1 /*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
4 *
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49
50 #define DRIVER_NAME "pxa168-eth"
51 #define DRIVER_VERSION "0.3"
52
53 /*
54 * Registers
55 */
56
57 #define PHY_ADDRESS 0x0000
58 #define SMI 0x0010
59 #define PORT_CONFIG 0x0400
60 #define PORT_CONFIG_EXT 0x0408
61 #define PORT_COMMAND 0x0410
62 #define PORT_STATUS 0x0418
63 #define HTPR 0x0428
64 #define MAC_ADDR_LOW 0x0430
65 #define MAC_ADDR_HIGH 0x0438
66 #define SDMA_CONFIG 0x0440
67 #define SDMA_CMD 0x0448
68 #define INT_CAUSE 0x0450
69 #define INT_W_CLEAR 0x0454
70 #define INT_MASK 0x0458
71 #define ETH_F_RX_DESC_0 0x0480
72 #define ETH_C_RX_DESC_0 0x04A0
73 #define ETH_C_TX_DESC_1 0x04E4
74
75 /* smi register */
76 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
77 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
78 #define SMI_OP_W (0 << 26) /* Write operation */
79 #define SMI_OP_R (1 << 26) /* Read operation */
80
81 #define PHY_WAIT_ITERATIONS 10
82
83 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA (1 << 31)
86
87 /* RX descriptor status */
88 #define RX_EN_INT (1 << 23)
89 #define RX_FIRST_DESC (1 << 17)
90 #define RX_LAST_DESC (1 << 16)
91 #define RX_ERROR (1 << 15)
92
93 /* TX descriptor command */
94 #define TX_EN_INT (1 << 23)
95 #define TX_GEN_CRC (1 << 22)
96 #define TX_ZERO_PADDING (1 << 18)
97 #define TX_FIRST_DESC (1 << 17)
98 #define TX_LAST_DESC (1 << 16)
99 #define TX_ERROR (1 << 15)
100
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT (1 << 31)
103 #define SDMA_CMD_TXDL (1 << 24)
104 #define SDMA_CMD_TXDH (1 << 23)
105 #define SDMA_CMD_AR (1 << 15)
106 #define SDMA_CMD_ERD (1 << 7)
107
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_HS (1 << 12)
110 #define PCR_EN (1 << 7)
111 #define PCR_PM (1 << 0)
112
113 /* Bit definitions of the Port Config Extend Reg */
114 #define PCXR_2BSM (1 << 28)
115 #define PCXR_DSCP_EN (1 << 21)
116 #define PCXR_MFL_1518 (0 << 14)
117 #define PCXR_MFL_1536 (1 << 14)
118 #define PCXR_MFL_2048 (2 << 14)
119 #define PCXR_MFL_64K (3 << 14)
120 #define PCXR_FLP (1 << 11)
121 #define PCXR_PRIO_TX_OFF 3
122 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
123
124 /* Bit definitions of the SDMA Config Reg */
125 #define SDCR_BSZ_OFF 12
126 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
127 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
128 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
129 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
130 #define SDCR_BLMR (1 << 6)
131 #define SDCR_BLMT (1 << 7)
132 #define SDCR_RIFB (1 << 9)
133 #define SDCR_RC_OFF 2
134 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
135
136 /*
137 * Bit definitions of the Interrupt Cause Reg
138 * and Interrupt MASK Reg is the same
139 */
140 #define ICR_RXBUF (1 << 0)
141 #define ICR_TXBUF_H (1 << 2)
142 #define ICR_TXBUF_L (1 << 3)
143 #define ICR_TXEND_H (1 << 6)
144 #define ICR_TXEND_L (1 << 7)
145 #define ICR_RXERR (1 << 8)
146 #define ICR_TXERR_H (1 << 10)
147 #define ICR_TXERR_L (1 << 11)
148 #define ICR_TX_UDR (1 << 13)
149 #define ICR_MII_CH (1 << 28)
150
151 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
152 ICR_TXERR_H | ICR_TXERR_L |\
153 ICR_TXEND_H | ICR_TXEND_L |\
154 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
155
156 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
157
158 #define NUM_RX_DESCS 64
159 #define NUM_TX_DESCS 64
160
161 #define HASH_ADD 0
162 #define HASH_DELETE 1
163 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
164 #define HOP_NUMBER 12
165
166 /* Bit definitions for Port status */
167 #define PORT_SPEED_100 (1 << 0)
168 #define FULL_DUPLEX (1 << 1)
169 #define FLOW_CONTROL_DISABLED (1 << 2)
170 #define LINK_UP (1 << 3)
171
172 /* Bit definitions for work to be done */
173 #define WORK_LINK (1 << 0)
174 #define WORK_TX_DONE (1 << 1)
175
176 /*
177 * Misc definitions.
178 */
179 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
180
181 struct rx_desc {
182 u32 cmd_sts; /* Descriptor command status */
183 u16 byte_cnt; /* Descriptor buffer byte count */
184 u16 buf_size; /* Buffer size */
185 u32 buf_ptr; /* Descriptor buffer pointer */
186 u32 next_desc_ptr; /* Next descriptor pointer */
187 };
188
189 struct tx_desc {
190 u32 cmd_sts; /* Command/status field */
191 u16 reserved;
192 u16 byte_cnt; /* buffer byte count */
193 u32 buf_ptr; /* pointer to buffer for this descriptor */
194 u32 next_desc_ptr; /* Pointer to next descriptor */
195 };
196
197 struct pxa168_eth_private {
198 int port_num; /* User Ethernet port number */
199 int phy_addr;
200
201 int rx_resource_err; /* Rx ring resource error flag */
202
203 /* Next available and first returning Rx resource */
204 int rx_curr_desc_q, rx_used_desc_q;
205
206 /* Next available and first returning Tx resource */
207 int tx_curr_desc_q, tx_used_desc_q;
208
209 struct rx_desc *p_rx_desc_area;
210 dma_addr_t rx_desc_dma;
211 int rx_desc_area_size;
212 struct sk_buff **rx_skb;
213
214 struct tx_desc *p_tx_desc_area;
215 dma_addr_t tx_desc_dma;
216 int tx_desc_area_size;
217 struct sk_buff **tx_skb;
218
219 struct work_struct tx_timeout_task;
220
221 struct net_device *dev;
222 struct napi_struct napi;
223 u8 work_todo;
224 int skb_size;
225
226 /* Size of Tx Ring per queue */
227 int tx_ring_size;
228 /* Number of tx descriptors in use */
229 int tx_desc_count;
230 /* Size of Rx Ring per queue */
231 int rx_ring_size;
232 /* Number of rx descriptors in use */
233 int rx_desc_count;
234
235 /*
236 * Used in case RX Ring is empty, which can occur when
237 * system does not have resources (skb's)
238 */
239 struct timer_list timeout;
240 struct mii_bus *smi_bus;
241 struct phy_device *phy;
242
243 /* clock */
244 struct clk *clk;
245 struct pxa168_eth_platform_data *pd;
246 /*
247 * Ethernet controller base address.
248 */
249 void __iomem *base;
250
251 /* Pointer to the hardware address filter table */
252 void *htpr;
253 dma_addr_t htpr_dma;
254 };
255
256 struct addr_table_entry {
257 __le32 lo;
258 __le32 hi;
259 };
260
261 /* Bit fields of a Hash Table Entry */
262 enum hash_table_entry {
263 HASH_ENTRY_VALID = 1,
264 SKIP = 2,
265 HASH_ENTRY_RECEIVE_DISCARD = 4,
266 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
267 };
268
269 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
270 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
271 static int pxa168_init_hw(struct pxa168_eth_private *pep);
272 static void eth_port_reset(struct net_device *dev);
273 static void eth_port_start(struct net_device *dev);
274 static int pxa168_eth_open(struct net_device *dev);
275 static int pxa168_eth_stop(struct net_device *dev);
276 static int ethernet_phy_setup(struct net_device *dev);
277
rdl(struct pxa168_eth_private * pep,int offset)278 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
279 {
280 return readl(pep->base + offset);
281 }
282
wrl(struct pxa168_eth_private * pep,int offset,u32 data)283 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
284 {
285 writel(data, pep->base + offset);
286 }
287
abort_dma(struct pxa168_eth_private * pep)288 static void abort_dma(struct pxa168_eth_private *pep)
289 {
290 int delay;
291 int max_retries = 40;
292
293 do {
294 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
295 udelay(100);
296
297 delay = 10;
298 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
299 && delay-- > 0) {
300 udelay(10);
301 }
302 } while (max_retries-- > 0 && delay <= 0);
303
304 if (max_retries <= 0)
305 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
306 }
307
ethernet_phy_get(struct pxa168_eth_private * pep)308 static int ethernet_phy_get(struct pxa168_eth_private *pep)
309 {
310 unsigned int reg_data;
311
312 reg_data = rdl(pep, PHY_ADDRESS);
313
314 return (reg_data >> (5 * pep->port_num)) & 0x1f;
315 }
316
ethernet_phy_set_addr(struct pxa168_eth_private * pep,int phy_addr)317 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
318 {
319 u32 reg_data;
320 int addr_shift = 5 * pep->port_num;
321
322 reg_data = rdl(pep, PHY_ADDRESS);
323 reg_data &= ~(0x1f << addr_shift);
324 reg_data |= (phy_addr & 0x1f) << addr_shift;
325 wrl(pep, PHY_ADDRESS, reg_data);
326 }
327
rxq_refill(struct net_device * dev)328 static void rxq_refill(struct net_device *dev)
329 {
330 struct pxa168_eth_private *pep = netdev_priv(dev);
331 struct sk_buff *skb;
332 struct rx_desc *p_used_rx_desc;
333 int used_rx_desc;
334
335 while (pep->rx_desc_count < pep->rx_ring_size) {
336 int size;
337
338 skb = netdev_alloc_skb(dev, pep->skb_size);
339 if (!skb)
340 break;
341 if (SKB_DMA_REALIGN)
342 skb_reserve(skb, SKB_DMA_REALIGN);
343 pep->rx_desc_count++;
344 /* Get 'used' Rx descriptor */
345 used_rx_desc = pep->rx_used_desc_q;
346 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
347 size = skb_end_pointer(skb) - skb->data;
348 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
349 skb->data,
350 size,
351 DMA_FROM_DEVICE);
352 p_used_rx_desc->buf_size = size;
353 pep->rx_skb[used_rx_desc] = skb;
354
355 /* Return the descriptor to DMA ownership */
356 wmb();
357 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
358 wmb();
359
360 /* Move the used descriptor pointer to the next descriptor */
361 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
362
363 /* Any Rx return cancels the Rx resource error status */
364 pep->rx_resource_err = 0;
365
366 skb_reserve(skb, ETH_HW_IP_ALIGN);
367 }
368
369 /*
370 * If RX ring is empty of SKB, set a timer to try allocating
371 * again at a later time.
372 */
373 if (pep->rx_desc_count == 0) {
374 pep->timeout.expires = jiffies + (HZ / 10);
375 add_timer(&pep->timeout);
376 }
377 }
378
rxq_refill_timer_wrapper(unsigned long data)379 static inline void rxq_refill_timer_wrapper(unsigned long data)
380 {
381 struct pxa168_eth_private *pep = (void *)data;
382 napi_schedule(&pep->napi);
383 }
384
flip_8_bits(u8 x)385 static inline u8 flip_8_bits(u8 x)
386 {
387 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
388 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
389 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
390 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
391 }
392
nibble_swap_every_byte(unsigned char * mac_addr)393 static void nibble_swap_every_byte(unsigned char *mac_addr)
394 {
395 int i;
396 for (i = 0; i < ETH_ALEN; i++) {
397 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
398 ((mac_addr[i] & 0xf0) >> 4);
399 }
400 }
401
inverse_every_nibble(unsigned char * mac_addr)402 static void inverse_every_nibble(unsigned char *mac_addr)
403 {
404 int i;
405 for (i = 0; i < ETH_ALEN; i++)
406 mac_addr[i] = flip_8_bits(mac_addr[i]);
407 }
408
409 /*
410 * ----------------------------------------------------------------------------
411 * This function will calculate the hash function of the address.
412 * Inputs
413 * mac_addr_orig - MAC address.
414 * Outputs
415 * return the calculated entry.
416 */
hash_function(unsigned char * mac_addr_orig)417 static u32 hash_function(unsigned char *mac_addr_orig)
418 {
419 u32 hash_result;
420 u32 addr0;
421 u32 addr1;
422 u32 addr2;
423 u32 addr3;
424 unsigned char mac_addr[ETH_ALEN];
425
426 /* Make a copy of MAC address since we are going to performe bit
427 * operations on it
428 */
429 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
430
431 nibble_swap_every_byte(mac_addr);
432 inverse_every_nibble(mac_addr);
433
434 addr0 = (mac_addr[5] >> 2) & 0x3f;
435 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
436 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
437 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
438
439 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
440 hash_result = hash_result & 0x07ff;
441 return hash_result;
442 }
443
444 /*
445 * ----------------------------------------------------------------------------
446 * This function will add/del an entry to the address table.
447 * Inputs
448 * pep - ETHERNET .
449 * mac_addr - MAC address.
450 * skip - if 1, skip this address.Used in case of deleting an entry which is a
451 * part of chain in the hash table.We can't just delete the entry since
452 * that will break the chain.We need to defragment the tables time to
453 * time.
454 * rd - 0 Discard packet upon match.
455 * - 1 Receive packet upon match.
456 * Outputs
457 * address table entry is added/deleted.
458 * 0 if success.
459 * -ENOSPC if table full
460 */
add_del_hash_entry(struct pxa168_eth_private * pep,unsigned char * mac_addr,u32 rd,u32 skip,int del)461 static int add_del_hash_entry(struct pxa168_eth_private *pep,
462 unsigned char *mac_addr,
463 u32 rd, u32 skip, int del)
464 {
465 struct addr_table_entry *entry, *start;
466 u32 new_high;
467 u32 new_low;
468 u32 i;
469
470 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
471 | (((mac_addr[1] >> 0) & 0xf) << 11)
472 | (((mac_addr[0] >> 4) & 0xf) << 7)
473 | (((mac_addr[0] >> 0) & 0xf) << 3)
474 | (((mac_addr[3] >> 4) & 0x1) << 31)
475 | (((mac_addr[3] >> 0) & 0xf) << 27)
476 | (((mac_addr[2] >> 4) & 0xf) << 23)
477 | (((mac_addr[2] >> 0) & 0xf) << 19)
478 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
479 | HASH_ENTRY_VALID;
480
481 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
482 | (((mac_addr[5] >> 0) & 0xf) << 11)
483 | (((mac_addr[4] >> 4) & 0xf) << 7)
484 | (((mac_addr[4] >> 0) & 0xf) << 3)
485 | (((mac_addr[3] >> 5) & 0x7) << 0);
486
487 /*
488 * Pick the appropriate table, start scanning for free/reusable
489 * entries at the index obtained by hashing the specified MAC address
490 */
491 start = pep->htpr;
492 entry = start + hash_function(mac_addr);
493 for (i = 0; i < HOP_NUMBER; i++) {
494 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
495 break;
496 } else {
497 /* if same address put in same position */
498 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
499 (new_low & 0xfffffff8)) &&
500 (le32_to_cpu(entry->hi) == new_high)) {
501 break;
502 }
503 }
504 if (entry == start + 0x7ff)
505 entry = start;
506 else
507 entry++;
508 }
509
510 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
511 (le32_to_cpu(entry->hi) != new_high) && del)
512 return 0;
513
514 if (i == HOP_NUMBER) {
515 if (!del) {
516 netdev_info(pep->dev,
517 "%s: table section is full, need to "
518 "move to 16kB implementation?\n",
519 __FILE__);
520 return -ENOSPC;
521 } else
522 return 0;
523 }
524
525 /*
526 * Update the selected entry
527 */
528 if (del) {
529 entry->hi = 0;
530 entry->lo = 0;
531 } else {
532 entry->hi = cpu_to_le32(new_high);
533 entry->lo = cpu_to_le32(new_low);
534 }
535
536 return 0;
537 }
538
539 /*
540 * ----------------------------------------------------------------------------
541 * Create an addressTable entry from MAC address info
542 * found in the specifed net_device struct
543 *
544 * Input : pointer to ethernet interface network device structure
545 * Output : N/A
546 */
update_hash_table_mac_address(struct pxa168_eth_private * pep,unsigned char * oaddr,unsigned char * addr)547 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
548 unsigned char *oaddr,
549 unsigned char *addr)
550 {
551 /* Delete old entry */
552 if (oaddr)
553 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
554 /* Add new entry */
555 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
556 }
557
init_hash_table(struct pxa168_eth_private * pep)558 static int init_hash_table(struct pxa168_eth_private *pep)
559 {
560 /*
561 * Hardware expects CPU to build a hash table based on a predefined
562 * hash function and populate it based on hardware address. The
563 * location of the hash table is identified by 32-bit pointer stored
564 * in HTPR internal register. Two possible sizes exists for the hash
565 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
566 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
567 * 1/2kB.
568 */
569 /* TODO: Add support for 8kB hash table and alternative hash
570 * function.Driver can dynamically switch to them if the 1/2kB hash
571 * table is full.
572 */
573 if (pep->htpr == NULL) {
574 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
575 HASH_ADDR_TABLE_SIZE,
576 &pep->htpr_dma, GFP_KERNEL);
577 if (pep->htpr == NULL)
578 return -ENOMEM;
579 } else {
580 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
581 }
582 wrl(pep, HTPR, pep->htpr_dma);
583 return 0;
584 }
585
pxa168_eth_set_rx_mode(struct net_device * dev)586 static void pxa168_eth_set_rx_mode(struct net_device *dev)
587 {
588 struct pxa168_eth_private *pep = netdev_priv(dev);
589 struct netdev_hw_addr *ha;
590 u32 val;
591
592 val = rdl(pep, PORT_CONFIG);
593 if (dev->flags & IFF_PROMISC)
594 val |= PCR_PM;
595 else
596 val &= ~PCR_PM;
597 wrl(pep, PORT_CONFIG, val);
598
599 /*
600 * Remove the old list of MAC address and add dev->addr
601 * and multicast address.
602 */
603 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
604 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
605
606 netdev_for_each_mc_addr(ha, dev)
607 update_hash_table_mac_address(pep, NULL, ha->addr);
608 }
609
pxa168_eth_get_mac_address(struct net_device * dev,unsigned char * addr)610 static void pxa168_eth_get_mac_address(struct net_device *dev,
611 unsigned char *addr)
612 {
613 struct pxa168_eth_private *pep = netdev_priv(dev);
614 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
615 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
616
617 addr[0] = (mac_h >> 24) & 0xff;
618 addr[1] = (mac_h >> 16) & 0xff;
619 addr[2] = (mac_h >> 8) & 0xff;
620 addr[3] = mac_h & 0xff;
621 addr[4] = (mac_l >> 8) & 0xff;
622 addr[5] = mac_l & 0xff;
623 }
624
pxa168_eth_set_mac_address(struct net_device * dev,void * addr)625 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
626 {
627 struct sockaddr *sa = addr;
628 struct pxa168_eth_private *pep = netdev_priv(dev);
629 unsigned char oldMac[ETH_ALEN];
630 u32 mac_h, mac_l;
631
632 if (!is_valid_ether_addr(sa->sa_data))
633 return -EADDRNOTAVAIL;
634 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
635 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
636
637 mac_h = dev->dev_addr[0] << 24;
638 mac_h |= dev->dev_addr[1] << 16;
639 mac_h |= dev->dev_addr[2] << 8;
640 mac_h |= dev->dev_addr[3];
641 mac_l = dev->dev_addr[4] << 8;
642 mac_l |= dev->dev_addr[5];
643 wrl(pep, MAC_ADDR_HIGH, mac_h);
644 wrl(pep, MAC_ADDR_LOW, mac_l);
645
646 netif_addr_lock_bh(dev);
647 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
648 netif_addr_unlock_bh(dev);
649 return 0;
650 }
651
eth_port_start(struct net_device * dev)652 static void eth_port_start(struct net_device *dev)
653 {
654 unsigned int val = 0;
655 struct pxa168_eth_private *pep = netdev_priv(dev);
656 int tx_curr_desc, rx_curr_desc;
657
658 /* Perform PHY reset, if there is a PHY. */
659 if (pep->phy != NULL) {
660 struct ethtool_cmd cmd;
661
662 pxa168_get_settings(pep->dev, &cmd);
663 phy_init_hw(pep->phy);
664 pxa168_set_settings(pep->dev, &cmd);
665 }
666
667 /* Assignment of Tx CTRP of given queue */
668 tx_curr_desc = pep->tx_curr_desc_q;
669 wrl(pep, ETH_C_TX_DESC_1,
670 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
671
672 /* Assignment of Rx CRDP of given queue */
673 rx_curr_desc = pep->rx_curr_desc_q;
674 wrl(pep, ETH_C_RX_DESC_0,
675 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
676
677 wrl(pep, ETH_F_RX_DESC_0,
678 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
679
680 /* Clear all interrupts */
681 wrl(pep, INT_CAUSE, 0);
682
683 /* Enable all interrupts for receive, transmit and error. */
684 wrl(pep, INT_MASK, ALL_INTS);
685
686 val = rdl(pep, PORT_CONFIG);
687 val |= PCR_EN;
688 wrl(pep, PORT_CONFIG, val);
689
690 /* Start RX DMA engine */
691 val = rdl(pep, SDMA_CMD);
692 val |= SDMA_CMD_ERD;
693 wrl(pep, SDMA_CMD, val);
694 }
695
eth_port_reset(struct net_device * dev)696 static void eth_port_reset(struct net_device *dev)
697 {
698 struct pxa168_eth_private *pep = netdev_priv(dev);
699 unsigned int val = 0;
700
701 /* Stop all interrupts for receive, transmit and error. */
702 wrl(pep, INT_MASK, 0);
703
704 /* Clear all interrupts */
705 wrl(pep, INT_CAUSE, 0);
706
707 /* Stop RX DMA */
708 val = rdl(pep, SDMA_CMD);
709 val &= ~SDMA_CMD_ERD; /* abort dma command */
710
711 /* Abort any transmit and receive operations and put DMA
712 * in idle state.
713 */
714 abort_dma(pep);
715
716 /* Disable port */
717 val = rdl(pep, PORT_CONFIG);
718 val &= ~PCR_EN;
719 wrl(pep, PORT_CONFIG, val);
720 }
721
722 /*
723 * txq_reclaim - Free the tx desc data for completed descriptors
724 * If force is non-zero, frees uncompleted descriptors as well
725 */
txq_reclaim(struct net_device * dev,int force)726 static int txq_reclaim(struct net_device *dev, int force)
727 {
728 struct pxa168_eth_private *pep = netdev_priv(dev);
729 struct tx_desc *desc;
730 u32 cmd_sts;
731 struct sk_buff *skb;
732 int tx_index;
733 dma_addr_t addr;
734 int count;
735 int released = 0;
736
737 netif_tx_lock(dev);
738
739 pep->work_todo &= ~WORK_TX_DONE;
740 while (pep->tx_desc_count > 0) {
741 tx_index = pep->tx_used_desc_q;
742 desc = &pep->p_tx_desc_area[tx_index];
743 cmd_sts = desc->cmd_sts;
744 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
745 if (released > 0) {
746 goto txq_reclaim_end;
747 } else {
748 released = -1;
749 goto txq_reclaim_end;
750 }
751 }
752 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
753 pep->tx_desc_count--;
754 addr = desc->buf_ptr;
755 count = desc->byte_cnt;
756 skb = pep->tx_skb[tx_index];
757 if (skb)
758 pep->tx_skb[tx_index] = NULL;
759
760 if (cmd_sts & TX_ERROR) {
761 if (net_ratelimit())
762 netdev_err(dev, "Error in TX\n");
763 dev->stats.tx_errors++;
764 }
765 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
766 if (skb)
767 dev_kfree_skb_irq(skb);
768 released++;
769 }
770 txq_reclaim_end:
771 netif_tx_unlock(dev);
772 return released;
773 }
774
pxa168_eth_tx_timeout(struct net_device * dev)775 static void pxa168_eth_tx_timeout(struct net_device *dev)
776 {
777 struct pxa168_eth_private *pep = netdev_priv(dev);
778
779 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count);
780
781 schedule_work(&pep->tx_timeout_task);
782 }
783
pxa168_eth_tx_timeout_task(struct work_struct * work)784 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
785 {
786 struct pxa168_eth_private *pep = container_of(work,
787 struct pxa168_eth_private,
788 tx_timeout_task);
789 struct net_device *dev = pep->dev;
790 pxa168_eth_stop(dev);
791 pxa168_eth_open(dev);
792 }
793
rxq_process(struct net_device * dev,int budget)794 static int rxq_process(struct net_device *dev, int budget)
795 {
796 struct pxa168_eth_private *pep = netdev_priv(dev);
797 struct net_device_stats *stats = &dev->stats;
798 unsigned int received_packets = 0;
799 struct sk_buff *skb;
800
801 while (budget-- > 0) {
802 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
803 struct rx_desc *rx_desc;
804 unsigned int cmd_sts;
805
806 /* Do not process Rx ring in case of Rx ring resource error */
807 if (pep->rx_resource_err)
808 break;
809 rx_curr_desc = pep->rx_curr_desc_q;
810 rx_used_desc = pep->rx_used_desc_q;
811 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
812 cmd_sts = rx_desc->cmd_sts;
813 rmb();
814 if (cmd_sts & (BUF_OWNED_BY_DMA))
815 break;
816 skb = pep->rx_skb[rx_curr_desc];
817 pep->rx_skb[rx_curr_desc] = NULL;
818
819 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
820 pep->rx_curr_desc_q = rx_next_curr_desc;
821
822 /* Rx descriptors exhausted. */
823 /* Set the Rx ring resource error flag */
824 if (rx_next_curr_desc == rx_used_desc)
825 pep->rx_resource_err = 1;
826 pep->rx_desc_count--;
827 dma_unmap_single(NULL, rx_desc->buf_ptr,
828 rx_desc->buf_size,
829 DMA_FROM_DEVICE);
830 received_packets++;
831 /*
832 * Update statistics.
833 * Note byte count includes 4 byte CRC count
834 */
835 stats->rx_packets++;
836 stats->rx_bytes += rx_desc->byte_cnt;
837 /*
838 * In case received a packet without first / last bits on OR
839 * the error summary bit is on, the packets needs to be droped.
840 */
841 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
842 (RX_FIRST_DESC | RX_LAST_DESC))
843 || (cmd_sts & RX_ERROR)) {
844
845 stats->rx_dropped++;
846 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
847 (RX_FIRST_DESC | RX_LAST_DESC)) {
848 if (net_ratelimit())
849 netdev_err(dev,
850 "Rx pkt on multiple desc\n");
851 }
852 if (cmd_sts & RX_ERROR)
853 stats->rx_errors++;
854 dev_kfree_skb_irq(skb);
855 } else {
856 /*
857 * The -4 is for the CRC in the trailer of the
858 * received packet
859 */
860 skb_put(skb, rx_desc->byte_cnt - 4);
861 skb->protocol = eth_type_trans(skb, dev);
862 netif_receive_skb(skb);
863 }
864 }
865 /* Fill RX ring with skb's */
866 rxq_refill(dev);
867 return received_packets;
868 }
869
pxa168_eth_collect_events(struct pxa168_eth_private * pep,struct net_device * dev)870 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
871 struct net_device *dev)
872 {
873 u32 icr;
874 int ret = 0;
875
876 icr = rdl(pep, INT_CAUSE);
877 if (icr == 0)
878 return IRQ_NONE;
879
880 wrl(pep, INT_CAUSE, ~icr);
881 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
882 pep->work_todo |= WORK_TX_DONE;
883 ret = 1;
884 }
885 if (icr & ICR_RXBUF)
886 ret = 1;
887 if (icr & ICR_MII_CH) {
888 pep->work_todo |= WORK_LINK;
889 ret = 1;
890 }
891 return ret;
892 }
893
handle_link_event(struct pxa168_eth_private * pep)894 static void handle_link_event(struct pxa168_eth_private *pep)
895 {
896 struct net_device *dev = pep->dev;
897 u32 port_status;
898 int speed;
899 int duplex;
900 int fc;
901
902 port_status = rdl(pep, PORT_STATUS);
903 if (!(port_status & LINK_UP)) {
904 if (netif_carrier_ok(dev)) {
905 netdev_info(dev, "link down\n");
906 netif_carrier_off(dev);
907 txq_reclaim(dev, 1);
908 }
909 return;
910 }
911 if (port_status & PORT_SPEED_100)
912 speed = 100;
913 else
914 speed = 10;
915
916 duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
917 fc = (port_status & FLOW_CONTROL_DISABLED) ? 0 : 1;
918 netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n",
919 speed, duplex ? "full" : "half", fc ? "en" : "dis");
920 if (!netif_carrier_ok(dev))
921 netif_carrier_on(dev);
922 }
923
pxa168_eth_int_handler(int irq,void * dev_id)924 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
925 {
926 struct net_device *dev = (struct net_device *)dev_id;
927 struct pxa168_eth_private *pep = netdev_priv(dev);
928
929 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
930 return IRQ_NONE;
931 /* Disable interrupts */
932 wrl(pep, INT_MASK, 0);
933 napi_schedule(&pep->napi);
934 return IRQ_HANDLED;
935 }
936
pxa168_eth_recalc_skb_size(struct pxa168_eth_private * pep)937 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
938 {
939 int skb_size;
940
941 /*
942 * Reserve 2+14 bytes for an ethernet header (the hardware
943 * automatically prepends 2 bytes of dummy data to each
944 * received packet), 16 bytes for up to four VLAN tags, and
945 * 4 bytes for the trailing FCS -- 36 bytes total.
946 */
947 skb_size = pep->dev->mtu + 36;
948
949 /*
950 * Make sure that the skb size is a multiple of 8 bytes, as
951 * the lower three bits of the receive descriptor's buffer
952 * size field are ignored by the hardware.
953 */
954 pep->skb_size = (skb_size + 7) & ~7;
955
956 /*
957 * If NET_SKB_PAD is smaller than a cache line,
958 * netdev_alloc_skb() will cause skb->data to be misaligned
959 * to a cache line boundary. If this is the case, include
960 * some extra space to allow re-aligning the data area.
961 */
962 pep->skb_size += SKB_DMA_REALIGN;
963
964 }
965
set_port_config_ext(struct pxa168_eth_private * pep)966 static int set_port_config_ext(struct pxa168_eth_private *pep)
967 {
968 int skb_size;
969
970 pxa168_eth_recalc_skb_size(pep);
971 if (pep->skb_size <= 1518)
972 skb_size = PCXR_MFL_1518;
973 else if (pep->skb_size <= 1536)
974 skb_size = PCXR_MFL_1536;
975 else if (pep->skb_size <= 2048)
976 skb_size = PCXR_MFL_2048;
977 else
978 skb_size = PCXR_MFL_64K;
979
980 /* Extended Port Configuration */
981 wrl(pep,
982 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
983 PCXR_DSCP_EN | /* Enable DSCP in IP */
984 skb_size | PCXR_FLP | /* do not force link pass */
985 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
986
987 return 0;
988 }
989
pxa168_init_hw(struct pxa168_eth_private * pep)990 static int pxa168_init_hw(struct pxa168_eth_private *pep)
991 {
992 int err = 0;
993
994 /* Disable interrupts */
995 wrl(pep, INT_MASK, 0);
996 wrl(pep, INT_CAUSE, 0);
997 /* Write to ICR to clear interrupts. */
998 wrl(pep, INT_W_CLEAR, 0);
999 /* Abort any transmit and receive operations and put DMA
1000 * in idle state.
1001 */
1002 abort_dma(pep);
1003 /* Initialize address hash table */
1004 err = init_hash_table(pep);
1005 if (err)
1006 return err;
1007 /* SDMA configuration */
1008 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
1009 SDCR_RIFB | /* Rx interrupt on frame */
1010 SDCR_BLMT | /* Little endian transmit */
1011 SDCR_BLMR | /* Little endian receive */
1012 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1013 /* Port Configuration */
1014 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1015 set_port_config_ext(pep);
1016
1017 return err;
1018 }
1019
rxq_init(struct net_device * dev)1020 static int rxq_init(struct net_device *dev)
1021 {
1022 struct pxa168_eth_private *pep = netdev_priv(dev);
1023 struct rx_desc *p_rx_desc;
1024 int size = 0, i = 0;
1025 int rx_desc_num = pep->rx_ring_size;
1026
1027 /* Allocate RX skb rings */
1028 pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1029 GFP_KERNEL);
1030 if (!pep->rx_skb)
1031 return -ENOMEM;
1032
1033 /* Allocate RX ring */
1034 pep->rx_desc_count = 0;
1035 size = pep->rx_ring_size * sizeof(struct rx_desc);
1036 pep->rx_desc_area_size = size;
1037 pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1038 &pep->rx_desc_dma,
1039 GFP_KERNEL);
1040 if (!pep->p_rx_desc_area)
1041 goto out;
1042
1043 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1044 p_rx_desc = pep->p_rx_desc_area;
1045 for (i = 0; i < rx_desc_num; i++) {
1046 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1047 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1048 }
1049 /* Save Rx desc pointer to driver struct. */
1050 pep->rx_curr_desc_q = 0;
1051 pep->rx_used_desc_q = 0;
1052 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1053 return 0;
1054 out:
1055 kfree(pep->rx_skb);
1056 return -ENOMEM;
1057 }
1058
rxq_deinit(struct net_device * dev)1059 static void rxq_deinit(struct net_device *dev)
1060 {
1061 struct pxa168_eth_private *pep = netdev_priv(dev);
1062 int curr;
1063
1064 /* Free preallocated skb's on RX rings */
1065 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1066 if (pep->rx_skb[curr]) {
1067 dev_kfree_skb(pep->rx_skb[curr]);
1068 pep->rx_desc_count--;
1069 }
1070 }
1071 if (pep->rx_desc_count)
1072 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1073 pep->rx_desc_count);
1074 /* Free RX ring */
1075 if (pep->p_rx_desc_area)
1076 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1077 pep->p_rx_desc_area, pep->rx_desc_dma);
1078 kfree(pep->rx_skb);
1079 }
1080
txq_init(struct net_device * dev)1081 static int txq_init(struct net_device *dev)
1082 {
1083 struct pxa168_eth_private *pep = netdev_priv(dev);
1084 struct tx_desc *p_tx_desc;
1085 int size = 0, i = 0;
1086 int tx_desc_num = pep->tx_ring_size;
1087
1088 pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1089 GFP_KERNEL);
1090 if (!pep->tx_skb)
1091 return -ENOMEM;
1092
1093 /* Allocate TX ring */
1094 pep->tx_desc_count = 0;
1095 size = pep->tx_ring_size * sizeof(struct tx_desc);
1096 pep->tx_desc_area_size = size;
1097 pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1098 &pep->tx_desc_dma,
1099 GFP_KERNEL);
1100 if (!pep->p_tx_desc_area)
1101 goto out;
1102 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1103 p_tx_desc = pep->p_tx_desc_area;
1104 for (i = 0; i < tx_desc_num; i++) {
1105 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1106 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1107 }
1108 pep->tx_curr_desc_q = 0;
1109 pep->tx_used_desc_q = 0;
1110 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1111 return 0;
1112 out:
1113 kfree(pep->tx_skb);
1114 return -ENOMEM;
1115 }
1116
txq_deinit(struct net_device * dev)1117 static void txq_deinit(struct net_device *dev)
1118 {
1119 struct pxa168_eth_private *pep = netdev_priv(dev);
1120
1121 /* Free outstanding skb's on TX ring */
1122 txq_reclaim(dev, 1);
1123 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1124 /* Free TX ring */
1125 if (pep->p_tx_desc_area)
1126 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1127 pep->p_tx_desc_area, pep->tx_desc_dma);
1128 kfree(pep->tx_skb);
1129 }
1130
pxa168_eth_open(struct net_device * dev)1131 static int pxa168_eth_open(struct net_device *dev)
1132 {
1133 struct pxa168_eth_private *pep = netdev_priv(dev);
1134 int err;
1135
1136 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1137 if (err) {
1138 dev_err(&dev->dev, "can't assign irq\n");
1139 return -EAGAIN;
1140 }
1141 pep->rx_resource_err = 0;
1142 err = rxq_init(dev);
1143 if (err != 0)
1144 goto out_free_irq;
1145 err = txq_init(dev);
1146 if (err != 0)
1147 goto out_free_rx_skb;
1148 pep->rx_used_desc_q = 0;
1149 pep->rx_curr_desc_q = 0;
1150
1151 /* Fill RX ring with skb's */
1152 rxq_refill(dev);
1153 pep->rx_used_desc_q = 0;
1154 pep->rx_curr_desc_q = 0;
1155 netif_carrier_off(dev);
1156 eth_port_start(dev);
1157 napi_enable(&pep->napi);
1158 return 0;
1159 out_free_rx_skb:
1160 rxq_deinit(dev);
1161 out_free_irq:
1162 free_irq(dev->irq, dev);
1163 return err;
1164 }
1165
pxa168_eth_stop(struct net_device * dev)1166 static int pxa168_eth_stop(struct net_device *dev)
1167 {
1168 struct pxa168_eth_private *pep = netdev_priv(dev);
1169 eth_port_reset(dev);
1170
1171 /* Disable interrupts */
1172 wrl(pep, INT_MASK, 0);
1173 wrl(pep, INT_CAUSE, 0);
1174 /* Write to ICR to clear interrupts. */
1175 wrl(pep, INT_W_CLEAR, 0);
1176 napi_disable(&pep->napi);
1177 del_timer_sync(&pep->timeout);
1178 netif_carrier_off(dev);
1179 free_irq(dev->irq, dev);
1180 rxq_deinit(dev);
1181 txq_deinit(dev);
1182
1183 return 0;
1184 }
1185
pxa168_eth_change_mtu(struct net_device * dev,int mtu)1186 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1187 {
1188 int retval;
1189 struct pxa168_eth_private *pep = netdev_priv(dev);
1190
1191 if ((mtu > 9500) || (mtu < 68))
1192 return -EINVAL;
1193
1194 dev->mtu = mtu;
1195 retval = set_port_config_ext(pep);
1196
1197 if (!netif_running(dev))
1198 return 0;
1199
1200 /*
1201 * Stop and then re-open the interface. This will allocate RX
1202 * skbs of the new MTU.
1203 * There is a possible danger that the open will not succeed,
1204 * due to memory being full.
1205 */
1206 pxa168_eth_stop(dev);
1207 if (pxa168_eth_open(dev)) {
1208 dev_err(&dev->dev,
1209 "fatal error on re-opening device after MTU change\n");
1210 }
1211
1212 return 0;
1213 }
1214
eth_alloc_tx_desc_index(struct pxa168_eth_private * pep)1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216 {
1217 int tx_desc_curr;
1218
1219 tx_desc_curr = pep->tx_curr_desc_q;
1220 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222 pep->tx_desc_count++;
1223
1224 return tx_desc_curr;
1225 }
1226
pxa168_rx_poll(struct napi_struct * napi,int budget)1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228 {
1229 struct pxa168_eth_private *pep =
1230 container_of(napi, struct pxa168_eth_private, napi);
1231 struct net_device *dev = pep->dev;
1232 int work_done = 0;
1233
1234 if (unlikely(pep->work_todo & WORK_LINK)) {
1235 pep->work_todo &= ~(WORK_LINK);
1236 handle_link_event(pep);
1237 }
1238 /*
1239 * We call txq_reclaim every time since in NAPI interupts are disabled
1240 * and due to this we miss the TX_DONE interrupt,which is not updated in
1241 * interrupt status register.
1242 */
1243 txq_reclaim(dev, 0);
1244 if (netif_queue_stopped(dev)
1245 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246 netif_wake_queue(dev);
1247 }
1248 work_done = rxq_process(dev, budget);
1249 if (work_done < budget) {
1250 napi_complete(napi);
1251 wrl(pep, INT_MASK, ALL_INTS);
1252 }
1253
1254 return work_done;
1255 }
1256
pxa168_eth_start_xmit(struct sk_buff * skb,struct net_device * dev)1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258 {
1259 struct pxa168_eth_private *pep = netdev_priv(dev);
1260 struct net_device_stats *stats = &dev->stats;
1261 struct tx_desc *desc;
1262 int tx_index;
1263 int length;
1264
1265 tx_index = eth_alloc_tx_desc_index(pep);
1266 desc = &pep->p_tx_desc_area[tx_index];
1267 length = skb->len;
1268 pep->tx_skb[tx_index] = skb;
1269 desc->byte_cnt = length;
1270 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271
1272 skb_tx_timestamp(skb);
1273
1274 wmb();
1275 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277 wmb();
1278 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279
1280 stats->tx_bytes += length;
1281 stats->tx_packets++;
1282 dev->trans_start = jiffies;
1283 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284 /* We handled the current skb, but now we are out of space.*/
1285 netif_stop_queue(dev);
1286 }
1287
1288 return NETDEV_TX_OK;
1289 }
1290
smi_wait_ready(struct pxa168_eth_private * pep)1291 static int smi_wait_ready(struct pxa168_eth_private *pep)
1292 {
1293 int i = 0;
1294
1295 /* wait for the SMI register to become available */
1296 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297 if (i == PHY_WAIT_ITERATIONS)
1298 return -ETIMEDOUT;
1299 msleep(10);
1300 }
1301
1302 return 0;
1303 }
1304
pxa168_smi_read(struct mii_bus * bus,int phy_addr,int regnum)1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306 {
1307 struct pxa168_eth_private *pep = bus->priv;
1308 int i = 0;
1309 int val;
1310
1311 if (smi_wait_ready(pep)) {
1312 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1313 return -ETIMEDOUT;
1314 }
1315 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316 /* now wait for the data to be valid */
1317 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318 if (i == PHY_WAIT_ITERATIONS) {
1319 netdev_warn(pep->dev,
1320 "pxa168_eth: SMI bus read not valid\n");
1321 return -ENODEV;
1322 }
1323 msleep(10);
1324 }
1325
1326 return val & 0xffff;
1327 }
1328
pxa168_smi_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330 u16 value)
1331 {
1332 struct pxa168_eth_private *pep = bus->priv;
1333
1334 if (smi_wait_ready(pep)) {
1335 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1336 return -ETIMEDOUT;
1337 }
1338
1339 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340 SMI_OP_W | (value & 0xffff));
1341
1342 if (smi_wait_ready(pep)) {
1343 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1344 return -ETIMEDOUT;
1345 }
1346
1347 return 0;
1348 }
1349
pxa168_eth_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351 int cmd)
1352 {
1353 struct pxa168_eth_private *pep = netdev_priv(dev);
1354 if (pep->phy != NULL)
1355 return phy_mii_ioctl(pep->phy, ifr, cmd);
1356
1357 return -EOPNOTSUPP;
1358 }
1359
phy_scan(struct pxa168_eth_private * pep,int phy_addr)1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361 {
1362 struct mii_bus *bus = pep->smi_bus;
1363 struct phy_device *phydev;
1364 int start;
1365 int num;
1366 int i;
1367
1368 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369 /* Scan entire range */
1370 start = ethernet_phy_get(pep);
1371 num = 32;
1372 } else {
1373 /* Use phy addr specific to platform */
1374 start = phy_addr & 0x1f;
1375 num = 1;
1376 }
1377 phydev = NULL;
1378 for (i = 0; i < num; i++) {
1379 int addr = (start + i) & 0x1f;
1380 if (bus->phy_map[addr] == NULL)
1381 mdiobus_scan(bus, addr);
1382
1383 if (phydev == NULL) {
1384 phydev = bus->phy_map[addr];
1385 if (phydev != NULL)
1386 ethernet_phy_set_addr(pep, addr);
1387 }
1388 }
1389
1390 return phydev;
1391 }
1392
phy_init(struct pxa168_eth_private * pep)1393 static void phy_init(struct pxa168_eth_private *pep)
1394 {
1395 struct phy_device *phy = pep->phy;
1396
1397 phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII);
1398
1399 if (pep->pd && pep->pd->speed != 0) {
1400 phy->autoneg = AUTONEG_DISABLE;
1401 phy->advertising = 0;
1402 phy->speed = pep->pd->speed;
1403 phy->duplex = pep->pd->duplex;
1404 } else {
1405 phy->autoneg = AUTONEG_ENABLE;
1406 phy->speed = 0;
1407 phy->duplex = 0;
1408 phy->supported &= PHY_BASIC_FEATURES;
1409 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1410 }
1411
1412 phy_start_aneg(phy);
1413 }
1414
ethernet_phy_setup(struct net_device * dev)1415 static int ethernet_phy_setup(struct net_device *dev)
1416 {
1417 struct pxa168_eth_private *pep = netdev_priv(dev);
1418
1419 if (pep->pd && pep->pd->init)
1420 pep->pd->init();
1421
1422 pep->phy = phy_scan(pep, pep->phy_addr & 0x1f);
1423 if (pep->phy != NULL)
1424 phy_init(pep);
1425
1426 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1427
1428 return 0;
1429 }
1430
pxa168_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1431 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1432 {
1433 struct pxa168_eth_private *pep = netdev_priv(dev);
1434 int err;
1435
1436 err = phy_read_status(pep->phy);
1437 if (err == 0)
1438 err = phy_ethtool_gset(pep->phy, cmd);
1439
1440 return err;
1441 }
1442
pxa168_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1443 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1444 {
1445 struct pxa168_eth_private *pep = netdev_priv(dev);
1446
1447 return phy_ethtool_sset(pep->phy, cmd);
1448 }
1449
pxa168_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1450 static void pxa168_get_drvinfo(struct net_device *dev,
1451 struct ethtool_drvinfo *info)
1452 {
1453 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1454 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1455 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1456 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1457 }
1458
1459 static const struct ethtool_ops pxa168_ethtool_ops = {
1460 .get_settings = pxa168_get_settings,
1461 .set_settings = pxa168_set_settings,
1462 .get_drvinfo = pxa168_get_drvinfo,
1463 .get_link = ethtool_op_get_link,
1464 .get_ts_info = ethtool_op_get_ts_info,
1465 };
1466
1467 static const struct net_device_ops pxa168_eth_netdev_ops = {
1468 .ndo_open = pxa168_eth_open,
1469 .ndo_stop = pxa168_eth_stop,
1470 .ndo_start_xmit = pxa168_eth_start_xmit,
1471 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1472 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1473 .ndo_validate_addr = eth_validate_addr,
1474 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1475 .ndo_change_mtu = pxa168_eth_change_mtu,
1476 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1477 };
1478
pxa168_eth_probe(struct platform_device * pdev)1479 static int pxa168_eth_probe(struct platform_device *pdev)
1480 {
1481 struct pxa168_eth_private *pep = NULL;
1482 struct net_device *dev = NULL;
1483 struct resource *res;
1484 struct clk *clk;
1485 struct device_node *np;
1486 const unsigned char *mac_addr = NULL;
1487 int err;
1488
1489 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1490
1491 clk = devm_clk_get(&pdev->dev, NULL);
1492 if (IS_ERR(clk)) {
1493 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1494 return -ENODEV;
1495 }
1496 clk_prepare_enable(clk);
1497
1498 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1499 if (!dev) {
1500 err = -ENOMEM;
1501 goto err_clk;
1502 }
1503
1504 platform_set_drvdata(pdev, dev);
1505 pep = netdev_priv(dev);
1506 pep->dev = dev;
1507 pep->clk = clk;
1508 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1509 if (res == NULL) {
1510 err = -ENODEV;
1511 goto err_netdev;
1512 }
1513 pep->base = devm_ioremap_resource(&pdev->dev, res);
1514 if (IS_ERR(pep->base)) {
1515 err = -ENOMEM;
1516 goto err_netdev;
1517 }
1518 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1519 BUG_ON(!res);
1520 dev->irq = res->start;
1521 dev->netdev_ops = &pxa168_eth_netdev_ops;
1522 dev->watchdog_timeo = 2 * HZ;
1523 dev->base_addr = 0;
1524 dev->ethtool_ops = &pxa168_ethtool_ops;
1525
1526 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1527
1528 if (pdev->dev.of_node)
1529 mac_addr = of_get_mac_address(pdev->dev.of_node);
1530
1531 if (mac_addr && is_valid_ether_addr(mac_addr)) {
1532 ether_addr_copy(dev->dev_addr, mac_addr);
1533 } else {
1534 /* try reading the mac address, if set by the bootloader */
1535 pxa168_eth_get_mac_address(dev, dev->dev_addr);
1536 if (!is_valid_ether_addr(dev->dev_addr)) {
1537 dev_info(&pdev->dev, "Using random mac address\n");
1538 eth_hw_addr_random(dev);
1539 }
1540 }
1541
1542 pep->rx_ring_size = NUM_RX_DESCS;
1543 pep->tx_ring_size = NUM_TX_DESCS;
1544
1545 pep->pd = dev_get_platdata(&pdev->dev);
1546 if (pep->pd) {
1547 if (pep->pd->rx_queue_size)
1548 pep->rx_ring_size = pep->pd->rx_queue_size;
1549
1550 if (pep->pd->tx_queue_size)
1551 pep->tx_ring_size = pep->pd->tx_queue_size;
1552
1553 pep->port_num = pep->pd->port_number;
1554 pep->phy_addr = pep->pd->phy_addr;
1555 } else if (pdev->dev.of_node) {
1556 of_property_read_u32(pdev->dev.of_node, "port-id",
1557 &pep->port_num);
1558
1559 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1560 if (np)
1561 of_property_read_u32(np, "reg", &pep->phy_addr);
1562 }
1563
1564 /* Hardware supports only 3 ports */
1565 BUG_ON(pep->port_num > 2);
1566 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1567
1568 memset(&pep->timeout, 0, sizeof(struct timer_list));
1569 init_timer(&pep->timeout);
1570 pep->timeout.function = rxq_refill_timer_wrapper;
1571 pep->timeout.data = (unsigned long)pep;
1572
1573 pep->smi_bus = mdiobus_alloc();
1574 if (pep->smi_bus == NULL) {
1575 err = -ENOMEM;
1576 goto err_base;
1577 }
1578 pep->smi_bus->priv = pep;
1579 pep->smi_bus->name = "pxa168_eth smi";
1580 pep->smi_bus->read = pxa168_smi_read;
1581 pep->smi_bus->write = pxa168_smi_write;
1582 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1583 pdev->name, pdev->id);
1584 pep->smi_bus->parent = &pdev->dev;
1585 pep->smi_bus->phy_mask = 0xffffffff;
1586 err = mdiobus_register(pep->smi_bus);
1587 if (err)
1588 goto err_free_mdio;
1589
1590 pxa168_init_hw(pep);
1591 err = ethernet_phy_setup(dev);
1592 if (err)
1593 goto err_mdiobus;
1594 SET_NETDEV_DEV(dev, &pdev->dev);
1595 err = register_netdev(dev);
1596 if (err)
1597 goto err_mdiobus;
1598 return 0;
1599
1600 err_mdiobus:
1601 mdiobus_unregister(pep->smi_bus);
1602 err_free_mdio:
1603 mdiobus_free(pep->smi_bus);
1604 err_base:
1605 iounmap(pep->base);
1606 err_netdev:
1607 free_netdev(dev);
1608 err_clk:
1609 clk_disable(clk);
1610 clk_put(clk);
1611 return err;
1612 }
1613
pxa168_eth_remove(struct platform_device * pdev)1614 static int pxa168_eth_remove(struct platform_device *pdev)
1615 {
1616 struct net_device *dev = platform_get_drvdata(pdev);
1617 struct pxa168_eth_private *pep = netdev_priv(dev);
1618
1619 if (pep->htpr) {
1620 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1621 pep->htpr, pep->htpr_dma);
1622 pep->htpr = NULL;
1623 }
1624 if (pep->clk) {
1625 clk_disable(pep->clk);
1626 clk_put(pep->clk);
1627 pep->clk = NULL;
1628 }
1629 if (pep->phy != NULL)
1630 phy_detach(pep->phy);
1631
1632 iounmap(pep->base);
1633 pep->base = NULL;
1634 mdiobus_unregister(pep->smi_bus);
1635 mdiobus_free(pep->smi_bus);
1636 unregister_netdev(dev);
1637 cancel_work_sync(&pep->tx_timeout_task);
1638 free_netdev(dev);
1639 return 0;
1640 }
1641
pxa168_eth_shutdown(struct platform_device * pdev)1642 static void pxa168_eth_shutdown(struct platform_device *pdev)
1643 {
1644 struct net_device *dev = platform_get_drvdata(pdev);
1645 eth_port_reset(dev);
1646 }
1647
1648 #ifdef CONFIG_PM
pxa168_eth_resume(struct platform_device * pdev)1649 static int pxa168_eth_resume(struct platform_device *pdev)
1650 {
1651 return -ENOSYS;
1652 }
1653
pxa168_eth_suspend(struct platform_device * pdev,pm_message_t state)1654 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1655 {
1656 return -ENOSYS;
1657 }
1658
1659 #else
1660 #define pxa168_eth_resume NULL
1661 #define pxa168_eth_suspend NULL
1662 #endif
1663
1664 static const struct of_device_id pxa168_eth_of_match[] = {
1665 { .compatible = "marvell,pxa168-eth" },
1666 { },
1667 };
1668 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1669
1670 static struct platform_driver pxa168_eth_driver = {
1671 .probe = pxa168_eth_probe,
1672 .remove = pxa168_eth_remove,
1673 .shutdown = pxa168_eth_shutdown,
1674 .resume = pxa168_eth_resume,
1675 .suspend = pxa168_eth_suspend,
1676 .driver = {
1677 .name = DRIVER_NAME,
1678 .of_match_table = of_match_ptr(pxa168_eth_of_match),
1679 },
1680 };
1681
1682 module_platform_driver(pxa168_eth_driver);
1683
1684 MODULE_LICENSE("GPL");
1685 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1686 MODULE_ALIAS("platform:pxa168_eth");
1687