 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1249 				       unsigned int lu)
1250 {
1251 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1252 
1253 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1254 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1255 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1256 }
1257 
1258 /* In the sram sw entry set sign and value of the next lookup offset
1259  * and the offset value generated to the classifier
1260  */
mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry * pe,int shift,unsigned int op)1261 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1262 				     unsigned int op)
1263 {
1264 	/* Set sign */
1265 	if (shift < 0) {
1266 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1267 		shift = 0 - shift;
1268 	} else {
1269 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1270 	}
1271 
1272 	/* Set value */
1273 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1274 							   (unsigned char)shift;
1275 
1276 	/* Reset and set operation */
1277 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1278 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1279 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1280 
1281 	/* Set base offset as current */
1282 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1283 }
1284 
1285 /* In the sram sw entry set sign and value of the user defined offset
1286  * generated to the classifier
1287  */
mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry * pe,unsigned int type,int offset,unsigned int op)1288 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1289 				      unsigned int type, int offset,
1290 				      unsigned int op)
1291 {
1292 	/* Set sign */
1293 	if (offset < 0) {
1294 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1295 		offset = 0 - offset;
1296 	} else {
1297 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1298 	}
1299 
1300 	/* Set value */
1301 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1302 				  MVPP2_PRS_SRAM_UDF_MASK);
1303 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1304 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1305 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1306 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1307 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1308 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1309 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1310 
1311 	/* Set offset type */
1312 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1313 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1314 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1315 
1316 	/* Set offset operation */
1317 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1318 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1319 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1320 
1321 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1322 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1323 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1324 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1325 
1326 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1327 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1328 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1329 
1330 	/* Set base offset as current */
1331 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1332 }
1333 
1334 /* Find parser flow entry */
mvpp2_prs_flow_find(struct mvpp2 * priv,int flow)1335 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1336 {
1337 	struct mvpp2_prs_entry *pe;
1338 	int tid;
1339 
1340 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1341 	if (!pe)
1342 		return NULL;
1343 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1344 
1345 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1346 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1347 		u8 bits;
1348 
1349 		if (!priv->prs_shadow[tid].valid ||
1350 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1351 			continue;
1352 
1353 		pe->index = tid;
1354 		mvpp2_prs_hw_read(priv, pe);
1355 		bits = mvpp2_prs_sram_ai_get(pe);
1356 
1357 		/* Sram store classification lookup ID in AI bits [5:0] */
1358 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1359 			return pe;
1360 	}
1361 	kfree(pe);
1362 
1363 	return NULL;
1364 }
1365 
1366 /* Return first free tcam index, seeking from start to end */
mvpp2_prs_tcam_first_free(struct mvpp2 * priv,unsigned char start,unsigned char end)1367 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1368 				     unsigned char end)
1369 {
1370 	int tid;
1371 
1372 	if (start > end)
1373 		swap(start, end);
1374 
1375 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1376 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1377 
1378 	for (tid = start; tid <= end; tid++) {
1379 		if (!priv->prs_shadow[tid].valid)
1380 			return tid;
1381 	}
1382 
1383 	return -EINVAL;
1384 }
1385 
1386 /* Enable/disable dropping all mac da's */
mvpp2_prs_mac_drop_all_set(struct mvpp2 * priv,int port,bool add)1387 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1388 {
1389 	struct mvpp2_prs_entry pe;
1390 
1391 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1392 		/* Entry exist - update port only */
1393 		pe.index = MVPP2_PE_DROP_ALL;
1394 		mvpp2_prs_hw_read(priv, &pe);
1395 	} else {
1396 		/* Entry doesn't exist - create new */
1397 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1398 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1399 		pe.index = MVPP2_PE_DROP_ALL;
1400 
1401 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1402 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1403 					 MVPP2_PRS_RI_DROP_MASK);
1404 
1405 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1406 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1407 
1408 		/* Update shadow table */
1409 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1410 
1411 		/* Mask all ports */
1412 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1413 	}
1414 
1415 	/* Update port mask */
1416 	mvpp2_prs_tcam_port_set(&pe, port, add);
1417 
1418 	mvpp2_prs_hw_write(priv, &pe);
1419 }
1420 
1421 /* Set port to promiscuous mode */
mvpp2_prs_mac_promisc_set(struct mvpp2 * priv,int port,bool add)1422 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1423 {
1424 	struct mvpp2_prs_entry pe;
1425 
1426 	/* Promiscous mode - Accept unknown packets */
1427 
1428 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1429 		/* Entry exist - update port only */
1430 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1431 		mvpp2_prs_hw_read(priv, &pe);
1432 	} else {
1433 		/* Entry doesn't exist - create new */
1434 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1435 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1436 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1437 
1438 		/* Continue - set next lookup */
1439 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1440 
1441 		/* Set result info bits */
1442 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1443 					 MVPP2_PRS_RI_L2_CAST_MASK);
1444 
1445 		/* Shift to ethertype */
1446 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1447 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1448 
1449 		/* Mask all ports */
1450 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1451 
1452 		/* Update shadow table */
1453 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1454 	}
1455 
1456 	/* Update port mask */
1457 	mvpp2_prs_tcam_port_set(&pe, port, add);
1458 
1459 	mvpp2_prs_hw_write(priv, &pe);
1460 }
1461 
1462 /* Accept multicast */
mvpp2_prs_mac_multi_set(struct mvpp2 * priv,int port,int index,bool add)1463 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1464 				    bool add)
1465 {
1466 	struct mvpp2_prs_entry pe;
1467 	unsigned char da_mc;
1468 
1469 	/* Ethernet multicast address first byte is
1470 	 * 0x01 for IPv4 and 0x33 for IPv6
1471 	 */
1472 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1473 
1474 	if (priv->prs_shadow[index].valid) {
1475 		/* Entry exist - update port only */
1476 		pe.index = index;
1477 		mvpp2_prs_hw_read(priv, &pe);
1478 	} else {
1479 		/* Entry doesn't exist - create new */
1480 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1481 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1482 		pe.index = index;
1483 
1484 		/* Continue - set next lookup */
1485 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1486 
1487 		/* Set result info bits */
1488 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1489 					 MVPP2_PRS_RI_L2_CAST_MASK);
1490 
1491 		/* Update tcam entry data first byte */
1492 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1493 
1494 		/* Shift to ethertype */
1495 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1496 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1497 
1498 		/* Mask all ports */
1499 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1500 
1501 		/* Update shadow table */
1502 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1503 	}
1504 
1505 	/* Update port mask */
1506 	mvpp2_prs_tcam_port_set(&pe, port, add);
1507 
1508 	mvpp2_prs_hw_write(priv, &pe);
1509 }
1510 
1511 /* Set entry for dsa packets */
mvpp2_prs_dsa_tag_set(struct mvpp2 * priv,int port,bool add,bool tagged,bool extend)1512 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1513 				  bool tagged, bool extend)
1514 {
1515 	struct mvpp2_prs_entry pe;
1516 	int tid, shift;
1517 
1518 	if (extend) {
1519 		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1520 		shift = 8;
1521 	} else {
1522 		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1523 		shift = 4;
1524 	}
1525 
1526 	if (priv->prs_shadow[tid].valid) {
1527 		/* Entry exist - update port only */
1528 		pe.index = tid;
1529 		mvpp2_prs_hw_read(priv, &pe);
1530 	} else {
1531 		/* Entry doesn't exist - create new */
1532 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1533 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1534 		pe.index = tid;
1535 
1536 		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1537 		mvpp2_prs_sram_shift_set(&pe, shift,
1538 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1539 
1540 		/* Update shadow table */
1541 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1542 
1543 		if (tagged) {
1544 			/* Set tagged bit in DSA tag */
1545 			mvpp2_prs_tcam_data_byte_set(&pe, 0,
1546 						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1547 						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1548 			/* Clear all ai bits for next iteration */
1549 			mvpp2_prs_sram_ai_update(&pe, 0,
1550 						 MVPP2_PRS_SRAM_AI_MASK);
1551 			/* If packet is tagged continue check vlans */
1552 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1553 		} else {
1554 			/* Set result info bits to 'no vlans' */
1555 			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1556 						 MVPP2_PRS_RI_VLAN_MASK);
1557 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1558 		}
1559 
1560 		/* Mask all ports */
1561 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1562 	}
1563 
1564 	/* Update port mask */
1565 	mvpp2_prs_tcam_port_set(&pe, port, add);
1566 
1567 	mvpp2_prs_hw_write(priv, &pe);
1568 }
1569 
1570 /* Set entry for dsa ethertype */
mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 * priv,int port,bool add,bool tagged,bool extend)1571 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1572 					    bool add, bool tagged, bool extend)
1573 {
1574 	struct mvpp2_prs_entry pe;
1575 	int tid, shift, port_mask;
1576 
1577 	if (extend) {
1578 		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1579 		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1580 		port_mask = 0;
1581 		shift = 8;
1582 	} else {
1583 		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1584 		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
1585 		port_mask = MVPP2_PRS_PORT_MASK;
1586 		shift = 4;
1587 	}
1588 
1589 	if (priv->prs_shadow[tid].valid) {
1590 		/* Entry exist - update port only */
1591 		pe.index = tid;
1592 		mvpp2_prs_hw_read(priv, &pe);
1593 	} else {
1594 		/* Entry doesn't exist - create new */
1595 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1596 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1597 		pe.index = tid;
1598 
1599 		/* Set ethertype */
1600 		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1601 		mvpp2_prs_match_etype(&pe, 2, 0);
1602 
1603 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1604 					 MVPP2_PRS_RI_DSA_MASK);
1605 		/* Shift ethertype + 2 byte reserved + tag*/
1606 		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1607 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1608 
1609 		/* Update shadow table */
1610 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1611 
1612 		if (tagged) {
1613 			/* Set tagged bit in DSA tag */
1614 			mvpp2_prs_tcam_data_byte_set(&pe,
1615 						     MVPP2_ETH_TYPE_LEN + 2 + 3,
1616 						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1617 						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1618 			/* Clear all ai bits for next iteration */
1619 			mvpp2_prs_sram_ai_update(&pe, 0,
1620 						 MVPP2_PRS_SRAM_AI_MASK);
1621 			/* If packet is tagged continue check vlans */
1622 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1623 		} else {
1624 			/* Set result info bits to 'no vlans' */
1625 			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1626 						 MVPP2_PRS_RI_VLAN_MASK);
1627 			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1628 		}
1629 		/* Mask/unmask all ports, depending on dsa type */
1630 		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1631 	}
1632 
1633 	/* Update port mask */
1634 	mvpp2_prs_tcam_port_set(&pe, port, add);
1635 
1636 	mvpp2_prs_hw_write(priv, &pe);
1637 }
1638 
1639 /* Search for existing single/triple vlan entry */
mvpp2_prs_vlan_find(struct mvpp2 * priv,unsigned short tpid,int ai)1640 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1641 						   unsigned short tpid, int ai)
1642 {
1643 	struct mvpp2_prs_entry *pe;
1644 	int tid;
1645 
1646 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1647 	if (!pe)
1648 		return NULL;
1649 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1650 
1651 	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1652 	for (tid = MVPP2_PE_FIRST_FREE_TID;
1653 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1654 		unsigned int ri_bits, ai_bits;
1655 		bool match;
1656 
1657 		if (!priv->prs_shadow[tid].valid ||
1658 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1659 			continue;
1660 
1661 		pe->index = tid;
1662 
1663 		mvpp2_prs_hw_read(priv, pe);
1664 		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1665 		if (!match)
1666 			continue;
1667 
1668 		/* Get vlan type */
1669 		ri_bits = mvpp2_prs_sram_ri_get(pe);
1670 		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1671 
1672 		/* Get current ai value from tcam */
1673 		ai_bits = mvpp2_prs_tcam_ai_get(pe);
1674 		/* Clear double vlan bit */
1675 		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1676 
1677 		if (ai != ai_bits)
1678 			continue;
1679 
1680 		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1681 		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1682 			return pe;
1683 	}
1684 	kfree(pe);
1685 
1686 	return NULL;
1687 }
1688 
1689 /* Add/update single/triple vlan entry */
mvpp2_prs_vlan_add(struct mvpp2 * priv,unsigned short tpid,int ai,unsigned int port_map)1690 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1691 			      unsigned int port_map)
1692 {
1693 	struct mvpp2_prs_entry *pe;
1694 	int tid_aux, tid;
1695 	int ret = 0;
1696 
1697 	pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1698 
1699 	if (!pe) {
1700 		/* Create new tcam entry */
1701 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1702 						MVPP2_PE_FIRST_FREE_TID);
1703 		if (tid < 0)
1704 			return tid;
1705 
1706 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1707 		if (!pe)
1708 			return -ENOMEM;
1709 
1710 		/* Get last double vlan tid */
1711 		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1712 		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1713 			unsigned int ri_bits;
1714 
1715 			if (!priv->prs_shadow[tid_aux].valid ||
1716 			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1717 				continue;
1718 
1719 			pe->index = tid_aux;
1720 			mvpp2_prs_hw_read(priv, pe);
1721 			ri_bits = mvpp2_prs_sram_ri_get(pe);
1722 			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1723 			    MVPP2_PRS_RI_VLAN_DOUBLE)
1724 				break;
1725 		}
1726 
1727 		if (tid <= tid_aux) {
1728 			ret = -EINVAL;
1729 			goto error;
1730 		}
1731 
1732 		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1733 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1734 		pe->index = tid;
1735 
1736 		mvpp2_prs_match_etype(pe, 0, tpid);
1737 
1738 		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1739 		/* Shift 4 bytes - skip 1 vlan tag */
1740 		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1741 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1742 		/* Clear all ai bits for next iteration */
1743 		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1744 
1745 		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1746 			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1747 						 MVPP2_PRS_RI_VLAN_MASK);
1748 		} else {
1749 			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1750 			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1751 						 MVPP2_PRS_RI_VLAN_MASK);
1752 		}
1753 		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1754 
1755 		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1756 	}
1757 	/* Update ports' mask */
1758 	mvpp2_prs_tcam_port_map_set(pe, port_map);
1759 
1760 	mvpp2_prs_hw_write(priv, pe);
1761 
1762 error:
1763 	kfree(pe);
1764 
1765 	return ret;
1766 }
1767 
1768 /* Get first free double vlan ai number */
mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 * priv)1769 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1770 {
1771 	int i;
1772 
1773 	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1774 		if (!priv->prs_double_vlans[i])
1775 			return i;
1776 	}
1777 
1778 	return -EINVAL;
1779 }
1780 
1781 /* Search for existing double vlan entry */
mvpp2_prs_double_vlan_find(struct mvpp2 * priv,unsigned short tpid1,unsigned short tpid2)1782 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1783 							  unsigned short tpid1,
1784 							  unsigned short tpid2)
1785 {
1786 	struct mvpp2_prs_entry *pe;
1787 	int tid;
1788 
1789 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1790 	if (!pe)
1791 		return NULL;
1792 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1793 
1794 	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1795 	for (tid = MVPP2_PE_FIRST_FREE_TID;
1796 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1797 		unsigned int ri_mask;
1798 		bool match;
1799 
1800 		if (!priv->prs_shadow[tid].valid ||
1801 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1802 			continue;
1803 
1804 		pe->index = tid;
1805 		mvpp2_prs_hw_read(priv, pe);
1806 
1807 		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1808 			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1809 
1810 		if (!match)
1811 			continue;
1812 
1813 		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1814 		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1815 			return pe;
1816 	}
1817 	kfree(pe);
1818 
1819 	return NULL;
1820 }
1821 
1822 /* Add or update double vlan entry */
mvpp2_prs_double_vlan_add(struct mvpp2 * priv,unsigned short tpid1,unsigned short tpid2,unsigned int port_map)1823 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1824 				     unsigned short tpid2,
1825 				     unsigned int port_map)
1826 {
1827 	struct mvpp2_prs_entry *pe;
1828 	int tid_aux, tid, ai, ret = 0;
1829 
1830 	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1831 
1832 	if (!pe) {
1833 		/* Create new tcam entry */
1834 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1835 				MVPP2_PE_LAST_FREE_TID);
1836 		if (tid < 0)
1837 			return tid;
1838 
1839 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1840 		if (!pe)
1841 			return -ENOMEM;
1842 
1843 		/* Set ai value for new double vlan entry */
1844 		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1845 		if (ai < 0) {
1846 			ret = ai;
1847 			goto error;
1848 		}
1849 
1850 		/* Get first single/triple vlan tid */
1851 		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1852 		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1853 			unsigned int ri_bits;
1854 
1855 			if (!priv->prs_shadow[tid_aux].valid ||
1856 			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1857 				continue;
1858 
1859 			pe->index = tid_aux;
1860 			mvpp2_prs_hw_read(priv, pe);
1861 			ri_bits = mvpp2_prs_sram_ri_get(pe);
1862 			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1863 			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1864 			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1865 				break;
1866 		}
1867 
1868 		if (tid >= tid_aux) {
1869 			ret = -ERANGE;
1870 			goto error;
1871 		}
1872 
1873 		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1874 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1875 		pe->index = tid;
1876 
1877 		priv->prs_double_vlans[ai] = true;
1878 
1879 		mvpp2_prs_match_etype(pe, 0, tpid1);
1880 		mvpp2_prs_match_etype(pe, 4, tpid2);
1881 
1882 		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1883 		/* Shift 8 bytes - skip 2 vlan tags */
1884 		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1885 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1886 		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1887 					 MVPP2_PRS_RI_VLAN_MASK);
1888 		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1889 					 MVPP2_PRS_SRAM_AI_MASK);
1890 
1891 		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1892 	}
1893 
1894 	/* Update ports' mask */
1895 	mvpp2_prs_tcam_port_map_set(pe, port_map);
1896 	mvpp2_prs_hw_write(priv, pe);
1897 
1898 error:
1899 	kfree(pe);
1900 	return ret;
1901 }
1902 
1903 /* IPv4 header parsing for fragmentation and L4 offset */
mvpp2_prs_ip4_proto(struct mvpp2 * priv,unsigned short proto,unsigned int ri,unsigned int ri_mask)1904 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1905 			       unsigned int ri, unsigned int ri_mask)
1906 {
1907 	struct mvpp2_prs_entry pe;
1908 	int tid;
1909 
1910 	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1911 	    (proto != IPPROTO_IGMP))
1912 		return -EINVAL;
1913 
1914 	/* Fragmented packet */
1915 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1916 					MVPP2_PE_LAST_FREE_TID);
1917 	if (tid < 0)
1918 		return tid;
1919 
1920 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1921 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1922 	pe.index = tid;
1923 
1924 	/* Set next lu to IPv4 */
1925 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1926 	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1927 	/* Set L4 offset */
1928 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1929 				  sizeof(struct iphdr) - 4,
1930 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1931 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1932 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
1933 	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1934 				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1935 
1936 	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1937 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1938 	/* Unmask all ports */
1939 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1940 
1941 	/* Update shadow table and hw entry */
1942 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1943 	mvpp2_prs_hw_write(priv, &pe);
1944 
1945 	/* Not fragmented packet */
1946 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1947 					MVPP2_PE_LAST_FREE_TID);
1948 	if (tid < 0)
1949 		return tid;
1950 
1951 	pe.index = tid;
1952 	/* Clear ri before updating */
1953 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1954 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1955 	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1956 
1957 	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1958 	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1959 
1960 	/* Update shadow table and hw entry */
1961 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1962 	mvpp2_prs_hw_write(priv, &pe);
1963 
1964 	return 0;
1965 }
1966 
1967 /* IPv4 L3 multicast or broadcast */
mvpp2_prs_ip4_cast(struct mvpp2 * priv,unsigned short l3_cast)1968 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1969 {
1970 	struct mvpp2_prs_entry pe;
1971 	int mask, tid;
1972 
1973 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1974 					MVPP2_PE_LAST_FREE_TID);
1975 	if (tid < 0)
1976 		return tid;
1977 
1978 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1979 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1980 	pe.index = tid;
1981 
1982 	switch (l3_cast) {
1983 	case MVPP2_PRS_L3_MULTI_CAST:
1984 		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
1985 					     MVPP2_PRS_IPV4_MC_MASK);
1986 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
1987 					 MVPP2_PRS_RI_L3_ADDR_MASK);
1988 		break;
1989 	case  MVPP2_PRS_L3_BROAD_CAST:
1990 		mask = MVPP2_PRS_IPV4_BC_MASK;
1991 		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
1992 		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
1993 		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
1994 		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
1995 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
1996 					 MVPP2_PRS_RI_L3_ADDR_MASK);
1997 		break;
1998 	default:
1999 		return -EINVAL;
2000 	}
2001 
2002 	/* Finished: go to flowid generation */
2003 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2004 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2005 
2006 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2007 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2008 	/* Unmask all ports */
2009 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2010 
2011 	/* Update shadow table and hw entry */
2012 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2013 	mvpp2_prs_hw_write(priv, &pe);
2014 
2015 	return 0;
2016 }
2017 
2018 /* Set entries for protocols over IPv6  */
mvpp2_prs_ip6_proto(struct mvpp2 * priv,unsigned short proto,unsigned int ri,unsigned int ri_mask)2019 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2020 			       unsigned int ri, unsigned int ri_mask)
2021 {
2022 	struct mvpp2_prs_entry pe;
2023 	int tid;
2024 
2025 	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2026 	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2027 		return -EINVAL;
2028 
2029 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2030 					MVPP2_PE_LAST_FREE_TID);
2031 	if (tid < 0)
2032 		return tid;
2033 
2034 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2035 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2036 	pe.index = tid;
2037 
2038 	/* Finished: go to flowid generation */
2039 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2040 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2041 	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2042 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2043 				  sizeof(struct ipv6hdr) - 6,
2044 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2045 
2046 	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2047 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2048 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2049 	/* Unmask all ports */
2050 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2051 
2052 	/* Write HW */
2053 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2054 	mvpp2_prs_hw_write(priv, &pe);
2055 
2056 	return 0;
2057 }
2058 
2059 /* IPv6 L3 multicast entry */
mvpp2_prs_ip6_cast(struct mvpp2 * priv,unsigned short l3_cast)2060 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2061 {
2062 	struct mvpp2_prs_entry pe;
2063 	int tid;
2064 
2065 	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2066 		return -EINVAL;
2067 
2068 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2069 					MVPP2_PE_LAST_FREE_TID);
2070 	if (tid < 0)
2071 		return tid;
2072 
2073 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2074 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2075 	pe.index = tid;
2076 
2077 	/* Finished: go to flowid generation */
2078 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2079 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2080 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2081 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2082 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2083 	/* Shift back to IPv6 NH */
2084 	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2085 
2086 	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2087 				     MVPP2_PRS_IPV6_MC_MASK);
2088 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2089 	/* Unmask all ports */
2090 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2091 
2092 	/* Update shadow table and hw entry */
2093 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2094 	mvpp2_prs_hw_write(priv, &pe);
2095 
2096 	return 0;
2097 }
2098 
2099 /* Parser per-port initialization */
mvpp2_prs_hw_port_init(struct mvpp2 * priv,int port,int lu_first,int lu_max,int offset)2100 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2101 				   int lu_max, int offset)
2102 {
2103 	u32 val;
2104 
2105 	/* Set lookup ID */
2106 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2107 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2108 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2109 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2110 
2111 	/* Set maximum number of loops for packet received from port */
2112 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2113 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2114 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2115 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2116 
2117 	/* Set initial offset for packet header extraction for the first
2118 	 * searching loop
2119 	 */
2120 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2121 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2122 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2123 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2124 }
2125 
2126 /* Default flow entries initialization for all ports */
mvpp2_prs_def_flow_init(struct mvpp2 * priv)2127 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2128 {
2129 	struct mvpp2_prs_entry pe;
2130 	int port;
2131 
2132 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2133 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2134 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2135 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2136 
2137 		/* Mask all ports */
2138 		mvpp2_prs_tcam_port_map_set(&pe, 0);
2139 
2140 		/* Set flow ID*/
2141 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2142 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2143 
2144 		/* Update shadow table and hw entry */
2145 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2146 		mvpp2_prs_hw_write(priv, &pe);
2147 	}
2148 }
2149 
2150 /* Set default entry for Marvell Header field */
mvpp2_prs_mh_init(struct mvpp2 * priv)2151 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2152 {
2153 	struct mvpp2_prs_entry pe;
2154 
2155 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2156 
2157 	pe.index = MVPP2_PE_MH_DEFAULT;
2158 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2159 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2160 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2161 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2162 
2163 	/* Unmask all ports */
2164 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2165 
2166 	/* Update shadow table and hw entry */
2167 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2168 	mvpp2_prs_hw_write(priv, &pe);
2169 }
2170 
2171 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2172  * multicast MAC addresses
2173  */
mvpp2_prs_mac_init(struct mvpp2 * priv)2174 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2175 {
2176 	struct mvpp2_prs_entry pe;
2177 
2178 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2179 
2180 	/* Non-promiscuous mode for all ports - DROP unknown packets */
2181 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2182 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2183 
2184 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2185 				 MVPP2_PRS_RI_DROP_MASK);
2186 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2187 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2188 
2189 	/* Unmask all ports */
2190 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2191 
2192 	/* Update shadow table and hw entry */
2193 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2194 	mvpp2_prs_hw_write(priv, &pe);
2195 
2196 	/* place holders only - no ports */
2197 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
2198 	mvpp2_prs_mac_promisc_set(priv, 0, false);
2199 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2200 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2201 }
2202 
2203 /* Set default entries for various types of dsa packets */
mvpp2_prs_dsa_init(struct mvpp2 * priv)2204 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2205 {
2206 	struct mvpp2_prs_entry pe;
2207 
2208 	/* None tagged EDSA entry - place holder */
2209 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2210 			      MVPP2_PRS_EDSA);
2211 
2212 	/* Tagged EDSA entry - place holder */
2213 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2214 
2215 	/* None tagged DSA entry - place holder */
2216 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2217 			      MVPP2_PRS_DSA);
2218 
2219 	/* Tagged DSA entry - place holder */
2220 	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2221 
2222 	/* None tagged EDSA ethertype entry - place holder*/
2223 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2224 					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2225 
2226 	/* Tagged EDSA ethertype entry - place holder*/
2227 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2228 					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2229 
2230 	/* None tagged DSA ethertype entry */
2231 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2232 					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2233 
2234 	/* Tagged DSA ethertype entry */
2235 	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2236 					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2237 
2238 	/* Set default entry, in case DSA or EDSA tag not found */
2239 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2240 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2241 	pe.index = MVPP2_PE_DSA_DEFAULT;
2242 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2243 
2244 	/* Shift 0 bytes */
2245 	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2246 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2247 
2248 	/* Clear all sram ai bits for next iteration */
2249 	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2250 
2251 	/* Unmask all ports */
2252 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2253 
2254 	mvpp2_prs_hw_write(priv, &pe);
2255 }
2256 
2257 /* Match basic ethertypes */
mvpp2_prs_etype_init(struct mvpp2 * priv)2258 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2259 {
2260 	struct mvpp2_prs_entry pe;
2261 	int tid;
2262 
2263 	/* Ethertype: PPPoE */
2264 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2265 					MVPP2_PE_LAST_FREE_TID);
2266 	if (tid < 0)
2267 		return tid;
2268 
2269 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2270 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2271 	pe.index = tid;
2272 
2273 	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2274 
2275 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2276 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2277 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2278 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2279 				 MVPP2_PRS_RI_PPPOE_MASK);
2280 
2281 	/* Update shadow table and hw entry */
2282 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2283 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2284 	priv->prs_shadow[pe.index].finish = false;
2285 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2286 				MVPP2_PRS_RI_PPPOE_MASK);
2287 	mvpp2_prs_hw_write(priv, &pe);
2288 
2289 	/* Ethertype: ARP */
2290 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2291 					MVPP2_PE_LAST_FREE_TID);
2292 	if (tid < 0)
2293 		return tid;
2294 
2295 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2296 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2297 	pe.index = tid;
2298 
2299 	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2300 
2301 	/* Generate flow in the next iteration*/
2302 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2303 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2304 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2305 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2306 	/* Set L3 offset */
2307 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2308 				  MVPP2_ETH_TYPE_LEN,
2309 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2310 
2311 	/* Update shadow table and hw entry */
2312 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2313 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2314 	priv->prs_shadow[pe.index].finish = true;
2315 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2316 				MVPP2_PRS_RI_L3_PROTO_MASK);
2317 	mvpp2_prs_hw_write(priv, &pe);
2318 
2319 	/* Ethertype: LBTD */
2320 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2321 					MVPP2_PE_LAST_FREE_TID);
2322 	if (tid < 0)
2323 		return tid;
2324 
2325 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2326 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2327 	pe.index = tid;
2328 
2329 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2330 
2331 	/* Generate flow in the next iteration*/
2332 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2333 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2334 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2335 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2336 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2337 				 MVPP2_PRS_RI_UDF3_MASK);
2338 	/* Set L3 offset */
2339 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2340 				  MVPP2_ETH_TYPE_LEN,
2341 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2342 
2343 	/* Update shadow table and hw entry */
2344 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2345 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2346 	priv->prs_shadow[pe.index].finish = true;
2347 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2348 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2349 				MVPP2_PRS_RI_CPU_CODE_MASK |
2350 				MVPP2_PRS_RI_UDF3_MASK);
2351 	mvpp2_prs_hw_write(priv, &pe);
2352 
2353 	/* Ethertype: IPv4 without options */
2354 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2355 					MVPP2_PE_LAST_FREE_TID);
2356 	if (tid < 0)
2357 		return tid;
2358 
2359 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2360 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2361 	pe.index = tid;
2362 
2363 	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2364 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2365 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2366 				     MVPP2_PRS_IPV4_HEAD_MASK |
2367 				     MVPP2_PRS_IPV4_IHL_MASK);
2368 
2369 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2370 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2371 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2372 	/* Skip eth_type + 4 bytes of IP header */
2373 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2374 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2375 	/* Set L3 offset */
2376 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2377 				  MVPP2_ETH_TYPE_LEN,
2378 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2379 
2380 	/* Update shadow table and hw entry */
2381 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2382 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2383 	priv->prs_shadow[pe.index].finish = false;
2384 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2385 				MVPP2_PRS_RI_L3_PROTO_MASK);
2386 	mvpp2_prs_hw_write(priv, &pe);
2387 
2388 	/* Ethertype: IPv4 with options */
2389 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2390 					MVPP2_PE_LAST_FREE_TID);
2391 	if (tid < 0)
2392 		return tid;
2393 
2394 	pe.index = tid;
2395 
2396 	/* Clear tcam data before updating */
2397 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2398 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2399 
2400 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2401 				     MVPP2_PRS_IPV4_HEAD,
2402 				     MVPP2_PRS_IPV4_HEAD_MASK);
2403 
2404 	/* Clear ri before updating */
2405 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2406 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2407 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2408 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2409 
2410 	/* Update shadow table and hw entry */
2411 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2412 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2413 	priv->prs_shadow[pe.index].finish = false;
2414 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2415 				MVPP2_PRS_RI_L3_PROTO_MASK);
2416 	mvpp2_prs_hw_write(priv, &pe);
2417 
2418 	/* Ethertype: IPv6 without options */
2419 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2420 					MVPP2_PE_LAST_FREE_TID);
2421 	if (tid < 0)
2422 		return tid;
2423 
2424 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2425 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2426 	pe.index = tid;
2427 
2428 	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2429 
2430 	/* Skip DIP of IPV6 header */
2431 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2432 				 MVPP2_MAX_L3_ADDR_SIZE,
2433 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2434 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2435 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2436 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2437 	/* Set L3 offset */
2438 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2439 				  MVPP2_ETH_TYPE_LEN,
2440 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2441 
2442 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2443 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2444 	priv->prs_shadow[pe.index].finish = false;
2445 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2446 				MVPP2_PRS_RI_L3_PROTO_MASK);
2447 	mvpp2_prs_hw_write(priv, &pe);
2448 
2449 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2450 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2451 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2452 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2453 
2454 	/* Unmask all ports */
2455 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2456 
2457 	/* Generate flow in the next iteration*/
2458 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2459 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2460 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2461 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2462 	/* Set L3 offset even it's unknown L3 */
2463 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2464 				  MVPP2_ETH_TYPE_LEN,
2465 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2466 
2467 	/* Update shadow table and hw entry */
2468 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2469 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2470 	priv->prs_shadow[pe.index].finish = true;
2471 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2472 				MVPP2_PRS_RI_L3_PROTO_MASK);
2473 	mvpp2_prs_hw_write(priv, &pe);
2474 
2475 	return 0;
2476 }
2477 
2478 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2479  * Possible options:
2480  * 0x8100, 0x88A8
2481  * 0x8100, 0x8100
2482  * 0x8100
2483  * 0x88A8
2484  */
mvpp2_prs_vlan_init(struct platform_device * pdev,struct mvpp2 * priv)2485 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2486 {
2487 	struct mvpp2_prs_entry pe;
2488 	int err;
2489 
2490 	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2491 					      MVPP2_PRS_DBL_VLANS_MAX,
2492 					      GFP_KERNEL);
2493 	if (!priv->prs_double_vlans)
2494 		return -ENOMEM;
2495 
2496 	/* Double VLAN: 0x8100, 0x88A8 */
2497 	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2498 					MVPP2_PRS_PORT_MASK);
2499 	if (err)
2500 		return err;
2501 
2502 	/* Double VLAN: 0x8100, 0x8100 */
2503 	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2504 					MVPP2_PRS_PORT_MASK);
2505 	if (err)
2506 		return err;
2507 
2508 	/* Single VLAN: 0x88a8 */
2509 	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2510 				 MVPP2_PRS_PORT_MASK);
2511 	if (err)
2512 		return err;
2513 
2514 	/* Single VLAN: 0x8100 */
2515 	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2516 				 MVPP2_PRS_PORT_MASK);
2517 	if (err)
2518 		return err;
2519 
2520 	/* Set default double vlan entry */
2521 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2522 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2523 	pe.index = MVPP2_PE_VLAN_DBL;
2524 
2525 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2526 	/* Clear ai for next iterations */
2527 	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2528 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2529 				 MVPP2_PRS_RI_VLAN_MASK);
2530 
2531 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2532 				 MVPP2_PRS_DBL_VLAN_AI_BIT);
2533 	/* Unmask all ports */
2534 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2535 
2536 	/* Update shadow table and hw entry */
2537 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2538 	mvpp2_prs_hw_write(priv, &pe);
2539 
2540 	/* Set default vlan none entry */
2541 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2542 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2543 	pe.index = MVPP2_PE_VLAN_NONE;
2544 
2545 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2546 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2547 				 MVPP2_PRS_RI_VLAN_MASK);
2548 
2549 	/* Unmask all ports */
2550 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2551 
2552 	/* Update shadow table and hw entry */
2553 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2554 	mvpp2_prs_hw_write(priv, &pe);
2555 
2556 	return 0;
2557 }
2558 
2559 /* Set entries for PPPoE ethertype */
mvpp2_prs_pppoe_init(struct mvpp2 * priv)2560 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2561 {
2562 	struct mvpp2_prs_entry pe;
2563 	int tid;
2564 
2565 	/* IPv4 over PPPoE with options */
2566 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2567 					MVPP2_PE_LAST_FREE_TID);
2568 	if (tid < 0)
2569 		return tid;
2570 
2571 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2572 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2573 	pe.index = tid;
2574 
2575 	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2576 
2577 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2578 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2579 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2580 	/* Skip eth_type + 4 bytes of IP header */
2581 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2582 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2583 	/* Set L3 offset */
2584 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2585 				  MVPP2_ETH_TYPE_LEN,
2586 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2587 
2588 	/* Update shadow table and hw entry */
2589 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2590 	mvpp2_prs_hw_write(priv, &pe);
2591 
2592 	/* IPv4 over PPPoE without options */
2593 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2594 					MVPP2_PE_LAST_FREE_TID);
2595 	if (tid < 0)
2596 		return tid;
2597 
2598 	pe.index = tid;
2599 
2600 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2601 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2602 				     MVPP2_PRS_IPV4_HEAD_MASK |
2603 				     MVPP2_PRS_IPV4_IHL_MASK);
2604 
2605 	/* Clear ri before updating */
2606 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2607 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2608 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2609 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2610 
2611 	/* Update shadow table and hw entry */
2612 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2613 	mvpp2_prs_hw_write(priv, &pe);
2614 
2615 	/* IPv6 over PPPoE */
2616 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2617 					MVPP2_PE_LAST_FREE_TID);
2618 	if (tid < 0)
2619 		return tid;
2620 
2621 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2622 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2623 	pe.index = tid;
2624 
2625 	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2626 
2627 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2628 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2629 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2630 	/* Skip eth_type + 4 bytes of IPv6 header */
2631 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2632 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2633 	/* Set L3 offset */
2634 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2635 				  MVPP2_ETH_TYPE_LEN,
2636 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2637 
2638 	/* Update shadow table and hw entry */
2639 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2640 	mvpp2_prs_hw_write(priv, &pe);
2641 
2642 	/* Non-IP over PPPoE */
2643 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2644 					MVPP2_PE_LAST_FREE_TID);
2645 	if (tid < 0)
2646 		return tid;
2647 
2648 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2649 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2650 	pe.index = tid;
2651 
2652 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2653 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2654 
2655 	/* Finished: go to flowid generation */
2656 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2657 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2658 	/* Set L3 offset even if it's unknown L3 */
2659 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2660 				  MVPP2_ETH_TYPE_LEN,
2661 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2662 
2663 	/* Update shadow table and hw entry */
2664 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2665 	mvpp2_prs_hw_write(priv, &pe);
2666 
2667 	return 0;
2668 }
2669 
2670 /* Initialize entries for IPv4 */
mvpp2_prs_ip4_init(struct mvpp2 * priv)2671 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2672 {
2673 	struct mvpp2_prs_entry pe;
2674 	int err;
2675 
2676 	/* Set entries for TCP, UDP and IGMP over IPv4 */
2677 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2678 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2679 	if (err)
2680 		return err;
2681 
2682 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2683 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2684 	if (err)
2685 		return err;
2686 
2687 	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2688 				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2689 				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2690 				  MVPP2_PRS_RI_CPU_CODE_MASK |
2691 				  MVPP2_PRS_RI_UDF3_MASK);
2692 	if (err)
2693 		return err;
2694 
2695 	/* IPv4 Broadcast */
2696 	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2697 	if (err)
2698 		return err;
2699 
2700 	/* IPv4 Multicast */
2701 	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2702 	if (err)
2703 		return err;
2704 
2705 	/* Default IPv4 entry for unknown protocols */
2706 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2707 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2708 	pe.index = MVPP2_PE_IP4_PROTO_UN;
2709 
2710 	/* Set next lu to IPv4 */
2711 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2712 	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2713 	/* Set L4 offset */
2714 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2715 				  sizeof(struct iphdr) - 4,
2716 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2717 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2718 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2719 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2720 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2721 
2722 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2723 	/* Unmask all ports */
2724 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2725 
2726 	/* Update shadow table and hw entry */
2727 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2728 	mvpp2_prs_hw_write(priv, &pe);
2729 
2730 	/* Default IPv4 entry for unicast address */
2731 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2732 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2733 	pe.index = MVPP2_PE_IP4_ADDR_UN;
2734 
2735 	/* Finished: go to flowid generation */
2736 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2737 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2738 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2739 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2740 
2741 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2742 				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2743 	/* Unmask all ports */
2744 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2745 
2746 	/* Update shadow table and hw entry */
2747 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2748 	mvpp2_prs_hw_write(priv, &pe);
2749 
2750 	return 0;
2751 }
2752 
2753 /* Initialize entries for IPv6 */
mvpp2_prs_ip6_init(struct mvpp2 * priv)2754 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2755 {
2756 	struct mvpp2_prs_entry pe;
2757 	int tid, err;
2758 
2759 	/* Set entries for TCP, UDP and ICMP over IPv6 */
2760 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2761 				  MVPP2_PRS_RI_L4_TCP,
2762 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2763 	if (err)
2764 		return err;
2765 
2766 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2767 				  MVPP2_PRS_RI_L4_UDP,
2768 				  MVPP2_PRS_RI_L4_PROTO_MASK);
2769 	if (err)
2770 		return err;
2771 
2772 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2773 				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2774 				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2775 				  MVPP2_PRS_RI_CPU_CODE_MASK |
2776 				  MVPP2_PRS_RI_UDF3_MASK);
2777 	if (err)
2778 		return err;
2779 
2780 	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2781 	/* Result Info: UDF7=1, DS lite */
2782 	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2783 				  MVPP2_PRS_RI_UDF7_IP6_LITE,
2784 				  MVPP2_PRS_RI_UDF7_MASK);
2785 	if (err)
2786 		return err;
2787 
2788 	/* IPv6 multicast */
2789 	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2790 	if (err)
2791 		return err;
2792 
2793 	/* Entry for checking hop limit */
2794 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2795 					MVPP2_PE_LAST_FREE_TID);
2796 	if (tid < 0)
2797 		return tid;
2798 
2799 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2800 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2801 	pe.index = tid;
2802 
2803 	/* Finished: go to flowid generation */
2804 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2805 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2806 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2807 				 MVPP2_PRS_RI_DROP_MASK,
2808 				 MVPP2_PRS_RI_L3_PROTO_MASK |
2809 				 MVPP2_PRS_RI_DROP_MASK);
2810 
2811 	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2812 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2813 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2814 
2815 	/* Update shadow table and hw entry */
2816 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2817 	mvpp2_prs_hw_write(priv, &pe);
2818 
2819 	/* Default IPv6 entry for unknown protocols */
2820 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2821 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2822 	pe.index = MVPP2_PE_IP6_PROTO_UN;
2823 
2824 	/* Finished: go to flowid generation */
2825 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2826 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2827 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2828 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2829 	/* Set L4 offset relatively to our current place */
2830 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2831 				  sizeof(struct ipv6hdr) - 4,
2832 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2833 
2834 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2835 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2836 	/* Unmask all ports */
2837 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2838 
2839 	/* Update shadow table and hw entry */
2840 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2841 	mvpp2_prs_hw_write(priv, &pe);
2842 
2843 	/* Default IPv6 entry for unknown ext protocols */
2844 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2845 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2846 	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2847 
2848 	/* Finished: go to flowid generation */
2849 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2850 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2851 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2852 				 MVPP2_PRS_RI_L4_PROTO_MASK);
2853 
2854 	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2855 				 MVPP2_PRS_IPV6_EXT_AI_BIT);
2856 	/* Unmask all ports */
2857 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2858 
2859 	/* Update shadow table and hw entry */
2860 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2861 	mvpp2_prs_hw_write(priv, &pe);
2862 
2863 	/* Default IPv6 entry for unicast address */
2864 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2865 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2866 	pe.index = MVPP2_PE_IP6_ADDR_UN;
2867 
2868 	/* Finished: go to IPv6 again */
2869 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2870 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2871 				 MVPP2_PRS_RI_L3_ADDR_MASK);
2872 	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2873 				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2874 	/* Shift back to IPV6 NH */
2875 	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2876 
2877 	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2878 	/* Unmask all ports */
2879 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2880 
2881 	/* Update shadow table and hw entry */
2882 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2883 	mvpp2_prs_hw_write(priv, &pe);
2884 
2885 	return 0;
2886 }
2887 
2888 /* Parser default initialization */
mvpp2_prs_default_init(struct platform_device * pdev,struct mvpp2 * priv)2889 static int mvpp2_prs_default_init(struct platform_device *pdev,
2890 				  struct mvpp2 *priv)
2891 {
2892 	int err, index, i;
2893 
2894 	/* Enable tcam table */
2895 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2896 
2897 	/* Clear all tcam and sram entries */
2898 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2899 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2900 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2901 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2902 
2903 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2904 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2905 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2906 	}
2907 
2908 	/* Invalidate all tcam entries */
2909 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2910 		mvpp2_prs_hw_inv(priv, index);
2911 
2912 	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2913 					sizeof(struct mvpp2_prs_shadow),
2914 					GFP_KERNEL);
2915 	if (!priv->prs_shadow)
2916 		return -ENOMEM;
2917 
2918 	/* Always start from lookup = 0 */
2919 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2920 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2921 				       MVPP2_PRS_PORT_LU_MAX, 0);
2922 
2923 	mvpp2_prs_def_flow_init(priv);
2924 
2925 	mvpp2_prs_mh_init(priv);
2926 
2927 	mvpp2_prs_mac_init(priv);
2928 
2929 	mvpp2_prs_dsa_init(priv);
2930 
2931 	err = mvpp2_prs_etype_init(priv);
2932 	if (err)
2933 		return err;
2934 
2935 	err = mvpp2_prs_vlan_init(pdev, priv);
2936 	if (err)
2937 		return err;
2938 
2939 	err = mvpp2_prs_pppoe_init(priv);
2940 	if (err)
2941 		return err;
2942 
2943 	err = mvpp2_prs_ip6_init(priv);
2944 	if (err)
2945 		return err;
2946 
2947 	err = mvpp2_prs_ip4_init(priv);
2948 	if (err)
2949 		return err;
2950 
2951 	return 0;
2952 }
2953 
2954 /* Compare MAC DA with tcam entry data */
mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry * pe,const u8 * da,unsigned char * mask)2955 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2956 				       const u8 *da, unsigned char *mask)
2957 {
2958 	unsigned char tcam_byte, tcam_mask;
2959 	int index;
2960 
2961 	for (index = 0; index < ETH_ALEN; index++) {
2962 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2963 		if (tcam_mask != mask[index])
2964 			return false;
2965 
2966 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2967 			return false;
2968 	}
2969 
2970 	return true;
2971 }
2972 
2973 /* Find tcam entry with matched pair <MAC DA, port> */
2974 static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 * priv,int pmap,const u8 * da,unsigned char * mask,int udf_type)2975 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2976 			    unsigned char *mask, int udf_type)
2977 {
2978 	struct mvpp2_prs_entry *pe;
2979 	int tid;
2980 
2981 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2982 	if (!pe)
2983 		return NULL;
2984 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2985 
2986 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2987 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2988 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2989 		unsigned int entry_pmap;
2990 
2991 		if (!priv->prs_shadow[tid].valid ||
2992 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2993 		    (priv->prs_shadow[tid].udf != udf_type))
2994 			continue;
2995 
2996 		pe->index = tid;
2997 		mvpp2_prs_hw_read(priv, pe);
2998 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2999 
3000 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3001 		    entry_pmap == pmap)
3002 			return pe;
3003 	}
3004 	kfree(pe);
3005 
3006 	return NULL;
3007 }
3008 
3009 /* Update parser's mac da entry */
mvpp2_prs_mac_da_accept(struct mvpp2 * priv,int port,const u8 * da,bool add)3010 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3011 				   const u8 *da, bool add)
3012 {
3013 	struct mvpp2_prs_entry *pe;
3014 	unsigned int pmap, len, ri;
3015 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3016 	int tid;
3017 
3018 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3019 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3020 					 MVPP2_PRS_UDF_MAC_DEF);
3021 
3022 	/* No such entry */
3023 	if (!pe) {
3024 		if (!add)
3025 			return 0;
3026 
3027 		/* Create new TCAM entry */
3028 		/* Find first range mac entry*/
3029 		for (tid = MVPP2_PE_FIRST_FREE_TID;
3030 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3031 			if (priv->prs_shadow[tid].valid &&
3032 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3033 			    (priv->prs_shadow[tid].udf ==
3034 						       MVPP2_PRS_UDF_MAC_RANGE))
3035 				break;
3036 
3037 		/* Go through the all entries from first to last */
3038 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3039 						tid - 1);
3040 		if (tid < 0)
3041 			return tid;
3042 
3043 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3044 		if (!pe)
3045 			return -1;
3046 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3047 		pe->index = tid;
3048 
3049 		/* Mask all ports */
3050 		mvpp2_prs_tcam_port_map_set(pe, 0);
3051 	}
3052 
3053 	/* Update port mask */
3054 	mvpp2_prs_tcam_port_set(pe, port, add);
3055 
3056 	/* Invalidate the entry if no ports are left enabled */
3057 	pmap = mvpp2_prs_tcam_port_map_get(pe);
3058 	if (pmap == 0) {
3059 		if (add) {
3060 			kfree(pe);
3061 			return -1;
3062 		}
3063 		mvpp2_prs_hw_inv(priv, pe->index);
3064 		priv->prs_shadow[pe->index].valid = false;
3065 		kfree(pe);
3066 		return 0;
3067 	}
3068 
3069 	/* Continue - set next lookup */
3070 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3071 
3072 	/* Set match on DA */
3073 	len = ETH_ALEN;
3074 	while (len--)
3075 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3076 
3077 	/* Set result info bits */
3078 	if (is_broadcast_ether_addr(da))
3079 		ri = MVPP2_PRS_RI_L2_BCAST;
3080 	else if (is_multicast_ether_addr(da))
3081 		ri = MVPP2_PRS_RI_L2_MCAST;
3082 	else
3083 		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3084 
3085 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3086 				 MVPP2_PRS_RI_MAC_ME_MASK);
3087 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3088 				MVPP2_PRS_RI_MAC_ME_MASK);
3089 
3090 	/* Shift to ethertype */
3091 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3092 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3093 
3094 	/* Update shadow table and hw entry */
3095 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3096 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3097 	mvpp2_prs_hw_write(priv, pe);
3098 
3099 	kfree(pe);
3100 
3101 	return 0;
3102 }
3103 
mvpp2_prs_update_mac_da(struct net_device * dev,const u8 * da)3104 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3105 {
3106 	struct mvpp2_port *port = netdev_priv(dev);
3107 	int err;
3108 
3109 	/* Remove old parser entry */
3110 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3111 				      false);
3112 	if (err)
3113 		return err;
3114 
3115 	/* Add new parser entry */
3116 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3117 	if (err)
3118 		return err;
3119 
3120 	/* Set addr in the device */
3121 	ether_addr_copy(dev->dev_addr, da);
3122 
3123 	return 0;
3124 }
3125 
3126 /* Delete all port's multicast simple (not range) entries */
mvpp2_prs_mcast_del_all(struct mvpp2 * priv,int port)3127 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3128 {
3129 	struct mvpp2_prs_entry pe;
3130 	int index, tid;
3131 
3132 	for (tid = MVPP2_PE_FIRST_FREE_TID;
3133 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3134 		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3135 
3136 		if (!priv->prs_shadow[tid].valid ||
3137 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3138 		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3139 			continue;
3140 
3141 		/* Only simple mac entries */
3142 		pe.index = tid;
3143 		mvpp2_prs_hw_read(priv, &pe);
3144 
3145 		/* Read mac addr from entry */
3146 		for (index = 0; index < ETH_ALEN; index++)
3147 			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3148 						     &da_mask[index]);
3149 
3150 		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3151 			/* Delete this entry */
3152 			mvpp2_prs_mac_da_accept(priv, port, da, false);
3153 	}
3154 }
3155 
mvpp2_prs_tag_mode_set(struct mvpp2 * priv,int port,int type)3156 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3157 {
3158 	switch (type) {
3159 	case MVPP2_TAG_TYPE_EDSA:
3160 		/* Add port to EDSA entries */
3161 		mvpp2_prs_dsa_tag_set(priv, port, true,
3162 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3163 		mvpp2_prs_dsa_tag_set(priv, port, true,
3164 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3165 		/* Remove port from DSA entries */
3166 		mvpp2_prs_dsa_tag_set(priv, port, false,
3167 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3168 		mvpp2_prs_dsa_tag_set(priv, port, false,
3169 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3170 		break;
3171 
3172 	case MVPP2_TAG_TYPE_DSA:
3173 		/* Add port to DSA entries */
3174 		mvpp2_prs_dsa_tag_set(priv, port, true,
3175 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3176 		mvpp2_prs_dsa_tag_set(priv, port, true,
3177 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3178 		/* Remove port from EDSA entries */
3179 		mvpp2_prs_dsa_tag_set(priv, port, false,
3180 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3181 		mvpp2_prs_dsa_tag_set(priv, port, false,
3182 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3183 		break;
3184 
3185 	case MVPP2_TAG_TYPE_MH:
3186 	case MVPP2_TAG_TYPE_NONE:
3187 		/* Remove port form EDSA and DSA entries */
3188 		mvpp2_prs_dsa_tag_set(priv, port, false,
3189 				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3190 		mvpp2_prs_dsa_tag_set(priv, port, false,
3191 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3192 		mvpp2_prs_dsa_tag_set(priv, port, false,
3193 				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3194 		mvpp2_prs_dsa_tag_set(priv, port, false,
3195 				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3196 		break;
3197 
3198 	default:
3199 		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3200 			return -EINVAL;
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 /* Set prs flow for the port */
mvpp2_prs_def_flow(struct mvpp2_port * port)3207 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3208 {
3209 	struct mvpp2_prs_entry *pe;
3210 	int tid;
3211 
3212 	pe = mvpp2_prs_flow_find(port->priv, port->id);
3213 
3214 	/* Such entry not exist */
3215 	if (!pe) {
3216 		/* Go through the all entires from last to first */
3217 		tid = mvpp2_prs_tcam_first_free(port->priv,
3218 						MVPP2_PE_LAST_FREE_TID,
3219 					       MVPP2_PE_FIRST_FREE_TID);
3220 		if (tid < 0)
3221 			return tid;
3222 
3223 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3224 		if (!pe)
3225 			return -ENOMEM;
3226 
3227 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3228 		pe->index = tid;
3229 
3230 		/* Set flow ID*/
3231 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3232 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3233 
3234 		/* Update shadow table */
3235 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3236 	}
3237 
3238 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3239 	mvpp2_prs_hw_write(port->priv, pe);
3240 	kfree(pe);
3241 
3242 	return 0;
3243 }
3244 
3245 /* Classifier configuration routines */
3246 
3247 /* Update classification flow table registers */
mvpp2_cls_flow_write(struct mvpp2 * priv,struct mvpp2_cls_flow_entry * fe)3248 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3249 				 struct mvpp2_cls_flow_entry *fe)
3250 {
3251 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3252 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
3253 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
3254 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
3255 }
3256 
3257 /* Update classification lookup table register */
mvpp2_cls_lookup_write(struct mvpp2 * priv,struct mvpp2_cls_lookup_entry * le)3258 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3259 				   struct mvpp2_cls_lookup_entry *le)
3260 {
3261 	u32 val;
3262 
3263 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3264 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3265 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3266 }
3267 
3268 /* Classifier default initialization */
mvpp2_cls_init(struct mvpp2 * priv)3269 static void mvpp2_cls_init(struct mvpp2 *priv)
3270 {
3271 	struct mvpp2_cls_lookup_entry le;
3272 	struct mvpp2_cls_flow_entry fe;
3273 	int index;
3274 
3275 	/* Enable classifier */
3276 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3277 
3278 	/* Clear classifier flow table */
3279 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3280 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3281 		fe.index = index;
3282 		mvpp2_cls_flow_write(priv, &fe);
3283 	}
3284 
3285 	/* Clear classifier lookup table */
3286 	le.data = 0;
3287 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3288 		le.lkpid = index;
3289 		le.way = 0;
3290 		mvpp2_cls_lookup_write(priv, &le);
3291 
3292 		le.way = 1;
3293 		mvpp2_cls_lookup_write(priv, &le);
3294 	}
3295 }
3296 
mvpp2_cls_port_config(struct mvpp2_port * port)3297 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3298 {
3299 	struct mvpp2_cls_lookup_entry le;
3300 	u32 val;
3301 
3302 	/* Set way for the port */
3303 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3304 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3305 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3306 
3307 	/* Pick the entry to be accessed in lookup ID decoding table
3308 	 * according to the way and lkpid.
3309 	 */
3310 	le.lkpid = port->id;
3311 	le.way = 0;
3312 	le.data = 0;
3313 
3314 	/* Set initial CPU queue for receiving packets */
3315 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3316 	le.data |= port->first_rxq;
3317 
3318 	/* Disable classification engines */
3319 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3320 
3321 	/* Update lookup ID table entry */
3322 	mvpp2_cls_lookup_write(port->priv, &le);
3323 }
3324 
3325 /* Set CPU queue number for oversize packets */
mvpp2_cls_oversize_rxq_set(struct mvpp2_port * port)3326 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3327 {
3328 	u32 val;
3329 
3330 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3331 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3332 
3333 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3334 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3335 
3336 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3337 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3338 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3339 }
3340 
3341 /* Buffer Manager configuration routines */
3342 
3343 /* Create pool */
mvpp2_bm_pool_create(struct platform_device * pdev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int size)3344 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3345 				struct mvpp2 *priv,
3346 				struct mvpp2_bm_pool *bm_pool, int size)
3347 {
3348 	int size_bytes;
3349 	u32 val;
3350 
3351 	size_bytes = sizeof(u32) * size;
3352 	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3353 						&bm_pool->phys_addr,
3354 						GFP_KERNEL);
3355 	if (!bm_pool->virt_addr)
3356 		return -ENOMEM;
3357 
3358 	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3359 		dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3360 				  bm_pool->phys_addr);
3361 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3362 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3363 		return -ENOMEM;
3364 	}
3365 
3366 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3367 		    bm_pool->phys_addr);
3368 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3369 
3370 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3371 	val |= MVPP2_BM_START_MASK;
3372 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3373 
3374 	bm_pool->type = MVPP2_BM_FREE;
3375 	bm_pool->size = size;
3376 	bm_pool->pkt_size = 0;
3377 	bm_pool->buf_num = 0;
3378 	atomic_set(&bm_pool->in_use, 0);
3379 	spin_lock_init(&bm_pool->lock);
3380 
3381 	return 0;
3382 }
3383 
3384 /* Set pool buffer size */
mvpp2_bm_pool_bufsize_set(struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool,int buf_size)3385 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3386 				      struct mvpp2_bm_pool *bm_pool,
3387 				      int buf_size)
3388 {
3389 	u32 val;
3390 
3391 	bm_pool->buf_size = buf_size;
3392 
3393 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3394 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3395 }
3396 
3397 /* Free all buffers from the pool */
mvpp2_bm_bufs_free(struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)3398 static void mvpp2_bm_bufs_free(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
3399 {
3400 	int i;
3401 
3402 	for (i = 0; i < bm_pool->buf_num; i++) {
3403 		u32 vaddr;
3404 
3405 		/* Get buffer virtual adress (indirect access) */
3406 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3407 		vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3408 		if (!vaddr)
3409 			break;
3410 		dev_kfree_skb_any((struct sk_buff *)vaddr);
3411 	}
3412 
3413 	/* Update BM driver with number of buffers removed from pool */
3414 	bm_pool->buf_num -= i;
3415 }
3416 
3417 /* Cleanup pool */
mvpp2_bm_pool_destroy(struct platform_device * pdev,struct mvpp2 * priv,struct mvpp2_bm_pool * bm_pool)3418 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3419 				 struct mvpp2 *priv,
3420 				 struct mvpp2_bm_pool *bm_pool)
3421 {
3422 	u32 val;
3423 
3424 	mvpp2_bm_bufs_free(priv, bm_pool);
3425 	if (bm_pool->buf_num) {
3426 		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3427 		return 0;
3428 	}
3429 
3430 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3431 	val |= MVPP2_BM_STOP_MASK;
3432 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3433 
3434 	dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3435 			  bm_pool->virt_addr,
3436 			  bm_pool->phys_addr);
3437 	return 0;
3438 }
3439 
mvpp2_bm_pools_init(struct platform_device * pdev,struct mvpp2 * priv)3440 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3441 			       struct mvpp2 *priv)
3442 {
3443 	int i, err, size;
3444 	struct mvpp2_bm_pool *bm_pool;
3445 
3446 	/* Create all pools with maximum size */
3447 	size = MVPP2_BM_POOL_SIZE_MAX;
3448 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3449 		bm_pool = &priv->bm_pools[i];
3450 		bm_pool->id = i;
3451 		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3452 		if (err)
3453 			goto err_unroll_pools;
3454 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3455 	}
3456 	return 0;
3457 
3458 err_unroll_pools:
3459 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3460 	for (i = i - 1; i >= 0; i--)
3461 		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3462 	return err;
3463 }
3464 
mvpp2_bm_init(struct platform_device * pdev,struct mvpp2 * priv)3465 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3466 {
3467 	int i, err;
3468 
3469 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3470 		/* Mask BM all interrupts */
3471 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3472 		/* Clear BM cause register */
3473 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3474 	}
3475 
3476 	/* Allocate and initialize BM pools */
3477 	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3478 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3479 	if (!priv->bm_pools)
3480 		return -ENOMEM;
3481 
3482 	err = mvpp2_bm_pools_init(pdev, priv);
3483 	if (err < 0)
3484 		return err;
3485 	return 0;
3486 }
3487 
3488 /* Attach long pool to rxq */
mvpp2_rxq_long_pool_set(struct mvpp2_port * port,int lrxq,int long_pool)3489 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3490 				    int lrxq, int long_pool)
3491 {
3492 	u32 val;
3493 	int prxq;
3494 
3495 	/* Get queue physical ID */
3496 	prxq = port->rxqs[lrxq]->id;
3497 
3498 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3499 	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3500 	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3501 		    MVPP2_RXQ_POOL_LONG_MASK);
3502 
3503 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3504 }
3505 
3506 /* Attach short pool to rxq */
mvpp2_rxq_short_pool_set(struct mvpp2_port * port,int lrxq,int short_pool)3507 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3508 				     int lrxq, int short_pool)
3509 {
3510 	u32 val;
3511 	int prxq;
3512 
3513 	/* Get queue physical ID */
3514 	prxq = port->rxqs[lrxq]->id;
3515 
3516 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3517 	val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3518 	val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3519 		    MVPP2_RXQ_POOL_SHORT_MASK);
3520 
3521 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3522 }
3523 
3524 /* Allocate skb for BM pool */
mvpp2_skb_alloc(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,dma_addr_t * buf_phys_addr,gfp_t gfp_mask)3525 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3526 				       struct mvpp2_bm_pool *bm_pool,
3527 				       dma_addr_t *buf_phys_addr,
3528 				       gfp_t gfp_mask)
3529 {
3530 	struct sk_buff *skb;
3531 	dma_addr_t phys_addr;
3532 
3533 	skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3534 	if (!skb)
3535 		return NULL;
3536 
3537 	phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3538 				   MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3539 				    DMA_FROM_DEVICE);
3540 	if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3541 		dev_kfree_skb_any(skb);
3542 		return NULL;
3543 	}
3544 	*buf_phys_addr = phys_addr;
3545 
3546 	return skb;
3547 }
3548 
3549 /* Set pool number in a BM cookie */
mvpp2_bm_cookie_pool_set(u32 cookie,int pool)3550 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3551 {
3552 	u32 bm;
3553 
3554 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3555 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3556 
3557 	return bm;
3558 }
3559 
3560 /* Get pool number from a BM cookie */
mvpp2_bm_cookie_pool_get(u32 cookie)3561 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3562 {
3563 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3564 }
3565 
3566 /* Release buffer to BM */
mvpp2_bm_pool_put(struct mvpp2_port * port,int pool,u32 buf_phys_addr,u32 buf_virt_addr)3567 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3568 				     u32 buf_phys_addr, u32 buf_virt_addr)
3569 {
3570 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3571 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3572 }
3573 
3574 /* Release multicast buffer */
mvpp2_bm_pool_mc_put(struct mvpp2_port * port,int pool,u32 buf_phys_addr,u32 buf_virt_addr,int mc_id)3575 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3576 				 u32 buf_phys_addr, u32 buf_virt_addr,
3577 				 int mc_id)
3578 {
3579 	u32 val = 0;
3580 
3581 	val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3582 	mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3583 
3584 	mvpp2_bm_pool_put(port, pool,
3585 			  buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3586 			  buf_virt_addr);
3587 }
3588 
3589 /* Refill BM pool */
mvpp2_pool_refill(struct mvpp2_port * port,u32 bm,u32 phys_addr,u32 cookie)3590 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3591 			      u32 phys_addr, u32 cookie)
3592 {
3593 	int pool = mvpp2_bm_cookie_pool_get(bm);
3594 
3595 	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3596 }
3597 
3598 /* Allocate buffers for the pool */
mvpp2_bm_bufs_add(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,int buf_num)3599 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3600 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
3601 {
3602 	struct sk_buff *skb;
3603 	int i, buf_size, total_size;
3604 	u32 bm;
3605 	dma_addr_t phys_addr;
3606 
3607 	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3608 	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3609 
3610 	if (buf_num < 0 ||
3611 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
3612 		netdev_err(port->dev,
3613 			   "cannot allocate %d buffers for pool %d\n",
3614 			   buf_num, bm_pool->id);
3615 		return 0;
3616 	}
3617 
3618 	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3619 	for (i = 0; i < buf_num; i++) {
3620 		skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3621 		if (!skb)
3622 			break;
3623 
3624 		mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3625 	}
3626 
3627 	/* Update BM driver with number of buffers added to pool */
3628 	bm_pool->buf_num += i;
3629 	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3630 
3631 	netdev_dbg(port->dev,
3632 		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3633 		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3634 		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3635 
3636 	netdev_dbg(port->dev,
3637 		   "%s pool %d: %d of %d buffers added\n",
3638 		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3639 		   bm_pool->id, i, buf_num);
3640 	return i;
3641 }
3642 
3643 /* Notify the driver that BM pool is being used as specific type and return the
3644  * pool pointer on success
3645  */
3646 static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port * port,int pool,enum mvpp2_bm_type type,int pkt_size)3647 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3648 		  int pkt_size)
3649 {
3650 	unsigned long flags = 0;
3651 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3652 	int num;
3653 
3654 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3655 		netdev_err(port->dev, "mixing pool types is forbidden\n");
3656 		return NULL;
3657 	}
3658 
3659 	spin_lock_irqsave(&new_pool->lock, flags);
3660 
3661 	if (new_pool->type == MVPP2_BM_FREE)
3662 		new_pool->type = type;
3663 
3664 	/* Allocate buffers in case BM pool is used as long pool, but packet
3665 	 * size doesn't match MTU or BM pool hasn't being used yet
3666 	 */
3667 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3668 	    (new_pool->pkt_size == 0)) {
3669 		int pkts_num;
3670 
3671 		/* Set default buffer number or free all the buffers in case
3672 		 * the pool is not empty
3673 		 */
3674 		pkts_num = new_pool->buf_num;
3675 		if (pkts_num == 0)
3676 			pkts_num = type == MVPP2_BM_SWF_LONG ?
3677 				   MVPP2_BM_LONG_BUF_NUM :
3678 				   MVPP2_BM_SHORT_BUF_NUM;
3679 		else
3680 			mvpp2_bm_bufs_free(port->priv, new_pool);
3681 
3682 		new_pool->pkt_size = pkt_size;
3683 
3684 		/* Allocate buffers for this pool */
3685 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3686 		if (num != pkts_num) {
3687 			WARN(1, "pool %d: %d of %d allocated\n",
3688 			     new_pool->id, num, pkts_num);
3689 			/* We need to undo the bufs_add() allocations */
3690 			spin_unlock_irqrestore(&new_pool->lock, flags);
3691 			return NULL;
3692 		}
3693 	}
3694 
3695 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3696 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3697 
3698 	spin_unlock_irqrestore(&new_pool->lock, flags);
3699 
3700 	return new_pool;
3701 }
3702 
3703 /* Initialize pools for swf */
mvpp2_swf_bm_pool_init(struct mvpp2_port * port)3704 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3705 {
3706 	unsigned long flags = 0;
3707 	int rxq;
3708 
3709 	if (!port->pool_long) {
3710 		port->pool_long =
3711 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3712 					 MVPP2_BM_SWF_LONG,
3713 					 port->pkt_size);
3714 		if (!port->pool_long)
3715 			return -ENOMEM;
3716 
3717 		spin_lock_irqsave(&port->pool_long->lock, flags);
3718 		port->pool_long->port_map |= (1 << port->id);
3719 		spin_unlock_irqrestore(&port->pool_long->lock, flags);
3720 
3721 		for (rxq = 0; rxq < rxq_number; rxq++)
3722 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3723 	}
3724 
3725 	if (!port->pool_short) {
3726 		port->pool_short =
3727 			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3728 					  MVPP2_BM_SWF_SHORT,
3729 					  MVPP2_BM_SHORT_PKT_SIZE);
3730 		if (!port->pool_short)
3731 			return -ENOMEM;
3732 
3733 		spin_lock_irqsave(&port->pool_short->lock, flags);
3734 		port->pool_short->port_map |= (1 << port->id);
3735 		spin_unlock_irqrestore(&port->pool_short->lock, flags);
3736 
3737 		for (rxq = 0; rxq < rxq_number; rxq++)
3738 			mvpp2_rxq_short_pool_set(port, rxq,
3739 						 port->pool_short->id);
3740 	}
3741 
3742 	return 0;
3743 }
3744 
mvpp2_bm_update_mtu(struct net_device * dev,int mtu)3745 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3746 {
3747 	struct mvpp2_port *port = netdev_priv(dev);
3748 	struct mvpp2_bm_pool *port_pool = port->pool_long;
3749 	int num, pkts_num = port_pool->buf_num;
3750 	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3751 
3752 	/* Update BM pool with new buffer size */
3753 	mvpp2_bm_bufs_free(port->priv, port_pool);
3754 	if (port_pool->buf_num) {
3755 		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3756 		return -EIO;
3757 	}
3758 
3759 	port_pool->pkt_size = pkt_size;
3760 	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3761 	if (num != pkts_num) {
3762 		WARN(1, "pool %d: %d of %d allocated\n",
3763 		     port_pool->id, num, pkts_num);
3764 		return -EIO;
3765 	}
3766 
3767 	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3768 				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3769 	dev->mtu = mtu;
3770 	netdev_update_features(dev);
3771 	return 0;
3772 }
3773 
mvpp2_interrupts_enable(struct mvpp2_port * port)3774 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3775 {
3776 	int cpu, cpu_mask = 0;
3777 
3778 	for_each_present_cpu(cpu)
3779 		cpu_mask |= 1 << cpu;
3780 	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3781 		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3782 }
3783 
mvpp2_interrupts_disable(struct mvpp2_port * port)3784 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3785 {
3786 	int cpu, cpu_mask = 0;
3787 
3788 	for_each_present_cpu(cpu)
3789 		cpu_mask |= 1 << cpu;
3790 	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3791 		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3792 }
3793 
3794 /* Mask the current CPU's Rx/Tx interrupts */
mvpp2_interrupts_mask(void * arg)3795 static void mvpp2_interrupts_mask(void *arg)
3796 {
3797 	struct mvpp2_port *port = arg;
3798 
3799 	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3800 }
3801 
3802 /* Unmask the current CPU's Rx/Tx interrupts */
mvpp2_interrupts_unmask(void * arg)3803 static void mvpp2_interrupts_unmask(void *arg)
3804 {
3805 	struct mvpp2_port *port = arg;
3806 
3807 	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3808 		    (MVPP2_CAUSE_MISC_SUM_MASK |
3809 		     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK |
3810 		     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3811 }
3812 
3813 /* Port configuration routines */
3814 
mvpp2_port_mii_set(struct mvpp2_port * port)3815 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3816 {
3817 	u32 val;
3818 
3819 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3820 
3821 	switch (port->phy_interface) {
3822 	case PHY_INTERFACE_MODE_SGMII:
3823 		val |= MVPP2_GMAC_INBAND_AN_MASK;
3824 		break;
3825 	case PHY_INTERFACE_MODE_RGMII:
3826 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
3827 	default:
3828 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3829 	}
3830 
3831 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3832 }
3833 
mvpp2_port_fc_adv_enable(struct mvpp2_port * port)3834 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3835 {
3836 	u32 val;
3837 
3838 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3839 	val |= MVPP2_GMAC_FC_ADV_EN;
3840 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3841 }
3842 
mvpp2_port_enable(struct mvpp2_port * port)3843 static void mvpp2_port_enable(struct mvpp2_port *port)
3844 {
3845 	u32 val;
3846 
3847 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3848 	val |= MVPP2_GMAC_PORT_EN_MASK;
3849 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3850 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3851 }
3852 
mvpp2_port_disable(struct mvpp2_port * port)3853 static void mvpp2_port_disable(struct mvpp2_port *port)
3854 {
3855 	u32 val;
3856 
3857 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3858 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3859 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3860 }
3861 
3862 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
mvpp2_port_periodic_xon_disable(struct mvpp2_port * port)3863 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3864 {
3865 	u32 val;
3866 
3867 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3868 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3869 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3870 }
3871 
3872 /* Configure loopback port */
mvpp2_port_loopback_set(struct mvpp2_port * port)3873 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3874 {
3875 	u32 val;
3876 
3877 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3878 
3879 	if (port->speed == 1000)
3880 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3881 	else
3882 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3883 
3884 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3885 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3886 	else
3887 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3888 
3889 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3890 }
3891 
mvpp2_port_reset(struct mvpp2_port * port)3892 static void mvpp2_port_reset(struct mvpp2_port *port)
3893 {
3894 	u32 val;
3895 
3896 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3897 		    ~MVPP2_GMAC_PORT_RESET_MASK;
3898 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3899 
3900 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3901 	       MVPP2_GMAC_PORT_RESET_MASK)
3902 		continue;
3903 }
3904 
3905 /* Change maximum receive size of the port */
mvpp2_gmac_max_rx_size_set(struct mvpp2_port * port)3906 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3907 {
3908 	u32 val;
3909 
3910 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3911 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3912 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3913 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3914 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3915 }
3916 
3917 /* Set defaults to the MVPP2 port */
mvpp2_defaults_set(struct mvpp2_port * port)3918 static void mvpp2_defaults_set(struct mvpp2_port *port)
3919 {
3920 	int tx_port_num, val, queue, ptxq, lrxq;
3921 
3922 	/* Configure port to loopback if needed */
3923 	if (port->flags & MVPP2_F_LOOPBACK)
3924 		mvpp2_port_loopback_set(port);
3925 
3926 	/* Update TX FIFO MIN Threshold */
3927 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3928 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3929 	/* Min. TX threshold must be less than minimal packet length */
3930 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3931 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3932 
3933 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3934 	tx_port_num = mvpp2_egress_port(port);
3935 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3936 		    tx_port_num);
3937 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3938 
3939 	/* Close bandwidth for all queues */
3940 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3941 		ptxq = mvpp2_txq_phys(port->id, queue);
3942 		mvpp2_write(port->priv,
3943 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3944 	}
3945 
3946 	/* Set refill period to 1 usec, refill tokens
3947 	 * and bucket size to maximum
3948 	 */
3949 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3950 		    port->priv->tclk / USEC_PER_SEC);
3951 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3952 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3953 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3954 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3955 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3956 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3957 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3958 
3959 	/* Set MaximumLowLatencyPacketSize value to 256 */
3960 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3961 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3962 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3963 
3964 	/* Enable Rx cache snoop */
3965 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3966 		queue = port->rxqs[lrxq]->id;
3967 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3968 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3969 			   MVPP2_SNOOP_BUF_HDR_MASK;
3970 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3971 	}
3972 
3973 	/* At default, mask all interrupts to all present cpus */
3974 	mvpp2_interrupts_disable(port);
3975 }
3976 
3977 /* Enable/disable receiving packets */
mvpp2_ingress_enable(struct mvpp2_port * port)3978 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3979 {
3980 	u32 val;
3981 	int lrxq, queue;
3982 
3983 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3984 		queue = port->rxqs[lrxq]->id;
3985 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3986 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3987 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3988 	}
3989 }
3990 
mvpp2_ingress_disable(struct mvpp2_port * port)3991 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3992 {
3993 	u32 val;
3994 	int lrxq, queue;
3995 
3996 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3997 		queue = port->rxqs[lrxq]->id;
3998 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3999 		val |= MVPP2_RXQ_DISABLE_MASK;
4000 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4001 	}
4002 }
4003 
4004 /* Enable transmit via physical egress queue
4005  * - HW starts take descriptors from DRAM
4006  */
mvpp2_egress_enable(struct mvpp2_port * port)4007 static void mvpp2_egress_enable(struct mvpp2_port *port)
4008 {
4009 	u32 qmap;
4010 	int queue;
4011 	int tx_port_num = mvpp2_egress_port(port);
4012 
4013 	/* Enable all initialized TXs. */
4014 	qmap = 0;
4015 	for (queue = 0; queue < txq_number; queue++) {
4016 		struct mvpp2_tx_queue *txq = port->txqs[queue];
4017 
4018 		if (txq->descs != NULL)
4019 			qmap |= (1 << queue);
4020 	}
4021 
4022 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4023 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4024 }
4025 
4026 /* Disable transmit via physical egress queue
4027  * - HW doesn't take descriptors from DRAM
4028  */
mvpp2_egress_disable(struct mvpp2_port * port)4029 static void mvpp2_egress_disable(struct mvpp2_port *port)
4030 {
4031 	u32 reg_data;
4032 	int delay;
4033 	int tx_port_num = mvpp2_egress_port(port);
4034 
4035 	/* Issue stop command for active channels only */
4036 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4037 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4038 		    MVPP2_TXP_SCHED_ENQ_MASK;
4039 	if (reg_data != 0)
4040 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4041 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4042 
4043 	/* Wait for all Tx activity to terminate. */
4044 	delay = 0;
4045 	do {
4046 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4047 			netdev_warn(port->dev,
4048 				    "Tx stop timed out, status=0x%08x\n",
4049 				    reg_data);
4050 			break;
4051 		}
4052 		mdelay(1);
4053 		delay++;
4054 
4055 		/* Check port TX Command register that all
4056 		 * Tx queues are stopped
4057 		 */
4058 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4059 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4060 }
4061 
4062 /* Rx descriptors helper methods */
4063 
4064 /* Get number of Rx descriptors occupied by received packets */
4065 static inline int
mvpp2_rxq_received(struct mvpp2_port * port,int rxq_id)4066 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4067 {
4068 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4069 
4070 	return val & MVPP2_RXQ_OCCUPIED_MASK;
4071 }
4072 
4073 /* Update Rx queue status with the number of occupied and available
4074  * Rx descriptor slots.
4075  */
4076 static inline void
mvpp2_rxq_status_update(struct mvpp2_port * port,int rxq_id,int used_count,int free_count)4077 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4078 			int used_count, int free_count)
4079 {
4080 	/* Decrement the number of used descriptors and increment count
4081 	 * increment the number of free descriptors.
4082 	 */
4083 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4084 
4085 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4086 }
4087 
4088 /* Get pointer to next RX descriptor to be processed by SW */
4089 static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue * rxq)4090 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4091 {
4092 	int rx_desc = rxq->next_desc_to_proc;
4093 
4094 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4095 	prefetch(rxq->descs + rxq->next_desc_to_proc);
4096 	return rxq->descs + rx_desc;
4097 }
4098 
4099 /* Set rx queue offset */
mvpp2_rxq_offset_set(struct mvpp2_port * port,int prxq,int offset)4100 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4101 				 int prxq, int offset)
4102 {
4103 	u32 val;
4104 
4105 	/* Convert offset from bytes to units of 32 bytes */
4106 	offset = offset >> 5;
4107 
4108 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4109 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4110 
4111 	/* Offset is in */
4112 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4113 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
4114 
4115 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4116 }
4117 
4118 /* Obtain BM cookie information from descriptor */
mvpp2_bm_cookie_build(struct mvpp2_rx_desc * rx_desc)4119 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4120 {
4121 	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4122 		   MVPP2_RXD_BM_POOL_ID_OFFS;
4123 	int cpu = smp_processor_id();
4124 
4125 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4126 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4127 }
4128 
4129 /* Tx descriptors helper methods */
4130 
4131 /* Get number of Tx descriptors waiting to be transmitted by HW */
mvpp2_txq_pend_desc_num_get(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4132 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4133 				       struct mvpp2_tx_queue *txq)
4134 {
4135 	u32 val;
4136 
4137 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4138 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4139 
4140 	return val & MVPP2_TXQ_PENDING_MASK;
4141 }
4142 
4143 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4144 static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue * txq)4145 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4146 {
4147 	int tx_desc = txq->next_desc_to_proc;
4148 
4149 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4150 	return txq->descs + tx_desc;
4151 }
4152 
4153 /* Update HW with number of aggregated Tx descriptors to be sent */
mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port * port,int pending)4154 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4155 {
4156 	/* aggregated access - relevant TXQ number is written in TX desc */
4157 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4158 }
4159 
4160 
4161 /* Check if there are enough free descriptors in aggregated txq.
4162  * If not, update the number of occupied descriptors and repeat the check.
4163  */
mvpp2_aggr_desc_num_check(struct mvpp2 * priv,struct mvpp2_tx_queue * aggr_txq,int num)4164 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4165 				     struct mvpp2_tx_queue *aggr_txq, int num)
4166 {
4167 	if ((aggr_txq->count + num) > aggr_txq->size) {
4168 		/* Update number of occupied aggregated Tx descriptors */
4169 		int cpu = smp_processor_id();
4170 		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4171 
4172 		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4173 	}
4174 
4175 	if ((aggr_txq->count + num) > aggr_txq->size)
4176 		return -ENOMEM;
4177 
4178 	return 0;
4179 }
4180 
4181 /* Reserved Tx descriptors allocation request */
mvpp2_txq_alloc_reserved_desc(struct mvpp2 * priv,struct mvpp2_tx_queue * txq,int num)4182 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4183 					 struct mvpp2_tx_queue *txq, int num)
4184 {
4185 	u32 val;
4186 
4187 	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4188 	mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4189 
4190 	val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4191 
4192 	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4193 }
4194 
4195 /* Check if there are enough reserved descriptors for transmission.
4196  * If not, request chunk of reserved descriptors and check again.
4197  */
mvpp2_txq_reserved_desc_num_proc(struct mvpp2 * priv,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4198 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4199 					    struct mvpp2_tx_queue *txq,
4200 					    struct mvpp2_txq_pcpu *txq_pcpu,
4201 					    int num)
4202 {
4203 	int req, cpu, desc_count;
4204 
4205 	if (txq_pcpu->reserved_num >= num)
4206 		return 0;
4207 
4208 	/* Not enough descriptors reserved! Update the reserved descriptor
4209 	 * count and check again.
4210 	 */
4211 
4212 	desc_count = 0;
4213 	/* Compute total of used descriptors */
4214 	for_each_present_cpu(cpu) {
4215 		struct mvpp2_txq_pcpu *txq_pcpu_aux;
4216 
4217 		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4218 		desc_count += txq_pcpu_aux->count;
4219 		desc_count += txq_pcpu_aux->reserved_num;
4220 	}
4221 
4222 	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4223 	desc_count += req;
4224 
4225 	if (desc_count >
4226 	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4227 		return -ENOMEM;
4228 
4229 	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4230 
4231 	/* OK, the descriptor cound has been updated: check again. */
4232 	if (txq_pcpu->reserved_num < num)
4233 		return -ENOMEM;
4234 	return 0;
4235 }
4236 
4237 /* Release the last allocated Tx descriptor. Useful to handle DMA
4238  * mapping failures in the Tx path.
4239  */
mvpp2_txq_desc_put(struct mvpp2_tx_queue * txq)4240 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4241 {
4242 	if (txq->next_desc_to_proc == 0)
4243 		txq->next_desc_to_proc = txq->last_desc - 1;
4244 	else
4245 		txq->next_desc_to_proc--;
4246 }
4247 
4248 /* Set Tx descriptors fields relevant for CSUM calculation */
mvpp2_txq_desc_csum(int l3_offs,int l3_proto,int ip_hdr_len,int l4_proto)4249 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4250 			       int ip_hdr_len, int l4_proto)
4251 {
4252 	u32 command;
4253 
4254 	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4255 	 * G_L4_chk, L4_type required only for checksum calculation
4256 	 */
4257 	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4258 	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4259 	command |= MVPP2_TXD_IP_CSUM_DISABLE;
4260 
4261 	if (l3_proto == swab16(ETH_P_IP)) {
4262 		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
4263 		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
4264 	} else {
4265 		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
4266 	}
4267 
4268 	if (l4_proto == IPPROTO_TCP) {
4269 		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
4270 		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4271 	} else if (l4_proto == IPPROTO_UDP) {
4272 		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
4273 		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4274 	} else {
4275 		command |= MVPP2_TXD_L4_CSUM_NOT;
4276 	}
4277 
4278 	return command;
4279 }
4280 
4281 /* Get number of sent descriptors and decrement counter.
4282  * The number of sent descriptors is returned.
4283  * Per-CPU access
4284  */
mvpp2_txq_sent_desc_proc(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4285 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4286 					   struct mvpp2_tx_queue *txq)
4287 {
4288 	u32 val;
4289 
4290 	/* Reading status reg resets transmitted descriptor counter */
4291 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4292 
4293 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4294 		MVPP2_TRANSMITTED_COUNT_OFFSET;
4295 }
4296 
mvpp2_txq_sent_counter_clear(void * arg)4297 static void mvpp2_txq_sent_counter_clear(void *arg)
4298 {
4299 	struct mvpp2_port *port = arg;
4300 	int queue;
4301 
4302 	for (queue = 0; queue < txq_number; queue++) {
4303 		int id = port->txqs[queue]->id;
4304 
4305 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4306 	}
4307 }
4308 
4309 /* Set max sizes for Tx queues */
mvpp2_txp_max_tx_size_set(struct mvpp2_port * port)4310 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4311 {
4312 	u32	val, size, mtu;
4313 	int	txq, tx_port_num;
4314 
4315 	mtu = port->pkt_size * 8;
4316 	if (mtu > MVPP2_TXP_MTU_MAX)
4317 		mtu = MVPP2_TXP_MTU_MAX;
4318 
4319 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4320 	mtu = 3 * mtu;
4321 
4322 	/* Indirect access to registers */
4323 	tx_port_num = mvpp2_egress_port(port);
4324 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4325 
4326 	/* Set MTU */
4327 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4328 	val &= ~MVPP2_TXP_MTU_MAX;
4329 	val |= mtu;
4330 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4331 
4332 	/* TXP token size and all TXQs token size must be larger that MTU */
4333 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4334 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4335 	if (size < mtu) {
4336 		size = mtu;
4337 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4338 		val |= size;
4339 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4340 	}
4341 
4342 	for (txq = 0; txq < txq_number; txq++) {
4343 		val = mvpp2_read(port->priv,
4344 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4345 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4346 
4347 		if (size < mtu) {
4348 			size = mtu;
4349 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4350 			val |= size;
4351 			mvpp2_write(port->priv,
4352 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4353 				    val);
4354 		}
4355 	}
4356 }
4357 
4358 /* Set the number of packets that will be received before Rx interrupt
4359  * will be generated by HW.
4360  */
mvpp2_rx_pkts_coal_set(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq,u32 pkts)4361 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4362 				   struct mvpp2_rx_queue *rxq, u32 pkts)
4363 {
4364 	u32 val;
4365 
4366 	val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4367 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4368 	mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4369 
4370 	rxq->pkts_coal = pkts;
4371 }
4372 
4373 /* Set the time delay in usec before Rx interrupt */
mvpp2_rx_time_coal_set(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq,u32 usec)4374 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4375 				   struct mvpp2_rx_queue *rxq, u32 usec)
4376 {
4377 	u32 val;
4378 
4379 	val = (port->priv->tclk / USEC_PER_SEC) * usec;
4380 	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4381 
4382 	rxq->time_coal = usec;
4383 }
4384 
4385 /* Set threshold for TX_DONE pkts coalescing */
mvpp2_tx_done_pkts_coal_set(void * arg)4386 static void mvpp2_tx_done_pkts_coal_set(void *arg)
4387 {
4388 	struct mvpp2_port *port = arg;
4389 	int queue;
4390 	u32 val;
4391 
4392 	for (queue = 0; queue < txq_number; queue++) {
4393 		struct mvpp2_tx_queue *txq = port->txqs[queue];
4394 
4395 		val = (txq->done_pkts_coal << MVPP2_TRANSMITTED_THRESH_OFFSET) &
4396 		       MVPP2_TRANSMITTED_THRESH_MASK;
4397 		mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4398 		mvpp2_write(port->priv, MVPP2_TXQ_THRESH_REG, val);
4399 	}
4400 }
4401 
4402 /* Free Tx queue skbuffs */
mvpp2_txq_bufs_free(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu,int num)4403 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4404 				struct mvpp2_tx_queue *txq,
4405 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4406 {
4407 	int i;
4408 
4409 	for (i = 0; i < num; i++) {
4410 		struct mvpp2_tx_desc *tx_desc = txq->descs +
4411 							txq_pcpu->txq_get_index;
4412 		struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4413 
4414 		mvpp2_txq_inc_get(txq_pcpu);
4415 
4416 		if (!skb)
4417 			continue;
4418 
4419 		dma_unmap_single(port->dev->dev.parent, tx_desc->buf_phys_addr,
4420 				 tx_desc->data_size, DMA_TO_DEVICE);
4421 		dev_kfree_skb_any(skb);
4422 	}
4423 }
4424 
mvpp2_get_rx_queue(struct mvpp2_port * port,u32 cause)4425 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4426 							u32 cause)
4427 {
4428 	int queue = fls(cause) - 1;
4429 
4430 	return port->rxqs[queue];
4431 }
4432 
mvpp2_get_tx_queue(struct mvpp2_port * port,u32 cause)4433 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4434 							u32 cause)
4435 {
4436 	int queue = fls(cause >> 16) - 1;
4437 
4438 	return port->txqs[queue];
4439 }
4440 
4441 /* Handle end of transmission */
mvpp2_txq_done(struct mvpp2_port * port,struct mvpp2_tx_queue * txq,struct mvpp2_txq_pcpu * txq_pcpu)4442 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4443 			   struct mvpp2_txq_pcpu *txq_pcpu)
4444 {
4445 	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4446 	int tx_done;
4447 
4448 	if (txq_pcpu->cpu != smp_processor_id())
4449 		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4450 
4451 	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4452 	if (!tx_done)
4453 		return;
4454 	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4455 
4456 	txq_pcpu->count -= tx_done;
4457 
4458 	if (netif_tx_queue_stopped(nq))
4459 		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4460 			netif_tx_wake_queue(nq);
4461 }
4462 
4463 /* Rx/Tx queue initialization/cleanup methods */
4464 
4465 /* Allocate and initialize descriptors for aggr TXQ */
mvpp2_aggr_txq_init(struct platform_device * pdev,struct mvpp2_tx_queue * aggr_txq,int desc_num,int cpu,struct mvpp2 * priv)4466 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4467 			       struct mvpp2_tx_queue *aggr_txq,
4468 			       int desc_num, int cpu,
4469 			       struct mvpp2 *priv)
4470 {
4471 	/* Allocate memory for TX descriptors */
4472 	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4473 				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4474 				&aggr_txq->descs_phys, GFP_KERNEL);
4475 	if (!aggr_txq->descs)
4476 		return -ENOMEM;
4477 
4478 	/* Make sure descriptor address is cache line size aligned  */
4479 	BUG_ON(aggr_txq->descs !=
4480 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4481 
4482 	aggr_txq->last_desc = aggr_txq->size - 1;
4483 
4484 	/* Aggr TXQ no reset WA */
4485 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4486 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4487 
4488 	/* Set Tx descriptors queue starting address */
4489 	/* indirect access */
4490 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4491 		    aggr_txq->descs_phys);
4492 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4493 
4494 	return 0;
4495 }
4496 
4497 /* Create a specified Rx queue */
mvpp2_rxq_init(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4498 static int mvpp2_rxq_init(struct mvpp2_port *port,
4499 			  struct mvpp2_rx_queue *rxq)
4500 
4501 {
4502 	rxq->size = port->rx_ring_size;
4503 
4504 	/* Allocate memory for RX descriptors */
4505 	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4506 					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4507 					&rxq->descs_phys, GFP_KERNEL);
4508 	if (!rxq->descs)
4509 		return -ENOMEM;
4510 
4511 	BUG_ON(rxq->descs !=
4512 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4513 
4514 	rxq->last_desc = rxq->size - 1;
4515 
4516 	/* Zero occupied and non-occupied counters - direct access */
4517 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4518 
4519 	/* Set Rx descriptors queue starting address - indirect access */
4520 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4521 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4522 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4523 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4524 
4525 	/* Set Offset */
4526 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4527 
4528 	/* Set coalescing pkts and time */
4529 	mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4530 	mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4531 
4532 	/* Add number of descriptors ready for receiving packets */
4533 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4534 
4535 	return 0;
4536 }
4537 
4538 /* Push packets received by the RXQ to BM pool */
mvpp2_rxq_drop_pkts(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4539 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4540 				struct mvpp2_rx_queue *rxq)
4541 {
4542 	int rx_received, i;
4543 
4544 	rx_received = mvpp2_rxq_received(port, rxq->id);
4545 	if (!rx_received)
4546 		return;
4547 
4548 	for (i = 0; i < rx_received; i++) {
4549 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4550 		u32 bm = mvpp2_bm_cookie_build(rx_desc);
4551 
4552 		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4553 				  rx_desc->buf_cookie);
4554 	}
4555 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4556 }
4557 
4558 /* Cleanup Rx queue */
mvpp2_rxq_deinit(struct mvpp2_port * port,struct mvpp2_rx_queue * rxq)4559 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4560 			     struct mvpp2_rx_queue *rxq)
4561 {
4562 	mvpp2_rxq_drop_pkts(port, rxq);
4563 
4564 	if (rxq->descs)
4565 		dma_free_coherent(port->dev->dev.parent,
4566 				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4567 				  rxq->descs,
4568 				  rxq->descs_phys);
4569 
4570 	rxq->descs             = NULL;
4571 	rxq->last_desc         = 0;
4572 	rxq->next_desc_to_proc = 0;
4573 	rxq->descs_phys        = 0;
4574 
4575 	/* Clear Rx descriptors queue starting address and size;
4576 	 * free descriptor number
4577 	 */
4578 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4579 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4580 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4581 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4582 }
4583 
4584 /* Create and initialize a Tx queue */
mvpp2_txq_init(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4585 static int mvpp2_txq_init(struct mvpp2_port *port,
4586 			  struct mvpp2_tx_queue *txq)
4587 {
4588 	u32 val;
4589 	int cpu, desc, desc_per_txq, tx_port_num;
4590 	struct mvpp2_txq_pcpu *txq_pcpu;
4591 
4592 	txq->size = port->tx_ring_size;
4593 
4594 	/* Allocate memory for Tx descriptors */
4595 	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4596 				txq->size * MVPP2_DESC_ALIGNED_SIZE,
4597 				&txq->descs_phys, GFP_KERNEL);
4598 	if (!txq->descs)
4599 		return -ENOMEM;
4600 
4601 	/* Make sure descriptor address is cache line size aligned  */
4602 	BUG_ON(txq->descs !=
4603 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4604 
4605 	txq->last_desc = txq->size - 1;
4606 
4607 	/* Set Tx descriptors queue starting address - indirect access */
4608 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4609 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4610 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4611 					     MVPP2_TXQ_DESC_SIZE_MASK);
4612 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4613 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4614 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4615 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4616 	val &= ~MVPP2_TXQ_PENDING_MASK;
4617 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4618 
4619 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4620 	 * for each existing TXQ.
4621 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4622 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4623 	 */
4624 	desc_per_txq = 16;
4625 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4626 	       (txq->log_id * desc_per_txq);
4627 
4628 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4629 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4630 		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4631 
4632 	/* WRR / EJP configuration - indirect access */
4633 	tx_port_num = mvpp2_egress_port(port);
4634 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4635 
4636 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4637 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4638 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4639 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4640 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4641 
4642 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4643 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4644 		    val);
4645 
4646 	for_each_present_cpu(cpu) {
4647 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4648 		txq_pcpu->size = txq->size;
4649 		txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4650 					   sizeof(*txq_pcpu->tx_skb),
4651 					   GFP_KERNEL);
4652 		if (!txq_pcpu->tx_skb) {
4653 			dma_free_coherent(port->dev->dev.parent,
4654 					  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4655 					  txq->descs, txq->descs_phys);
4656 			return -ENOMEM;
4657 		}
4658 
4659 		txq_pcpu->count = 0;
4660 		txq_pcpu->reserved_num = 0;
4661 		txq_pcpu->txq_put_index = 0;
4662 		txq_pcpu->txq_get_index = 0;
4663 	}
4664 
4665 	return 0;
4666 }
4667 
4668 /* Free allocated TXQ resources */
mvpp2_txq_deinit(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4669 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4670 			     struct mvpp2_tx_queue *txq)
4671 {
4672 	struct mvpp2_txq_pcpu *txq_pcpu;
4673 	int cpu;
4674 
4675 	for_each_present_cpu(cpu) {
4676 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4677 		kfree(txq_pcpu->tx_skb);
4678 	}
4679 
4680 	if (txq->descs)
4681 		dma_free_coherent(port->dev->dev.parent,
4682 				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4683 				  txq->descs, txq->descs_phys);
4684 
4685 	txq->descs             = NULL;
4686 	txq->last_desc         = 0;
4687 	txq->next_desc_to_proc = 0;
4688 	txq->descs_phys        = 0;
4689 
4690 	/* Set minimum bandwidth for disabled TXQs */
4691 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4692 
4693 	/* Set Tx descriptors queue starting address and size */
4694 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4695 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4696 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4697 }
4698 
4699 /* Cleanup Tx ports */
mvpp2_txq_clean(struct mvpp2_port * port,struct mvpp2_tx_queue * txq)4700 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4701 {
4702 	struct mvpp2_txq_pcpu *txq_pcpu;
4703 	int delay, pending, cpu;
4704 	u32 val;
4705 
4706 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4707 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4708 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4709 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4710 
4711 	/* The napi queue has been stopped so wait for all packets
4712 	 * to be transmitted.
4713 	 */
4714 	delay = 0;
4715 	do {
4716 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4717 			netdev_warn(port->dev,
4718 				    "port %d: cleaning queue %d timed out\n",
4719 				    port->id, txq->log_id);
4720 			break;
4721 		}
4722 		mdelay(1);
4723 		delay++;
4724 
4725 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4726 	} while (pending);
4727 
4728 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4729 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4730 
4731 	for_each_present_cpu(cpu) {
4732 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4733 
4734 		/* Release all packets */
4735 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4736 
4737 		/* Reset queue */
4738 		txq_pcpu->count = 0;
4739 		txq_pcpu->txq_put_index = 0;
4740 		txq_pcpu->txq_get_index = 0;
4741 	}
4742 }
4743 
4744 /* Cleanup all Tx queues */
mvpp2_cleanup_txqs(struct mvpp2_port * port)4745 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4746 {
4747 	struct mvpp2_tx_queue *txq;
4748 	int queue;
4749 	u32 val;
4750 
4751 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4752 
4753 	/* Reset Tx ports and delete Tx queues */
4754 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4755 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4756 
4757 	for (queue = 0; queue < txq_number; queue++) {
4758 		txq = port->txqs[queue];
4759 		mvpp2_txq_clean(port, txq);
4760 		mvpp2_txq_deinit(port, txq);
4761 	}
4762 
4763 	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4764 
4765 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4766 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4767 }
4768 
4769 /* Cleanup all Rx queues */
mvpp2_cleanup_rxqs(struct mvpp2_port * port)4770 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4771 {
4772 	int queue;
4773 
4774 	for (queue = 0; queue < rxq_number; queue++)
4775 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4776 }
4777 
4778 /* Init all Rx queues for port */
mvpp2_setup_rxqs(struct mvpp2_port * port)4779 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4780 {
4781 	int queue, err;
4782 
4783 	for (queue = 0; queue < rxq_number; queue++) {
4784 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4785 		if (err)
4786 			goto err_cleanup;
4787 	}
4788 	return 0;
4789 
4790 err_cleanup:
4791 	mvpp2_cleanup_rxqs(port);
4792 	return err;
4793 }
4794 
4795 /* Init all tx queues for port */
mvpp2_setup_txqs(struct mvpp2_port * port)4796 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4797 {
4798 	struct mvpp2_tx_queue *txq;
4799 	int queue, err;
4800 
4801 	for (queue = 0; queue < txq_number; queue++) {
4802 		txq = port->txqs[queue];
4803 		err = mvpp2_txq_init(port, txq);
4804 		if (err)
4805 			goto err_cleanup;
4806 	}
4807 
4808 	on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
4809 	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4810 	return 0;
4811 
4812 err_cleanup:
4813 	mvpp2_cleanup_txqs(port);
4814 	return err;
4815 }
4816 
4817 /* The callback for per-port interrupt */
mvpp2_isr(int irq,void * dev_id)4818 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4819 {
4820 	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4821 
4822 	mvpp2_interrupts_disable(port);
4823 
4824 	napi_schedule(&port->napi);
4825 
4826 	return IRQ_HANDLED;
4827 }
4828 
4829 /* Adjust link */
mvpp2_link_event(struct net_device * dev)4830 static void mvpp2_link_event(struct net_device *dev)
4831 {
4832 	struct mvpp2_port *port = netdev_priv(dev);
4833 	struct phy_device *phydev = port->phy_dev;
4834 	int status_change = 0;
4835 	u32 val;
4836 
4837 	if (phydev->link) {
4838 		if ((port->speed != phydev->speed) ||
4839 		    (port->duplex != phydev->duplex)) {
4840 			u32 val;
4841 
4842 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4843 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4844 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4845 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4846 				 MVPP2_GMAC_AN_SPEED_EN |
4847 				 MVPP2_GMAC_AN_DUPLEX_EN);
4848 
4849 			if (phydev->duplex)
4850 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4851 
4852 			if (phydev->speed == SPEED_1000)
4853 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4854 			else if (phydev->speed == SPEED_100)
4855 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4856 
4857 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4858 
4859 			port->duplex = phydev->duplex;
4860 			port->speed  = phydev->speed;
4861 		}
4862 	}
4863 
4864 	if (phydev->link != port->link) {
4865 		if (!phydev->link) {
4866 			port->duplex = -1;
4867 			port->speed = 0;
4868 		}
4869 
4870 		port->link = phydev->link;
4871 		status_change = 1;
4872 	}
4873 
4874 	if (status_change) {
4875 		if (phydev->link) {
4876 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4877 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4878 				MVPP2_GMAC_FORCE_LINK_DOWN);
4879 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4880 			mvpp2_egress_enable(port);
4881 			mvpp2_ingress_enable(port);
4882 		} else {
4883 			mvpp2_ingress_disable(port);
4884 			mvpp2_egress_disable(port);
4885 		}
4886 		phy_print_status(phydev);
4887 	}
4888 }
4889 
4890 /* Main RX/TX processing routines */
4891 
4892 /* Display more error info */
mvpp2_rx_error(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)4893 static void mvpp2_rx_error(struct mvpp2_port *port,
4894 			   struct mvpp2_rx_desc *rx_desc)
4895 {
4896 	u32 status = rx_desc->status;
4897 
4898 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4899 	case MVPP2_RXD_ERR_CRC:
4900 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4901 			   status, rx_desc->data_size);
4902 		break;
4903 	case MVPP2_RXD_ERR_OVERRUN:
4904 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4905 			   status, rx_desc->data_size);
4906 		break;
4907 	case MVPP2_RXD_ERR_RESOURCE:
4908 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4909 			   status, rx_desc->data_size);
4910 		break;
4911 	}
4912 }
4913 
4914 /* Handle RX checksum offload */
mvpp2_rx_csum(struct mvpp2_port * port,u32 status,struct sk_buff * skb)4915 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4916 			  struct sk_buff *skb)
4917 {
4918 	if (((status & MVPP2_RXD_L3_IP4) &&
4919 	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4920 	    (status & MVPP2_RXD_L3_IP6))
4921 		if (((status & MVPP2_RXD_L4_UDP) ||
4922 		     (status & MVPP2_RXD_L4_TCP)) &&
4923 		     (status & MVPP2_RXD_L4_CSUM_OK)) {
4924 			skb->csum = 0;
4925 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4926 			return;
4927 		}
4928 
4929 	skb->ip_summed = CHECKSUM_NONE;
4930 }
4931 
4932 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
mvpp2_rx_refill(struct mvpp2_port * port,struct mvpp2_bm_pool * bm_pool,u32 bm,int is_recycle)4933 static int mvpp2_rx_refill(struct mvpp2_port *port,
4934 			   struct mvpp2_bm_pool *bm_pool,
4935 			   u32 bm, int is_recycle)
4936 {
4937 	struct sk_buff *skb;
4938 	dma_addr_t phys_addr;
4939 
4940 	if (is_recycle &&
4941 	    (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
4942 		return 0;
4943 
4944 	/* No recycle or too many buffers are in use, so allocate a new skb */
4945 	skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
4946 	if (!skb)
4947 		return -ENOMEM;
4948 
4949 	mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
4950 	atomic_dec(&bm_pool->in_use);
4951 	return 0;
4952 }
4953 
4954 /* Handle tx checksum */
mvpp2_skb_tx_csum(struct mvpp2_port * port,struct sk_buff * skb)4955 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
4956 {
4957 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4958 		int ip_hdr_len = 0;
4959 		u8 l4_proto;
4960 
4961 		if (skb->protocol == htons(ETH_P_IP)) {
4962 			struct iphdr *ip4h = ip_hdr(skb);
4963 
4964 			/* Calculate IPv4 checksum and L4 checksum */
4965 			ip_hdr_len = ip4h->ihl;
4966 			l4_proto = ip4h->protocol;
4967 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
4968 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
4969 
4970 			/* Read l4_protocol from one of IPv6 extra headers */
4971 			if (skb_network_header_len(skb) > 0)
4972 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
4973 			l4_proto = ip6h->nexthdr;
4974 		} else {
4975 			return MVPP2_TXD_L4_CSUM_NOT;
4976 		}
4977 
4978 		return mvpp2_txq_desc_csum(skb_network_offset(skb),
4979 				skb->protocol, ip_hdr_len, l4_proto);
4980 	}
4981 
4982 	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
4983 }
4984 
mvpp2_buff_hdr_rx(struct mvpp2_port * port,struct mvpp2_rx_desc * rx_desc)4985 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
4986 			      struct mvpp2_rx_desc *rx_desc)
4987 {
4988 	struct mvpp2_buff_hdr *buff_hdr;
4989 	struct sk_buff *skb;
4990 	u32 rx_status = rx_desc->status;
4991 	u32 buff_phys_addr;
4992 	u32 buff_virt_addr;
4993 	u32 buff_phys_addr_next;
4994 	u32 buff_virt_addr_next;
4995 	int mc_id;
4996 	int pool_id;
4997 
4998 	pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4999 		   MVPP2_RXD_BM_POOL_ID_OFFS;
5000 	buff_phys_addr = rx_desc->buf_phys_addr;
5001 	buff_virt_addr = rx_desc->buf_cookie;
5002 
5003 	do {
5004 		skb = (struct sk_buff *)buff_virt_addr;
5005 		buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5006 
5007 		mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5008 
5009 		buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5010 		buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5011 
5012 		/* Release buffer */
5013 		mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5014 				     buff_virt_addr, mc_id);
5015 
5016 		buff_phys_addr = buff_phys_addr_next;
5017 		buff_virt_addr = buff_virt_addr_next;
5018 
5019 	} while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5020 }
5021 
5022 /* Main rx processing */
mvpp2_rx(struct mvpp2_port * port,int rx_todo,struct mvpp2_rx_queue * rxq)5023 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5024 		    struct mvpp2_rx_queue *rxq)
5025 {
5026 	struct net_device *dev = port->dev;
5027 	int rx_received, rx_filled, i;
5028 	u32 rcvd_pkts = 0;
5029 	u32 rcvd_bytes = 0;
5030 
5031 	/* Get number of received packets and clamp the to-do */
5032 	rx_received = mvpp2_rxq_received(port, rxq->id);
5033 	if (rx_todo > rx_received)
5034 		rx_todo = rx_received;
5035 
5036 	rx_filled = 0;
5037 	for (i = 0; i < rx_todo; i++) {
5038 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5039 		struct mvpp2_bm_pool *bm_pool;
5040 		struct sk_buff *skb;
5041 		u32 bm, rx_status;
5042 		int pool, rx_bytes, err;
5043 
5044 		rx_filled++;
5045 		rx_status = rx_desc->status;
5046 		rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5047 
5048 		bm = mvpp2_bm_cookie_build(rx_desc);
5049 		pool = mvpp2_bm_cookie_pool_get(bm);
5050 		bm_pool = &port->priv->bm_pools[pool];
5051 		/* Check if buffer header is used */
5052 		if (rx_status & MVPP2_RXD_BUF_HDR) {
5053 			mvpp2_buff_hdr_rx(port, rx_desc);
5054 			continue;
5055 		}
5056 
5057 		/* In case of an error, release the requested buffer pointer
5058 		 * to the Buffer Manager. This request process is controlled
5059 		 * by the hardware, and the information about the buffer is
5060 		 * comprised by the RX descriptor.
5061 		 */
5062 		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5063 			dev->stats.rx_errors++;
5064 			mvpp2_rx_error(port, rx_desc);
5065 			mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5066 					  rx_desc->buf_cookie);
5067 			continue;
5068 		}
5069 
5070 		skb = (struct sk_buff *)rx_desc->buf_cookie;
5071 
5072 		rcvd_pkts++;
5073 		rcvd_bytes += rx_bytes;
5074 		atomic_inc(&bm_pool->in_use);
5075 
5076 		skb_reserve(skb, MVPP2_MH_SIZE);
5077 		skb_put(skb, rx_bytes);
5078 		skb->protocol = eth_type_trans(skb, dev);
5079 		mvpp2_rx_csum(port, rx_status, skb);
5080 
5081 		napi_gro_receive(&port->napi, skb);
5082 
5083 		err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5084 		if (err) {
5085 			netdev_err(port->dev, "failed to refill BM pools\n");
5086 			rx_filled--;
5087 		}
5088 	}
5089 
5090 	if (rcvd_pkts) {
5091 		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5092 
5093 		u64_stats_update_begin(&stats->syncp);
5094 		stats->rx_packets += rcvd_pkts;
5095 		stats->rx_bytes   += rcvd_bytes;
5096 		u64_stats_update_end(&stats->syncp);
5097 	}
5098 
5099 	/* Update Rx queue management counters */
5100 	wmb();
5101 	mvpp2_rxq_status_update(port, rxq->id, rx_todo, rx_filled);
5102 
5103 	return rx_todo;
5104 }
5105 
5106 static inline void
tx_desc_unmap_put(struct device * dev,struct mvpp2_tx_queue * txq,struct mvpp2_tx_desc * desc)5107 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5108 		  struct mvpp2_tx_desc *desc)
5109 {
5110 	dma_unmap_single(dev, desc->buf_phys_addr,
5111 			 desc->data_size, DMA_TO_DEVICE);
5112 	mvpp2_txq_desc_put(txq);
5113 }
5114 
5115 /* Handle tx fragmentation processing */
mvpp2_tx_frag_process(struct mvpp2_port * port,struct sk_buff * skb,struct mvpp2_tx_queue * aggr_txq,struct mvpp2_tx_queue * txq)5116 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5117 				 struct mvpp2_tx_queue *aggr_txq,
5118 				 struct mvpp2_tx_queue *txq)
5119 {
5120 	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5121 	struct mvpp2_tx_desc *tx_desc;
5122 	int i;
5123 	dma_addr_t buf_phys_addr;
5124 
5125 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5126 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5127 		void *addr = page_address(frag->page.p) + frag->page_offset;
5128 
5129 		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5130 		tx_desc->phys_txq = txq->id;
5131 		tx_desc->data_size = frag->size;
5132 
5133 		buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5134 					       tx_desc->data_size,
5135 					       DMA_TO_DEVICE);
5136 		if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5137 			mvpp2_txq_desc_put(txq);
5138 			goto error;
5139 		}
5140 
5141 		tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5142 		tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5143 
5144 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5145 			/* Last descriptor */
5146 			tx_desc->command = MVPP2_TXD_L_DESC;
5147 			mvpp2_txq_inc_put(txq_pcpu, skb);
5148 		} else {
5149 			/* Descriptor in the middle: Not First, Not Last */
5150 			tx_desc->command = 0;
5151 			mvpp2_txq_inc_put(txq_pcpu, NULL);
5152 		}
5153 	}
5154 
5155 	return 0;
5156 
5157 error:
5158 	/* Release all descriptors that were used to map fragments of
5159 	 * this packet, as well as the corresponding DMA mappings
5160 	 */
5161 	for (i = i - 1; i >= 0; i--) {
5162 		tx_desc = txq->descs + i;
5163 		tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5164 	}
5165 
5166 	return -ENOMEM;
5167 }
5168 
5169 /* Main tx processing */
mvpp2_tx(struct sk_buff * skb,struct net_device * dev)5170 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5171 {
5172 	struct mvpp2_port *port = netdev_priv(dev);
5173 	struct mvpp2_tx_queue *txq, *aggr_txq;
5174 	struct mvpp2_txq_pcpu *txq_pcpu;
5175 	struct mvpp2_tx_desc *tx_desc;
5176 	dma_addr_t buf_phys_addr;
5177 	int frags = 0;
5178 	u16 txq_id;
5179 	u32 tx_cmd;
5180 
5181 	txq_id = skb_get_queue_mapping(skb);
5182 	txq = port->txqs[txq_id];
5183 	txq_pcpu = this_cpu_ptr(txq->pcpu);
5184 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5185 
5186 	frags = skb_shinfo(skb)->nr_frags + 1;
5187 
5188 	/* Check number of available descriptors */
5189 	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5190 	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5191 					     txq_pcpu, frags)) {
5192 		frags = 0;
5193 		goto out;
5194 	}
5195 
5196 	/* Get a descriptor for the first part of the packet */
5197 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5198 	tx_desc->phys_txq = txq->id;
5199 	tx_desc->data_size = skb_headlen(skb);
5200 
5201 	buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5202 				       tx_desc->data_size, DMA_TO_DEVICE);
5203 	if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5204 		mvpp2_txq_desc_put(txq);
5205 		frags = 0;
5206 		goto out;
5207 	}
5208 	tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5209 	tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5210 
5211 	tx_cmd = mvpp2_skb_tx_csum(port, skb);
5212 
5213 	if (frags == 1) {
5214 		/* First and Last descriptor */
5215 		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5216 		tx_desc->command = tx_cmd;
5217 		mvpp2_txq_inc_put(txq_pcpu, skb);
5218 	} else {
5219 		/* First but not Last */
5220 		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5221 		tx_desc->command = tx_cmd;
5222 		mvpp2_txq_inc_put(txq_pcpu, NULL);
5223 
5224 		/* Continue with other skb fragments */
5225 		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5226 			tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5227 			frags = 0;
5228 			goto out;
5229 		}
5230 	}
5231 
5232 	txq_pcpu->reserved_num -= frags;
5233 	txq_pcpu->count += frags;
5234 	aggr_txq->count += frags;
5235 
5236 	/* Enable transmit */
5237 	wmb();
5238 	mvpp2_aggr_txq_pend_desc_add(port, frags);
5239 
5240 	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5241 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5242 
5243 		netif_tx_stop_queue(nq);
5244 	}
5245 out:
5246 	if (frags > 0) {
5247 		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5248 
5249 		u64_stats_update_begin(&stats->syncp);
5250 		stats->tx_packets++;
5251 		stats->tx_bytes += skb->len;
5252 		u64_stats_update_end(&stats->syncp);
5253 	} else {
5254 		dev->stats.tx_dropped++;
5255 		dev_kfree_skb_any(skb);
5256 	}
5257 
5258 	return NETDEV_TX_OK;
5259 }
5260 
mvpp2_cause_error(struct net_device * dev,int cause)5261 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5262 {
5263 	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5264 		netdev_err(dev, "FCS error\n");
5265 	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5266 		netdev_err(dev, "rx fifo overrun error\n");
5267 	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5268 		netdev_err(dev, "tx fifo underrun error\n");
5269 }
5270 
mvpp2_txq_done_percpu(void * arg)5271 static void mvpp2_txq_done_percpu(void *arg)
5272 {
5273 	struct mvpp2_port *port = arg;
5274 	u32 cause_rx_tx, cause_tx, cause_misc;
5275 
5276 	/* Rx/Tx cause register
5277 	 *
5278 	 * Bits 0-15: each bit indicates received packets on the Rx queue
5279 	 * (bit 0 is for Rx queue 0).
5280 	 *
5281 	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5282 	 * (bit 16 is for Tx queue 0).
5283 	 *
5284 	 * Each CPU has its own Rx/Tx cause register
5285 	 */
5286 	cause_rx_tx = mvpp2_read(port->priv,
5287 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5288 	cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5289 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5290 
5291 	if (cause_misc) {
5292 		mvpp2_cause_error(port->dev, cause_misc);
5293 
5294 		/* Clear the cause register */
5295 		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5296 		mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5297 			    cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5298 	}
5299 
5300 	/* Release TX descriptors */
5301 	if (cause_tx) {
5302 		struct mvpp2_tx_queue *txq = mvpp2_get_tx_queue(port, cause_tx);
5303 		struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5304 
5305 		if (txq_pcpu->count)
5306 			mvpp2_txq_done(port, txq, txq_pcpu);
5307 	}
5308 }
5309 
mvpp2_poll(struct napi_struct * napi,int budget)5310 static int mvpp2_poll(struct napi_struct *napi, int budget)
5311 {
5312 	u32 cause_rx_tx, cause_rx;
5313 	int rx_done = 0;
5314 	struct mvpp2_port *port = netdev_priv(napi->dev);
5315 
5316 	on_each_cpu(mvpp2_txq_done_percpu, port, 1);
5317 
5318 	cause_rx_tx = mvpp2_read(port->priv,
5319 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5320 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5321 
5322 	/* Process RX packets */
5323 	cause_rx |= port->pending_cause_rx;
5324 	while (cause_rx && budget > 0) {
5325 		int count;
5326 		struct mvpp2_rx_queue *rxq;
5327 
5328 		rxq = mvpp2_get_rx_queue(port, cause_rx);
5329 		if (!rxq)
5330 			break;
5331 
5332 		count = mvpp2_rx(port, budget, rxq);
5333 		rx_done += count;
5334 		budget -= count;
5335 		if (budget > 0) {
5336 			/* Clear the bit associated to this Rx queue
5337 			 * so that next iteration will continue from
5338 			 * the next Rx queue.
5339 			 */
5340 			cause_rx &= ~(1 << rxq->logic_rxq);
5341 		}
5342 	}
5343 
5344 	if (budget > 0) {
5345 		cause_rx = 0;
5346 		napi_complete(napi);
5347 
5348 		mvpp2_interrupts_enable(port);
5349 	}
5350 	port->pending_cause_rx = cause_rx;
5351 	return rx_done;
5352 }
5353 
5354 /* Set hw internals when starting port */
mvpp2_start_dev(struct mvpp2_port * port)5355 static void mvpp2_start_dev(struct mvpp2_port *port)
5356 {
5357 	mvpp2_gmac_max_rx_size_set(port);
5358 	mvpp2_txp_max_tx_size_set(port);
5359 
5360 	napi_enable(&port->napi);
5361 
5362 	/* Enable interrupts on all CPUs */
5363 	mvpp2_interrupts_enable(port);
5364 
5365 	mvpp2_port_enable(port);
5366 	phy_start(port->phy_dev);
5367 	netif_tx_start_all_queues(port->dev);
5368 }
5369 
5370 /* Set hw internals when stopping port */
mvpp2_stop_dev(struct mvpp2_port * port)5371 static void mvpp2_stop_dev(struct mvpp2_port *port)
5372 {
5373 	/* Stop new packets from arriving to RXQs */
5374 	mvpp2_ingress_disable(port);
5375 
5376 	mdelay(10);
5377 
5378 	/* Disable interrupts on all CPUs */
5379 	mvpp2_interrupts_disable(port);
5380 
5381 	napi_disable(&port->napi);
5382 
5383 	netif_carrier_off(port->dev);
5384 	netif_tx_stop_all_queues(port->dev);
5385 
5386 	mvpp2_egress_disable(port);
5387 	mvpp2_port_disable(port);
5388 	phy_stop(port->phy_dev);
5389 }
5390 
5391 /* Return positive if MTU is valid */
mvpp2_check_mtu_valid(struct net_device * dev,int mtu)5392 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5393 {
5394 	if (mtu < 68) {
5395 		netdev_err(dev, "cannot change mtu to less than 68\n");
5396 		return -EINVAL;
5397 	}
5398 
5399 	/* 9676 == 9700 - 20 and rounding to 8 */
5400 	if (mtu > 9676) {
5401 		netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5402 		mtu = 9676;
5403 	}
5404 
5405 	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5406 		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5407 			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5408 		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5409 	}
5410 
5411 	return mtu;
5412 }
5413 
mvpp2_check_ringparam_valid(struct net_device * dev,struct ethtool_ringparam * ring)5414 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5415 				       struct ethtool_ringparam *ring)
5416 {
5417 	u16 new_rx_pending = ring->rx_pending;
5418 	u16 new_tx_pending = ring->tx_pending;
5419 
5420 	if (ring->rx_pending == 0 || ring->tx_pending == 0)
5421 		return -EINVAL;
5422 
5423 	if (ring->rx_pending > MVPP2_MAX_RXD)
5424 		new_rx_pending = MVPP2_MAX_RXD;
5425 	else if (!IS_ALIGNED(ring->rx_pending, 16))
5426 		new_rx_pending = ALIGN(ring->rx_pending, 16);
5427 
5428 	if (ring->tx_pending > MVPP2_MAX_TXD)
5429 		new_tx_pending = MVPP2_MAX_TXD;
5430 	else if (!IS_ALIGNED(ring->tx_pending, 32))
5431 		new_tx_pending = ALIGN(ring->tx_pending, 32);
5432 
5433 	if (ring->rx_pending != new_rx_pending) {
5434 		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5435 			    ring->rx_pending, new_rx_pending);
5436 		ring->rx_pending = new_rx_pending;
5437 	}
5438 
5439 	if (ring->tx_pending != new_tx_pending) {
5440 		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5441 			    ring->tx_pending, new_tx_pending);
5442 		ring->tx_pending = new_tx_pending;
5443 	}
5444 
5445 	return 0;
5446 }
5447 
mvpp2_get_mac_address(struct mvpp2_port * port,unsigned char * addr)5448 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5449 {
5450 	u32 mac_addr_l, mac_addr_m, mac_addr_h;
5451 
5452 	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5453 	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5454 	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5455 	addr[0] = (mac_addr_h >> 24) & 0xFF;
5456 	addr[1] = (mac_addr_h >> 16) & 0xFF;
5457 	addr[2] = (mac_addr_h >> 8) & 0xFF;
5458 	addr[3] = mac_addr_h & 0xFF;
5459 	addr[4] = mac_addr_m & 0xFF;
5460 	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5461 }
5462 
mvpp2_phy_connect(struct mvpp2_port * port)5463 static int mvpp2_phy_connect(struct mvpp2_port *port)
5464 {
5465 	struct phy_device *phy_dev;
5466 
5467 	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5468 				 port->phy_interface);
5469 	if (!phy_dev) {
5470 		netdev_err(port->dev, "cannot connect to phy\n");
5471 		return -ENODEV;
5472 	}
5473 	phy_dev->supported &= PHY_GBIT_FEATURES;
5474 	phy_dev->advertising = phy_dev->supported;
5475 
5476 	port->phy_dev = phy_dev;
5477 	port->link    = 0;
5478 	port->duplex  = 0;
5479 	port->speed   = 0;
5480 
5481 	return 0;
5482 }
5483 
mvpp2_phy_disconnect(struct mvpp2_port * port)5484 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5485 {
5486 	phy_disconnect(port->phy_dev);
5487 	port->phy_dev = NULL;
5488 }
5489 
mvpp2_open(struct net_device * dev)5490 static int mvpp2_open(struct net_device *dev)
5491 {
5492 	struct mvpp2_port *port = netdev_priv(dev);
5493 	unsigned char mac_bcast[ETH_ALEN] = {
5494 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5495 	int err;
5496 
5497 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5498 	if (err) {
5499 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5500 		return err;
5501 	}
5502 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5503 				      dev->dev_addr, true);
5504 	if (err) {
5505 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5506 		return err;
5507 	}
5508 	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5509 	if (err) {
5510 		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5511 		return err;
5512 	}
5513 	err = mvpp2_prs_def_flow(port);
5514 	if (err) {
5515 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5516 		return err;
5517 	}
5518 
5519 	/* Allocate the Rx/Tx queues */
5520 	err = mvpp2_setup_rxqs(port);
5521 	if (err) {
5522 		netdev_err(port->dev, "cannot allocate Rx queues\n");
5523 		return err;
5524 	}
5525 
5526 	err = mvpp2_setup_txqs(port);
5527 	if (err) {
5528 		netdev_err(port->dev, "cannot allocate Tx queues\n");
5529 		goto err_cleanup_rxqs;
5530 	}
5531 
5532 	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5533 	if (err) {
5534 		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5535 		goto err_cleanup_txqs;
5536 	}
5537 
5538 	/* In default link is down */
5539 	netif_carrier_off(port->dev);
5540 
5541 	err = mvpp2_phy_connect(port);
5542 	if (err < 0)
5543 		goto err_free_irq;
5544 
5545 	/* Unmask interrupts on all CPUs */
5546 	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5547 
5548 	mvpp2_start_dev(port);
5549 
5550 	return 0;
5551 
5552 err_free_irq:
5553 	free_irq(port->irq, port);
5554 err_cleanup_txqs:
5555 	mvpp2_cleanup_txqs(port);
5556 err_cleanup_rxqs:
5557 	mvpp2_cleanup_rxqs(port);
5558 	return err;
5559 }
5560 
mvpp2_stop(struct net_device * dev)5561 static int mvpp2_stop(struct net_device *dev)
5562 {
5563 	struct mvpp2_port *port = netdev_priv(dev);
5564 
5565 	mvpp2_stop_dev(port);
5566 	mvpp2_phy_disconnect(port);
5567 
5568 	/* Mask interrupts on all CPUs */
5569 	on_each_cpu(mvpp2_interrupts_mask, port, 1);
5570 
5571 	free_irq(port->irq, port);
5572 	mvpp2_cleanup_rxqs(port);
5573 	mvpp2_cleanup_txqs(port);
5574 
5575 	return 0;
5576 }
5577 
mvpp2_set_rx_mode(struct net_device * dev)5578 static void mvpp2_set_rx_mode(struct net_device *dev)
5579 {
5580 	struct mvpp2_port *port = netdev_priv(dev);
5581 	struct mvpp2 *priv = port->priv;
5582 	struct netdev_hw_addr *ha;
5583 	int id = port->id;
5584 	bool allmulti = dev->flags & IFF_ALLMULTI;
5585 
5586 	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5587 	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5588 	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5589 
5590 	/* Remove all port->id's mcast enries */
5591 	mvpp2_prs_mcast_del_all(priv, id);
5592 
5593 	if (allmulti && !netdev_mc_empty(dev)) {
5594 		netdev_for_each_mc_addr(ha, dev)
5595 			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5596 	}
5597 }
5598 
mvpp2_set_mac_address(struct net_device * dev,void * p)5599 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5600 {
5601 	struct mvpp2_port *port = netdev_priv(dev);
5602 	const struct sockaddr *addr = p;
5603 	int err;
5604 
5605 	if (!is_valid_ether_addr(addr->sa_data)) {
5606 		err = -EADDRNOTAVAIL;
5607 		goto error;
5608 	}
5609 
5610 	if (!netif_running(dev)) {
5611 		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5612 		if (!err)
5613 			return 0;
5614 		/* Reconfigure parser to accept the original MAC address */
5615 		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5616 		if (err)
5617 			goto error;
5618 	}
5619 
5620 	mvpp2_stop_dev(port);
5621 
5622 	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5623 	if (!err)
5624 		goto out_start;
5625 
5626 	/* Reconfigure parser accept the original MAC address */
5627 	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5628 	if (err)
5629 		goto error;
5630 out_start:
5631 	mvpp2_start_dev(port);
5632 	mvpp2_egress_enable(port);
5633 	mvpp2_ingress_enable(port);
5634 	return 0;
5635 
5636 error:
5637 	netdev_err(dev, "fail to change MAC address\n");
5638 	return err;
5639 }
5640 
mvpp2_change_mtu(struct net_device * dev,int mtu)5641 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5642 {
5643 	struct mvpp2_port *port = netdev_priv(dev);
5644 	int err;
5645 
5646 	mtu = mvpp2_check_mtu_valid(dev, mtu);
5647 	if (mtu < 0) {
5648 		err = mtu;
5649 		goto error;
5650 	}
5651 
5652 	if (!netif_running(dev)) {
5653 		err = mvpp2_bm_update_mtu(dev, mtu);
5654 		if (!err) {
5655 			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5656 			return 0;
5657 		}
5658 
5659 		/* Reconfigure BM to the original MTU */
5660 		err = mvpp2_bm_update_mtu(dev, dev->mtu);
5661 		if (err)
5662 			goto error;
5663 	}
5664 
5665 	mvpp2_stop_dev(port);
5666 
5667 	err = mvpp2_bm_update_mtu(dev, mtu);
5668 	if (!err) {
5669 		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5670 		goto out_start;
5671 	}
5672 
5673 	/* Reconfigure BM to the original MTU */
5674 	err = mvpp2_bm_update_mtu(dev, dev->mtu);
5675 	if (err)
5676 		goto error;
5677 
5678 out_start:
5679 	mvpp2_start_dev(port);
5680 	mvpp2_egress_enable(port);
5681 	mvpp2_ingress_enable(port);
5682 
5683 	return 0;
5684 
5685 error:
5686 	netdev_err(dev, "fail to change MTU\n");
5687 	return err;
5688 }
5689 
5690 static struct rtnl_link_stats64 *
mvpp2_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)5691 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5692 {
5693 	struct mvpp2_port *port = netdev_priv(dev);
5694 	unsigned int start;
5695 	int cpu;
5696 
5697 	for_each_possible_cpu(cpu) {
5698 		struct mvpp2_pcpu_stats *cpu_stats;
5699 		u64 rx_packets;
5700 		u64 rx_bytes;
5701 		u64 tx_packets;
5702 		u64 tx_bytes;
5703 
5704 		cpu_stats = per_cpu_ptr(port->stats, cpu);
5705 		do {
5706 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5707 			rx_packets = cpu_stats->rx_packets;
5708 			rx_bytes   = cpu_stats->rx_bytes;
5709 			tx_packets = cpu_stats->tx_packets;
5710 			tx_bytes   = cpu_stats->tx_bytes;
5711 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5712 
5713 		stats->rx_packets += rx_packets;
5714 		stats->rx_bytes   += rx_bytes;
5715 		stats->tx_packets += tx_packets;
5716 		stats->tx_bytes   += tx_bytes;
5717 	}
5718 
5719 	stats->rx_errors	= dev->stats.rx_errors;
5720 	stats->rx_dropped	= dev->stats.rx_dropped;
5721 	stats->tx_dropped	= dev->stats.tx_dropped;
5722 
5723 	return stats;
5724 }
5725 
mvpp2_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)5726 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5727 {
5728 	struct mvpp2_port *port = netdev_priv(dev);
5729 	int ret;
5730 
5731 	if (!port->phy_dev)
5732 		return -ENOTSUPP;
5733 
5734 	ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5735 	if (!ret)
5736 		mvpp2_link_event(dev);
5737 
5738 	return ret;
5739 }
5740 
5741 /* Ethtool methods */
5742 
5743 /* Get settings (phy address, speed) for ethtools */
mvpp2_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)5744 static int mvpp2_ethtool_get_settings(struct net_device *dev,
5745 				      struct ethtool_cmd *cmd)
5746 {
5747 	struct mvpp2_port *port = netdev_priv(dev);
5748 
5749 	if (!port->phy_dev)
5750 		return -ENODEV;
5751 	return phy_ethtool_gset(port->phy_dev, cmd);
5752 }
5753 
5754 /* Set settings (phy address, speed) for ethtools */
mvpp2_ethtool_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)5755 static int mvpp2_ethtool_set_settings(struct net_device *dev,
5756 				      struct ethtool_cmd *cmd)
5757 {
5758 	struct mvpp2_port *port = netdev_priv(dev);
5759 
5760 	if (!port->phy_dev)
5761 		return -ENODEV;
5762 	return phy_ethtool_sset(port->phy_dev, cmd);
5763 }
5764 
5765 /* Set interrupt coalescing for ethtools */
mvpp2_ethtool_set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)5766 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5767 				      struct ethtool_coalesce *c)
5768 {
5769 	struct mvpp2_port *port = netdev_priv(dev);
5770 	int queue;
5771 
5772 	for (queue = 0; queue < rxq_number; queue++) {
5773 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5774 
5775 		rxq->time_coal = c->rx_coalesce_usecs;
5776 		rxq->pkts_coal = c->rx_max_coalesced_frames;
5777 		mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5778 		mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5779 	}
5780 
5781 	for (queue = 0; queue < txq_number; queue++) {
5782 		struct mvpp2_tx_queue *txq = port->txqs[queue];
5783 
5784 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
5785 	}
5786 
5787 	on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
5788 	return 0;
5789 }
5790 
5791 /* get coalescing for ethtools */
mvpp2_ethtool_get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)5792 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5793 				      struct ethtool_coalesce *c)
5794 {
5795 	struct mvpp2_port *port = netdev_priv(dev);
5796 
5797 	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
5798 	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
5799 	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
5800 	return 0;
5801 }
5802 
mvpp2_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * drvinfo)5803 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5804 				      struct ethtool_drvinfo *drvinfo)
5805 {
5806 	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5807 		sizeof(drvinfo->driver));
5808 	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5809 		sizeof(drvinfo->version));
5810 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5811 		sizeof(drvinfo->bus_info));
5812 }
5813 
mvpp2_ethtool_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)5814 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5815 					struct ethtool_ringparam *ring)
5816 {
5817 	struct mvpp2_port *port = netdev_priv(dev);
5818 
5819 	ring->rx_max_pending = MVPP2_MAX_RXD;
5820 	ring->tx_max_pending = MVPP2_MAX_TXD;
5821 	ring->rx_pending = port->rx_ring_size;
5822 	ring->tx_pending = port->tx_ring_size;
5823 }
5824 
mvpp2_ethtool_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)5825 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5826 				       struct ethtool_ringparam *ring)
5827 {
5828 	struct mvpp2_port *port = netdev_priv(dev);
5829 	u16 prev_rx_ring_size = port->rx_ring_size;
5830 	u16 prev_tx_ring_size = port->tx_ring_size;
5831 	int err;
5832 
5833 	err = mvpp2_check_ringparam_valid(dev, ring);
5834 	if (err)
5835 		return err;
5836 
5837 	if (!netif_running(dev)) {
5838 		port->rx_ring_size = ring->rx_pending;
5839 		port->tx_ring_size = ring->tx_pending;
5840 		return 0;
5841 	}
5842 
5843 	/* The interface is running, so we have to force a
5844 	 * reallocation of the queues
5845 	 */
5846 	mvpp2_stop_dev(port);
5847 	mvpp2_cleanup_rxqs(port);
5848 	mvpp2_cleanup_txqs(port);
5849 
5850 	port->rx_ring_size = ring->rx_pending;
5851 	port->tx_ring_size = ring->tx_pending;
5852 
5853 	err = mvpp2_setup_rxqs(port);
5854 	if (err) {
5855 		/* Reallocate Rx queues with the original ring size */
5856 		port->rx_ring_size = prev_rx_ring_size;
5857 		ring->rx_pending = prev_rx_ring_size;
5858 		err = mvpp2_setup_rxqs(port);
5859 		if (err)
5860 			goto err_out;
5861 	}
5862 	err = mvpp2_setup_txqs(port);
5863 	if (err) {
5864 		/* Reallocate Tx queues with the original ring size */
5865 		port->tx_ring_size = prev_tx_ring_size;
5866 		ring->tx_pending = prev_tx_ring_size;
5867 		err = mvpp2_setup_txqs(port);
5868 		if (err)
5869 			goto err_clean_rxqs;
5870 	}
5871 
5872 	mvpp2_start_dev(port);
5873 	mvpp2_egress_enable(port);
5874 	mvpp2_ingress_enable(port);
5875 
5876 	return 0;
5877 
5878 err_clean_rxqs:
5879 	mvpp2_cleanup_rxqs(port);
5880 err_out:
5881 	netdev_err(dev, "fail to change ring parameters");
5882 	return err;
5883 }
5884 
5885 /* Device ops */
5886 
5887 static const struct net_device_ops mvpp2_netdev_ops = {
5888 	.ndo_open		= mvpp2_open,
5889 	.ndo_stop		= mvpp2_stop,
5890 	.ndo_start_xmit		= mvpp2_tx,
5891 	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
5892 	.ndo_set_mac_address	= mvpp2_set_mac_address,
5893 	.ndo_change_mtu		= mvpp2_change_mtu,
5894 	.ndo_get_stats64	= mvpp2_get_stats64,
5895 	.ndo_do_ioctl		= mvpp2_ioctl,
5896 };
5897 
5898 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5899 	.get_link	= ethtool_op_get_link,
5900 	.get_settings	= mvpp2_ethtool_get_settings,
5901 	.set_settings	= mvpp2_ethtool_set_settings,
5902 	.set_coalesce	= mvpp2_ethtool_set_coalesce,
5903 	.get_coalesce	= mvpp2_ethtool_get_coalesce,
5904 	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
5905 	.get_ringparam	= mvpp2_ethtool_get_ringparam,
5906 	.set_ringparam	= mvpp2_ethtool_set_ringparam,
5907 };
5908 
5909 /* Driver initialization */
5910 
mvpp2_port_power_up(struct mvpp2_port * port)5911 static void mvpp2_port_power_up(struct mvpp2_port *port)
5912 {
5913 	mvpp2_port_mii_set(port);
5914 	mvpp2_port_periodic_xon_disable(port);
5915 	mvpp2_port_fc_adv_enable(port);
5916 	mvpp2_port_reset(port);
5917 }
5918 
5919 /* Initialize port HW */
mvpp2_port_init(struct mvpp2_port * port)5920 static int mvpp2_port_init(struct mvpp2_port *port)
5921 {
5922 	struct device *dev = port->dev->dev.parent;
5923 	struct mvpp2 *priv = port->priv;
5924 	struct mvpp2_txq_pcpu *txq_pcpu;
5925 	int queue, cpu, err;
5926 
5927 	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5928 		return -EINVAL;
5929 
5930 	/* Disable port */
5931 	mvpp2_egress_disable(port);
5932 	mvpp2_port_disable(port);
5933 
5934 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5935 				  GFP_KERNEL);
5936 	if (!port->txqs)
5937 		return -ENOMEM;
5938 
5939 	/* Associate physical Tx queues to this port and initialize.
5940 	 * The mapping is predefined.
5941 	 */
5942 	for (queue = 0; queue < txq_number; queue++) {
5943 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5944 		struct mvpp2_tx_queue *txq;
5945 
5946 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5947 		if (!txq)
5948 			return -ENOMEM;
5949 
5950 		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
5951 		if (!txq->pcpu) {
5952 			err = -ENOMEM;
5953 			goto err_free_percpu;
5954 		}
5955 
5956 		txq->id = queue_phy_id;
5957 		txq->log_id = queue;
5958 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
5959 		for_each_present_cpu(cpu) {
5960 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5961 			txq_pcpu->cpu = cpu;
5962 		}
5963 
5964 		port->txqs[queue] = txq;
5965 	}
5966 
5967 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
5968 				  GFP_KERNEL);
5969 	if (!port->rxqs) {
5970 		err = -ENOMEM;
5971 		goto err_free_percpu;
5972 	}
5973 
5974 	/* Allocate and initialize Rx queue for this port */
5975 	for (queue = 0; queue < rxq_number; queue++) {
5976 		struct mvpp2_rx_queue *rxq;
5977 
5978 		/* Map physical Rx queue to port's logical Rx queue */
5979 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
5980 		if (!rxq)
5981 			goto err_free_percpu;
5982 		/* Map this Rx queue to a physical queue */
5983 		rxq->id = port->first_rxq + queue;
5984 		rxq->port = port->id;
5985 		rxq->logic_rxq = queue;
5986 
5987 		port->rxqs[queue] = rxq;
5988 	}
5989 
5990 	/* Configure Rx queue group interrupt for this port */
5991 	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
5992 
5993 	/* Create Rx descriptor rings */
5994 	for (queue = 0; queue < rxq_number; queue++) {
5995 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5996 
5997 		rxq->size = port->rx_ring_size;
5998 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
5999 		rxq->time_coal = MVPP2_RX_COAL_USEC;
6000 	}
6001 
6002 	mvpp2_ingress_disable(port);
6003 
6004 	/* Port default configuration */
6005 	mvpp2_defaults_set(port);
6006 
6007 	/* Port's classifier configuration */
6008 	mvpp2_cls_oversize_rxq_set(port);
6009 	mvpp2_cls_port_config(port);
6010 
6011 	/* Provide an initial Rx packet size */
6012 	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6013 
6014 	/* Initialize pools for swf */
6015 	err = mvpp2_swf_bm_pool_init(port);
6016 	if (err)
6017 		goto err_free_percpu;
6018 
6019 	return 0;
6020 
6021 err_free_percpu:
6022 	for (queue = 0; queue < txq_number; queue++) {
6023 		if (!port->txqs[queue])
6024 			continue;
6025 		free_percpu(port->txqs[queue]->pcpu);
6026 	}
6027 	return err;
6028 }
6029 
6030 /* Ports initialization */
mvpp2_port_probe(struct platform_device * pdev,struct device_node * port_node,struct mvpp2 * priv,int * next_first_rxq)6031 static int mvpp2_port_probe(struct platform_device *pdev,
6032 			    struct device_node *port_node,
6033 			    struct mvpp2 *priv,
6034 			    int *next_first_rxq)
6035 {
6036 	struct device_node *phy_node;
6037 	struct mvpp2_port *port;
6038 	struct net_device *dev;
6039 	struct resource *res;
6040 	const char *dt_mac_addr;
6041 	const char *mac_from;
6042 	char hw_mac_addr[ETH_ALEN];
6043 	u32 id;
6044 	int features;
6045 	int phy_mode;
6046 	int priv_common_regs_num = 2;
6047 	int err, i;
6048 
6049 	dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6050 				 rxq_number);
6051 	if (!dev)
6052 		return -ENOMEM;
6053 
6054 	phy_node = of_parse_phandle(port_node, "phy", 0);
6055 	if (!phy_node) {
6056 		dev_err(&pdev->dev, "missing phy\n");
6057 		err = -ENODEV;
6058 		goto err_free_netdev;
6059 	}
6060 
6061 	phy_mode = of_get_phy_mode(port_node);
6062 	if (phy_mode < 0) {
6063 		dev_err(&pdev->dev, "incorrect phy mode\n");
6064 		err = phy_mode;
6065 		goto err_free_netdev;
6066 	}
6067 
6068 	if (of_property_read_u32(port_node, "port-id", &id)) {
6069 		err = -EINVAL;
6070 		dev_err(&pdev->dev, "missing port-id value\n");
6071 		goto err_free_netdev;
6072 	}
6073 
6074 	dev->tx_queue_len = MVPP2_MAX_TXD;
6075 	dev->watchdog_timeo = 5 * HZ;
6076 	dev->netdev_ops = &mvpp2_netdev_ops;
6077 	dev->ethtool_ops = &mvpp2_eth_tool_ops;
6078 
6079 	port = netdev_priv(dev);
6080 
6081 	port->irq = irq_of_parse_and_map(port_node, 0);
6082 	if (port->irq <= 0) {
6083 		err = -EINVAL;
6084 		goto err_free_netdev;
6085 	}
6086 
6087 	if (of_property_read_bool(port_node, "marvell,loopback"))
6088 		port->flags |= MVPP2_F_LOOPBACK;
6089 
6090 	port->priv = priv;
6091 	port->id = id;
6092 	port->first_rxq = *next_first_rxq;
6093 	port->phy_node = phy_node;
6094 	port->phy_interface = phy_mode;
6095 
6096 	res = platform_get_resource(pdev, IORESOURCE_MEM,
6097 				    priv_common_regs_num + id);
6098 	port->base = devm_ioremap_resource(&pdev->dev, res);
6099 	if (IS_ERR(port->base)) {
6100 		err = PTR_ERR(port->base);
6101 		goto err_free_irq;
6102 	}
6103 
6104 	/* Alloc per-cpu stats */
6105 	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6106 	if (!port->stats) {
6107 		err = -ENOMEM;
6108 		goto err_free_irq;
6109 	}
6110 
6111 	dt_mac_addr = of_get_mac_address(port_node);
6112 	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6113 		mac_from = "device tree";
6114 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
6115 	} else {
6116 		mvpp2_get_mac_address(port, hw_mac_addr);
6117 		if (is_valid_ether_addr(hw_mac_addr)) {
6118 			mac_from = "hardware";
6119 			ether_addr_copy(dev->dev_addr, hw_mac_addr);
6120 		} else {
6121 			mac_from = "random";
6122 			eth_hw_addr_random(dev);
6123 		}
6124 	}
6125 
6126 	port->tx_ring_size = MVPP2_MAX_TXD;
6127 	port->rx_ring_size = MVPP2_MAX_RXD;
6128 	port->dev = dev;
6129 	SET_NETDEV_DEV(dev, &pdev->dev);
6130 
6131 	err = mvpp2_port_init(port);
6132 	if (err < 0) {
6133 		dev_err(&pdev->dev, "failed to init port %d\n", id);
6134 		goto err_free_stats;
6135 	}
6136 	mvpp2_port_power_up(port);
6137 
6138 	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6139 	features = NETIF_F_SG | NETIF_F_IP_CSUM;
6140 	dev->features = features | NETIF_F_RXCSUM;
6141 	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6142 	dev->vlan_features |= features;
6143 
6144 	err = register_netdev(dev);
6145 	if (err < 0) {
6146 		dev_err(&pdev->dev, "failed to register netdev\n");
6147 		goto err_free_txq_pcpu;
6148 	}
6149 	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6150 
6151 	/* Increment the first Rx queue number to be used by the next port */
6152 	*next_first_rxq += rxq_number;
6153 	priv->port_list[id] = port;
6154 	return 0;
6155 
6156 err_free_txq_pcpu:
6157 	for (i = 0; i < txq_number; i++)
6158 		free_percpu(port->txqs[i]->pcpu);
6159 err_free_stats:
6160 	free_percpu(port->stats);
6161 err_free_irq:
6162 	irq_dispose_mapping(port->irq);
6163 err_free_netdev:
6164 	free_netdev(dev);
6165 	return err;
6166 }
6167 
6168 /* Ports removal routine */
mvpp2_port_remove(struct mvpp2_port * port)6169 static void mvpp2_port_remove(struct mvpp2_port *port)
6170 {
6171 	int i;
6172 
6173 	unregister_netdev(port->dev);
6174 	free_percpu(port->stats);
6175 	for (i = 0; i < txq_number; i++)
6176 		free_percpu(port->txqs[i]->pcpu);
6177 	irq_dispose_mapping(port->irq);
6178 	free_netdev(port->dev);
6179 }
6180 
6181 /* Initialize decoding windows */
mvpp2_conf_mbus_windows(const struct mbus_dram_target_info * dram,struct mvpp2 * priv)6182 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6183 				    struct mvpp2 *priv)
6184 {
6185 	u32 win_enable;
6186 	int i;
6187 
6188 	for (i = 0; i < 6; i++) {
6189 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6190 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6191 
6192 		if (i < 4)
6193 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6194 	}
6195 
6196 	win_enable = 0;
6197 
6198 	for (i = 0; i < dram->num_cs; i++) {
6199 		const struct mbus_dram_window *cs = dram->cs + i;
6200 
6201 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
6202 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6203 			    dram->mbus_dram_target_id);
6204 
6205 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6206 			    (cs->size - 1) & 0xffff0000);
6207 
6208 		win_enable |= (1 << i);
6209 	}
6210 
6211 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6212 }
6213 
6214 /* Initialize Rx FIFO's */
mvpp2_rx_fifo_init(struct mvpp2 * priv)6215 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6216 {
6217 	int port;
6218 
6219 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6220 		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6221 			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
6222 		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6223 			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6224 	}
6225 
6226 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6227 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
6228 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6229 }
6230 
6231 /* Initialize network controller common part HW */
mvpp2_init(struct platform_device * pdev,struct mvpp2 * priv)6232 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6233 {
6234 	const struct mbus_dram_target_info *dram_target_info;
6235 	int err, i;
6236 	u32 val;
6237 
6238 	/* Checks for hardware constraints */
6239 	if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6240 	    (txq_number > MVPP2_MAX_TXQ)) {
6241 		dev_err(&pdev->dev, "invalid queue size parameter\n");
6242 		return -EINVAL;
6243 	}
6244 
6245 	/* MBUS windows configuration */
6246 	dram_target_info = mv_mbus_dram_info();
6247 	if (dram_target_info)
6248 		mvpp2_conf_mbus_windows(dram_target_info, priv);
6249 
6250 	/* Disable HW PHY polling */
6251 	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6252 	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6253 	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6254 
6255 	/* Allocate and initialize aggregated TXQs */
6256 	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6257 				       sizeof(struct mvpp2_tx_queue),
6258 				       GFP_KERNEL);
6259 	if (!priv->aggr_txqs)
6260 		return -ENOMEM;
6261 
6262 	for_each_present_cpu(i) {
6263 		priv->aggr_txqs[i].id = i;
6264 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6265 		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6266 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
6267 		if (err < 0)
6268 			return err;
6269 	}
6270 
6271 	/* Rx Fifo Init */
6272 	mvpp2_rx_fifo_init(priv);
6273 
6274 	/* Reset Rx queue group interrupt configuration */
6275 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
6276 		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6277 
6278 	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6279 	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6280 
6281 	/* Allow cache snoop when transmiting packets */
6282 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6283 
6284 	/* Buffer Manager initialization */
6285 	err = mvpp2_bm_init(pdev, priv);
6286 	if (err < 0)
6287 		return err;
6288 
6289 	/* Parser default initialization */
6290 	err = mvpp2_prs_default_init(pdev, priv);
6291 	if (err < 0)
6292 		return err;
6293 
6294 	/* Classifier default initialization */
6295 	mvpp2_cls_init(priv);
6296 
6297 	return 0;
6298 }
6299 
mvpp2_probe(struct platform_device * pdev)6300 static int mvpp2_probe(struct platform_device *pdev)
6301 {
6302 	struct device_node *dn = pdev->dev.of_node;
6303 	struct device_node *port_node;
6304 	struct mvpp2 *priv;
6305 	struct resource *res;
6306 	int port_count, first_rxq;
6307 	int err;
6308 
6309 	priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6310 	if (!priv)
6311 		return -ENOMEM;
6312 
6313 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6314 	priv->base = devm_ioremap_resource(&pdev->dev, res);
6315 	if (IS_ERR(priv->base))
6316 		return PTR_ERR(priv->base);
6317 
6318 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6319 	priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6320 	if (IS_ERR(priv->lms_base))
6321 		return PTR_ERR(priv->lms_base);
6322 
6323 	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6324 	if (IS_ERR(priv->pp_clk))
6325 		return PTR_ERR(priv->pp_clk);
6326 	err = clk_prepare_enable(priv->pp_clk);
6327 	if (err < 0)
6328 		return err;
6329 
6330 	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6331 	if (IS_ERR(priv->gop_clk)) {
6332 		err = PTR_ERR(priv->gop_clk);
6333 		goto err_pp_clk;
6334 	}
6335 	err = clk_prepare_enable(priv->gop_clk);
6336 	if (err < 0)
6337 		goto err_pp_clk;
6338 
6339 	/* Get system's tclk rate */
6340 	priv->tclk = clk_get_rate(priv->pp_clk);
6341 
6342 	/* Initialize network controller */
6343 	err = mvpp2_init(pdev, priv);
6344 	if (err < 0) {
6345 		dev_err(&pdev->dev, "failed to initialize controller\n");
6346 		goto err_gop_clk;
6347 	}
6348 
6349 	port_count = of_get_available_child_count(dn);
6350 	if (port_count == 0) {
6351 		dev_err(&pdev->dev, "no ports enabled\n");
6352 		err = -ENODEV;
6353 		goto err_gop_clk;
6354 	}
6355 
6356 	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6357 				      sizeof(struct mvpp2_port *),
6358 				      GFP_KERNEL);
6359 	if (!priv->port_list) {
6360 		err = -ENOMEM;
6361 		goto err_gop_clk;
6362 	}
6363 
6364 	/* Initialize ports */
6365 	first_rxq = 0;
6366 	for_each_available_child_of_node(dn, port_node) {
6367 		err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6368 		if (err < 0)
6369 			goto err_gop_clk;
6370 	}
6371 
6372 	platform_set_drvdata(pdev, priv);
6373 	return 0;
6374 
6375 err_gop_clk:
6376 	clk_disable_unprepare(priv->gop_clk);
6377 err_pp_clk:
6378 	clk_disable_unprepare(priv->pp_clk);
6379 	return err;
6380 }
6381 
mvpp2_remove(struct platform_device * pdev)6382 static int mvpp2_remove(struct platform_device *pdev)
6383 {
6384 	struct mvpp2 *priv = platform_get_drvdata(pdev);
6385 	struct device_node *dn = pdev->dev.of_node;
6386 	struct device_node *port_node;
6387 	int i = 0;
6388 
6389 	for_each_available_child_of_node(dn, port_node) {
6390 		if (priv->port_list[i])
6391 			mvpp2_port_remove(priv->port_list[i]);
6392 		i++;
6393 	}
6394 
6395 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6396 		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6397 
6398 		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6399 	}
6400 
6401 	for_each_present_cpu(i) {
6402 		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6403 
6404 		dma_free_coherent(&pdev->dev,
6405 				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6406 				  aggr_txq->descs,
6407 				  aggr_txq->descs_phys);
6408 	}
6409 
6410 	clk_disable_unprepare(priv->pp_clk);
6411 	clk_disable_unprepare(priv->gop_clk);
6412 
6413 	return 0;
6414 }
6415 
6416 static const struct of_device_id mvpp2_match[] = {
6417 	{ .compatible = "marvell,armada-375-pp2" },
6418 	{ }
6419 };
6420 MODULE_DEVICE_TABLE(of, mvpp2_match);
6421 
6422 static struct platform_driver mvpp2_driver = {
6423 	.probe = mvpp2_probe,
6424 	.remove = mvpp2_remove,
6425 	.driver = {
6426 		.name = MVPP2_DRIVER_NAME,
6427 		.of_match_table = mvpp2_match,
6428 	},
6429 };
6430 
6431 module_platform_driver(mvpp2_driver);
6432 
6433 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6434 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6435 MODULE_LICENSE("GPL v2");
6436