• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49 
50 #define DRIVER_NAME	"pxa168-eth"
51 #define DRIVER_VERSION	"0.3"
52 
53 /*
54  * Registers
55  */
56 
57 #define PHY_ADDRESS		0x0000
58 #define SMI			0x0010
59 #define PORT_CONFIG		0x0400
60 #define PORT_CONFIG_EXT		0x0408
61 #define PORT_COMMAND		0x0410
62 #define PORT_STATUS		0x0418
63 #define HTPR			0x0428
64 #define MAC_ADDR_LOW		0x0430
65 #define MAC_ADDR_HIGH		0x0438
66 #define SDMA_CONFIG		0x0440
67 #define SDMA_CMD		0x0448
68 #define INT_CAUSE		0x0450
69 #define INT_W_CLEAR		0x0454
70 #define INT_MASK		0x0458
71 #define ETH_F_RX_DESC_0		0x0480
72 #define ETH_C_RX_DESC_0		0x04A0
73 #define ETH_C_TX_DESC_1		0x04E4
74 
75 /* smi register */
76 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
78 #define SMI_OP_W		(0 << 26)	/* Write operation      */
79 #define SMI_OP_R		(1 << 26)	/* Read operation */
80 
81 #define PHY_WAIT_ITERATIONS	10
82 
83 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA	(1 << 31)
86 
87 /* RX descriptor status */
88 #define RX_EN_INT		(1 << 23)
89 #define RX_FIRST_DESC		(1 << 17)
90 #define RX_LAST_DESC		(1 << 16)
91 #define RX_ERROR		(1 << 15)
92 
93 /* TX descriptor command */
94 #define TX_EN_INT		(1 << 23)
95 #define TX_GEN_CRC		(1 << 22)
96 #define TX_ZERO_PADDING		(1 << 18)
97 #define TX_FIRST_DESC		(1 << 17)
98 #define TX_LAST_DESC		(1 << 16)
99 #define TX_ERROR		(1 << 15)
100 
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT		(1 << 31)
103 #define SDMA_CMD_TXDL		(1 << 24)
104 #define SDMA_CMD_TXDH		(1 << 23)
105 #define SDMA_CMD_AR		(1 << 15)
106 #define SDMA_CMD_ERD		(1 << 7)
107 
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_HS			(1 << 12)
110 #define PCR_EN			(1 << 7)
111 #define PCR_PM			(1 << 0)
112 
113 /* Bit definitions of the Port Config Extend Reg */
114 #define PCXR_2BSM		(1 << 28)
115 #define PCXR_DSCP_EN		(1 << 21)
116 #define PCXR_MFL_1518		(0 << 14)
117 #define PCXR_MFL_1536		(1 << 14)
118 #define PCXR_MFL_2048		(2 << 14)
119 #define PCXR_MFL_64K		(3 << 14)
120 #define PCXR_FLP		(1 << 11)
121 #define PCXR_PRIO_TX_OFF	3
122 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
123 
124 /* Bit definitions of the SDMA Config Reg */
125 #define SDCR_BSZ_OFF		12
126 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
127 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
128 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
129 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
130 #define SDCR_BLMR		(1 << 6)
131 #define SDCR_BLMT		(1 << 7)
132 #define SDCR_RIFB		(1 << 9)
133 #define SDCR_RC_OFF		2
134 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
135 
136 /*
137  * Bit definitions of the Interrupt Cause Reg
138  * and Interrupt MASK Reg is the same
139  */
140 #define ICR_RXBUF		(1 << 0)
141 #define ICR_TXBUF_H		(1 << 2)
142 #define ICR_TXBUF_L		(1 << 3)
143 #define ICR_TXEND_H		(1 << 6)
144 #define ICR_TXEND_L		(1 << 7)
145 #define ICR_RXERR		(1 << 8)
146 #define ICR_TXERR_H		(1 << 10)
147 #define ICR_TXERR_L		(1 << 11)
148 #define ICR_TX_UDR		(1 << 13)
149 #define ICR_MII_CH		(1 << 28)
150 
151 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
152 				ICR_TXERR_H  | ICR_TXERR_L |\
153 				ICR_TXEND_H  | ICR_TXEND_L |\
154 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
155 
156 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
157 
158 #define NUM_RX_DESCS		64
159 #define NUM_TX_DESCS		64
160 
161 #define HASH_ADD		0
162 #define HASH_DELETE		1
163 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
164 #define HOP_NUMBER		12
165 
166 /* Bit definitions for Port status */
167 #define PORT_SPEED_100		(1 << 0)
168 #define FULL_DUPLEX		(1 << 1)
169 #define FLOW_CONTROL_DISABLED	(1 << 2)
170 #define LINK_UP			(1 << 3)
171 
172 /* Bit definitions for work to be done */
173 #define WORK_LINK		(1 << 0)
174 #define WORK_TX_DONE		(1 << 1)
175 
176 /*
177  * Misc definitions.
178  */
179 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
180 
181 struct rx_desc {
182 	u32 cmd_sts;		/* Descriptor command status            */
183 	u16 byte_cnt;		/* Descriptor buffer byte count         */
184 	u16 buf_size;		/* Buffer size                          */
185 	u32 buf_ptr;		/* Descriptor buffer pointer            */
186 	u32 next_desc_ptr;	/* Next descriptor pointer              */
187 };
188 
189 struct tx_desc {
190 	u32 cmd_sts;		/* Command/status field                 */
191 	u16 reserved;
192 	u16 byte_cnt;		/* buffer byte count                    */
193 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
194 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
195 };
196 
197 struct pxa168_eth_private {
198 	int port_num;		/* User Ethernet port number    */
199 	int phy_addr;
200 
201 	int rx_resource_err;	/* Rx ring resource error flag */
202 
203 	/* Next available and first returning Rx resource */
204 	int rx_curr_desc_q, rx_used_desc_q;
205 
206 	/* Next available and first returning Tx resource */
207 	int tx_curr_desc_q, tx_used_desc_q;
208 
209 	struct rx_desc *p_rx_desc_area;
210 	dma_addr_t rx_desc_dma;
211 	int rx_desc_area_size;
212 	struct sk_buff **rx_skb;
213 
214 	struct tx_desc *p_tx_desc_area;
215 	dma_addr_t tx_desc_dma;
216 	int tx_desc_area_size;
217 	struct sk_buff **tx_skb;
218 
219 	struct work_struct tx_timeout_task;
220 
221 	struct net_device *dev;
222 	struct napi_struct napi;
223 	u8 work_todo;
224 	int skb_size;
225 
226 	/* Size of Tx Ring per queue */
227 	int tx_ring_size;
228 	/* Number of tx descriptors in use */
229 	int tx_desc_count;
230 	/* Size of Rx Ring per queue */
231 	int rx_ring_size;
232 	/* Number of rx descriptors in use */
233 	int rx_desc_count;
234 
235 	/*
236 	 * Used in case RX Ring is empty, which can occur when
237 	 * system does not have resources (skb's)
238 	 */
239 	struct timer_list timeout;
240 	struct mii_bus *smi_bus;
241 	struct phy_device *phy;
242 
243 	/* clock */
244 	struct clk *clk;
245 	struct pxa168_eth_platform_data *pd;
246 	/*
247 	 * Ethernet controller base address.
248 	 */
249 	void __iomem *base;
250 
251 	/* Pointer to the hardware address filter table */
252 	void *htpr;
253 	dma_addr_t htpr_dma;
254 };
255 
256 struct addr_table_entry {
257 	__le32 lo;
258 	__le32 hi;
259 };
260 
261 /* Bit fields of a Hash Table Entry */
262 enum hash_table_entry {
263 	HASH_ENTRY_VALID = 1,
264 	SKIP = 2,
265 	HASH_ENTRY_RECEIVE_DISCARD = 4,
266 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
267 };
268 
269 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
270 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
271 static int pxa168_init_hw(struct pxa168_eth_private *pep);
272 static void eth_port_reset(struct net_device *dev);
273 static void eth_port_start(struct net_device *dev);
274 static int pxa168_eth_open(struct net_device *dev);
275 static int pxa168_eth_stop(struct net_device *dev);
276 static int ethernet_phy_setup(struct net_device *dev);
277 
rdl(struct pxa168_eth_private * pep,int offset)278 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
279 {
280 	return readl(pep->base + offset);
281 }
282 
wrl(struct pxa168_eth_private * pep,int offset,u32 data)283 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
284 {
285 	writel(data, pep->base + offset);
286 }
287 
abort_dma(struct pxa168_eth_private * pep)288 static void abort_dma(struct pxa168_eth_private *pep)
289 {
290 	int delay;
291 	int max_retries = 40;
292 
293 	do {
294 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
295 		udelay(100);
296 
297 		delay = 10;
298 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
299 		       && delay-- > 0) {
300 			udelay(10);
301 		}
302 	} while (max_retries-- > 0 && delay <= 0);
303 
304 	if (max_retries <= 0)
305 		netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
306 }
307 
ethernet_phy_get(struct pxa168_eth_private * pep)308 static int ethernet_phy_get(struct pxa168_eth_private *pep)
309 {
310 	unsigned int reg_data;
311 
312 	reg_data = rdl(pep, PHY_ADDRESS);
313 
314 	return (reg_data >> (5 * pep->port_num)) & 0x1f;
315 }
316 
ethernet_phy_set_addr(struct pxa168_eth_private * pep,int phy_addr)317 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
318 {
319 	u32 reg_data;
320 	int addr_shift = 5 * pep->port_num;
321 
322 	reg_data = rdl(pep, PHY_ADDRESS);
323 	reg_data &= ~(0x1f << addr_shift);
324 	reg_data |= (phy_addr & 0x1f) << addr_shift;
325 	wrl(pep, PHY_ADDRESS, reg_data);
326 }
327 
rxq_refill(struct net_device * dev)328 static void rxq_refill(struct net_device *dev)
329 {
330 	struct pxa168_eth_private *pep = netdev_priv(dev);
331 	struct sk_buff *skb;
332 	struct rx_desc *p_used_rx_desc;
333 	int used_rx_desc;
334 
335 	while (pep->rx_desc_count < pep->rx_ring_size) {
336 		int size;
337 
338 		skb = netdev_alloc_skb(dev, pep->skb_size);
339 		if (!skb)
340 			break;
341 		if (SKB_DMA_REALIGN)
342 			skb_reserve(skb, SKB_DMA_REALIGN);
343 		pep->rx_desc_count++;
344 		/* Get 'used' Rx descriptor */
345 		used_rx_desc = pep->rx_used_desc_q;
346 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
347 		size = skb_end_pointer(skb) - skb->data;
348 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
349 							 skb->data,
350 							 size,
351 							 DMA_FROM_DEVICE);
352 		p_used_rx_desc->buf_size = size;
353 		pep->rx_skb[used_rx_desc] = skb;
354 
355 		/* Return the descriptor to DMA ownership */
356 		wmb();
357 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
358 		wmb();
359 
360 		/* Move the used descriptor pointer to the next descriptor */
361 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
362 
363 		/* Any Rx return cancels the Rx resource error status */
364 		pep->rx_resource_err = 0;
365 
366 		skb_reserve(skb, ETH_HW_IP_ALIGN);
367 	}
368 
369 	/*
370 	 * If RX ring is empty of SKB, set a timer to try allocating
371 	 * again at a later time.
372 	 */
373 	if (pep->rx_desc_count == 0) {
374 		pep->timeout.expires = jiffies + (HZ / 10);
375 		add_timer(&pep->timeout);
376 	}
377 }
378 
rxq_refill_timer_wrapper(unsigned long data)379 static inline void rxq_refill_timer_wrapper(unsigned long data)
380 {
381 	struct pxa168_eth_private *pep = (void *)data;
382 	napi_schedule(&pep->napi);
383 }
384 
flip_8_bits(u8 x)385 static inline u8 flip_8_bits(u8 x)
386 {
387 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
388 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
389 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
390 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
391 }
392 
nibble_swap_every_byte(unsigned char * mac_addr)393 static void nibble_swap_every_byte(unsigned char *mac_addr)
394 {
395 	int i;
396 	for (i = 0; i < ETH_ALEN; i++) {
397 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
398 				((mac_addr[i] & 0xf0) >> 4);
399 	}
400 }
401 
inverse_every_nibble(unsigned char * mac_addr)402 static void inverse_every_nibble(unsigned char *mac_addr)
403 {
404 	int i;
405 	for (i = 0; i < ETH_ALEN; i++)
406 		mac_addr[i] = flip_8_bits(mac_addr[i]);
407 }
408 
409 /*
410  * ----------------------------------------------------------------------------
411  * This function will calculate the hash function of the address.
412  * Inputs
413  * mac_addr_orig    - MAC address.
414  * Outputs
415  * return the calculated entry.
416  */
hash_function(unsigned char * mac_addr_orig)417 static u32 hash_function(unsigned char *mac_addr_orig)
418 {
419 	u32 hash_result;
420 	u32 addr0;
421 	u32 addr1;
422 	u32 addr2;
423 	u32 addr3;
424 	unsigned char mac_addr[ETH_ALEN];
425 
426 	/* Make a copy of MAC address since we are going to performe bit
427 	 * operations on it
428 	 */
429 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
430 
431 	nibble_swap_every_byte(mac_addr);
432 	inverse_every_nibble(mac_addr);
433 
434 	addr0 = (mac_addr[5] >> 2) & 0x3f;
435 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
436 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
437 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
438 
439 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
440 	hash_result = hash_result & 0x07ff;
441 	return hash_result;
442 }
443 
444 /*
445  * ----------------------------------------------------------------------------
446  * This function will add/del an entry to the address table.
447  * Inputs
448  * pep - ETHERNET .
449  * mac_addr - MAC address.
450  * skip - if 1, skip this address.Used in case of deleting an entry which is a
451  *	  part of chain in the hash table.We can't just delete the entry since
452  *	  that will break the chain.We need to defragment the tables time to
453  *	  time.
454  * rd   - 0 Discard packet upon match.
455  *	- 1 Receive packet upon match.
456  * Outputs
457  * address table entry is added/deleted.
458  * 0 if success.
459  * -ENOSPC if table full
460  */
add_del_hash_entry(struct pxa168_eth_private * pep,unsigned char * mac_addr,u32 rd,u32 skip,int del)461 static int add_del_hash_entry(struct pxa168_eth_private *pep,
462 			      unsigned char *mac_addr,
463 			      u32 rd, u32 skip, int del)
464 {
465 	struct addr_table_entry *entry, *start;
466 	u32 new_high;
467 	u32 new_low;
468 	u32 i;
469 
470 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
471 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
472 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
473 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
474 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
475 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
476 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
477 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
478 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
479 	    | HASH_ENTRY_VALID;
480 
481 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
482 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
483 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
484 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
485 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
486 
487 	/*
488 	 * Pick the appropriate table, start scanning for free/reusable
489 	 * entries at the index obtained by hashing the specified MAC address
490 	 */
491 	start = pep->htpr;
492 	entry = start + hash_function(mac_addr);
493 	for (i = 0; i < HOP_NUMBER; i++) {
494 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
495 			break;
496 		} else {
497 			/* if same address put in same position */
498 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
499 				(new_low & 0xfffffff8)) &&
500 				(le32_to_cpu(entry->hi) == new_high)) {
501 				break;
502 			}
503 		}
504 		if (entry == start + 0x7ff)
505 			entry = start;
506 		else
507 			entry++;
508 	}
509 
510 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
511 	    (le32_to_cpu(entry->hi) != new_high) && del)
512 		return 0;
513 
514 	if (i == HOP_NUMBER) {
515 		if (!del) {
516 			netdev_info(pep->dev,
517 				    "%s: table section is full, need to "
518 				    "move to 16kB implementation?\n",
519 				    __FILE__);
520 			return -ENOSPC;
521 		} else
522 			return 0;
523 	}
524 
525 	/*
526 	 * Update the selected entry
527 	 */
528 	if (del) {
529 		entry->hi = 0;
530 		entry->lo = 0;
531 	} else {
532 		entry->hi = cpu_to_le32(new_high);
533 		entry->lo = cpu_to_le32(new_low);
534 	}
535 
536 	return 0;
537 }
538 
539 /*
540  * ----------------------------------------------------------------------------
541  *  Create an addressTable entry from MAC address info
542  *  found in the specifed net_device struct
543  *
544  *  Input : pointer to ethernet interface network device structure
545  *  Output : N/A
546  */
update_hash_table_mac_address(struct pxa168_eth_private * pep,unsigned char * oaddr,unsigned char * addr)547 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
548 					  unsigned char *oaddr,
549 					  unsigned char *addr)
550 {
551 	/* Delete old entry */
552 	if (oaddr)
553 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
554 	/* Add new entry */
555 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
556 }
557 
init_hash_table(struct pxa168_eth_private * pep)558 static int init_hash_table(struct pxa168_eth_private *pep)
559 {
560 	/*
561 	 * Hardware expects CPU to build a hash table based on a predefined
562 	 * hash function and populate it based on hardware address. The
563 	 * location of the hash table is identified by 32-bit pointer stored
564 	 * in HTPR internal register. Two possible sizes exists for the hash
565 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
566 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
567 	 * 1/2kB.
568 	 */
569 	/* TODO: Add support for 8kB hash table and alternative hash
570 	 * function.Driver can dynamically switch to them if the 1/2kB hash
571 	 * table is full.
572 	 */
573 	if (pep->htpr == NULL) {
574 		pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
575 						HASH_ADDR_TABLE_SIZE,
576 						&pep->htpr_dma, GFP_KERNEL);
577 		if (pep->htpr == NULL)
578 			return -ENOMEM;
579 	} else {
580 		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
581 	}
582 	wrl(pep, HTPR, pep->htpr_dma);
583 	return 0;
584 }
585 
pxa168_eth_set_rx_mode(struct net_device * dev)586 static void pxa168_eth_set_rx_mode(struct net_device *dev)
587 {
588 	struct pxa168_eth_private *pep = netdev_priv(dev);
589 	struct netdev_hw_addr *ha;
590 	u32 val;
591 
592 	val = rdl(pep, PORT_CONFIG);
593 	if (dev->flags & IFF_PROMISC)
594 		val |= PCR_PM;
595 	else
596 		val &= ~PCR_PM;
597 	wrl(pep, PORT_CONFIG, val);
598 
599 	/*
600 	 * Remove the old list of MAC address and add dev->addr
601 	 * and multicast address.
602 	 */
603 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
604 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
605 
606 	netdev_for_each_mc_addr(ha, dev)
607 		update_hash_table_mac_address(pep, NULL, ha->addr);
608 }
609 
pxa168_eth_get_mac_address(struct net_device * dev,unsigned char * addr)610 static void pxa168_eth_get_mac_address(struct net_device *dev,
611 				       unsigned char *addr)
612 {
613 	struct pxa168_eth_private *pep = netdev_priv(dev);
614 	unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
615 	unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
616 
617 	addr[0] = (mac_h >> 24) & 0xff;
618 	addr[1] = (mac_h >> 16) & 0xff;
619 	addr[2] = (mac_h >> 8) & 0xff;
620 	addr[3] = mac_h & 0xff;
621 	addr[4] = (mac_l >> 8) & 0xff;
622 	addr[5] = mac_l & 0xff;
623 }
624 
pxa168_eth_set_mac_address(struct net_device * dev,void * addr)625 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
626 {
627 	struct sockaddr *sa = addr;
628 	struct pxa168_eth_private *pep = netdev_priv(dev);
629 	unsigned char oldMac[ETH_ALEN];
630 	u32 mac_h, mac_l;
631 
632 	if (!is_valid_ether_addr(sa->sa_data))
633 		return -EADDRNOTAVAIL;
634 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
635 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
636 
637 	mac_h = dev->dev_addr[0] << 24;
638 	mac_h |= dev->dev_addr[1] << 16;
639 	mac_h |= dev->dev_addr[2] << 8;
640 	mac_h |= dev->dev_addr[3];
641 	mac_l = dev->dev_addr[4] << 8;
642 	mac_l |= dev->dev_addr[5];
643 	wrl(pep, MAC_ADDR_HIGH, mac_h);
644 	wrl(pep, MAC_ADDR_LOW, mac_l);
645 
646 	netif_addr_lock_bh(dev);
647 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
648 	netif_addr_unlock_bh(dev);
649 	return 0;
650 }
651 
eth_port_start(struct net_device * dev)652 static void eth_port_start(struct net_device *dev)
653 {
654 	unsigned int val = 0;
655 	struct pxa168_eth_private *pep = netdev_priv(dev);
656 	int tx_curr_desc, rx_curr_desc;
657 
658 	/* Perform PHY reset, if there is a PHY. */
659 	if (pep->phy != NULL) {
660 		struct ethtool_cmd cmd;
661 
662 		pxa168_get_settings(pep->dev, &cmd);
663 		phy_init_hw(pep->phy);
664 		pxa168_set_settings(pep->dev, &cmd);
665 	}
666 
667 	/* Assignment of Tx CTRP of given queue */
668 	tx_curr_desc = pep->tx_curr_desc_q;
669 	wrl(pep, ETH_C_TX_DESC_1,
670 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
671 
672 	/* Assignment of Rx CRDP of given queue */
673 	rx_curr_desc = pep->rx_curr_desc_q;
674 	wrl(pep, ETH_C_RX_DESC_0,
675 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
676 
677 	wrl(pep, ETH_F_RX_DESC_0,
678 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
679 
680 	/* Clear all interrupts */
681 	wrl(pep, INT_CAUSE, 0);
682 
683 	/* Enable all interrupts for receive, transmit and error. */
684 	wrl(pep, INT_MASK, ALL_INTS);
685 
686 	val = rdl(pep, PORT_CONFIG);
687 	val |= PCR_EN;
688 	wrl(pep, PORT_CONFIG, val);
689 
690 	/* Start RX DMA engine */
691 	val = rdl(pep, SDMA_CMD);
692 	val |= SDMA_CMD_ERD;
693 	wrl(pep, SDMA_CMD, val);
694 }
695 
eth_port_reset(struct net_device * dev)696 static void eth_port_reset(struct net_device *dev)
697 {
698 	struct pxa168_eth_private *pep = netdev_priv(dev);
699 	unsigned int val = 0;
700 
701 	/* Stop all interrupts for receive, transmit and error. */
702 	wrl(pep, INT_MASK, 0);
703 
704 	/* Clear all interrupts */
705 	wrl(pep, INT_CAUSE, 0);
706 
707 	/* Stop RX DMA */
708 	val = rdl(pep, SDMA_CMD);
709 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
710 
711 	/* Abort any transmit and receive operations and put DMA
712 	 * in idle state.
713 	 */
714 	abort_dma(pep);
715 
716 	/* Disable port */
717 	val = rdl(pep, PORT_CONFIG);
718 	val &= ~PCR_EN;
719 	wrl(pep, PORT_CONFIG, val);
720 }
721 
722 /*
723  * txq_reclaim - Free the tx desc data for completed descriptors
724  * If force is non-zero, frees uncompleted descriptors as well
725  */
txq_reclaim(struct net_device * dev,int force)726 static int txq_reclaim(struct net_device *dev, int force)
727 {
728 	struct pxa168_eth_private *pep = netdev_priv(dev);
729 	struct tx_desc *desc;
730 	u32 cmd_sts;
731 	struct sk_buff *skb;
732 	int tx_index;
733 	dma_addr_t addr;
734 	int count;
735 	int released = 0;
736 
737 	netif_tx_lock(dev);
738 
739 	pep->work_todo &= ~WORK_TX_DONE;
740 	while (pep->tx_desc_count > 0) {
741 		tx_index = pep->tx_used_desc_q;
742 		desc = &pep->p_tx_desc_area[tx_index];
743 		cmd_sts = desc->cmd_sts;
744 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
745 			if (released > 0) {
746 				goto txq_reclaim_end;
747 			} else {
748 				released = -1;
749 				goto txq_reclaim_end;
750 			}
751 		}
752 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
753 		pep->tx_desc_count--;
754 		addr = desc->buf_ptr;
755 		count = desc->byte_cnt;
756 		skb = pep->tx_skb[tx_index];
757 		if (skb)
758 			pep->tx_skb[tx_index] = NULL;
759 
760 		if (cmd_sts & TX_ERROR) {
761 			if (net_ratelimit())
762 				netdev_err(dev, "Error in TX\n");
763 			dev->stats.tx_errors++;
764 		}
765 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
766 		if (skb)
767 			dev_kfree_skb_irq(skb);
768 		released++;
769 	}
770 txq_reclaim_end:
771 	netif_tx_unlock(dev);
772 	return released;
773 }
774 
pxa168_eth_tx_timeout(struct net_device * dev)775 static void pxa168_eth_tx_timeout(struct net_device *dev)
776 {
777 	struct pxa168_eth_private *pep = netdev_priv(dev);
778 
779 	netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
780 
781 	schedule_work(&pep->tx_timeout_task);
782 }
783 
pxa168_eth_tx_timeout_task(struct work_struct * work)784 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
785 {
786 	struct pxa168_eth_private *pep = container_of(work,
787 						 struct pxa168_eth_private,
788 						 tx_timeout_task);
789 	struct net_device *dev = pep->dev;
790 	pxa168_eth_stop(dev);
791 	pxa168_eth_open(dev);
792 }
793 
rxq_process(struct net_device * dev,int budget)794 static int rxq_process(struct net_device *dev, int budget)
795 {
796 	struct pxa168_eth_private *pep = netdev_priv(dev);
797 	struct net_device_stats *stats = &dev->stats;
798 	unsigned int received_packets = 0;
799 	struct sk_buff *skb;
800 
801 	while (budget-- > 0) {
802 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
803 		struct rx_desc *rx_desc;
804 		unsigned int cmd_sts;
805 
806 		/* Do not process Rx ring in case of Rx ring resource error */
807 		if (pep->rx_resource_err)
808 			break;
809 		rx_curr_desc = pep->rx_curr_desc_q;
810 		rx_used_desc = pep->rx_used_desc_q;
811 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
812 		cmd_sts = rx_desc->cmd_sts;
813 		rmb();
814 		if (cmd_sts & (BUF_OWNED_BY_DMA))
815 			break;
816 		skb = pep->rx_skb[rx_curr_desc];
817 		pep->rx_skb[rx_curr_desc] = NULL;
818 
819 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
820 		pep->rx_curr_desc_q = rx_next_curr_desc;
821 
822 		/* Rx descriptors exhausted. */
823 		/* Set the Rx ring resource error flag */
824 		if (rx_next_curr_desc == rx_used_desc)
825 			pep->rx_resource_err = 1;
826 		pep->rx_desc_count--;
827 		dma_unmap_single(NULL, rx_desc->buf_ptr,
828 				 rx_desc->buf_size,
829 				 DMA_FROM_DEVICE);
830 		received_packets++;
831 		/*
832 		 * Update statistics.
833 		 * Note byte count includes 4 byte CRC count
834 		 */
835 		stats->rx_packets++;
836 		stats->rx_bytes += rx_desc->byte_cnt;
837 		/*
838 		 * In case received a packet without first / last bits on OR
839 		 * the error summary bit is on, the packets needs to be droped.
840 		 */
841 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
842 		     (RX_FIRST_DESC | RX_LAST_DESC))
843 		    || (cmd_sts & RX_ERROR)) {
844 
845 			stats->rx_dropped++;
846 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
847 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
848 				if (net_ratelimit())
849 					netdev_err(dev,
850 						   "Rx pkt on multiple desc\n");
851 			}
852 			if (cmd_sts & RX_ERROR)
853 				stats->rx_errors++;
854 			dev_kfree_skb_irq(skb);
855 		} else {
856 			/*
857 			 * The -4 is for the CRC in the trailer of the
858 			 * received packet
859 			 */
860 			skb_put(skb, rx_desc->byte_cnt - 4);
861 			skb->protocol = eth_type_trans(skb, dev);
862 			netif_receive_skb(skb);
863 		}
864 	}
865 	/* Fill RX ring with skb's */
866 	rxq_refill(dev);
867 	return received_packets;
868 }
869 
pxa168_eth_collect_events(struct pxa168_eth_private * pep,struct net_device * dev)870 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
871 				     struct net_device *dev)
872 {
873 	u32 icr;
874 	int ret = 0;
875 
876 	icr = rdl(pep, INT_CAUSE);
877 	if (icr == 0)
878 		return IRQ_NONE;
879 
880 	wrl(pep, INT_CAUSE, ~icr);
881 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
882 		pep->work_todo |= WORK_TX_DONE;
883 		ret = 1;
884 	}
885 	if (icr & ICR_RXBUF)
886 		ret = 1;
887 	if (icr & ICR_MII_CH) {
888 		pep->work_todo |= WORK_LINK;
889 		ret = 1;
890 	}
891 	return ret;
892 }
893 
handle_link_event(struct pxa168_eth_private * pep)894 static void handle_link_event(struct pxa168_eth_private *pep)
895 {
896 	struct net_device *dev = pep->dev;
897 	u32 port_status;
898 	int speed;
899 	int duplex;
900 	int fc;
901 
902 	port_status = rdl(pep, PORT_STATUS);
903 	if (!(port_status & LINK_UP)) {
904 		if (netif_carrier_ok(dev)) {
905 			netdev_info(dev, "link down\n");
906 			netif_carrier_off(dev);
907 			txq_reclaim(dev, 1);
908 		}
909 		return;
910 	}
911 	if (port_status & PORT_SPEED_100)
912 		speed = 100;
913 	else
914 		speed = 10;
915 
916 	duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
917 	fc = (port_status & FLOW_CONTROL_DISABLED) ? 0 : 1;
918 	netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n",
919 		    speed, duplex ? "full" : "half", fc ? "en" : "dis");
920 	if (!netif_carrier_ok(dev))
921 		netif_carrier_on(dev);
922 }
923 
pxa168_eth_int_handler(int irq,void * dev_id)924 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
925 {
926 	struct net_device *dev = (struct net_device *)dev_id;
927 	struct pxa168_eth_private *pep = netdev_priv(dev);
928 
929 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
930 		return IRQ_NONE;
931 	/* Disable interrupts */
932 	wrl(pep, INT_MASK, 0);
933 	napi_schedule(&pep->napi);
934 	return IRQ_HANDLED;
935 }
936 
pxa168_eth_recalc_skb_size(struct pxa168_eth_private * pep)937 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
938 {
939 	int skb_size;
940 
941 	/*
942 	 * Reserve 2+14 bytes for an ethernet header (the hardware
943 	 * automatically prepends 2 bytes of dummy data to each
944 	 * received packet), 16 bytes for up to four VLAN tags, and
945 	 * 4 bytes for the trailing FCS -- 36 bytes total.
946 	 */
947 	skb_size = pep->dev->mtu + 36;
948 
949 	/*
950 	 * Make sure that the skb size is a multiple of 8 bytes, as
951 	 * the lower three bits of the receive descriptor's buffer
952 	 * size field are ignored by the hardware.
953 	 */
954 	pep->skb_size = (skb_size + 7) & ~7;
955 
956 	/*
957 	 * If NET_SKB_PAD is smaller than a cache line,
958 	 * netdev_alloc_skb() will cause skb->data to be misaligned
959 	 * to a cache line boundary.  If this is the case, include
960 	 * some extra space to allow re-aligning the data area.
961 	 */
962 	pep->skb_size += SKB_DMA_REALIGN;
963 
964 }
965 
set_port_config_ext(struct pxa168_eth_private * pep)966 static int set_port_config_ext(struct pxa168_eth_private *pep)
967 {
968 	int skb_size;
969 
970 	pxa168_eth_recalc_skb_size(pep);
971 	if  (pep->skb_size <= 1518)
972 		skb_size = PCXR_MFL_1518;
973 	else if (pep->skb_size <= 1536)
974 		skb_size = PCXR_MFL_1536;
975 	else if (pep->skb_size <= 2048)
976 		skb_size = PCXR_MFL_2048;
977 	else
978 		skb_size = PCXR_MFL_64K;
979 
980 	/* Extended Port Configuration */
981 	wrl(pep,
982 	    PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
983 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
984 	    skb_size | PCXR_FLP |	 /* do not force link pass */
985 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
986 
987 	return 0;
988 }
989 
pxa168_init_hw(struct pxa168_eth_private * pep)990 static int pxa168_init_hw(struct pxa168_eth_private *pep)
991 {
992 	int err = 0;
993 
994 	/* Disable interrupts */
995 	wrl(pep, INT_MASK, 0);
996 	wrl(pep, INT_CAUSE, 0);
997 	/* Write to ICR to clear interrupts. */
998 	wrl(pep, INT_W_CLEAR, 0);
999 	/* Abort any transmit and receive operations and put DMA
1000 	 * in idle state.
1001 	 */
1002 	abort_dma(pep);
1003 	/* Initialize address hash table */
1004 	err = init_hash_table(pep);
1005 	if (err)
1006 		return err;
1007 	/* SDMA configuration */
1008 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
1009 	    SDCR_RIFB |				/* Rx interrupt on frame */
1010 	    SDCR_BLMT |				/* Little endian transmit */
1011 	    SDCR_BLMR |				/* Little endian receive */
1012 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1013 	/* Port Configuration */
1014 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1015 	set_port_config_ext(pep);
1016 
1017 	return err;
1018 }
1019 
rxq_init(struct net_device * dev)1020 static int rxq_init(struct net_device *dev)
1021 {
1022 	struct pxa168_eth_private *pep = netdev_priv(dev);
1023 	struct rx_desc *p_rx_desc;
1024 	int size = 0, i = 0;
1025 	int rx_desc_num = pep->rx_ring_size;
1026 
1027 	/* Allocate RX skb rings */
1028 	pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1029 			     GFP_KERNEL);
1030 	if (!pep->rx_skb)
1031 		return -ENOMEM;
1032 
1033 	/* Allocate RX ring */
1034 	pep->rx_desc_count = 0;
1035 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1036 	pep->rx_desc_area_size = size;
1037 	pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1038 						  &pep->rx_desc_dma,
1039 						  GFP_KERNEL);
1040 	if (!pep->p_rx_desc_area)
1041 		goto out;
1042 
1043 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1044 	p_rx_desc = pep->p_rx_desc_area;
1045 	for (i = 0; i < rx_desc_num; i++) {
1046 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1047 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1048 	}
1049 	/* Save Rx desc pointer to driver struct. */
1050 	pep->rx_curr_desc_q = 0;
1051 	pep->rx_used_desc_q = 0;
1052 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1053 	return 0;
1054 out:
1055 	kfree(pep->rx_skb);
1056 	return -ENOMEM;
1057 }
1058 
rxq_deinit(struct net_device * dev)1059 static void rxq_deinit(struct net_device *dev)
1060 {
1061 	struct pxa168_eth_private *pep = netdev_priv(dev);
1062 	int curr;
1063 
1064 	/* Free preallocated skb's on RX rings */
1065 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1066 		if (pep->rx_skb[curr]) {
1067 			dev_kfree_skb(pep->rx_skb[curr]);
1068 			pep->rx_desc_count--;
1069 		}
1070 	}
1071 	if (pep->rx_desc_count)
1072 		netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1073 			   pep->rx_desc_count);
1074 	/* Free RX ring */
1075 	if (pep->p_rx_desc_area)
1076 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1077 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1078 	kfree(pep->rx_skb);
1079 }
1080 
txq_init(struct net_device * dev)1081 static int txq_init(struct net_device *dev)
1082 {
1083 	struct pxa168_eth_private *pep = netdev_priv(dev);
1084 	struct tx_desc *p_tx_desc;
1085 	int size = 0, i = 0;
1086 	int tx_desc_num = pep->tx_ring_size;
1087 
1088 	pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1089 			     GFP_KERNEL);
1090 	if (!pep->tx_skb)
1091 		return -ENOMEM;
1092 
1093 	/* Allocate TX ring */
1094 	pep->tx_desc_count = 0;
1095 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1096 	pep->tx_desc_area_size = size;
1097 	pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1098 						  &pep->tx_desc_dma,
1099 						  GFP_KERNEL);
1100 	if (!pep->p_tx_desc_area)
1101 		goto out;
1102 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1103 	p_tx_desc = pep->p_tx_desc_area;
1104 	for (i = 0; i < tx_desc_num; i++) {
1105 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1106 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1107 	}
1108 	pep->tx_curr_desc_q = 0;
1109 	pep->tx_used_desc_q = 0;
1110 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1111 	return 0;
1112 out:
1113 	kfree(pep->tx_skb);
1114 	return -ENOMEM;
1115 }
1116 
txq_deinit(struct net_device * dev)1117 static void txq_deinit(struct net_device *dev)
1118 {
1119 	struct pxa168_eth_private *pep = netdev_priv(dev);
1120 
1121 	/* Free outstanding skb's on TX ring */
1122 	txq_reclaim(dev, 1);
1123 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1124 	/* Free TX ring */
1125 	if (pep->p_tx_desc_area)
1126 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1127 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1128 	kfree(pep->tx_skb);
1129 }
1130 
pxa168_eth_open(struct net_device * dev)1131 static int pxa168_eth_open(struct net_device *dev)
1132 {
1133 	struct pxa168_eth_private *pep = netdev_priv(dev);
1134 	int err;
1135 
1136 	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1137 	if (err) {
1138 		dev_err(&dev->dev, "can't assign irq\n");
1139 		return -EAGAIN;
1140 	}
1141 	pep->rx_resource_err = 0;
1142 	err = rxq_init(dev);
1143 	if (err != 0)
1144 		goto out_free_irq;
1145 	err = txq_init(dev);
1146 	if (err != 0)
1147 		goto out_free_rx_skb;
1148 	pep->rx_used_desc_q = 0;
1149 	pep->rx_curr_desc_q = 0;
1150 
1151 	/* Fill RX ring with skb's */
1152 	rxq_refill(dev);
1153 	pep->rx_used_desc_q = 0;
1154 	pep->rx_curr_desc_q = 0;
1155 	netif_carrier_off(dev);
1156 	eth_port_start(dev);
1157 	napi_enable(&pep->napi);
1158 	return 0;
1159 out_free_rx_skb:
1160 	rxq_deinit(dev);
1161 out_free_irq:
1162 	free_irq(dev->irq, dev);
1163 	return err;
1164 }
1165 
pxa168_eth_stop(struct net_device * dev)1166 static int pxa168_eth_stop(struct net_device *dev)
1167 {
1168 	struct pxa168_eth_private *pep = netdev_priv(dev);
1169 	eth_port_reset(dev);
1170 
1171 	/* Disable interrupts */
1172 	wrl(pep, INT_MASK, 0);
1173 	wrl(pep, INT_CAUSE, 0);
1174 	/* Write to ICR to clear interrupts. */
1175 	wrl(pep, INT_W_CLEAR, 0);
1176 	napi_disable(&pep->napi);
1177 	del_timer_sync(&pep->timeout);
1178 	netif_carrier_off(dev);
1179 	free_irq(dev->irq, dev);
1180 	rxq_deinit(dev);
1181 	txq_deinit(dev);
1182 
1183 	return 0;
1184 }
1185 
pxa168_eth_change_mtu(struct net_device * dev,int mtu)1186 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1187 {
1188 	int retval;
1189 	struct pxa168_eth_private *pep = netdev_priv(dev);
1190 
1191 	if ((mtu > 9500) || (mtu < 68))
1192 		return -EINVAL;
1193 
1194 	dev->mtu = mtu;
1195 	retval = set_port_config_ext(pep);
1196 
1197 	if (!netif_running(dev))
1198 		return 0;
1199 
1200 	/*
1201 	 * Stop and then re-open the interface. This will allocate RX
1202 	 * skbs of the new MTU.
1203 	 * There is a possible danger that the open will not succeed,
1204 	 * due to memory being full.
1205 	 */
1206 	pxa168_eth_stop(dev);
1207 	if (pxa168_eth_open(dev)) {
1208 		dev_err(&dev->dev,
1209 			"fatal error on re-opening device after MTU change\n");
1210 	}
1211 
1212 	return 0;
1213 }
1214 
eth_alloc_tx_desc_index(struct pxa168_eth_private * pep)1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1216 {
1217 	int tx_desc_curr;
1218 
1219 	tx_desc_curr = pep->tx_curr_desc_q;
1220 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1221 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1222 	pep->tx_desc_count++;
1223 
1224 	return tx_desc_curr;
1225 }
1226 
pxa168_rx_poll(struct napi_struct * napi,int budget)1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1228 {
1229 	struct pxa168_eth_private *pep =
1230 	    container_of(napi, struct pxa168_eth_private, napi);
1231 	struct net_device *dev = pep->dev;
1232 	int work_done = 0;
1233 
1234 	if (unlikely(pep->work_todo & WORK_LINK)) {
1235 		pep->work_todo &= ~(WORK_LINK);
1236 		handle_link_event(pep);
1237 	}
1238 	/*
1239 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1240 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1241 	 * interrupt status register.
1242 	 */
1243 	txq_reclaim(dev, 0);
1244 	if (netif_queue_stopped(dev)
1245 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1246 		netif_wake_queue(dev);
1247 	}
1248 	work_done = rxq_process(dev, budget);
1249 	if (work_done < budget) {
1250 		napi_complete(napi);
1251 		wrl(pep, INT_MASK, ALL_INTS);
1252 	}
1253 
1254 	return work_done;
1255 }
1256 
pxa168_eth_start_xmit(struct sk_buff * skb,struct net_device * dev)1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1258 {
1259 	struct pxa168_eth_private *pep = netdev_priv(dev);
1260 	struct net_device_stats *stats = &dev->stats;
1261 	struct tx_desc *desc;
1262 	int tx_index;
1263 	int length;
1264 
1265 	tx_index = eth_alloc_tx_desc_index(pep);
1266 	desc = &pep->p_tx_desc_area[tx_index];
1267 	length = skb->len;
1268 	pep->tx_skb[tx_index] = skb;
1269 	desc->byte_cnt = length;
1270 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1271 
1272 	skb_tx_timestamp(skb);
1273 
1274 	wmb();
1275 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1276 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1277 	wmb();
1278 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1279 
1280 	stats->tx_bytes += length;
1281 	stats->tx_packets++;
1282 	dev->trans_start = jiffies;
1283 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1284 		/* We handled the current skb, but now we are out of space.*/
1285 		netif_stop_queue(dev);
1286 	}
1287 
1288 	return NETDEV_TX_OK;
1289 }
1290 
smi_wait_ready(struct pxa168_eth_private * pep)1291 static int smi_wait_ready(struct pxa168_eth_private *pep)
1292 {
1293 	int i = 0;
1294 
1295 	/* wait for the SMI register to become available */
1296 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1297 		if (i == PHY_WAIT_ITERATIONS)
1298 			return -ETIMEDOUT;
1299 		msleep(10);
1300 	}
1301 
1302 	return 0;
1303 }
1304 
pxa168_smi_read(struct mii_bus * bus,int phy_addr,int regnum)1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1306 {
1307 	struct pxa168_eth_private *pep = bus->priv;
1308 	int i = 0;
1309 	int val;
1310 
1311 	if (smi_wait_ready(pep)) {
1312 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1313 		return -ETIMEDOUT;
1314 	}
1315 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1316 	/* now wait for the data to be valid */
1317 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1318 		if (i == PHY_WAIT_ITERATIONS) {
1319 			netdev_warn(pep->dev,
1320 				    "pxa168_eth: SMI bus read not valid\n");
1321 			return -ENODEV;
1322 		}
1323 		msleep(10);
1324 	}
1325 
1326 	return val & 0xffff;
1327 }
1328 
pxa168_smi_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1330 			    u16 value)
1331 {
1332 	struct pxa168_eth_private *pep = bus->priv;
1333 
1334 	if (smi_wait_ready(pep)) {
1335 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1336 		return -ETIMEDOUT;
1337 	}
1338 
1339 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1340 	    SMI_OP_W | (value & 0xffff));
1341 
1342 	if (smi_wait_ready(pep)) {
1343 		netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1344 		return -ETIMEDOUT;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
pxa168_eth_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1351 			       int cmd)
1352 {
1353 	struct pxa168_eth_private *pep = netdev_priv(dev);
1354 	if (pep->phy != NULL)
1355 		return phy_mii_ioctl(pep->phy, ifr, cmd);
1356 
1357 	return -EOPNOTSUPP;
1358 }
1359 
phy_scan(struct pxa168_eth_private * pep,int phy_addr)1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1361 {
1362 	struct mii_bus *bus = pep->smi_bus;
1363 	struct phy_device *phydev;
1364 	int start;
1365 	int num;
1366 	int i;
1367 
1368 	if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1369 		/* Scan entire range */
1370 		start = ethernet_phy_get(pep);
1371 		num = 32;
1372 	} else {
1373 		/* Use phy addr specific to platform */
1374 		start = phy_addr & 0x1f;
1375 		num = 1;
1376 	}
1377 	phydev = NULL;
1378 	for (i = 0; i < num; i++) {
1379 		int addr = (start + i) & 0x1f;
1380 		if (bus->phy_map[addr] == NULL)
1381 			mdiobus_scan(bus, addr);
1382 
1383 		if (phydev == NULL) {
1384 			phydev = bus->phy_map[addr];
1385 			if (phydev != NULL)
1386 				ethernet_phy_set_addr(pep, addr);
1387 		}
1388 	}
1389 
1390 	return phydev;
1391 }
1392 
phy_init(struct pxa168_eth_private * pep)1393 static void phy_init(struct pxa168_eth_private *pep)
1394 {
1395 	struct phy_device *phy = pep->phy;
1396 
1397 	phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII);
1398 
1399 	if (pep->pd && pep->pd->speed != 0) {
1400 		phy->autoneg = AUTONEG_DISABLE;
1401 		phy->advertising = 0;
1402 		phy->speed = pep->pd->speed;
1403 		phy->duplex = pep->pd->duplex;
1404 	} else {
1405 		phy->autoneg = AUTONEG_ENABLE;
1406 		phy->speed = 0;
1407 		phy->duplex = 0;
1408 		phy->supported &= PHY_BASIC_FEATURES;
1409 		phy->advertising = phy->supported | ADVERTISED_Autoneg;
1410 	}
1411 
1412 	phy_start_aneg(phy);
1413 }
1414 
ethernet_phy_setup(struct net_device * dev)1415 static int ethernet_phy_setup(struct net_device *dev)
1416 {
1417 	struct pxa168_eth_private *pep = netdev_priv(dev);
1418 
1419 	if (pep->pd && pep->pd->init)
1420 		pep->pd->init();
1421 
1422 	pep->phy = phy_scan(pep, pep->phy_addr & 0x1f);
1423 	if (pep->phy != NULL)
1424 		phy_init(pep);
1425 
1426 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1427 
1428 	return 0;
1429 }
1430 
pxa168_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1431 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1432 {
1433 	struct pxa168_eth_private *pep = netdev_priv(dev);
1434 	int err;
1435 
1436 	err = phy_read_status(pep->phy);
1437 	if (err == 0)
1438 		err = phy_ethtool_gset(pep->phy, cmd);
1439 
1440 	return err;
1441 }
1442 
pxa168_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1443 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1444 {
1445 	struct pxa168_eth_private *pep = netdev_priv(dev);
1446 
1447 	return phy_ethtool_sset(pep->phy, cmd);
1448 }
1449 
pxa168_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1450 static void pxa168_get_drvinfo(struct net_device *dev,
1451 			       struct ethtool_drvinfo *info)
1452 {
1453 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1454 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1455 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1456 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1457 }
1458 
1459 static const struct ethtool_ops pxa168_ethtool_ops = {
1460 	.get_settings	= pxa168_get_settings,
1461 	.set_settings	= pxa168_set_settings,
1462 	.get_drvinfo	= pxa168_get_drvinfo,
1463 	.get_link	= ethtool_op_get_link,
1464 	.get_ts_info	= ethtool_op_get_ts_info,
1465 };
1466 
1467 static const struct net_device_ops pxa168_eth_netdev_ops = {
1468 	.ndo_open		= pxa168_eth_open,
1469 	.ndo_stop		= pxa168_eth_stop,
1470 	.ndo_start_xmit		= pxa168_eth_start_xmit,
1471 	.ndo_set_rx_mode	= pxa168_eth_set_rx_mode,
1472 	.ndo_set_mac_address	= pxa168_eth_set_mac_address,
1473 	.ndo_validate_addr	= eth_validate_addr,
1474 	.ndo_do_ioctl		= pxa168_eth_do_ioctl,
1475 	.ndo_change_mtu		= pxa168_eth_change_mtu,
1476 	.ndo_tx_timeout		= pxa168_eth_tx_timeout,
1477 };
1478 
pxa168_eth_probe(struct platform_device * pdev)1479 static int pxa168_eth_probe(struct platform_device *pdev)
1480 {
1481 	struct pxa168_eth_private *pep = NULL;
1482 	struct net_device *dev = NULL;
1483 	struct resource *res;
1484 	struct clk *clk;
1485 	struct device_node *np;
1486 	const unsigned char *mac_addr = NULL;
1487 	int err;
1488 
1489 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1490 
1491 	clk = devm_clk_get(&pdev->dev, NULL);
1492 	if (IS_ERR(clk)) {
1493 		dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1494 		return -ENODEV;
1495 	}
1496 	clk_prepare_enable(clk);
1497 
1498 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1499 	if (!dev) {
1500 		err = -ENOMEM;
1501 		goto err_clk;
1502 	}
1503 
1504 	platform_set_drvdata(pdev, dev);
1505 	pep = netdev_priv(dev);
1506 	pep->dev = dev;
1507 	pep->clk = clk;
1508 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1509 	if (res == NULL) {
1510 		err = -ENODEV;
1511 		goto err_netdev;
1512 	}
1513 	pep->base = devm_ioremap_resource(&pdev->dev, res);
1514 	if (IS_ERR(pep->base)) {
1515 		err = -ENOMEM;
1516 		goto err_netdev;
1517 	}
1518 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1519 	BUG_ON(!res);
1520 	dev->irq = res->start;
1521 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1522 	dev->watchdog_timeo = 2 * HZ;
1523 	dev->base_addr = 0;
1524 	dev->ethtool_ops = &pxa168_ethtool_ops;
1525 
1526 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1527 
1528 	if (pdev->dev.of_node)
1529 		mac_addr = of_get_mac_address(pdev->dev.of_node);
1530 
1531 	if (mac_addr && is_valid_ether_addr(mac_addr)) {
1532 		ether_addr_copy(dev->dev_addr, mac_addr);
1533 	} else {
1534 		/* try reading the mac address, if set by the bootloader */
1535 		pxa168_eth_get_mac_address(dev, dev->dev_addr);
1536 		if (!is_valid_ether_addr(dev->dev_addr)) {
1537 			dev_info(&pdev->dev, "Using random mac address\n");
1538 			eth_hw_addr_random(dev);
1539 		}
1540 	}
1541 
1542 	pep->rx_ring_size = NUM_RX_DESCS;
1543 	pep->tx_ring_size = NUM_TX_DESCS;
1544 
1545 	pep->pd = dev_get_platdata(&pdev->dev);
1546 	if (pep->pd) {
1547 		if (pep->pd->rx_queue_size)
1548 			pep->rx_ring_size = pep->pd->rx_queue_size;
1549 
1550 		if (pep->pd->tx_queue_size)
1551 			pep->tx_ring_size = pep->pd->tx_queue_size;
1552 
1553 		pep->port_num = pep->pd->port_number;
1554 		pep->phy_addr = pep->pd->phy_addr;
1555 	} else if (pdev->dev.of_node) {
1556 		of_property_read_u32(pdev->dev.of_node, "port-id",
1557 				     &pep->port_num);
1558 
1559 		np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1560 		if (np)
1561 			of_property_read_u32(np, "reg", &pep->phy_addr);
1562 	}
1563 
1564 	/* Hardware supports only 3 ports */
1565 	BUG_ON(pep->port_num > 2);
1566 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1567 
1568 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1569 	init_timer(&pep->timeout);
1570 	pep->timeout.function = rxq_refill_timer_wrapper;
1571 	pep->timeout.data = (unsigned long)pep;
1572 
1573 	pep->smi_bus = mdiobus_alloc();
1574 	if (pep->smi_bus == NULL) {
1575 		err = -ENOMEM;
1576 		goto err_base;
1577 	}
1578 	pep->smi_bus->priv = pep;
1579 	pep->smi_bus->name = "pxa168_eth smi";
1580 	pep->smi_bus->read = pxa168_smi_read;
1581 	pep->smi_bus->write = pxa168_smi_write;
1582 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1583 		pdev->name, pdev->id);
1584 	pep->smi_bus->parent = &pdev->dev;
1585 	pep->smi_bus->phy_mask = 0xffffffff;
1586 	err = mdiobus_register(pep->smi_bus);
1587 	if (err)
1588 		goto err_free_mdio;
1589 
1590 	pxa168_init_hw(pep);
1591 	err = ethernet_phy_setup(dev);
1592 	if (err)
1593 		goto err_mdiobus;
1594 	SET_NETDEV_DEV(dev, &pdev->dev);
1595 	err = register_netdev(dev);
1596 	if (err)
1597 		goto err_mdiobus;
1598 	return 0;
1599 
1600 err_mdiobus:
1601 	mdiobus_unregister(pep->smi_bus);
1602 err_free_mdio:
1603 	mdiobus_free(pep->smi_bus);
1604 err_base:
1605 	iounmap(pep->base);
1606 err_netdev:
1607 	free_netdev(dev);
1608 err_clk:
1609 	clk_disable(clk);
1610 	clk_put(clk);
1611 	return err;
1612 }
1613 
pxa168_eth_remove(struct platform_device * pdev)1614 static int pxa168_eth_remove(struct platform_device *pdev)
1615 {
1616 	struct net_device *dev = platform_get_drvdata(pdev);
1617 	struct pxa168_eth_private *pep = netdev_priv(dev);
1618 
1619 	if (pep->htpr) {
1620 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1621 				  pep->htpr, pep->htpr_dma);
1622 		pep->htpr = NULL;
1623 	}
1624 	if (pep->clk) {
1625 		clk_disable(pep->clk);
1626 		clk_put(pep->clk);
1627 		pep->clk = NULL;
1628 	}
1629 	if (pep->phy != NULL)
1630 		phy_detach(pep->phy);
1631 
1632 	iounmap(pep->base);
1633 	pep->base = NULL;
1634 	mdiobus_unregister(pep->smi_bus);
1635 	mdiobus_free(pep->smi_bus);
1636 	unregister_netdev(dev);
1637 	cancel_work_sync(&pep->tx_timeout_task);
1638 	free_netdev(dev);
1639 	return 0;
1640 }
1641 
pxa168_eth_shutdown(struct platform_device * pdev)1642 static void pxa168_eth_shutdown(struct platform_device *pdev)
1643 {
1644 	struct net_device *dev = platform_get_drvdata(pdev);
1645 	eth_port_reset(dev);
1646 }
1647 
1648 #ifdef CONFIG_PM
pxa168_eth_resume(struct platform_device * pdev)1649 static int pxa168_eth_resume(struct platform_device *pdev)
1650 {
1651 	return -ENOSYS;
1652 }
1653 
pxa168_eth_suspend(struct platform_device * pdev,pm_message_t state)1654 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1655 {
1656 	return -ENOSYS;
1657 }
1658 
1659 #else
1660 #define pxa168_eth_resume NULL
1661 #define pxa168_eth_suspend NULL
1662 #endif
1663 
1664 static const struct of_device_id pxa168_eth_of_match[] = {
1665 	{ .compatible = "marvell,pxa168-eth" },
1666 	{ },
1667 };
1668 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1669 
1670 static struct platform_driver pxa168_eth_driver = {
1671 	.probe = pxa168_eth_probe,
1672 	.remove = pxa168_eth_remove,
1673 	.shutdown = pxa168_eth_shutdown,
1674 	.resume = pxa168_eth_resume,
1675 	.suspend = pxa168_eth_suspend,
1676 	.driver = {
1677 		.name		= DRIVER_NAME,
1678 		.of_match_table	= of_match_ptr(pxa168_eth_of_match),
1679 	},
1680 };
1681 
1682 module_platform_driver(pxa168_eth_driver);
1683 
1684 MODULE_LICENSE("GPL");
1685 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1686 MODULE_ALIAS("platform:pxa168_eth");
1687